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Abstract

This paper introduces a new algorithm to conduct robust Bayesian estimation and inference

in dynamic stochastic general equilibrium models. The algorithm combines standard

Bayesian methods with an equivalence characterization of model solutions. This algorithm

allows researchers to perform the following analysis: First, find the complete range of

posterior means of both the structural parameters and any parameters of interest robust to

the choice of priors in a sense I make precise. Second, derive the robust Bayesian credible

region for these parameters. I prove the validity of this algorithm and apply this method to

the models in Cochrane (2011), An and Schorfheide (2007) and Smets and Wouters (2007)

to achieve robust estimations for structural parameters and impulse responses. In addition,

I conduct a sensitivity analysis of optimal monetary policy rules with respect to the choice

of priors and provide bounds to the optimal Taylor rule parameters.
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1 INTRODUCTION

1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have been the workhorse of modern

macroeconomics. They are taught in almost all doctoral programs in economics and are used by

many central banks and financial institutions, such as the US Federal Reserve, IMF and Sveriges

Riksbank for monetary policy analysis.1 Estimation and inference are typically conducted using

Bayesian methods (Smets and Wouters, 2007; Christiano et al., 2010; Justiniano and Preston, 2010).

Bayesian methods are attractive to macroeconomists in estimating DSGE models for multiple

reasons. One is that the advent of Markov chain Monte Carlo (MCMC) methods allows researchers to

estimate and evaluate complicated models. In addition, under the Bayesian framework, researchers’

prior knowledge of parameters can be incorporated into the estimation of the model. With a given

prior, researchers can draw from a posterior distribution through MCMC without having to worry

about identification issues; in fact, Lindley (1972) (p. 46) concludes “that unidentifiability causes

no real difficulty in the Bayesian approach.”

However, standard Bayesian inference can be problematic in models that are not point-

identified (Poirier, 1998; Gustafson, 2009; Moon and Schorfheide, 2012; Morris, 2014). For example,

Moon and Schorfheide (2012) find that any choice of priors would result in Bayesian highest-

posterior-density sets that are asymptotically strictly smaller than the true identified set. Morris

(2014) shows in simulation that the posterior mode will not exhibit a “jump” pattern in a bimodal

likelihood case, while the prior shifts its weight continuously from one mode to another. In addition,

it is often hard to even tell whether the parameters in a DSGE model are identified because of its

complicated structure and the large number of parameters. These factors make the estimation

result from the standard Bayesian approach potentially inconsistent: the posterior mean can fail

to converge to the true value, and its probability limit is sensitive to the choice of prior even

asymptotically.

In this paper, I propose a robust Bayesian algorithm that allows finding the range of posterior

means over a class of priors and a robust Bayesian credible region that has credibility of at least

1−α over the same class. Instead of committing to a prior with great confidence, researchers can

start with any “reasonable” prior with positive density on the parameter values allowed by the

1A non-exhaustive list of institutions that have developed DSGE models includes the Bank of Canada, the
Bank of England, the Bank of Israel, the Central Bank of Chile, the Central Reserve Bank of Peru, the Czech
Central Bank, the European Central Bank, the International Monetary Fund, the Norges Bank, the Sveriges
Riksbank, and the U.S. Federal Reserve (Adolfson et al., 2011; Del Negro et al., 2013; Lindé, 2018; Christiano
et al., 2018).
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1 INTRODUCTION

model constraints. Then, for each given parameter drawn from the posterior, researchers can find

the observationally equivalent set of this parameter and use it to solve an optimization problem for

the upper and lower bounds of the parameters of interest. The final step is to find the mean or the

quantile of the bounds attained across posterior draws, or both. This algorithm is convenient to use

because it can be applied complementarily with standard Bayesian estimation methods.

On the theory side, I show that the new robust Bayesian algorithm is valid. Specifically, the

expected set of means achieved from this algorithm is the same as the collection of all posterior

expectations generated by an arbitrary choice of prior within a distribution class suggested by

Giacomini and Kitagawa (2021). Therefore, researchers can use the algorithm to conduct robust

Bayesian inference on the parameters of interest without trying out all possible priors. I also show

that under some regularity conditions, the estimated range of posterior means will asymptotically

converge to the true identified set.

In the second part of the paper, I apply this algorithm to multiple models to show it is useful

for understanding results from the literature that are based on historical data, for conducting

inference, and for analyzing policies. I start with the model in Cochrane (2011), which is simple

enough to be analytically tractable. Using simulated data, I compare the theoretically identified set

and the estimated range of posterior means. I show that the algorithm performs well in estimating

the identified set. Then I work with a more economically meaningful class of small-scale DSGE

models, sometimes referred to as the three-equation New Keynesian model. In particular, I work

with models similar to those of Galí and Gertler (1999) and An and Schorfheide (2007) with i.i.d.

shocks, auto-correlated shocks, and a variant with a cost-push shock. These three examples have

the property that with temporary shocks, parameters are not identified, but the impulse responses

are identified. With serially correlated shocks, local identification fails but does not affect policy-

making. Moreover, in the case with a cost-push shock, parameter uncertainty causes uncertainty in

the optimal policy.

This paper is most closely related to the literature on identification in DSGE models. In a

pioneering paper, Canova and Sala (2009) summarize different identification issues that DSGE

models can have and propose diagnostics to detect identification deficiencies. Iskrev (2010) provides

the sufficient conditions, whereas Komunjer and Ng (2011) and Qu and Tkachenko (2012) provide

the necessary and sufficient conditions for local identification taking different paths. Komunjer and

Ng (2011) perform analysis from the state-space characterization, and Qu and Tkachenko (2012)

use a frequency domain approach. Koop et al. (2013) also propose two Bayesian identification
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1 INTRODUCTION

indicators to check local identification. Qu and Tkachenko (2017) offer a more general framework to

check global identification by assessing the Kullback-Leibler distance between two parametrizations

of DSGE models.

Kociecki and Kolasa (2018) offer an alternative theoretical analysis of global identification

based on results from Komunjer and Ng (2011). They build a polynomial equation system to

characterize the observationally equivalent state-space parameters. Kocięcki and Kolasa (2023)

extend this characterization of solutions and solve them analytically by finding all the roots of

a system of polynomial equations. Qu and Tkachenko (2012) also attempt to evaluate the “non-

identification curve”, but their method is computationally demanding and can trace only local

identification failures. All these studies focus on checking identification at a given (estimated)

parameter value. In this paper, I propose an easy-to-implement, robust Bayesian algorithm for

finding the complete identified set of parameters consistent with the data. Although there is always

a choice to modify the model (e.g., add more shocks, or fix some parameter values) whenever

identification fails, the algorithm proposed in this paper allows researchers to understand better

the identification power and informativeness of model assumptions and data. More importantly,

when the model is point-identified, the estimation results will be the same as those of standard

Bayesian methods. That is, the algorithm proposed in this paper does not have any cost beyond the

computation burden. It is also a valuable tool for separating information in the data from any prior

input that is not revised by the data.

Additionally, this paper also speaks to both the partial identification and the robust Bayesian

literature. The literature on frequentist analysis of set-identified models is large. It dates back to

Hurwicz (1950), followed by the seminal work of Manski (1995), and more recent papers, such

as Horowitz and Manski (2000), Manski (2003), Imbens and Manski (2004), Chernozhukov et al.

(2007), Beresteanu and Molinari (2008), Stoye (2009), Andrews and Soares (2010), Romano and

Shaikh (2010), Beresteanu et al. (2011) and Kaido et al. (2019). See Molinari (2020) for a review. The

robust Bayesian analysis framework, initially explored in statistics (e.g., DeRoberts and Hartigan

(1981), Wasserman (1989), and Berger (1990)), has recently been applied in economics for inference

in set-identified models. In the robust Bayesian analysis literature, robustness is often discussed in

terms of model or loss function uncertainty (Berger, 1990), but this paper focuses specifically on

the sensitivity of Bayesian answers to variations in priors. There is a growing body of literature on

Bayesian inference for partially identified models. This literature includes Moon and Schorfheide

(2012), Gustafson (2015), Kline and Tamer (2016), Chen et al. (2018), Liao and Simoni (2019),
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Florens and Simoni (2021), Giacomini and Kitagawa (2021), Ke et al. (2022), Giacomini et al. (2022),

and Bacchiocchi and Kitagawa (2022).

Some of the technical details of this paper are related to the engineering and math literature.

The characterization of observationally equivalent state-space models is based on theories of linear

systems (Glover, 1973; Antsaklis and Michel, 1997). The solution of polynomial systems and

Gröbner basis are from algebraic geometry (Cox et al., 2013).

A key contribution of this paper is that it allows estimating the true identified set in DSGE

models. In the paper, I use the algorithm from Kocięcki and Kolasa (2023), which allows finding

observationally equivalent semi-structural parameters, and combine it with standard Bayesian

methods to perform robust Bayesian estimation under the Giacomini and Kitagawa (2021) multiple-

prior structure. However, unlike in Giacomini and Kitagawa (2021), it is challenging to form

an explicit prior on the point-identified parameters2 (which are usually called reduced-form

parameters), update them with data, and map them back to find structural parameters. The

reason is the complexity of DSGE models makes it generally impossible to find a closed-form

representation of the likelihood function in terms of structural parameters. Instead, I can draw

from posteriors of structural parameters and directly obtain observationally equivalent sets from

those draws. After averaging the sets, I then show that this set achieved from one given prior is

the range of all posterior means for a prior class, and the estimated set will converge to the true

identified set consistent with the data.

The rest of this paper is organized as follows: Section 2 presents the motivations for this study,

showing that the posterior parameter estimates, impulse response functions, and optimal policies

can all be sensitive to the choice of priors regardless of sample size and number of posterior draws

in set-identified DSGE models. In section 3, I first illustrate the structure of a typical DSGE model

and a crucial identification condition to the proposed algorithm. Then I set up the robust Bayesian

framework, propose an algorithm to conduct robust Bayesian inference for DSGE models, and

show key theoretical results supporting this algorithm. Section 4 discusses examples from section 2

under the robust Bayesian setting. Section 5 concludes the paper.

2One can consider the spectral densities of observed variables or the set of all observationally equivalent
structural parameters as the point-identified parameters in DSGE models, which can be high-dimensional or
even infinite-dimensional when there does not exist a clear parametrization by the parameters of a DSGE
model.
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2 MOTIVATION

2 Motivation

Estimation in DSGE models can be difficult, because they are rich in parameters and often have a

complicated model structure. Standard Bayesian methods are commonly employed in estimating

this class of models. However, little is known about the robustness of the estimation results when

the model is not identified. Moreover, it is unknown how inference based on the estimation results,

and the policy analysis, could be related to this identification problem.

The following example illustrates the identification failure, and the formal definition is given

in section 3.

Example 1 (A White-noise Process) Consider the following stochastic process,

Yt =Dεt , εt ∼N (0, Inε ),

where Yt is a vector of observed variables at time t, and D is the coefficient matrix. What can be

recovered from the data (the reduced-form parameter in Giacomini and Kitagawa (2021)) in this model

is E

[
YtY

′
t

]
= D0D

′
0, where D0 is the true coefficient. Without further assumptions, one can have any

D̄ =D0Q, with Q an orthonormal matrix, and still have D̄D̄ ′ =D0D
′
0. Therefore, D is not identified.

It will become clearer later that with an arbitrary informative prior distribution on D, the

posterior mode of D, just because it has a higher prior weight but has the same likelihood as D0,

can be far away from the true D0.

In this section, I examine a few examples to show that in set-identified DSGE models, estima-

tion, inference, and policies made based on standard Bayesian results can be sensitive to the choice

of priors, regardless of sample size. To resolve this issue, I propose an algorithm to perform robust

Bayesian estimation and inference.

Although the work of Kocięcki and Kolasa (2023) allows, for a given parameter value, compu-

tation of the collection of all parameters that induce the same distribution of the data, it is not clear

how that method could help researchers find the set of parameters supported by both the model

and the data. One possibility is to apply their procedure with the maximum likelihood estimator. I

suggest an alternative algorithm that has a preferable finite-sample interpretation (see Theorem 3).
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2.1 Parameter Estimation 2 MOTIVATION

2.1 Parameter Estimation

One direct interpretation of parameter estimates is that they indicate what values with underlying

economic meanings are supported in historical data. Consider the simple monetary policy model

introduced in King (2000), and thoroughly discussed in Cochrane (2011); solving the model results

in the autoregressive equation of order 1 (AR(1))

πt = ρπt−1 −
1

φπ − ρ
εt , εt ∼N (0,σ2

e ),

where πt is the inflation rate, εt is the shock term of an AR(1) monetary policy disturbance, ρ is the

correlation coefficient, φπ is the Taylor rule parameter, and σe is the standard error of the monetary

policy shock. Only πt is assumed to be observed. Here the structural parameters to be estimated

are stacked in a vector θ = (σe,φπ,ρ); the autocorrelation function identifies (ρ, σe
φπ−ρ ).

In the rest of this section and in section 6, the exercises of application to different models are

done in the following way. First, start with a set of “true” values and model specifications, simulate

a sample of 200 periods,3 and save the generated observed variables. Then, from the artificial data,

estimate the parameters, perform standard Bayesian analysis, and compare the results with the true

values.

I run a standard Bayesian estimation of the parameters σe, φπ, and ρ in Dynare, a software

platform that has been used by macroeconomists for handling a wide class of economic models,

including DSGE and overlapping generations (OLG) models (Adjemian et al., 2011). The reported

local identification results from embedded methods based on Iskrev (2010), Komunjer and Ng

(2011), and Qu and Tkachenko (2012) confirm that local identification fails because σe and φπ

are pairwise collinear. I use the “uninformative prior” such that the priors of the parameters are

uniform and independent. I use 500,000 posterior draws and a 400,000 burn-in period. Ideally, the

reported statistics of the posterior distribution should reflect this non-identification issue of σe and

φπ.

However, in the estimation results, the posterior mean of (σe,φπ) does not converge to the true

parameter values (see Table 1). The posterior modes (maximum a posteriori estimator, or MAP)

also fail to be close to the true values. In addition, the Bayesian credible regions of (σe,φπ) do not

cover the true values.
3This is approximately 16 years of observations if one has monthly data, which is a reasonable amount in

DSGE estimations. I also perform the same exercise with 500 periods and 1000 periods and the results and
conclusions are similar to those obtained using 200 periods.
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2.2 The Impulse Responses 2 MOTIVATION

Figure 1 shows that the marginal posterior distributions for φπ and σe are different from the

prior even when neither is identified. A careful inspection of the likelihood function in terms of σe

and φπ (fixing ρ = 0.8) shows that the likelihood achieves its maximum on the line σe = φπ − 0.8.

It is flatter near the maximum region when both values are high (see Figure 2). However, when

the estimated parameters become high-dimensional, it is impossible to check the overall model

identification by inspecting the likelihood function. That invalidates the “eyeballing” method to

find the identified set of structural parameters.

The informative posteriors of the unidentified parameters also confirm that data-based learning

about the identified parameters can “spill over” onto the unidentified parameters (see Koop and

Poirier 1997; Koop et al. 2013). All the results are robust to the number of posterior draws and

replications. I also perform an exercise to explore the behavior of the posterior mode, minimizing

the negative log likelihood, penalized by the prior, with 1000 replications and a sample size ranging

from 100 to 1000 observations.4 As is shown in Figure 6 in the appendix, the pattern illustrated

using MCMC from the sample above is not uncommon.

Table 1: Prior and posterior distribution of structural parameters, from a single run of the
MCMC procedure on one sample

True value Prior distribution Posterior distribution

Distr. Mean St. Dev. Mode Mean 5 percent 95 percent

σe 1 Uniform 4 2.02 1.85 4.43 1.95 6.77

φπ 1.8 Uniform 4 1.73 2.51 4.91 2.78 7.00

ρ 0.8 Uniform 0.75 0.09 0.81 0.81 0.74 0.87

2.2 The Impulse Responses

Impulse response analysis is one of the most used tools in macroeconomics. The impulse response

functions (IR, or IRF) can be used to predict the implications of an unexpected shock or a policy

4To do the exercise, I use the particle swarm optimizer embedded in MATLAB to find the global minimum.
The initial value of the parameter vector is set at the prior mean of the uniform prior. Because the objective
function always has infinite minimizers, with a uniform randomization of the starting points of particles
around the prior mean, the minimizer reported is also random. Moreover, the reported numerical minimizer
“picked” by the algorithm should reflect the shape of the objective function. The way the particle swarm
algorithm works is similar to how MCMC with adaptive variance works. The non-identifiability of φπ and
σe can also be reflected in the trace of the MCMC draws in Figure 5, because the range of draws is wide for
these two parameters.
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2.2 The Impulse Responses 2 MOTIVATION

Figure 1: Prior and posterior for the Cochrane model. The red dashed line represents the
true values; ρ is the correlation coefficient, φπ is the Taylor rule parameter, and σe is the
standard error of the monetary policy shock.

change in a macroeconomic framework. Impulse responses can be generally defined without

reference to the data-generating process as the following function (Koop et al., 1996; Potter, 2000;

Jordà, 2005):

IR(t, s,δ) = E(yt+s | εt = δ;ωt−1)−E(yt+s | εt = 0;ωt−1), s = 0,1,2, . . . , (1)
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2.2 The Impulse Responses 2 MOTIVATION

Figure 2: Log-likelihood of the Cochrane model when the correlation coefficient ρ is equal
to 0.8. The red line is the maxima ridge of the likelihood function.

where yt+s is the variable of interest at time t + s, εt is the exogenous shock, δ is the size of the shock

with the same dimension as εt, and ωt−1 is a particular realization of the information set available

up to time t − 1, Ωt−1.

In this exercise, I compute the impulse responses of inflation πt to a 1-unit change in monetary

policy shock. To do that, I first compute the posterior mean and standard Bayesian confidence

interval of impulse responses using two priors. One is the uniform prior used above. The other is

constructed in a way such that it always has the same prior and posterior predictive distribution

over {πt} regardless of the data realization.5 In Figure 3, I draw the true impulse response function

of 20 periods with a 1-unit shock of ε at time 1. The Bayesian credible region, or the 90% highest-

posterior-density interval, does not always cover the true impulse response function, denoted as

IRπ |θ0
, when the parameters are not identified.

This is also an example to show that, even from a probabilistic point of view, inference based

on estimation results can be misleading. That is, even when researchers explore the entirety of the

posterior distribution on the impulse response function, they will find it unlikely the true impulse

response function is actually true. Again, this result persists across 1000 replications of simulated

samples; therefore, it cannot be explained as sampling errors.

5The prior predictive distribution is the distribution of a data point marginalized over its prior distribution.
In this case, it is p(π) =

∫
p(π | θ)dπθ , where πθ is the prior distribution, and p(π | θ) is the likelihood of {πt}.
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2.3 Policy Analysis 2 MOTIVATION

Figure 3: The impulse response functions (IR) of inflation π to a one-unit shock in the
Cochrane model; 20 periods of impulse responses are plotted.

2.3 Policy Analysis

Considering the sensitivity results presented in the previous section, a natural question is, Does

this sensitivity issue affect policy analysis? The short answer is yes, sometimes. A more detailed

discussion is in section 5. The following example comes from An and Schorfheide (2007). Relative

to their model, I change only the total factor productivity shock to a cost-push shock, similar to the

setting in (Galí, 2015), Chap. 5. As will be discussed in section 4, the existence of a cost-push shock
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2.3 Policy Analysis 2 MOTIVATION

prevents the divine coincidence.

yt =Et
[
yt+1

]
− 1
σ

(it −Et [πt+1]) + gt −Et
[
gt+1

]
πt =βEt [πt+1] +κ

(
yt − gt

)
+ut

it =ρRit−1 +
(
1− ρR

)
ψππt +

(
1− ρR

)
ψy

(
yt − gt

)
+ εR,t

ut =ρuut−1 + εu,t

gt =ρggt−1 + εg,t .

(2)

Here πt is the inflation rate, it is the nominal interest rate, yt is the output gap, gt is the government

spending shock, εR,t is the monetary policy shock, and ut is the cost-push shock. The structural

parameters to be estimated are the inverse intertemporal elasticity of substitution σ ; composite

parameter κ, which denotes the slope of the new-Keynesian Phillips curve; ψπ and ψy , which are

the strength of the interest rate response to deviations of inflation or the output gap from their

target levels, respectively; autoregressive coefficients ρR,ρg ,ρu ; and standard deviations σR,σg ,σu ,

respectively. They are all stacked into a vector θ = (σ,κ,ψπ,ψy ,ρR,ρg ,ρu ,σR,σg ,σu), and discount

factor β is calibrated at its true value. I use two different priors in this example. The first prior is the

same as that of An and Schorfheide (2007), except the total-factor productivity shock’s parameters

are replaced by the cost-push shock. I obtain 50,000 posterior draws and drop 40,000 for the

burn-in. As in the above example, I generate another posterior distribution with the same posterior

predictive distribution as that of the first prior.

Imagine that the policy maker is trying to choose between two policy parameter combinations,

(ψπ,ψy) = (1.5,0) and (ψπ,ψy) = (1.5,0.125), to determine whether the monetary policy should

respond to the output gap to minimize the welfare loss of the form λπ2
t + y2

t , where λ is the relative

weight on the inflation that cannot be recovered from estimation. Table 2 shows the optimal policy

choices under different priors across different weights.

Table 2: Policy comparison under different distributions and weights. The check mark
denotes the policy with lower welfare loss.

λ = 1
3 λ = 1 λ = 3 λ = 10 λ = 30

(ψπ,ψy) post 1 post 2 post 1 post 2 post 1 post 2 post 1 post 2 post 1 post 2

(1.5, 0) X X X X X

(1.5, 0.125) X X X X X
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3 DSGE AND ROBUST BAYES

Although the optimal parameters agree under both priors for most weights, they are different

when the weight on inflation in the objective function is three times the output gap.6 That is, a

researcher with prior 1 will disagree with a researcher who uses prior 2 in optimal policy choices,

even though their models are the same and their priors induce the same predictive distribution

(hence, the same marginal data density).

3 DSGE and Robust Bayes

In this section, I first set up the problem under a DSGE model framework, characterize it in a

robust Bayes setting, and propose an algorithm for robust estimation and inference. Then, I explain

the structure of DSGE models and the robust Bayes framework. For the DSGE part, I start by

demonstrating a standard way to estimate a DSGE model, which involves solving a linear rational

expectation model and finding the likelihood. Each step could lead to a failure of identification.

Finally, I show the theorems from previous literature to characterize observational equivalence. For

the robust Bayes part, I define a prior class that I work with and show the proposed algorithm’s

finite sample and asymptotic properties.

3.1 Model Specification

A DSGE model with structural parameter vector θ ∈Θ is typically characterized by several Euler

equations and market clearing conditions in equilibrium. After linearizing the equilibrium condi-

tions around the steady states, I have a linearized rational expectation (LRE) model of the form

(Kociecki and Kolasa, 2018; Kocięcki and Kolasa, 2023)7

Γ0(θ)

 StPt
 = Γ1(θ)Et

 St+1

Pt+1

+ Γ2(θ)St−1 + Γ3(θ)εt , (3)

6The feature that the optimal policy is sensitive to the choice of priors does not appear only at λ = 3; it
holds for λ values between 2 and 6.

7Alternative representations are used in the literature. For example, Blanchard and Kahn (1980) use
Γ0Et(St+1) = Γ1St + c + Ψ εt . Sims (2002) introduces endogenous forecast error ηyt ≡ yt − Et−1yt so that
Γ0(θ)St = Γ1(θ)St−1 +Ψ (θ)εt +Π(θ)ηt , which is called the canonical form. Al-Sadoon and Zwiernik (2019) use∑p
i=−qBiEt (St−i) =

∑k
i=0Aiεt−i . These forms can be transformed easily from one to another. Although some

may be the subclass of the other more general forms, they are general enough to represent almost all linear
DSGE models. I work on the form of Equation (3) because it allows researchers to operate under minimal
state representation.
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3.1 Model Specification 3 DSGE AND ROBUST BAYES

where Γi(θ), i = 0 . . .3 are matrices of coefficients that are also functions of structural parameters

θ; St , Pt , εt and ηt contain the state variables, policy variables (non-state endogenous variables),

structural shocks, and expectation errors respectively; εt can in general include sunspot shocks

in the case of infinite stable solutions to LRE, which is called indeterminacy,8 and measurement

errors when they exist. The LRE models can be solved numerically to yield a linear state-space

representation; the solution combined with measurement (without a constant term) is also known

as the ABC(D) representation (Fernández-Villaverde and Rubio-Ramírez, 2007),

St = A(θ)St−1 +B(θ)εt (4)

Yt = C(θ)St−1 +D(θ)εt , (5)

where St ∈ R
nS is the state vector, Yt ∈ R

nY is the observable vector, εt ∼ i.i.d.N (0,Σ(θ)) has

dimension nε, A(θ) is an nS ×nS matrix, B(θ) is an nS ×nε matrix, C(θ) is nY ×nS , D(θ) is nY ×nε,

and Σ(θ) is a positive definite, nε×nε matrix. Here A, B, C, and D are the coefficients of the solution.

Representation (5) can be derived from an additional solution equation Pt = F(θ)St−1 +G(θ)εt9 and

a measurement equation with policy variables

Yt = L(θ)

 StPt
+ J(θ)εt .

Different from structural vector autoregressive (SVAR) models, the ABCD representation that

researchers work directly on is not identified in general (Komunjer and Ng, 2011) in the sense

that different combinations of (A,B,C,D,Σ) could potentially have the same likelihood. Therefore,

the failure of identification may come from the mapping from structural parameters to the state-

space coefficients, or the mapping from the state-space parameters to the likelihood. However,

in practice, researchers are not concerned about the identification issue when estimating a DSGE

model because the posterior distributions of structural parameters can always be attained regardless

of identification. As will become clear later, in set-identified models, standard Bayesian estimation

results are sensitive to the choice of priors, no matter how big the sample size is.

8Lubik and Schorfheide (2003) have shown the stable solutions can be represented as St = ΘSt−1 +Θεεt +
Θεεt , where ε stands for structural shocks, and ε is the sunspot shocks. To keep things simple, I do not
consider the possibility of indeterminacy for the main part of this paper, and put this discussion to section 6.

9The coefficients F and G enter the likelihood of Y only through C(θ) and D(θ) and are thus irrelevant.
Another reason it is not called an ABCDFG representation is that in other papers the authors do not separate
the state variables from the policy variables. Therefore, their matrix A contains both values in A and F here.
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Next, we outline the standard process for conducting Bayesian estimation in DSGE models.

This is presented in the form of a pseudo-algorithm.10

Algorithm 1 (Bayesian Estimation of Linearized DSGE Models)

(1) Write down DSGE as a constrained optimization problem. Find the optimal first-order conditions

and steady states. Then linearize the model around its steady states to obtain its LRE form expressed

by Equation (3).

(2) Solve the LRE model and obtain a state-space form Equations (4) and (5).

(3) Set a prior distribution πθ for structural parameters θ.

(4) Use MCMC methods, such as random walk Metropolis–Hastings (Robert et al., 1999) or sequential

Monte Carlo methods (Herbst and Schorfheide, 2014), to obtain draws from posterior πθ|Y , and

call it θj+1.

• Likelihood can be evaluated from the state-space form using the Kalman filter.

(5) Repeat steps 2 and 3 M times. Obtain the posterior distribution of parameters of interest {η(θj )}Mj=1

by transforming the posterior draws of θ.

This type of algorithm, although widely used, would reveal only the parameter values sup-

ported by the model and the data when the parameters are identified. It is not clear from this

procedure when there is lack of identification11 and how the results are sensitive to the choice of

priors. As shown in section 1, starting with a more or less ad hoc prior obscures the underlying

identification problems and can result in misleading posteriors (see also Poirier 1998; Gustafson

2009; Moon and Schorfheide 2012; Morris 2014). Researchers might be interested in all the inferen-

tial conclusions that are supported by the model and the data. An estimation and inference method

that is robust to the choice of priors would be particularly valuable in this case.

Before I introduce the proposed algorithm and jump to applications of robust Bayesian tools

in DSGE models, I summarize the framework. I set up the structure by defining the key concepts

used in this paper. Then, I present the algorithm and theorems needed for it to work.

10See Herbst and Schorfheide (2015) for an exhaustive description of each step.
11One might argue identification failure can be found from the MCMC trace plot using a uniform prior,

as in Figure 5. However, when the range of the identified set is small, or when the model is locally but not
globally identified, this feature becomes less obvious. Effective methods to detect global identification failure
are covered in Qu and Tkachenko (2017) and Kociecki and Kolasa (2018).
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Let (Y,Y ) be the measurable space of a sample of observables Y T ≡ {Yt}Tt=0 ⊂ Y, and let

(Θ,A) be the measurable space of a parameter vector θ ∈ Θ ⊂ R
d . I assume the existence of a

regular conditional distribution F(y | θ), and density p(y | θ) of Y1:T given θ, which represents the

likelihood function. The concepts of observational equivalence and identification are defined as

follows (Rothenberg, 1971):

Definition 1 (Observational Equivalence) Given a model with likelihood density p(y | θ), θ and θ̄

are observationally equivalent if p(y | θ) = p(y | θ̄) for all observed data y ∈ Y. It can also be written as

θ ∼ θ̄.

By definition, this observational equivalence is an equivalence relation in mathematics and therefore

possesses reflexivity, symmetry, and transitivity. It partitions the space Θ into equivalent classes.

For any data realization, each parameter vector has the same likelihood within the class.

Definition 2 (Identification) Given a model, the parameters θ of the model are identified if there exists

no other θ̄ ∈Θ observationally equivalent to θ.

Definition 2 is sometimes referred to as global identification.12

For any given θ, I can define the observationally equivalent set by a mapping K : Θ→F ⊂ 2Θ

such that K(θ) ≡ {θ′ : θ′ ∼ θ}, and F is the family of closed subsets of Θ. Without further

assumptions, K characterizes the indices that dictate the likelihood, i.e., p(y | θ) = p(y | θ̄) for all

y ∈ Y if and only if K(θ) = K(θ̄) (see, e.g., Barankin et al. (1960)). It immediately follows that θ ∼ θ̄

if and only if K(θ) = K(θ̄).

In contrast with Giacomini and Kitagawa (2021), who work with the reduced-form parameters

or minimal-sufficient parameters directly,13 there is no consensus regarding the definition of

reduced-form parameters in DSGE models. The agnostic nature of the mapping K caused by model

complexity makes it hard to apply the methodology of Giacomini and Kitagawa (2021) here. In an

abuse of notation, I will use K to denote both the mapping and a generic mapped element in F ,

which is a subset of Θ.
12If I replace “θ̄ ∈Θ” with “θ̄ ∈ Nr (θ) for some neighborhood of θ”, I have the notion of local identification.
13Let θ ∈ Θ be the structural parameters. If there exists a continuously differentiable function φ = g(θ)

that maps a neighborhood of θ to a subset of Rr such that p̃(y | φ) = p(y | θ) for all y ∈ Y and θ ∈Θ for some
function p̃(y | φ) and if, in addition, φ is globally identified, then φ is called a reduced-form parameter.
Identification analysis in econometrics normally proceeds as follows: first, find the reduced-form model
representation where the parameters are always identified, and then disentangle the link between structural
parameters and reduced-form parameters. See, for example, Koopmans (1949); Koopmans and Reiersol
(1950); Barankin et al. (1960); Picci (1977); Dawid (1979); Florens and Simoni (2021); Giacomini and Kitagawa
(2021) for more discussion.
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Researchers are primarily interested in estimating the structural parameter vector θ. However,

sometimes transformations of θ, namely η(θ), with a measurable function η : (Θ,A) → (H,D),

H⊂R
q for some q <∞ are more of interest. Examples include a particular policy parameter or a

finite-period impulse response. More generally, η can be the optimal-choice parameters of a policy

rule that minimizes some welfare loss. For example, in a basic New Keynesian model (Galí (2015)),

an interest rate rule it = rt +φππt +φyyt with natural rate rt can be used to minimize welfare loss in

terms of output gap and inflation of the form

LW (θ,y,π) =
1
2
Et

∞∑
s=0

βs
[
ay2
t+s + bπ2

t+s

]
,

and η = argminφπ ,φy LW ; η may also depend on the initial condition if the welfare loss is conditional.

Detailed applications are shown in section 4. In that case, η is also a function of state variables.

Figure 4 illustrates the graphical connection between these parameters.

Θ

F

H

η

θ

K(θ)

η(θ)

structural parameters

parameters of interest

(e.g. impulse response)

observationally equivalent parameters

(spectral densities etc.)

Y
data

given prior πθ, update through likelihood p(y | θ)

and yield posterior πθ|Y

K

identified

equivalence mapping

Figure 4: Connections between parameters

The specification above is model-free so that the researchers can fit Bayesian models such as

structural vector autoregressive models (Giacomini and Kitagawa, 2021), latent Dirichlet allocation

(Ke et al., 2022), and DSGE in this framework. However, because of the differences in model

complexity and sources of non-identification, different approaches should be taken to perform

robust Bayesian analysis. A comparison of the algorithms used in these models is in the appendix.

A few things significantly complicate the problem under the DSGE settings. First, in practice, re-

searchers do not start by estimating reduced-form parameters in DSGE models. Instead, researchers
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3.2 Identification Conditions 3 DSGE AND ROBUST BAYES

put a prior on structural parameters and generate the likelihoods based on a linear state-space

representation. As shown below, even the parameters of state-space representation (or ABCD

representation) in general are not identified. So, even if the mapping from structural parameter

vector θ to the state-space coefficients is injective, the Bayesian estimation results of θ can still

be sensitive to priors. That disqualifies the state-space form coefficients from being the so-called

reduced-form parameters. Second, even if researchers have well-defined reduced-form parameters

(e.g., spectral densities), it is still challenging to back out all the θs that map into the same spectral

density, because the mapping from structural parameters to spectral densities is model-specific

and often numerical. Luckily, because of the pioneering work done by Komunjer and Ng (2011),

Kocięcki and Kolasa (2023), there exist handy tools to characterize observationally equivalent θ

directly without computing the likelihood. For now, let us take that tool as given. An overview of

the algorithm is presented here, with a more detailed version in section 5.

Algorithm 2 (Robust Posterior Mean in DSGE)

(1) Specify a prior πθ. Use standard Bayesian methods to obtain πθ|Y .

(2) Draw from πθ|Y M times. For each draw θj , compute its observationally equivalent set K(θj ).

(3) Optimize over K(θj ) to find the minimum or maximum value of η(θ), ηjmin, and ηjmax.

(4) Take the average of ηjmin and ηjmax over draws. Report
[

1
M

∑M
j=1η

j
min,

1
M

∑M
j=1η

j
max

]
.

I add two steps to standard Bayesian estimation procedures, where step 2 is based on Kocięcki and

Kolasa (2023). In the case of point-identification, each set K(θj) should be a singleton, and the

reported range will be equal to the standard Bayesian posterior mean. Therefore, there is no loss in

sharpness. Moreover, I will show in the next subsections that this reported set equals the range of

posterior means.

3.2 Identification Conditions

A key step in Algorithm 2 is to find the observationally equivalent set of a given parameter vector.

Theoretical results on conditions to characterize parameter identification in DSGE models have been

widely studied (Iskrev, 2010; Komunjer and Ng, 2011; Qu and Tkachenko, 2012, 2017; Kociecki

and Kolasa, 2018). While the existing research on checking DSGE identification is performed at a

given parameter vector, sufficient and necessary conditions can be insightful to characterize the
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observationally equivalent set. Moreover, these results are used in this paper to provide tools for

finding the true identified set. From this point on, I suppress the dependence on argument θ for

parameters A, B, C, D, Σ, and other parameters to come, for brevity. Therefore, Ā denotes A(θ̄),

and the same applies for the notations of B̄, C̄, D̄, F̄, Ḡ and Σ̄.

Assumption 1 (Stability) For every θ ∈Θ and for any z ∈C, det(zInS −A) = 0 implies | z |< 1.

Assumption 1 restricts {St} and {Yt} in Equations (4) and (5) to weakly stationary time series,

where the eigenvalues of A remain inside the unit circle. Under Assumption 1, Wold decomposition

applies; therefore, I can rewrite Yt in Equations (4) and (5) in the form of a VMA(∞) process

Yt+1 =
[
C(InS −AL)−1BL+D

]
εt+1, t = · · · − 1,0,1 . . . , (6)

where L is the lag operator. The implied impulse response will be

IRy(t, s,δ) =


Dδ, s = 0

CAs−1Bδ, s = 1,2, . . .
. (7)

Define P ≡ E(StS ′t), which is also the unique (under Assumption 1) solution to the Lyapunov

equation P = APA′ + BΣB′. The autocovariances of {Yt}, Γ
y
j = E(YtY ′t−j) can be expressed as Γ

y
0 =

CPC′ +DΣD ′ and Γ
y
j ≡ CA

j−1N for j > 0, where N = APC′ +BΣD ′.

I define the z-transform of {Yt} by

ΦY (z;θ) =
+∞∑
j=−∞

Γ
y
j z
−j . (8)

The spectral density can be achieved by setting z = eiω, i.e. ΦY (eiω;θ) = Σ∞j=−∞Γ
y
j e
−ijω. It can

also be written in terms of the ABCD representation parameters ΦY (z) = H(z)ΣH ′(z−1), where

H(z) = C(zInS − A)−1B + D is the transfer function. Define O ≡ (C′ A′C′ · · · A′nS−1C′), C ≡

(N AN · · · AnS−1N ) for the assumption below.

Assumption 2 (Stochastic Minimality) For every θ ∈ Θ, matrices O have full column rank and C

have full row rank, i.e., rank(O) = rank(C) = nS .

Assumption 2 is the same as stochastic minimality in Kocięcki and Kolasa (2023) and auto-

covariance minimality in Komunjer and Zhu (2020). It differs from the minimality definition in

19



3.2 Identification Conditions 3 DSGE AND ROBUST BAYES

Komunjer and Ng (2011) in that the controllability14 (see for example, Lindquist and Picci (2015))

is on (A,N ) instead of (A,B), and Assumption 2 does not require the econometrician to observe εt.

Intuitively, the rank conditions for C stand for the controllability of the innovations representation

of the state-space system. The full column rank of O guarantees the observability of the model.

The main purpose of this assumption is to ensure there exists no other state-space representation

that has a lower-dimensional state-space but the same spectral density. The practicality of this

assumption is also discussed in Kocięcki and Kolasa (2023), who show that if Assumption 2 holds

at one θ, it holds almost everywhere in Θ.

From definition 1, two structures are said to be observationally equivalent if they imply the

same probability distribution for the observables. With Gaussianity, I can then characterize the

observational equivalence of parameters by their equivalence in the spectral density function: In

my state-space representation, I have only zero intercepts in the measurement equation; allowing

for non-zero intercepts that depend on θ will give extra identification information in the first order.

The following lemma gives an alternative characterization of observational equivalence that is

easier to work with. It is also the definition of observational equivalence in Komunjer and Ng (2011)

and Qu and Tkachenko (2012).

Lemma 1 (Observational Equivalence) In a linearized DSGE model with Gaussian shocks, if As-

sumption 1 is satisfied, two structural parameter vectors θ0 and θ1 are observationally equivalent if and

only if ΦY (z;θ0) = ΦY (z;θ1) for all z ∈C.

The proof of all lemmas and theorems is in the appendix. Lemma 1, when combined with

Definition 2, states that the structural parameter θ can be identified if and only if there is no other

structural parameter that generates the same spectral density. Intuitively speaking, this is because

the spectral density contains the same information as serial dependence of Yt.

By definition, when researchers observe {Yt}, its spectral density ΦY (eiω;θ) is identified. How-

ever, as the following theorem will clarify, the mapping from (A,B,C,D,Σ) to ΦY is not injective.

The simplest version of the theorem that characterizes observational equivalence across

discrete-time linear state-space systems, namely the equivalence described by coordinate trans-

14The matrix pair (A,B) is said to be controllable if the matrix (B AB · · · AnSB) has rank nS . The pair
(A,C) is called observable if (A′ ,C′) is controllable. In a deterministic system, controllability means that for
any initial state, it is always possible to achieve any final state from any initial state by admissible shocks
(inputs). Observability means that it is always possible to reconstruct the initial state by observing the output
trajectory, given the evolution of the shocks. In my notation, the outputs are {Yt}, the inputs are {εt}, and the
states are {St}.
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formation (A,B,C,D) → (TAT −1,T B,CT −1,D), is well-documented in linear system literature.

Komunjer and Ng (2011) extend it to accommodate the case Σ , Inε , and discuss the singular

and non-singular cases separately because of the need to formulate a minimal system. Alterna-

tively, I use the following more general theorem (Theorem 1 in Kocięcki and Kolasa (2023)) that

accommodates both singular and non-singular state-space systems.

Theorem 1 (Observational Equivalence) Let Assumptions 1 and 2 hold. Then θ ∼ θ̄ if and only

if (1) Ā = TAT −1, (2) C̄ = CT −1, (3) AQA′ −Q = T −1B̄Σ̄B̄′T ′−1 − BΣB′,(4) CQC′ = D̄Σ̄D̄ ′ −DΣD ′,

(5)AQC′ = T −1B̄Σ̄D̄ ′ −BΣD ′, for some nonsingular nε ×nε matrix T and symmetric nε ×nε matrix Q.

In addition, if θ ∼ θ̄, then both T and Q are unique.

Theorem 1 is an adapted version of Corollary 4.5 in Glover (1973), reformulated and proved by

Kocięcki and Kolasa (2023) to fit the discrete case. It states that two state-space representations are

observationally equivalent up to some similarity transformation. However, I still need to connect

the structural parameters θ and θ̄ with their state-space parameters to form an equation system

with unknown θ̄.

To do that, I first substitute model solution expressed by Equation (4) to Equation (3), and

impose Etεt+1 = 0. This leads to a equation system with variables St−1 and εt. Then, I use the

undetermined coefficient method, letting the coefficients of St−1 and εt be zero, to obtain the first

four equations of system (9). This method is based on the fact that the state-space system should

always conform with the linear rational expectation model, regardless of the state realizations.

Theorem 1 together with the undetermined coefficient method, allows me to characterize the
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identified set by a system of equations. The following equation system is obtained:

Γ̄ s0 Ā+ Γ̄
p
0 F̄ − Γ̄

s
1 (Ā)2 − Γ̄ p1 F̄Ā = Γ̄2

Γ̄ s1 ĀB̄+ Γ̄
p
1 F̄B̄− Γ̄

s
0 B̄+ Γ̄3 = Γ̄

p
0 Ḡ

C̄ = L̄sĀ+ L̄pF̄

D̄ = L̄sB̄+ L̄pḠ+ J̄

Ā = TAT −1

C̄ = CT −1

AQA′ −Q = −BΣB′ + T −1B̄Σ̄B̄′
(
T −1

)′
AQC′ = T −1B̄Σ̄D̄ ′ −BΣD ′

CQC′ = D̄Σ̄D̄ ′ −DΣD ′

Q =Q′ ,

(9)

where Γ0 =
[
Γ s0 Γ

p
0

]
, Γ1 =

[
Γ s1 Γ

p
1

]
, and L = [Ls Lp]; each superscript corresponds to either the state

or policy component. The unknowns in this system are θ̄ (as which Γ̄i are explicitly expressed), the

elements of B̄, D̄, F̄, Ḡ, T , and Q. Others can be canceled via substitution or reparametrization. The

parameters A, B, C, D, and Σ are known when researchers check identification at a fixed θ point.

To solve equation system (9), analytical methods developed in computational algebraic geome-

try can be of use if equation system (9) can be rewritten as a system of polynomials in unknowns.15

That is, θ̄ appears in the form of polynomial variables in Γ̄i , Σ̄, L̄ and J̄ . This is not a restrictive

assumption. For example, if a fraction of two parameters enter the system, researchers can simply

multiply both sides by the denominator and still obtain a polynomial. When they enter in a more

complicated form (e.g., one is an exponent of another), it may be necessary to define auxiliary

parameters, adding to the original vector or replacing some of them to keep a polynomial form. The

relation between the structural parameters and the newly defined auxiliary parameters is purely

mathematical. Therefore, researchers can easily convert the new parameter vector back to the

original structural parameters. Kocięcki and Kolasa (2023) call this new parameter vector semi-

structural. To avoid unnecessary complexity, without any loss of generality, I do not distinguish

structural and semi-structural parameters unless necessary. That is, I assume that θ shown in Γ0, Γ1,

Γ2, Γ3, Σ, and L, J in a rational functional form, and (9) is a polynomial system.

15Polynomial systems are well-studied in mathematics, especially when the number of solutions is finite.
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With the algorithm proposed by Kocięcki and Kolasa (2023), it is possible to find the complete

equivalent set K(θ) with any given θ. All the computations of finding solutions of these systems

are done using SINGULAR (Decker et al., 2022).16 Their idea is to transform the identification

conditions provided by Theorem 1 into a polynomial system, characterized by equations such as

Equation (9). Theorems about Gröbner basis in algebraic geometry17 then allow me to find all the

solutions satisfying the polynomial system by reducing the system to its simplest form. The steps

Kocięcki and Kolasa (2023) taken to find K(θ) are described below.

Algorithm 3 (Observationally Equivalent Sets)

(1) Start with a structural parameter vector θ chosen by the researcher, where identification is checked.

Solve numerically the model and have a state-space representation with known (A,B,C,D,Σ).

(2) Calculate the reduced Gröbner basis associated with identification conditions satisfying Equation

(9) based on (A,B,C,D,Σ). This is a polynomial system in (θ̄, B̄, D̄, F̄, Ḡ,T ,Q).

(3) If the Gröbner basis has multiple roots of (θ̄, B̄, D̄, F̄, Ḡ,T ,Q), rule out the ones that violate model

constraints.

(4) If more than one solution remains, return the equivalent sets K(θ).

The algorithm takes an initial parameter value θ as input, solves an LRE model and a polynomial

system, and outputs K(θ). Both the procedure of solving an LRE model and the reduction to the

Gröbner basis can be done within SINGULAR with arbitrary precision. In the applications in section

5, I set the first part to have 600 digits and the latter to have 20 digits, which is more accurate than

the default setting of MATLAB, which uses 16 digits of precision.

3.3 Multiple Priors and Random Sets

The next step after finding the observationally equivalent sets is to show thatalgorithm 2 indeed

provides an estimator of (the convex hull of) the identified set. However, it is still unclear how

the choice of priors affects the posterior mean and credible region under set-identification. When

identification issues arise, the posterior of structural parameters incorporates non-revisable prior

16It is a computer algebra system for polynomial computations, with special emphasis on commutative
and non-commutative algebra, algebraic geometry, and singularity theory. It is free and open-source under
the GNU General Public Licence. See more information at https://www.singular.uni-kl.de/.

17See the appendix for a brief introduction about the Gröbner basis, or Cox et al. (2013) for more details.
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knowledge over observationally equivalent parameters. In this section I show how the sensitivity

of estimation is connected to identification failure of the model. Then I set up the framework for

robust Bayesian inference with multiple priors.

In a Bayesian world, the unknown structural parameters θ are assumed to be (Θ,A)-valued

random variables, defined on a probability space. Let πθ be a prior distribution of θ, which can be

a belief of the researcher or information from micro evidence. I also need the measurability of the

set-valued function K that maps Θ to the family of all closed subsets of Θ.

Assumption 3 The equivalence mapping K : Θ→F is Effros measurable, that is, K−(F) ≡ {θ : K(θ)∩

F , �} ∈ A for each F ∈ F .

Under Assumption 3, K is called a random closed set in 2Θ . The multifunction K is a composition

of the mapping from structural parameters θ to DSGE state-space solutions (A,B,C,D,Σ), with

some algebraic transformation, and the mapping from the coefficients of a polynomial system to its

solutions (also called a variety).18 The corresponding prior πK of K(θ) with given πθ can then be

taken as given, defined by πθ such that

πK (B) = πθ
({
θ : K(θ) ∈ B

})
for any B ∈ B(F ), (10)

where B(F ) is the σ -algebra generated by the Fell topology on F (Molchanov (2005), section 1.1).

This πK can also be denoted by K∗(πθ) to explicitly show its dependence on πθ.

The likelihood of θ is flat on K(θ) for any yTt=1, that is, θ ⊥ Y | K(θ). That does not mean,

however, that the induced likelihood of η(θ) is flat on K(θ) as well. In the most extreme case, a

parameter that is set-identified may map into a point-identified parameter of interest.

In addition, the fact that researchers cannot discriminate one θ from another does not

mean the two points have equal prior probability. In that sense, a flat prior does not equal

non-informativeness. As Fisher would argue, “Not knowing the chance of mutually exclusive events

and knowing the chance to be equal are two quite different states of knowledge” (Syversveen, 1998).

Pericchi and Walley (1991) contend that there is not a single distribution that can model ignorance

satisfactorily, hence an examination of a class of priors is necessary. If that is the case, researchers

should care more about the credible regions of parameters, instead of their respective posterior

probability. This motivates the application of robust Bayesian methods.

18Because polynomials are continuous functions in their variables, the set of roots must be closed.

24



3.3 Multiple Priors and Random Sets 3 DSGE AND ROBUST BAYES

In general, the parameters spaces Θ, H can be subspaces of Rn, and K(Θ) can be a subset

of a Baire space,19 where the conditioned probability of K(θ) may be zero. To avoid the Borel-

Kolmogorov paradox,20 in the rest of this paper, I assume the conditional distributions πθ|K are

regular and defined based on conditional expectations. That is, πθ|K (A) ≡ E[1A(θ) | K], similarly for

πη|K . The posterior of θ, πθ|Y , can be expressed as

πθ|Y (A) =
∫
F
πθ|K (A)dπK |Y , A ∈ A. (11)

From expression (11) it can be seen that the conditional prior of θ given K(θ) cannot be updated by

the data. The same argument also holds for the posteriors πη|Y . The following example might be

helpful in understanding how to connect these conditional priors and why set-identification could

happen.

Example 2 Let the structural parameter be θ = (θ1,θ2), and the equivalent set K is defined as K(θ) ={
θ̄ = (θ̄1, θ̄2) | θ1 +θ2 = θ̄1 + θ̄2

}
. Consider two prior distributions on θ:

πθ :

θ1

θ2

 ∼N

00

 ,
1 0

0 1


 , π̃θ :

θ1

θ2

 ∼N

 a−a

 ,
1 0

0 1


 ,

where a is a non-zero constant, and πθ and π̃θ induce the same prior distribution on K . Suppose

researchers observe only Yi ∼N (θ1 +θ2,1), i = 1, . . . , t. Then, in the posterior distribution of θ (expression

(11)) πK |Y gets updated by {Yi}, but the conditional distributions πθ|K and π̃θ|K remain unchanged

because the data do not contain any more information than θ1 +θ2.

I refer to πK as revisable prior knowledge, and πθ|K as unrevisable prior knowledge, à la

Giacomini and Kitagawa (2021) (see also Poirier (1998)). The robust Bayesian analysis does not

require researchers to commit to a single (conditional) prior; instead, any prior satisfying the

following condition is allowed:

Definition 3 (Multiple-Prior Class) Given a πK supported only on K(Θ), the classes of conditional

19This space is still a Polish space equipped with a Borel σ -algebra. Hence there exists a regular conditional
distribution.

20In probability theory, the Borel–Kolmogorov paradox suggests that conditional probability with respect
to an event of probability zero can be indeterminate or ill-posed.
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priors for θ given K are

Πθ|K =
{
πθ|K : πθ|K

({
θ : K(θ) = K

})
= 1,πK − almost surely

}
. (12)

This condition prior class would then induce a class of proper priors for θ that also coincides with

the prior class defined in Ke et al. (2022), the class of all priors that the marginal distribution for K

coincides, given πK , i.e.,

Πθ(πK ) ≡
{∫

πθ|KdπK : πθ|K ∈Πθ|K

}
=

{
πθ : πθ

({
θ : K(θ) ∈ B

})
= πK (B), for B ∈ B(F )

}. (13)

Given πK , the equivalence of having Πθ(πK ) and Πθ|K is shown in appendix. I will use

these two notations of multiple prior classes interchangeably in proofs, to avoid unnecessary

complication.

This is not the only way to define a multiple-prior class. However, this specific case has

the advantage of being both tractable, because it collects all the prior distributions that assign

probability 1 to the equivalence set K(θ), and convenient, as it generates the same prior predictive

distribution, the distribution of observations expected before observing any data (Geweke and

Whiteman, 2006; Geweke, 2007; Del Negro and Schorfheide, 2008; Weitzman, 2009). Therefore, any

two priors that does not belong to the same multiple-prior class will result to different predictions

over data. It is possible to evaluate one prior against another using data-based criteria, but this

method is not applicable if they are in the same class. The following lemma formalizes this fact.

Lemma 2 (Prior Predictive Distribution) For any given πK , the prior predictive distribution defined

as

p(y) =
∫
Θ

p(y | θ)dπθ

is constant across πθ ∈Πθ(πK ) for all y.

The same result also holds for the posterior predictive distribution.

Moreover, under some regularity conditions, the range of posterior means is close (in proba-

bility) to the frequentist estimator of the identified set (Ke et al., 2022). The connections between

parameters can now be characterized by Figure 4. Given (Πθ|K ,πK |Y ), I can then define the class of
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posteriors for the parameters of interest as

Πη|Y =
{
πη|Y (·) =

∫
F
πθ|K

(
η(θ) ∈ ·

)
dπK |Y : πθ|K ∈Πθ|K

}
. (14)

If researchers can put a prior on K , and draw from Πθ|K , the methods in Giacomini and Kitagawa

(2021) can be applied to find the robust distribution πη|Y .

However, in practice, researchers are supposed to specify a prior πθ for θ, not K(θ), before

estimating a DSGE model. The challenging part of working directly with distributions on K(θ) is

mentioned in section 3. Therefore, for convenience, I work with the class Πθ(πK ) of distributions

on θ. Firstly, the πK that characterizes this class is pinned down by the push-forward measure of

πθ, and there is no need to compute πK . Secondly, any other prior π̃θ within the same class can be

obtained by redrawing from the observational equivalent set K(θ) of a given draw θ from prior πθ.

3.4 Robust Distributions

From the previous section, it becomes clear the posterior distributions of both θ and η can be

vulnerable to the choice of unrevisable conditional priors πθ|K . I am now fully equipped to show

the main theorem of this paper. The class Πθ|K is often hard to define explicitly from the model

because each πθ|K can have different support with different K . Moreover, πK |Y is not what is being

estimated directly in practice. In this section, I will define the robust probabilities πη|Y and πη|Y

and show a more practical way to estimate these probabilities. To invoke theories on random closed

sets, I need to put some structure on η.

Assumption 4 The parameter of interest η : Θ→H is a continuous function of the structural parameter

θ.

I first characterize the posterior class Πη|Y by its lowest and highest possible probabilities on

different sets, denoted by πη|Y :D→ [0,1] and πη|Y :D→ [0,1], respectively, and defined as

πη|Y (D) ≡ inf
πη|Y ∈Πη|Y

πη|Y (D)

πη|Y (D) ≡ sup
πη|Y ∈Πη|Y

πη|Y (D).

The lower and upper posterior probabilities defined here can be considered robust probability

bounds on a specific set. In other words, they measure the lowest and highest probability of D that
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can be obtained from Πθ|K regardless of what prior distribution πθ|K is used. Although computing

the probabilities from these formulas is easy to understand and tempting to apply directly, this

method is unrealistic because, besides the above-mentioned reasons, it requires exhausting all

conditional distributions within the class. Several regularity conditions are needed to derive

analytical results for πη|Y and πη|Y . I begin with some weak but necessary regularity conditions.

Assumption 5 (Regularity) Let the prior of structural parameters θ, πθ be non-atomic on (Θ,A),

and πθ(Θ) = 1.

In the case where Θ = R
n, πθ being absolutely continuous with respect to the Lebesgue measure is

sufficient to guarantee non-atomicity. With this property, we can leverage the theorems elsewhere

(Ke et al., 2022; Giacomini and Kitagawa, 2021) and apply them to the DSGE framework.

Theorem 2 (Lower and Upper Probabilities) For any given πθ, equivalence mapping K and function

η, , under Assumptions 3, 4 and 5, and η(K(θ)) closed for πθ-almost every θ, let D ∈ D,

πη|Y (D) = πθ|Y
({
θ : η(K(θ)) ⊂D

})
, (15)

πη|Y (D) = πθ|Y
({
θ : η(K(θ))∩D , ∅

})
. (16)

Moreover,
{
πη|Y (D) : πη|Y ∈Πη|Y

}
is a connected interval, i.e., each point between the lower and upper

bound is attainable.

Theorem 2 is similar to Theorem 1 in Giacomini and Kitagawa (2021), with inverse mapping from

the reduced-form parameter to the structural parameter replaced by the equivalent set. Assumption

3 and 4 guarantee K(θ) and η(K(θ)) are random closed sets. Proof can be found in the appendix.

The robust probabilities (15) and (16) are called the containment functional and the capacity

functional of a random set (Molchanov and Molinari (2018)), respectively. They are also special

cases of a belief function and a plausibility function, respectively, in the imprecise probability

literature (Walley (1991)).

This theorem allows me to compute the lower and upper probabilities. For example, when η is

a subvector of θ, the lower probability can be obtained by the following algorithm.

Algorithm 4 (Robust Probabilities)

(1) Set J=0.

28



3.4 Robust Distributions 3 DSGE AND ROBUST BAYES

(2) Draw from posterior πθ|Y for a given prior defined over Θ.

(3) Compute its equivalent set K(θ).

(4) If η(K(θ)) ⊂D, set J = J + 1.

(5) Repeat steps 1–3 M times; the lower probability of D is therefore J
M .

The steps to compute the upper probability are similar.

3.4.1 Robust Posterior Mean

In standard Bayesian analysis, researchers are particularly interested in the expectation of parame-

ters of interest and its credible region. In this section, I show that the results from Algorithm 2 has

a finite-sample interpretation: it reports the range of posterior means of the parameters of interest

from a prior class.

Before I show the main theorem, I need a lemma that connects the K−transformation of the

posterior draws of θ to draws from the posterior of K∗πθ, the push-forward prior of K .

Lemma 3 The push-forward measure of πθ|Y by a measurable multifunction K : Θ → F , written as

π∗K |Y = K∗πθ|Y , coincides with the posterior distribution πK |Y of the push-forward measure πK = K∗πθ.

This lemma, which generalizes the result in Ke et al. (2022) Appendix C without assuming a

parametric structure of K , states that two different methods of achieving posterior draws of

equivalent sets are identical. The main theorem of this paper is stated below.

Theorem 3 (Posterior Means of Scalar η) For a given πθ, let Assumptions 3, 4, and 5 hold, that is,

given a non-atomic prior πθ, there is a push-forward measure πK of πθ under K that is also non-atomic.

In addition, let the parameter of interest η be a scalar. Define

η∗(θ) = sup
θ′∈K(θ)

η(θ′), η∗(θ) = inf
θ′∈K(θ)

η(θ′).

Then, the set of posterior means is characterized by

sup
πθ|Y ∈Πθ|Y

Eθ|Y
[
η(θ)

]
= Eθ|Y

[
η∗(θ)

]
, inf

πθ|Y ∈Πθ|Y
Eθ|Y

[
η(θ)

]
= Eθ|Y

[
η∗(θ)

]
,

where Πθ|Y collects the posteriors of Equation (13) with given πK = K∗πθ.
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This theorem states that if the researcher picks a prior πθ, draws from its posterior, and finds

the lower and upper bounds of η within the observationally equivalent θs, then it is as if the

researcher knew all the priors that generate the same prior on K and collected the range of the

posterior means. The expectation of η∗(θ) and η∗(θ) under distribution πθ|Y is effective, because it

computes the bounds of Eη|Y (η) robust to the choice of conditional priors. It is also attainable via

numerical methods because it needs draws only from one distribution.

Intuitively, Theorem 3 holds because even if the posterior πθ|Y that the researcher draws from

absorbs some arbitrarily specified unrevised conditional prior of θ | K , the posterior of K will not

be affected by this conditional prior if it is possible to collapse the sampled space from Θ to K(Θ).

In other words, the observationally equivalent sets K(θ) contain the same information as the class

of all conditional priors. Therefore, the posterior distribution of the identified set is the same.

3.4.2 Robust Credible Region

This section introduces the robust Bayesian counterpart of the posterior mean and credible region

in standard Bayesian inference. For α ∈ (0,1), consider a subset Cα ⊂ H such that the posterior

lower probability πη|Y (Cα) is greater than or equal to α :

πη|Y (Cα) = πθ|Y
({
θ : η(K(θ)) ⊂ Cα

})
≥ α.

As has been mentioned in Giacomini and Kitagawa (2021), such set will not be unique unless some

extra minimality condition is imposed. Let

C∗α ∈ argmin
D∈D

Leb(D)

s.t. πθ|Y
(
{θ : η(K(θ)) ⊂ Cα}

)
≥ α,

where Leb(D) is the Lebesgue measure of D. This optimization problem is still intimidating to solve,

because of the curse of dimensionality. However, if the researcher focuses on the scalar case for η,21

and further constrains C∗α to be convex, the problem of finding the robust credible region becomes

21Although impulse responses can be, in principle, infinite-dimensional, researchers are more often than
not interested in the pointwise coverage probability at each time period than in the overall coverage of an
IRF.
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finding the smallest q ∈R such that

inf
πη|Y ∈Πη|Y

πη|Y
(
(−∞,q]

)
≥ 1−α (17)

and the largest q such that

sup
πη|Y ∈Πη|Y

πη|Y
(
(−∞,q]

)
≤ α. (18)

If it can be shown that q∗1−α/2 : πθ|Y
(
η∗(θ) ≤ q∗1−α/2

)
= 1− α2 and q∗

α/2
: πθ|Y

(
η∗(θ) ≤ q∗

α/2

)
= α

2 solve

Equations (17) and (18), then the researcher can obtain the desired robust credible region as

[q∗
α/2
,q∗1−α/2], with

inf
πη|Y ∈Πη|Y

πη|Y

([
q∗
α/2
,q∗1−α/2

])
≥ 1−α.

This result is shown in the following theorem.

Theorem 4 Let the assumptions in Theorem 2 hold. For any given q ∈R and given prior πθ,

inf
πθ|Y ∈Πθ|Y

πθ|Y
(
η(θ) ≤ q

)
= πθ|Y

(
η∗(θ) ≤ q

)
and

sup
πθ|Y ∈Πθ|Y

πθ|Y
(
η(θ) ≤ q

)
= πθ|Y

(
η∗(θ) ≤ q

)
.

The proof of this theorem is a direct result of Theorem 2. Details are also presented in the appendix.

The next theorem is a direct application of Theorem 3 in Giacomini and Kitagawa (2021) to

DSGE models. Without loss of generality, it is possible to truncate the spaces Θ and H to their

compact subspaces to always allow integrability. Let θ0 denote the underlying true value that

generates the data.

Assumption 6 The equivalence mapping K : Θ→F is a continuous correspondence at θ0.

The continuity of correspondences is defined as in Aliprantis and Kim (2006) Definition 17.2.

Assumption 6 is easy to verify when the zero set of a polynomial system is finite, the structural

parameter space is complex, or both (Alexanderian, 2013). However, it is not easy to show the

assumption holds in general when there are infinite solutions, even if the “discriminant locus" is

excluded.
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Theorem 5 (Consistency of Posterior Mean) Let Assumptions 3, 5, and 6 hold, and assume further

that the induced prior πK leads to a consistent posterior22 and that Θ ⊂R
p,H ⊂R

q for some p,q <∞ are

compact spaces. Then the Hausdorff distance23 between the set of posterior means and the convex hull of

the true identified set goes to zero almost surely as T increases, i.e.,

lim
T→∞

dH

Eθ|Y T ([η∗(θ),η∗(θ)
])
,
[
η∗(θ0),η∗(θ0)

]→ 0, p (Y∞ | θ0) -a.s.

The proof of Theorem 5 follows directly from Theorem 3 in Giacomini and Kitagawa (2021). It

provides a justification for using the algorithm-generated posterior means as a consistent estimator

of the convex hull of the identified set. The theorem also implies that the range of posterior means

will converge to the true identified set.

4 Applications

As stated in the previous sections, in the DSGE framework, the go-to procedure for obtaining the

posterior distribution of η is not through the estimation of some reduced-form parameters, but

through the evaluation of likelihoods in terms of the parameters of the state-space representation.

The priors are typically chosen at θ-level. Therefore, it is very challenging to proceed as in

Giacomini and Kitagawa (2021): first estimate the reduced-form parameter, and then draw from

unrevised priors subject to constraints. However, it is still possible to find the identified set for the

parameters of interest thanks to work done by Kociecki and Kolasa (2018). Theorem 3 states that

it is possible to circumvent the trouble of drawing from a class of unrevised priors by finding the

complete observationally equivalent set of θ. Here I show the main algorithm again, but with more

details than provided for Algorithm 2.

Algorithm 5 (Robust Bayesian Mean and Credible Region)

(1) Perform the standard MCMC exercise:

(a) take any prior on θ with full support on the parameter space;

(b) based on the data available, get posterior draws θj subject to πθ|Y from the standard Bayesian

DSGE sampler.

22That is, for any neighborhood V0 of K(θ0), πK |Y T (V0)
p
→ 1 as T →∞.

23The Hausdorff distance is defined as dH (X,Y ) = max
{
supx∈X infy∈Y d(x,y),supy∈Y infx∈X d(x,y)

}
. In the

one-dimensional η case, the Hausdorff distance between [a,b] and [c,d] is max
{
|a− c|, |b − d|

}
.
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(2) For each posterior draw θj ,

(a) using Algorithm 3 proposed by Kocięcki and Kolasa (2023), find the equivalent class of θj ,

K(θj ) characterized by a reduced Gröbner basis;

(b) optimize over the Gröbner basis constraints to find the identified upper and lower bounds of

each element of θ or the object of interest η(θ).

(3) Draw another θ from the posterior and repeat M times step 2.

(4) Compute the estimated range of posterior mean or quantiles by averaging over the mean (or

quantiles) of the minimum or maximum obtained in steps 2 and 3.

Theorem 3 gives a theoretical foundation for this algorithm. It is similar to Theorem 2 in

Giacomini and Kitagawa (2021) except I deal with posterior πθ|Y . A detailed coding strategy for

the examples used in this section can be found in the appendix.

The exercises in this section are done in the following way. I start with an analytically tractable,

toy model to apply the identification theorems in section 2. Then I perform analysis based on

simulation results. First, I start with a set of true values and model specification, simulate the

model, and use the simulated data to run the algorithm proposed in this paper. Then I conduct

inference based on algorithm-generated results.

4.1 A Taylor-rule Model

Consider a simple model introduced in Cochrane (2011) that consists of a monetary policy shock

transition, a Fisher equation, and a monetary policy rule:

xt = ρxt−1 + εt , |ρ| < 1, εt ∼N (0,σe)

it = r +Etπt+1

it = r +φππt + xt , φπ > 1,

where xt is the monetary policy shock, it is the nominal interest rate, r is the constant real rate, and

πt is the inflation rate. Only πt is assumed to be observed. This system is not minimal without

further simplification; therefore, it is necessary to first minimize the system by keeping only xt as

the state variable. The solution yields

A = ρ,B = 1,C =
ρ

ρ −φπ
,D =

1
ρ −φπ

,Σ = σ2
e ,
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which is equivalent to an AR(1) setting

πt = ρπt−1 −
1

φπ − ρ
εt , εt ∼N (0,σ2

e ).

Here the structural parameter vector is θ = (ρ,φπ,σe), and with simple regression it is possible to

identify (ρ, σe
φπ−ρ ). Invoking Theorem 1 gives the same result, that (φπ,σe) are not jointly identifiable.

Therefore, the impulse response function is also not identified. Because ρ is identified, σe
φπ−ρ0

=
σe0

φπ0−ρ0
for any pair of (φπ,σe) that is observationally equivalent to (φπ0,σe0). The identified set

of impulse responses is IR(t, s,1) |K(θ0)= −
ρs0

φπ−ρ0
·Q, denoting the impulse responses evaluated

at all points in K(θ0), where Q is a scalar from Theorem 1 can take values between (0, φπ−ρ0
1−ρ0

).

Therefore, IR(t, s,1) |K(θ0)= (min{0,− ρs0
1−ρ0

)},max{0,− ρs

1−ρ )}) for all s.24 If ρ0 > 0, φπ |K(θ0)= (1,∞) and

σe |K(θ0)= (1− ρ0,∞), IRπ(t, s,1) |K(θ0)= (− ρs0
1−ρ0

,0).

Given that I have the analytical result of the identified set K(θ0) and IR(t, s,1) |K(θ0), where

θ indicates the structural parameters σe, ρ, and φπ, I then run Algorithm 5 using MATLAB and

SINGULAR to see if the results match. I start with simulated data of 200 periods, and then run

an MCMC estimation of the parameters (σe,φπ,ρ) in DYNARE (Adjemian et al., 2011). The local

identification results from embedded methods based on Iskrev (2010), Komunjer and Ng (2011),

and Qu and Tkachenko (2012) confirm that (σe,φπ) are pairwise collinear. In the MCMC exercise, as

has been mentioned in section 2, I pick the uniform prior as the first prior. Then I use a hierarchical

scheme to draw the second posterior based on the first posterior draws and their observationally

equivalent sets so that these two posteriors always induce the same posterior distribution over

(ρ, σe
φπ−ρ ) and, therefore, the same posterior predictive distribution. The numerical details of the

hyperparameters for redrawing are shown in the appendix. The standard Bayesian result from

Table 1 shows the sensitivity of the posterior to the choice of priors.

Table 3: Estimated Identified Set for Cochrane (2011) Model25

True value Identified set Range of post mean Robust Bayesian credible region

σe 1 (0.2,∞) (0.21,∞) (0.14,∞)

φπ 1.8 (1,∞) (1.00,∞) (1.00,∞)

ρ 0.8 0.8 0.80 (0.74, 0.87)

24Some may argue that if normalizing ε to a standard Gaussian is allowed, identification can be achieved.
However, because the εt here can include expectation errors and sunspot shocks, there is no reason to assume
unit variance in addition to zero conditional expectations.
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Then I use Algorithm 2 proposed in this paper to estimate the identified set for θ = (ρ,φπ,σe).

For the given true parameter values (ρ0 = 0.8,φπ0 = 1.8,σe0 = 1), it is possible to apply the theoretical

results above. It is known thatφπ can take values (1,∞), and the fact that only σe0
φπ0−ρ0

= 1 is identified

means σe is bounded below by 0.2. The last column in Table 3 shows the empirical results from my

algorithm.26 The averaged values of the estimated identified sets match the theoretical values quite

well.

I then proceed to computing the impulse responses for inflation πt. The first part is shown

in Figure 3 and also in the upper panel of Figure 7. Using the strategy mentioned in Algorithm

2, I find the (pointwise) minimum and maximum impulse response within each equivalence set

attached to a posterior draw. I average the ranges of impulse responses, and estimate the range of

posterior means and the robust Bayesian credible region for impulse responses. The lower panel of

Figure 7 shows that the region of model-consistent impulse response functions IRπ |K(θ0) is much

larger than the standard Bayesian confidence interval. The estimated range of posterior means for

IRπ is of similar size and covers the theoretical IRπ |K(θ0), whereas the 90% robust Bayesian credible

region is much larger, as it should be.

4.2 Three-equation New Keynesian Model

In this section I present applications to three different variants of a baseline New Keynesian model,

also known as the three-equation NK models. They are well-studied small-scale New Keynesian

DSGE models that consist of final-goods producing firms, intermediate-goods producing firms,

households, a central bank, and a fiscal authority (Goodfriend and King, 1997; Clarida et al., 2000;

King, 2000; Woodford, 2003a; Lubik and Schorfheide, 2004; An and Schorfheide, 2007; Galí, 2015;

Herbst and Schorfheide, 2015). The first variant has only temporary shocks, where the (local)

identification failure is within semi-structural parameter κ. The second example is the An and

Schorfheide (2007) model, where local identification fails non-trivially, but the optimal policy does

not depend on model parameterization. In the last variant, I make modifications to the model in An

and Schorfheide (2007) by introducing a cost-push shock (Clarida et al., 1999; Woodford, 2003a,b;

Galí, 2015). By doing that, policy-makers face a trade-off between the output gap and inflation

when nominal rates are set, and the optimal monetary policy will depend on estimation results.

25Because of machine precision in MATLAB, I round numbers greater than 106 to infinity. Same in Table 5,
9, and 10.

26Here I use the prior setup 1 for the algorithm. Same for the lower panel of Figure 7.
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4.2.1 Temporary Shocks

Consider a benchmark three-equation New Keynesian model similar to Galí and Gertler (1999).

Instead of having AR(1) shocks, I remove the auto-correlation and make them i.i.d.:

yt = Etyt+1 −
1
σ

(it −Etπt+1) + εyt

πt = βEtπt+1 +κyt + επt

it = ρit−1 + (1− ρ)
(
φππt +φyyt

)
+ εRt

εjt ∼N (0,1); j = y,π,R

,

where πt is the inflation, yt is the output gap, it is the nominal interest rate, εyt is the demand

shock, επt is the supply shock, and εRt is the monetary policy shock. The equations are referred

to as the dynamic IS equation, New Keynesian Phillips curve, and an interest rate feedback rule

with output gap rule specification, respectively. Here the structural parameters are the inverse

intertemporal elasticity of substitution σ ; the Calvo price stickiness τ ; the elasticity of marginal

disutility with respect to labor ψ; the influence of inflation rate and the output gap in the interest

rate rule ψπ and ψy , respectively; κ = (1−τ)(1−βτ)
τ (σ + ψ) is the slope of the Phillips curve. The

structural parameter vector is θ = (σ,β,τ,ψ,φπ,φy), and monetary policy adjustment rate ρ is

calibrated to be 0.1. Putting the above equations in a standard LRE form, i.e., Equation (3) results in

Γ0 =


1 −(1− ρ)φy −(1− ρ)φπ

1 σ 0

0 −(1− τ)(1− βτ)(σ +ψ) 0

 , Γ1 =


0 0 0

0 σ 1

0 0 βτ

 , Γ2 =


ρ

0

0

 , Γ3 =


1 0 0

0 σ 0

0 0 τ

 .

Even this simple three-equation model is too complex to be analytically enlightening. It is hard to

tell the identifiability of all parameters just by examining the model. However, it is obvious that τ

is not identified in general.27 Moreover, even if identification failure of this kind is excluded, by

rescaling ψ and τ continuously, it is possible to achieve the same κ. Because (ψ,τ) enter the equation

system only via κ, ψ can be jointly unidentified with τ . This means the structural parameters of

the three-equation model, when micro-founded, is neither locally nor globally identified; that is, if

the researcher tries to estimate (σ,β,τ,ψ) instead of just (σ,β,κ) for calibration or policy analysis

purposes. In terms of identification of impulse responses, however, because the model dynamics

27If I fix β = 4
5 , τ = 9

10 is always observationally equivalent to τ = 45
31 . The latter case can be excluded by

restricting the support to [0,1] because τ stands for price stickiness.
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will be affected only through κ, they should be identified if (φπ,φy ,σ ,β,κ) are identified. The

Blanchard-Kahn condition (Blanchard and Kahn, 1980), which guarantees determinacy, will not be

restrictive here.

Table 4: Three-equation Model Prior and Posterior Distribution of Structural Parameters

True value Prior distribution Posterior distribution

Distr. Mean St. Dev. Mode Mean 5 percent 95 percent

φπ 1.7 Normal 1.5 0.5 1.67 1.65 1.46 1.82

φy 0.2 Normal 0.5 0.3 0.21 0.19 0.11 0.29

σ 1 Gamma 1 0.5 0.99 1.01 0.92 1.11

β 0.99 Beta 0.9 0.005 0.99 0.99 0.98 1.00

ψ 1 Gamma 5 2 4.23 4.60 1.46 7.36

τ 0.75 Beta 0.5 0.3 0.84 0.85 0.80 0.91

Table 5: Estimated Identified Set of Structural Parameters for Three-equation Model

True value Identified set Range of post mean Robust Bayesian CR

φπ 1.7 1.7 1.65 (1.46, 1.83)

φy 0.2 0.2 0.20 (0.11, 0.29)

σ 1 1 1.01 (0.92, 1.12)

β 0.99 0.99 0.99 (0.98, 1.00)

ψ 1 (0,+∞) (0,+∞) (0,+∞)

τ 0.75 (0.67,1) (0.69,1.00) (0.63, 1.00)

Based on data generated from the true values presented in Table 4, I perform a naive Bayesian

estimation using the prior distributions within the same table. DYNARE reports identification

checks at the prior mean, and, not surprisingly, (ψ,τ) is pairwise unidentified. The solutions to

the Gröbner basis also show the same identification results for each MCMC draw. This knowledge

helps to reduce the identification problem to finding the (ψ,τ) pairs that lead to the same κ, when

combined with parameter bounds and the Blanchard-Kahn condition, reduced to

(1− τ)(1− 0.99τ)
τ

(1 +ψ) =
103
600

, ψ > 0, 0 < τ < 1,
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which then provides the identified set: for ψ, it is ψ |K(θ0)= (0,+∞), and for τ , it is τ |K(θ0)= (0.67,1).

As discussed in section 4, if (φπ,φy ,σ ,β,κ) are identified, the impulse response functions are also

identified (see Figure 9). The true impulse response is very close to the posterior mean, the standard

Bayesian credible region is tight, and the 90% robust Bayesian credible region coincides with the

90% standard credible region when the impulse responses are identified. This result shows that

the algorithm proposed in this paper does not cause a loss (excluding computation time) when the

parameters of interest are identified.

One may argue that application of the robust Bayesian method is unnecessary in this case, when

the identification failure is obvious and all one needs to do is imposing an additional normalization

restriction. However, in general, researchers do not know if the parameters (φπ,φy ,σ ,β,κ) are

identified, because the DSGE models are not always analytically tractable, and the identification

failure can be imperceptible. Since there is no loss in the robust Bayes method, estimation using

Algorithm 5 is always recommended.

4.2.2 An and Schorfheide (2007)

A more economically meaningful example would be to have nontrivial identification failures (i.e.,

identification issues of a less-mechanical nature). The following example is also very similar to

the exercises in Herbst and Schorfheide (2015), where the authors allow for correlation between

productivity growth and government spending. The equilibrium is characterized by the following

linearized equations:

yt =Et
[
yt+1

]
− 1
σ

(it −Et [πt+1]−Et [zt+1]) + gt −Et
[
gt+1

]
πt =βEt [πt+1] + σ

1− v
vπ2ψ

(
yt − gt

)
it =ρRit−1 +

(
1− ρR

)
ψππt +

(
1− ρR

)
ψy

(
yt − gt

)
+ εR,t

zt =ρzzt−1 + εz,t

gt =ρggt−1 + εg,t .

Here the parameters are θ = (σ,β,ν,ψ,ψπ,ψy ,ρR,ρg ,ρz,σR,σg ,σz), including the inverse elasticity of

substitution σ ; the elasticity of demand for each intermediate good 1
ν ; and the quadratic loss in price

adjustment ψ. The endogenous variables are
(
yt ,πt , it , gt , zt

)′
, where St =

(
zt , gt , it

)′
, Pt =

(
πt , yt

)′
. In

the original model there is no measurement error. I therefore drop a few steady state parameters
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and assume without loss of generality that the output gap yt, inflation rate πt, and nominal interest

rate it are directly observed. Similar to the three-equation model, it is not hard to see (ν,ψ) enter

the model only through the ratio σ 1−v
vπ2ψ . Because (ν,ψ) are not jointly identifiable, they are replaced

by κ = σ 1−v
vπ2ψ in estimation. However, this replacement will still not be enough to generate point-

identification. As Komunjer and Ng (2011) or Qu and Tkachenko (2012) show, the monetary policy

parameters (ψπ,ψy ,ρR,σR) cannot be identified in this output gap rule specification, although

under the output growth specification these parameters are locally identifiable (Ivashchenko and

Mutschler, 2020). The robust Bayesian estimation results are reported in Table 6.

Table 6: Estimated Identified Set of Structural Parameters for AS Model

True value Identified Set Range of Posterior Mean Robust Bayesian CR

τ 2 2.00 1.97 (1.36, 2.76)

κ 0.15 0.15 0.15 (0.10, 0.21)

ψπ 1.5 (1.00, 4.87) (1.00, 4.11) (1.00, 5.36)

ψy 1 (0.00, 1.15) (0.00, 0.94) (0.00, 1.44)

ρz 0.65 0.65 0.63 (0.56, 0.71)

ρg 0.75 0.75 0.74 (0.66, 0.82)

ρR 0.6 (0.58, 0.60) (0.54, 0.56) (0.45, 1.00)

100σz 0.45 0.45 0.47 (0.31, 0.67)

100σg 0.8 0.80 0.77 (0.70, 0.84)

100σR 0.2 (0.19, 0.20) (0.20, 0.21) (0.18, 0.23)

In the model, I impose ψπ > 1 and ψy > 0 to guarantee the Blanchard-Kahn condition holds.

The true values of the set-identified parameters do not always fall in the range of the posterior

mean, because of the finite-sample estimation error, just like the true values of the point-identified

parameters do not always equal the posterior mean. The “Identified set” column in Table 6

is computed by finding the observationally equivalent set of the true values using the method

of Kocięcki and Kolasa (2023). The result shows that the range of values these non-identified

parameters can take is a proper subset of the support. In fact, the identified set can be parametrized

by only one free variable changing continuously within an interval (see the appendix for more

details).
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4.2.3 A Cost-push Shock Model

Just like sensitivity in estimates does not always cause sensitivity in impulse responses, one might

want to know whether and when optimal policies can be affected by sensitivity of estimates. In

the model of An and Schorfheide (2007), the three shocks either have no impact on the output

gap or inflation, or they shift them in the same direction. That feature, which is called a divine

coincidence (Blanchard and Galí, 2007; Galí, 2015), makes policy analysis a trivial problem, because

policy-makers will maximize the response of the interest rate to dampen the effect of shocks, and

this maximization fully stabilizes both the inflation rate and the output gap at the same time. In

other words, there is no trade-off between stabilizing inflation and the output gap (Alves, 2014).

However, in practice, most central banks still perceive this trade-off. To address this issue, the

literature extends the standard New Keynesian model with additional frictions that allow the gap

between efficient output and output under flexible prices to vary over time (Erceg et al., 2000;

Woodford, 2003a; Benigno and Woodford, 2005; Ravenna and Walsh, 2006; Blanchard and Galí,

2007). In this section, I assume this gap is exogenous, and add to the Phillips curve a cost-push

shock to capture the gap and generate opposite dynamics for inflation and output (see, for example,

Clarida et al. (1999); Galí (2002); Woodford (2003a); Blanchard and Galí (2007)). To keep the

number of shocks unchanged, I drop the total-factor productivity shock zt in An and Schorfheide

(2007):

yt =Et
[
yt+1

]
− 1
σ

(it −Et [πt+1]) + gt −Et
[
gt+1

]
πt =βEt [πt+1] +κ

(
yt − gt

)
+ut

it =ρRit−1 +
(
1− ρR

)
ψππt +

(
1− ρR

)
ψy

(
yt − gt

)
+ εR,t

ut =ρuut−1 + εu,t

gt =ρggt−1 + εg,t .

(19)

Here the estimated parameters are θ = (σ,β,κ,ψπ,ψy ,ρR,ρg ,ρu ,σR,σg ,σu). Moreover, ut is the cost-

push shock. A positive shock in ut would increase the concurrent inflation rate and decrease

the output gap. The state variable vector is St =
(
ut , gt , it

)′
, and the vector of policy variables is

Pt =
(
πt , yt

)′
. As in the previous example, (ψπ,ψy ,ρR,σR) are not identified. Using Algorithm 5, I can

again attain a range of posterior means for these parameters. For each given parameter combination

within the range, the welfare losses experienced by a representative household are second-order
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approximated, proportional to

E0


∞∑
t=0

βt
(
λπ2

t + y2
t

) , (20)

where λ = 1
νκ .28 However, as discussed in the previous examples, the structural parameter ν in the

semi-structural parameter κ cannot be identified, which makes the weight on πt in the objective

function agnostic. Therefore, the exercises I perform next are for multiple weight choices.29 The

central banks can pursue either a policy characterized by a period-by-period optimization to

minimize λπ2
t + y2

t or a state-contingent sequence of {yt ,πt} that minimizes expression (20) directly.

Whereas the former policy, called the optimal policy under discretion, does not need a central bank

to commit itself to any future actions, the latter requires the central banks to be able to commit

with full credibility to a policy plan (Taylor, 1993; Woodford, 2001; Taylor, 2007).

This exercise is also related to policy analysis in DSGE models under parameter uncertainty

(see, for example, Wieland (2000); Kimura and Kurozumi (2007); Edge et al. (2010)), but under the

Bayesian framework.

First, I pick a prior, using the same hyperparameters as used in An and Schorfheide (2007),

except I substitute ρg for ρu , and σg for σu . DYNARE returns 10,000 draws from the posterior

after a 40,000 burn-in period. Then, I pick another posterior that generates the same posterior

predictive distribution using a similar strategy as in the Cochrane model. I divide four pairs of

policies (ψπ,ψy) into two groups30 and select the better policy under different weights and posterior

distributions. The results are in Table 7.

Beyond what is already shown in Table 2, Table 7 shows that choices between polarized policies

are more robust to the choice of priors. That is to say, when the alternative policies are polarized,

researchers will have to hold a polarized prior belief on structural parameters (but still within the

same prior class) to disagree with each other’s policy choices.

28The computation details can be found in Woodford (2003a); Galí (2015); Davig (2016).
29The weight choices are scattered to cover most calibration choices and the rule of thumb choice 1

νκ = 1.
30The policies I compare are from Galí (2015) Table 4.1.
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Table 7: Policy Comparison under Different Distributions and Weights

1
νκ = 1

3
1
νκ = 1 1

νκ = 3 1
νκ = 10 1

νκ = 30

(ψπ,ψy) post 1 post 2 post 1 post 2 post 1 post 2 post 1 post 2 post 1 post 2

(1.5, 0) X X X X X

(1.5, 0.125) X X X X X

(1.5, 1) X X X X

(5, 0) X X X X X X

Optimal discretionary policy parameters are therefore chosen by solving the following opti-

mization:

arg min
ψπ ,ψy

∫
LW

(
πt , yt | θ−(ψπ ,ψy ),ψπ,ψy

)
dπθ|Y

subject to Equation (19)

, (21)

where LW (πt , yt | θ−(ψπ ,ψy ),ψπ,ψy) = Et−1

(
1
νκπ

2
t + y2

t

)
denotes the conditional expected loss of wel-

fare under given θ except the choice of ψπ and ψy .

Table 8: Optimal Policy under Different Distributions and Weights

1
νκ = 1

3
1
νκ = 1 1

νκ = 3 1
νκ = 10 1

νκ = 30

optimal policy post. 1 post. 2 post. 1 post. 2 post. 1 post. 2 post. 1 post. 2 post. 1 post. 2

ψπ 2.35 10.39 1.36 4.78 1.76 4.56 3.90 6.17 9.21 14.85

ψy 3.48 26.7 0.23 3.38 0.00 0.85 0.00 0.02 0.00 0.00

104×loss 2.49 2.50 3.13 3.20 4.17 4.30 5.81 5.83 7.51 7.41

The estimation results show that although the welfare loss does not seem to vary too much

with the choice of posterior (hence the prior) distribution, the optimal Taylor rule parameters can

be susceptible to this choice. This again shows the importance of robust Bayesian estimation and

inference. In fact, these policy-related parameters’ sensitivity to priors’ choices can be even more

significant. To see that, I first estimate each parameter’s range of posterior means, using Algorithm

5. The results are shown in Table 9. Then I compute the optimal Taylor rule policy parameters

using the grid search between the lower and upper bounds of ρR and σR,31 reported in Table 10.

31Because the range of the grid search is determined by the lower and upper bounds of the elements of a
parameter vector, each pair (ρR,σR) in the grid search might not necessarily correspond to an element of the
estimated range of posterior means. However, sampling from the set of posterior means is challenging, as it
is an average of subsets of manifolds.
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Table 9: Estimated Identified Set of Structural Parameters for Cost-push Shock Model

True value Identified Set Range of Posterior Mean Robust Bayesian CR

τ 2 2.00 1.73 (1.34, 2.19)

κ 0.15 0.15 0.21 (0.08, 0.40)

ψπ 1.5 (1, +∞) (1.00, +∞) (1.00, +∞)

ψy 1 (0.22, +∞) (0.20, +∞) (0.15, +∞)

ρu 0.65 0.65 0.67 (0.58, 0.75)

ρg 0.75 0.75 0.74 (0.67, 0.81)

ρR 0.6 (0.49, 1.00) (0.49, 1.00) (0.47, 1.00)

100σu 0.45 0.45 0.49 (0.37, 0.61)

100σg 0.8 0.80 0.77 (0.70, 0.83)

100σR 0.2 (0.16, 0.33) (0.17, 0.34) (0.15, 0.38)

In Table 9, the point-identified parameters have the same values as their posterior means. This

is because for each posterior draw, the only values these parameters can take in the observationally

equivalent set are themselves. However, the range of ψπ is not informative because ψπ > 1 and

ψy > 0 have been restricted to guarantee determinacy. On the other hand, the parameters (ψy ,ρR,σR)

(numerically) have an identified set that is a proper subset of their support.

Table 10: Range of Optimal Policy Parameters

weight 1
νκ = 1

3
1
νκ = 1 1

νκ = 3 1
νκ = 10 1

νκ = 30

ψπ (1.62, 281.32) (1.10, 190.72) (1.97, 216.62) (4.93, +∞) (12.72, +∞)

ψy (1.81, 631.40) (0.00, 123.85) (0.00, 34.74) (0.00, +∞) (0.00, +∞)

104×loss (0.75, 2.50) (1.33, 3.18) (3.09, 4.13) (4.54, 12.62) (5.36, 35.83)

The range of optimal Taylor rule parameters that are consistent with the estimated range of

parameter posterior means is also wide. As ρR gets closer to 1, the optimal values of ψπ and ψy

increase dramatically. This result is almost mechanical because as the auto-correlation of monetary

policy increases, the central bank has to increase the value of (ψπ,ψy) to maintain the same reaction

strength to inflation and output gap. From Table 10, it can be seen that even if a researcher

has a good sense of what the weight should be and has a credible prior for parameters, another
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prior with the same predictive distribution may result in a completely different optimal policy

suggestion. Facing parameter ambiguity, policy-makers can still make recommendations under

certain statistical decision criteria (e.g., a min-max rule with respect to some ε− contaminated

neighborhood of a given prior; see Berger (2013); Yata (2021); Manski (2021) for examples of recent

literature), or additional assumptions. For example, a normalization of the value ρR identifies all

the parameters.

In this paper, however, I do not attempt to provide a rule to pick the single optimal policy based

on robust Bayesian outputs. Rather, I provide a method to report the robust Bayesian output. As

Giacomini and Kitagawa (2021) argue, from the output, one can learn what inferential conclusions

can be supported by the model-imposed restrictions and the data. Manski (2013) concludes that

“everyone concerned with policy making should keep in mind several dangers of policy analysis with

incredible certitude”. By comparing the output across different sets of identification restrictions,

researchers can better understand each set’s identification power and choose upon needs. Lastly, it

is a valuable tool to separate the information contained in the data from any prior input that is not

revised by the data.

4.3 Smets and Wouters (2007)

The Smets-Wouters model have become a modern workhorse and benchmark model for analyzing

monetary and fiscal policy in European central banks, and policy institutions in the US as well.

Beyond its theoretical contributions, the model demonstrated practical applicability by fitting it to

US economic data. This empirical validation showed that DSGE models could be directly applied

to real-world economic analysis and forecasting, bridging the gap between theoretical research and

policy implementation. In the original paper, they estimate a fully specified, medium-sized new

Keynesian model with many frictions and rigidities, and extracting a full set of implied shocks

from those estimates. To compare my identification result with Kocięcki and Kolasa (2023) in the

‘global’ sense, I adopted their setup in my application. In contrast to the initial approach in Smets

and Wouters (2007), where the output gap is viewed as the disparity between actual output and

its potential in the absence of nominal rigidities and markup shocks, Kocięcki and Kolasa (2023)

considers it as the deviation of output from its deterministic trend. The transformation can be seen

in Table 11. Given γ = 100(γ̄ − 1), we can directly back out the identified structural parameters λ

from α2, σc from α4, β from α5, δ from α7. This further allows identification of φw from α3, ψ from

α6, ιp from α11 and ιw from α14. Notice that parameters within the pairs (ξp, εp) and (ξw, εw) enter
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the model through α12 and α16 respectively, and are identified jointly rather than being identifiable

individually. Therefore, I fix εp and εw in the estimation procedure.

Table 11 shows that all the semi-structural parameters are point identified, which in turn

means all structural parameters are point identified if εp and εw are fixed. The identified set is

therefore a singleton equal to the posterior mean. The robust Bayesian credible region is the usual

Bayesian credible region in this case.

Table 11: Estimated Identified Set of (Semi-)structural Parameters for the Smets-Wouters
Model

True value Identified set (Robust) Bayesian CR

Transformed Structural Parameters

α1 = (γ−1+δ)α
β−1γσc−1+δ 0.17 0.17 [0.16,0.18]

α2 = λγ−1

1+λγ−1 0.41 0.41 [0.41,0.42]

α3 = (1−α)(σc−1)
φwσc(1+λγ−1)(1−α1−gy ) 0.13 0.13 [0.12,0.14]

α4 = 1−λγ−1

(1+λγ−1)σc
0.12 0.13 [0.13,0.13]

α5 = 1
1+βγ1−σc 0.50 0.50 [0.50,0.50]

α6 = 1
(1+βγ1−σc )ϕγ2 0.09 0.09 [0.08,0.10]

α7 = βγ−σc(1− δ) 0.97 0.97 [0.97,0.97]

α8 = (1− δ)γ−1 0.97 0.97 [0.97,0.97]

α9 = (1−α8)(1 + βγ1−σc )ϕγ2 0.29 0.31 [0.28,0.34]

α10 =
ιp

1+βγ1−σc ιp
0.19 0.16 [0.14,0.19]

α11 = βγ1−σc

1+βγ1−σc ιp
0.80 0.83 [0.81,0.86]

α12 =
(1−βγ1−σcξp)(1−ξp)

(1+βγ1−σc ιp)ξp[(φp−1)εp+1] 0.02 0.02 [0.02,0.02]

α13 = 1
1−λγ−1 3.41 3.37 [3.29,3.44]

α14 = ιw
1+βγ1−σc 0.29 0.29 [0.27,0.31]

α15 = 1+βγ1−σc ιw
1+βγ1−δc 0.79 0.79 [0.77,0.81]

α16 = (1−βγ1−σcξw)(1−ξw)
(1+βγ1−σc )ξw[(φw−1)εw+1] 0.00 0.01 [0.01,0.01]

Untransformed Structural Parameters

100(γ̄ − 1) 0.43 0.43 [0.43,0.43]

π̄ 0.70 0.75 [0.69, 0.80]

( Continued next page)
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True value Identified set (Robust) Bayesian CR

l̄ 0 -0.26 [-0.61, 0.11]

gy 0.18 0.17 [0.14,0.19]

φp 1.60 1.57 [1.53,1.60]

α 0.19 0.19 [0.19,0.20]

ψ 0.54 0.53 [0.51,0.54]

σl 1.83 1.99 [1.64,2.39]

ρ 0.81 0.80 [0.79,0.80]

rπ 2.04 1.97 [1.91,2.03]

ry 0.08 0.07 [0.07,0.08]

r∆y 0.22 0.22 [0.21,0.23]

Parameters of Shock Processes

ρa 0.95 0.95 [0.95,0.95]

ρb 0.22 0.23 [0.20,0.25]

ρg 0.97 0.97 [0.97,0.97]

ρi 0.71 0.70 [0.69,0.71]

ρr 0.15 0.15 [0.15,0.16]

ρp 0.89 0.87 [0.85,0.89]

ρw 0.96 0.96 [0.96,0.97]

ρga 0.52 0.52 [0.49,0.54]

µp 0.69 0.64 [0.59,0.69]

µw 0.84 0.85 [0.83,0.86]

σa 0.45 0.45 [0.44,0.46]

σb 0.23 0.21 [0.20,0.22]

σg 0.53 0.52 [0.51,0.53]

σi 0.45 0.45 [0.44,0.46]

σr 0.24 0.24 [0.23,0.24]

σp 0.14 0.14 [0.14,0.15]

σw 0.24 0.24 [0.23,0.25]
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4.4 Discussions

4.4.1 Diagnostic Tools

Although the steps used in Algorithm 5 to find the observationally equivalent parameters can

be, in theory, arbitrarily accurate in solving the models and the polynomial systems, it is always

good to have a handy tool to verify that they are indeed equivalent. While the inverse mapping

from the spectral density to structural parameters is impossible to achieve, the mapping from θ to

spectral densities is more approachable. One thing researchers can do is to check if the spectral

densities generated from the equivalent class K(θ0) from Algorithm 5 are actually the same. The

state-space model, together with Gaussian assumptions,32 allows reducing the cost of computing

the likelihood function from O(T 3) to O(T logT ) in each evaluation using Whittle’s approximation

method (Whittle, 1951, 1953; Pawitan and O’sullivan, 1994), also called the frequency domain

quasi-maximum likelihood in other publications (Qu and Tkachenko, 2012, 2017). See details of

(penalized) Whittle’s likelihood approximation in the appendix.

The following algorithm is an application of such method to verify that the K(θ) obtained

from Algorithm 5 is an equivalent set.

Algorithm 6 (Sanity Check)

(1) For each K(θj ) obtained from Algorithm 5, pick n draws θ1, . . . ,θn.

(2) Compute the Whittle likelihood function

LT (f ) =
1
T

[T /2]∑
k=[−T /2]+1

[
logdet(fθ(ωk)) + tr(f −1

θ (ωk))I(ωk)
]
,

where fθ(ωk) is the spectral density evaluated at ωk = 2π k
T ; I(ωk) is the periodogram

I(ωk) = w(ωk)w(ωk)
∗, w(ωk) =

1
√

2πT

∑
t

Yt exp(−iωkt)

evaluated at the same point ωk .

(3) Compare the likelihood between draws from step 1; if the difference is smaller than some tolerance

level ε, admit the achieved K(θ).
32In general, if the researcher allows for non-Gaussian processes, the Whittle likelihood can be understood

as a quasi-likelihood of the data based on the asymptotic distribution of the discrete Fourier transforms of
the data.
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While Algorithm 6 checks the validity of the identified set only from model structure and

independently of realized data, sometimes stylized facts, data unused in estimation, or prior

knowledge of the researchers allows them to further narrow these identified sets a posteriori, if not

achieve point-identification.

There is a vast literature on the applications of this type of knowledge. For example, to identify

the effect of macroeconomic shocks, researchers can use contemporaneous restrictions (Blanchard

and Perotti, 2002), narrative methods (Friedman and Schwartz, 2008), proxy SVAR (Stock and

Watson, 2008), long-run restrictions (Shapiro and Watson, 1988), sign restrictions (Enders et al.,

2021), and factor-augmented VARs (Bernanke et al., 2005).33

To be more specific, take example 1, and let Yt and εt be scalars. Assume further the true

coefficient D0 = 1. Even in this simplest case D is not identified, D |K(D0)= ±1. However, if in

addition the sign of the impact of εt on Yt is known to be positive, point-identification can be

achieved. Moreover, these kind of restrictions can be imposed only a posteriori on θ when the

model structure becomes complicated.

4.4.2 Non-linearity

There has been a growing literature on the estimation of nonlinear DSGE models (Schmitt-Grohé

and Uribe, 2004; Fernández-Villaverde and Rubio-Ramírez, 2007; Andreasen, 2011, 2013; Morris,

2014; Ivashchenko, 2014; Herbst and Schorfheide, 2015; Aruoba et al., 2017; Andreasen et al.,

2018). The perturbation method was proposed by Schmitt-Grohé and Uribe (2004) to approximate

the nonlinear model with higher-order Taylor expansions around the steady state. Although the

Taylor expansions are straightforward to compute, they could generate explosive or non-stationary

processes. The pruning method was proposed by Kim et al. (2008) to resolve this concern, and has

been well adapted since then.

The basic idea of pruning is to eliminate the terms from the policy functions that have higher-

order effects than the approximation order.34 Because higher-order approximation preserves more

information from the nonlinear function, one may expect to gain extra identification power in

some non-identified models. Mutschler (2015) showed that the models in Kim (2003) and An and

Schorfheide (2007), which are known to have the issue of identification in their linearized Gaussian

form, are identifiable with a second-order approximation.

33See Ramey (2016) for a more detailed but non-exhaustive list of applications.
34See Andreasen et al. (2018) for a complete analysis.
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Fortunately, however, Algorithm 5 can still be easily extended to accommodate the non-

Gaussian innovations, even if they are white noise. Morris (2014) (Chapter 3) showed that under

some fairly modest assumptions, the deviations-from-means of the pruned state-space of second-

order approximation can be reparametrized to ABCD representation. He also showed that the

errors, although they become non-Gaussian, are white noise processes with finite covariance. This

reparametrized form satisfies assumptions 1–2 in Komunjer and Ng (2011). In addition, after being

“minimalized", the reparametrized form becomes a minimal ABCD system. Theorem 1 can be

invoked using similar arguments if equivalences between linear state-space systems with white

noises can be established.

4.4.3 Indeterminacy

It has become a well-established fact that linear rational expectation models can have more than

one solution under realistic parameter choices (Sims, 2002; Lubik and Schorfheide, 2003; Farmer

et al., 2015; Funovits, 2017; Bianchi and Nicolò, 2021). However, identification exercises taking

into account indeterminacy remain rare in the literature. Qu and Tkachenko (2017) are the first

to propose a framework to check global identification in linearized DSGE models that allow both

determinacy and indeterminacy from a frequency domain perspective.

Kocięcki and Kolasa (2023) have shown that Theorem 1 can handle indeterminate parametriza-

tion when a sufficient number of expectation errors are redefined as new fundamentals (Farmer et

al., 2015). A fixed structure of ABCD representation is needed, i.e., identification analysis needs to

be done within the determinate or indeterminate parameter subspace.

One direct result of allowing for indeterminacy is the possible failure of the continuity property.

There are examples in the literature of discontinuity of solutions to linear rational expectation

models (e.g., (Al-Sadoon and Zwiernik, 2019)). Nevertheless, researchers need only the continuity

of solutions around the true value to apply the proposed algorithm in this paper. This continuity

property is conjectured to be true (almost surely), but more work is needed to confirm it.

5 Conclusions

The sensitivity of standard Bayesian results in set-identified models is well-known; however, it had

not been investigated in DSGE settings. I showed in this paper that not only parameter estimates

but also inference based on estimation results, such as impulse response functions and optimal
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policies, can be sensitive to the choice of priors.

To provide insight into partially identified DSGE models, I developed a new algorithm to find

the complete identified set of parameters in linearized DSGE models. Although Bayesian estimation

results of partially identified models are sensitive to the choice of priors, the framework proposed

in this paper can be used to conduct robust Bayesian inference on the parameters of interest without

the need to exhaust all possible priors.

While DSGE models can suffer from other important issues, such as weak identification

(Canova and Sala, 2009; Müller, 2012; Guerron-Quintana et al., 2013; Andrews and Mikusheva,

2015; Ho, 2022), I do not address those issues in this paper. Although there always exists a choice

to modify the model (e.g., add more shocks) whenever identification fails, the method in this paper

is particularly useful if researchers have some confidence in their model setup and want to know

the implications for estimates and optimal policies even when the model is not point-identified.

The applications of the algorithm developed here are based on assumptions of linearized

models with Gaussian shocks under determinacy, but they cover a wide range of DSGE models, and

a numerical extension to non-linearity and indeterminacy is promising. At the same time, since

reparametrization of the Gröbner basis becomes expensive to solve when set-identified structural

parameters are high-dimensional, better optimization tools with constraints defined by polynomials

may significantly reduce the computational burden.

6 Appendix

6.1 Proofs

Proof for Lemma 1:

Under a linearized DSGE model with Gaussian shocks, with stability assumption 1, Yt is a

weakly stationary time series.

Moreover, the expectation of Yt is 0. Therefore, the distribution of Yt is fully characterized by

its second moments, Γ (j), j = −∞, . . . ,∞. In other words, the vector of second moments is a sufficient

statistic for θ.

Since ΦY (z;θ) is a z-transform of second moments Yt, which is a one-to-one mapping between

the second moments Γ (j) and ΦY (z) (Hannan (2009), p. 46), ΦY (z) must also be a sufficient statistic.

Intuitively, it guarantees the same information contained in ΦY (z;θ) and the likelihood p(y | θ). �
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Proof for Lemma 2: Note Πθ(πK ) =
{
πθ : πθ

({
θ : K(θ) ∈ B

})
= πK (B), for B ∈ B(F )

}
. For anyπθ , π̄θ ∈

Πθ(πK ), ∫
Θ

p(y | θ)dπθ =
∫
F
p(y | K)dπK =

∫
Θ

p(y | θ)dπ̄θ (22)

where the equalities comes from change-of variables formula (see for example Stroock (1994);

Folland (1999)) and K∗(πθ) = K∗(π̄θ). �

Proof for Lemma 3:

The proof of this Lemma is a simple generalization of the same proof in Ke et al. (2022) online

appendix C.

Let p(y | θ) be the likelihood of y conditional on θ being the structural parameter. Since the

likelihood depends on θ only through K(θ), we have p̃(y | K(θ)) = p(y | θ). The data Y updates πθ

to πθ|Y in the following sense (see Ghosal and Van der Vaart (2017) formula 1.1),

πθ|Y (A) =

∫
A
p(y | θ)dπθ∫
p(y | θ)dπθ

, for any A ∈ A.

Plug in this formula

π∗K |Y (B) = πθ|Y (K−1(B)) = πθ|Y ({θ : K(θ) ∈ B}) =

∫
{θ:K(θ)∈B}p(y | θ)dπθ∫

p(y | θ)dπθ
.

And this is equal to

πK |Y (B) =

∫
B
p(y | K)dπK∫
p(y | K)dπK

=

∫
{θ:K(θ)∈B} p̃(y | K(θ))dπθ∫

p̃(y | K(θ))dπθ
=

∫
{θ:K(θ)∈B}p(y | θ)dπθ∫

p(y | θ)dπθ
,

where the second equality comes from change of variable (see for example Lemma 5.0.1 from

Stroock (1994)). �

Lemma 4 Given Πθ(πK ) and its corresponding measurable function K : Θ→F , there is a unique pair

(Πθ|K ,πK ) up to a measure zero set such that for any πθ ∈Πθ(πK ), there exists a πθ|K ∈Πθ|K and πK

such that

πθ =
∫
F
πθ|KdπK , πθ

({
θ : K(θ) ∈ ·

})
= πK (·), (23)
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and, conversely, Πθ is uniquely determined by (Πθ|K ,πK ).

Proof for Lemma 4:

(⇒) For any πθ ∈ Πθ let πK be defined by 10. From disintegration theorem we know there

exists a regular conditional probability as a function κ : F ×A→ [0,1], i.e., a Markov kernel, such

that

1. For every F ∈ F , κ(F, ·) is a probability measure on A.

2. For all A ∈ A, κ(·,A) is B(F )-measurable.

3. For all A ∈ A and B ∈ B(F ),

πθ(A∩K−1(B)) =
∫
B
κ(F,A)πK (dF)

κ(K,A) is therefore our desired πθ|K (A).

πθ|K ′
({
θ : K(θ) = K ′

})
= 1 follows directly from definition bullet 3. Hence, πθ|K ∈Πθ|K .

(⇐) On the other hand, for any selected πθ|K ∈Πθ|K and πK , by the tower rule the conditional

distribution πθ|φ can be constructed as πθ =
∫
F πθ|KdπK . �

Proof for Theorem 2: This proof, while taking into account the differences in topological structure,

mirrors the approach taken in Theorem 1 of Giacomini and Kitagawa (2021), which can be divided

into four steps.

First, under Assumption 3, K(θ) is a random closed set induced by some probability measure

on (Θ,A). Since η : Θ→H is a continuous function, for any closed set D, {θ : η(K(θ))∩D , �} = {θ :

K(θ)∩ η−1(D) , �} ∈ A by Effros-measurability of K and the fact that η−1(D) is a closed subset of Θ.

Therefore η(K(θ)) is also a random closed set.

In the second step, I show that for any πθ|K ∈Πθ|K and A ∈ A,

1{K⊂A} ≤ πθ|K (A), πK − a.s. (24)

Note that the set {θ : K(θ) ⊂ A} = {θ : K(θ)∩Ac , �}c is also measurable. Denote KA1 = {K ∈ K(Θ) :

K ⊂ A}. Showing (24) is equivalent to showing

∫
B

1KA1 dπK ≤
∫
B
πθ|K (A)dπK (25)
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for every πθ|K ∈Πθ|K and B ∈ B(F ). It then goes

∫
B
πθ|K (A)dπK ≥

∫
B∩KA1

πθ|K (A)dπK

= πθ
(
A∩

{
θ : K(θ) ∈ B,K(θ) ⊂ A

})
= πθ

({
θ : K(θ) ∈ B,K(θ) ⊂ A

})
= πK

(
B∩KA1

)
=

∫
B

1KA1 dπK

where the first equality comes from the definition of the conditional distribution.

In the third step, I show that, for each A ∈ A, there exists πAθ|K ∈Πθ|K that achieves the lower

bound of πθ|K obtained in (24), πK almost surely. Consider the following three subsets of F ,

KA0 =
{
K ∈ K(Θ) : K ∩A = �

}
, KA1 =

{
K ∈ K(Θ) : K ⊂ A

}
, KA2 =

{
K ∈ K(Θ) : K ∩A , � and K ∩Ac , �

}
They are measurable, mutually disjoint and forms a partition of K(Θ). Next, I will construct a

Θ−valued selection SA(K) on KA2 , and the conditional probability distribution πAθ|K that achieves

the lower bound given SA(K) and an arbitrary conditional distribution πAθ|K ∈Πθ|K .

Let SA(K) = argmaxθ∈Aε∩K d(θ,A), where d(θ,A) = infθ′∈A || θ − θ′ ||, Aε = {θ : d(θ,A) ≤ ε}.

Note that SA(K) ∈ Ac by construction if defined on a nonempty KA2 . Theorem 2.27, as presented in

Chapter 1 of Molchanov (2005), establishes that SA(K) is a random variable. Given SA(K), and an

arbitrary πAθ|K ∈Πθ|K , for any Ã ∈ A

πAθ|K (Ã) =


πAθ|K (Ã), for K ∈ KA0 ∪K

A
1 ,

1{SA(K)∈Ã}(K), for K ∈ KA2 .
(26)

It can be verified that πAθ|K is a probability measure in (Θ,A) and πAθ|K ∈Πθ|K . For any B ∈ B(F ), it

then follows

∫
B
πAθ|K (A)dπK =

∫
B
πAθ|K (A∩K)dπK

=
∫
B∩KA0

πAθ|K (A∩K)dπK +
∫
B∩KA1

πAθ|K (A∩K)dπK +
∫
B∩KA2

πAθ|K (A∩K)dπK
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= 0 +
∫
B∩KA1

πAθ|K (A∩K)dπK + 0

=
∫
B

1KA1 dπK ,

where the first equality is from πAθ|K ∈Πθ|K , the third equality follows because A∩K = � for K ∈ KA0 ,

and by construction πAθ|K (A∩K) = 1{SA(K)∈A∩K}(K) = 0 for K ∈ KA2 . Given that this equality applies

for all B ∈ B(F ), it follows that πAθ|K (A) = 1KA1 , and the lower bound is always attainable.

We are now in position to show Theorem 2. We first show the special case of η(θ) = θ.

Expanding the integral we have

inf
πθ|Y ∈Πθ|Y

πθ|Y (A) = inf
πθ|K∈Πθ|K

∫
F
πθ|K (A)dπK |Y , A ∈ A

The lower bound of πθ|Y (A) is minimized over the class Πθ|Y by plugging in the attainable pointwise

lower bound of πθ|K , which is 1{K⊂A}. Therefore,

inf
πθ|Y ∈Πθ|Y

πθ|Y (A) = inf
πθ|K∈Πθ|K

∫
F
πθ|K (A)dπK |Y

= inf
πθ|K∈Πθ|K

∫
F

1{K⊂A}(K)dπK |Y

= πK |Y ({K ⊂ A})

= πθ|Y
({
θ : K(θ) ⊂ A

})
The last equality comes from equation (10).

The expression of the posterior upper probability follows directly from its conjugacy with the

lower probability.

πθ|Y (A) = 1−πθ|Y (Ac)

= 1−πθ|Y
({
θ : K(θ) ⊂ Ac

})
= 1−πθ|Y

({
θ : K(θ)∩A = �

})
= πθ|Y

({
θ : K(θ)∩A , �

})
To show

{
πθ|Y (A) : πη|Y ∈Πθ|Y

}
is a connected interval, we use similar construction as the second
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step, for any Ã ∈ A,

πAθ|K (Ã) =


πAθ|K (Ã), for K ∈ KA0 ∪K

A
1 ,

1{SAc (K)∈Ã}(K), for K ∈ KA2 .
(27)

Consider a mixture of these two conditional priors, πλθ|K ≡ λπ
A
θ|K +(1−λ)πAθ|K . Note that πλθ|K ∈Πη|Y

for any λ ∈ [0,1]. Since λ can be chosen arbitrarily,
{
πθ|Y (A) : πθ|Y ∈Πη|Y

}
is connected.

Now, for more general forms of η, the same argument follows, by replacing set A above by

η−1(D), which is also measurable with respect to A.

inf
πη|Y ∈Πη|Y

πη|Y (D) = inf
πθ|Y ∈Πθ|Y

πθ|Y
(
η−1(D)

)
= inf
πθ|K∈Πθ|K

∫
F

1{K⊂η−1(D)}(K)dπK |Y

= πK |Y
({
K ⊂ η−1(D)

})
= πθ|Y

({
θ : η(K(θ)) ⊂D

})
�

Proof for Theorem 3:

It is enough to show the equality for the prior class for the supremum case, i.e., supπθ∈Πθ
Eπθ

[
η(θ)

]
=

Eπθ

[
η∗(θ)

]
. Equality in posterior follows immediately from Lemma 3. Infimum case is similar.

Pick any two priors πθ , π̃θ ∈Πθ,

Eπ̃θ

[
η(θ)

]
≤ Eπ̃θ

[
η∗(θ)

]
= Eπθ

[
η∗(θ)

]
where the second equality follows from the definition of η∗(θ) and πθ , π̃θ have the property that

they induce the same πK .

To show the reverse inequality, choose any ε > 0 and from Lemma 4 we can define

Π̃θ =

π̃θ ∈Πθ : Eπ̃θ|K
[
η(θ)

]
≥ sup
θ′∈K

η(θ)− ε,πK − almost surely
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and this set is nonempty. Then, for any π̃θ ∈ Π̃θ,

Eπ̃θ

[
η(θ)

]
= EπK

[
Eπ̃θ|K

(
η(θ)

)]
≥ EπK

sup
θ′∈K

η(θ)− ε
 = Eπθ

[
η∗(θ)

]
− ε

Let ε decrease to 0. The proof can also be done using random set theory, see Theorem 2.18 in

Molchanov and Molinari (2018). �

Proof for Theorem 4: From Theorem 2,

inf
πη|Y ∈Πη|Y

πη|Y
(
(−∞,q]

)
= πθ|Y

({
θ : η

(
K(θ)

)
⊂ (−∞,q]

})
= πθ|Y

({
θ : η∗(θ) ≤ q

})
whereas

sup
πη|Y ∈Πη|Y

πη|Y
(
(−∞,q]

)
= πθ|Y

({
θ : η

(
K(θ)

)
∩ (−∞,q] , ∅

})
= πθ|Y

({
θ : η∗(θ) ≤ q

})
�
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6.2 Supplementary Tables and Graphs

Figure 5: Trace plot of MCMC draws parameters
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Figure 6: Estimates of structural parameters with 1000 replications
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Figure 7: IRF in the Cochrane model
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Table 12: AS Model Prior and Posterior Distribution of Structural Parameters

True value Prior distribution Posterior distribution

Distr. Mean St. Dev. Mode Mean 5 percent 95 percent

τ 2 Gamma 2 0.5 1.79 1.97 1.29 2.61

κ 0.15 Gamma 0.2 0.1 0.13 0.15 0.10 0.20

φπ 1.5 Gamma 1.5 0.25 1.52 1.59 1.16 1.99

φy 1 Gamma 0.5 0.25 0.67 0.76 0.35 1.11

ρz 0.65 Beta 0.66 0.15 0.64 0.63 0.55 0.71

ρg 0.75 Beta 0.8 0.1 0.74 0.74 0.66 0.82

ρR 0.6 Beta 0.5 0.2 0.56 0.56 0.47 0.63

100σz 0.45 Inv Gamma 0.5 4 0.43 0.46 0.30 0.64

100σg 0.8 Inv Gamma 1 4 0.76 0.77 0.70 0.83

100σR 0.2 Inv Gamma 0.4 4 0.20 0.20 0.18 0.23
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Figure 10: Prior and posterior for the AS model
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Table 13: Cost-push Model Prior and Posterior Distribution of Structural Parameters

True value Prior distribution Posterior distribution

Distr. Mean St.Dev. Mode Mean 5 percen 95 percent

τ 2 Gamma 2 0.5 1.68 1.73 1.31 2.12

κ 0.15 Gamma 0.2 0.1 0.16 0.21 0.06 0.37

ψπ 1.5 Gamma 1.5 0.25 1.27 1.34 1.05 1.58

ψy 1 Gamma 0.5 0.25 0.56 0.67 0.30 1.00

ρu 0.65 Beta 0.66 0.15 0.67 0.67 0.58 0.75

ρg 0.75 Beta 0.8 0.1 0.74 0.74 0.67 0.82

ρR 0.6 Beta 0.5 0.2 0.56 0.57 0.51 0.62

100σu 0.45 Inv Gamma 0.5 4 0.45 0.48 0.36 0.59

100σg 0.8 Inv Gamma 1 4 0.75 0.76 0.70 0.83

100σR 0.20 Inv Gamma 0.4 4 0.19 0.20 0.17 0.22
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Figure 12: Prior and posterior for the cost-push shock model
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6.3 Application Details

The main steps has been introduced in Algorithm 5. In this section I will go into more detail about

how each model is treated differently while solving symbolic Gröbner basis terms and computing

the bounds.

6.3.1 Cochrane Model

1. In Dynare model write-up, write down the model, calibrate the parameter values and then

run stoch_simul to simulate a 200 period dataset with variables xt ,πt , rt.

2. Check Identification at prior mean using Dynare embeded methods.

3. Estimate the model with a prior such that the calibrated value (i.e, the true value) is given

nontrivial density, using the only observable πt. Save the M posterior draws of θ excluding

the burn-in period.

4. In SINGULAR script, inputs all the draws of θ and output for each θ the Gröbner basis

reduced from 9. Ring is set to be rational field. Most of the polynomials are in terms of

transformation matrices T ,Q and state-space parameters and redundant. A typical result

from one draw is presented here. Note given a θ, the computed solution and reduction below

are exact, not an approximation.

0 =13066693153765539818270976 ·Q2 + 95877633354222629606266441 ·Q

0 =10116030142747 · T ·Q+ 4186785337110 ·Q

0 =G ·Q

0 =187597065571586565091721543805763 ·G · T + 12459679923307361666013197809920 ·Q

+ 91423637896752217347907333483345

0 =10116030142747 · F̄ · T + 4186785337110

0 =D −G

0 =91423637896752217347907333483345 · T −1 · B̄+ 187597065571586565091721543805763 ·G

− 30104838802210930638489585120384 ·Q

0 =1853999779646306024554490449467702854272471867461696 · σ̄e

− 9811548045114026857241967637688790821764961999743969 · T 2
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+ 88530008575628738450385530629619625869205349612800 ·Q

0 =4929950657305 · φ̄π − 10116030142747 · T − 4186785337110

0 =5170129 · ρ̄ − 4390758

5. Although look like a lot, they are very simple polynomials of scalar variables in the Cochrane

case. Impose symbolically the upper lower bounds of parameters. Reparametrize in MATLAB

the M Gröbner basis to expressions of free parameters by symbolic function solve with

ReturnConditions= true and keeping only the structural parameters. The Gröbner basis above

will become

σ̄e =(122102757001868985047291038454945431224 · x2)/

83427039084903683357758802997579415237

− (16020448462456694998911062803295284140 · x)/

6417464544992591027519907922890724249

+ 1050978598846472222807755026384334575/

987302237691167850387678141983188346

φ̄π =x

ρ̄ =515645/604628

parameters : x

conditions : 1 < x and x , 515645/604628

6. It is obvious ρ is identified in this case. Translate the returned symbolic conditions of σ̄e and

φ̄π to optimization constraints. Set optimization function, and run constrained optimization

M times, store the upper and lower bounds of parameters of interest.

7. Take average of the bounds for a robust Bayesian posterior mean, quantiles for robust Bayesian

credible region.

6.3.2 Three-equation NK Model

1. The first two steps are the same as estimation in Cochrane model, except with a different

model setup.
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2. Estimate using it, πt and yt as observables. Store both the posterior draws of θ and the

state-space parameters computed in Dynare from algorithm gensys based on Sims (2002)

corresponding to each θ. These parameters are used as initial values for SINGULAR to solve.

3. In SINGULAR script, define the first ring to be real numbers with 500 digits precision. Take

the parameters θj and state-space values (Aj ,Bj ,Cj ,Dj ,Σj ), solve for (A(θj ),B(θj ),C(θj ),D(θj ),Σ(θj ))

that is accurate up to its 500 digits, which should be very close to the initial value(Aj ,Bj ,Cj ,Dj ,Σj ).

4. Define a second ring in SINGULAR that is accurate up to 10 digits. Solve again for the

Gröbner basis. Solutions from our first MCMC draw result looks like below.

0 =Q1,1

0 = T − 1

0 = G2
2,3 − 0.75155924653409373544

0 = G2,2 − 0.079519929420991925012

0 = G2,1 + 0.087918257038000794471

0 = G1,3 + 1.33748131551708435491 ·G2,3

0 = G1,2 − 0.76809465922214837765

0 = G1,1 + 0.76604181621551468463

0 = (F̄ · T )2,1 + 0.0087918257038000794471

0 = (F̄ · T )1,1 + 0.076604181621551468463

0 =D3,3 −G2,3

0 =D3,2 − 0.079519929420991925012

0 =D3,1 + 0.087918257038000794471

0 =D2,3 + 1.33748131551708435491 ·G2,3

0 =D2,2 − 0.76809465922214837765

0 =D2,1 + 0.76604181621551468463

0 =D1,3 − 1.3235866422473861036 ·G2,3

0 =D1,2 − 0.22949614903646230548

0 =D1,1 − 0.75808364840879226454

0 = (T −1 · B̄)1,3 − 1.3235866422473861036 ·G2,3
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0 = (T −1 · B̄)1,2 − 0.22949614903646230548

0 = (T −1 · B̄)1,1 − 0.75808364840879226454

0 = τ̄ ·G2,3 − 0.86692516778214123747 · τ̄

0 = ψ̄ ·G2,3 − 0.86692516778214123747 · ψ̄ + 1.0802 ·G2,3 − 0.93645256623826896472

0 = ψ̄ · τ̄2 − 2.00770897364841033909 · ψ̄ · τ̄ + 1.00770897364841033909 · ψ̄ + 1.0802 · τ̄2

− 2.27568102557546129216 · τ̄ + 1.08852723333501284829

0 = β̄ · τ̄ − 0.99235 · τ̄

0 = β̄ · ψ̄ + 1.0802 · β̄ − 0.99235 · ψ̄ − 1.07193647

0 = σ̄ − 1.0802

0 = φ̄y − 0.15787

0 = φ̄π − 1.6818

5. Solve in MATLAB using solve for a reparametrized equation system. Do that in a two-step

flavor. First solve for the uniquely determined variables. Then remove these variables

from equations by plug-in their values, and keeping only the non-determinant structural

parameters in the solver’s equations and solve again. The results looks like

ψ̄ : − (1080200 · z2 − 2275680 · z+ 1088530)/(1000000 · z2 − 2007710 · z+ 1007710)

τ̄ : z

parameters : z

conditions : z , 1.0 and z , 1.00771 and ((1.00771 < z and z < 1.37252) or (z < 1.0 and 0.734205 < z))

6. The last two steps are similar to Cochrane model, except now optimize with ψ̄, τ̄ and their

conditions.

6.3.3 The An&Schorfheide Model

Everything is the same in step 1-3. Except here I used the Theorem 1-S in Komunjer and Ng (2011)

for simpler equations. 4. Reduced Gröbner basis from the first posterior draw is,

0 = T3,3 − 1
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0 = T3,2

0 = T3,1

0 = T2,3

0 = T2,2 − 1

0 = T2,1

0 = T 2
1,3 − 17.25315337 · T1,3

0 = T1,2

0 = T1,1 + 0.6369912784 · T1,3 − 1

0 =U3,3 · T1,3

0 =U3,2

0 =U3,1

0 =U2,3

0 =U2,2 − 1

0 =U2,1

0 =U1,3 − 0.6984103625 · T1,3

0 =U1,2

0 =U1,1 + 0.3927596209 · T1,3 − 1

0 = Ḡ2,3 + 0.1525963868

0 = Ḡ2,2

0 = Ḡ2,1 − 0.1409624802

0 = Ḡ1,3 + 0.8983721938

0 = Ḡ1,2 − 1

0 = Ḡ1,1 − 0.6578842935

0 = (F̄ · T )2,3 + 0.08132929628

0 = (F̄ · T )2,2

0 = (F̄ · T )2,1 − 0.09074741585

0 = (F̄ · T )1,3 + 0.4788054281

0 = (F̄ · T )1,2 − 0.70811
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0 = (F̄ · T )1,1 − 0.4235261716

0 = σ̄2
R − 0.0405458496 ·U2

3,3

0 = σ̄2
g − 0.5232930921

0 = σ̄2
z − 0.6186927788 · T1,3 − 0.1479094681

0 = ρ̄R − 0.53297 ·U3,3

0 = ρ̄g − 0.70811

0 = ρ̄z + 0.01573846956 · T1,3 − 0.64377

0 = ψ̄y · T1,3 + 5.171016239 · T1,3

0 = ψ̄y ·U3,3 − 1.876278215 · ψ̄y + 10.0771457 ·U3,3 − 9.702265116

0 = ψ̄π + 4.313937786 · ψ̄y − 3.558745724

0 = κ̄ − 0.10679

0 = τ̄ + 0.4609655598 · T1,3 − 1.3391

The parametrized solutions look like

ψ̄π : (59 · (8083902471764131279771571541312 · x − 8341942821160251303963513600493))/

(2251799813685248 · (4503599627370496 · x − 8450005869917379))

ψ̄y : − (45383429619478200 · x − 43695117561067360)/

(4503599627370496 · x − 8450005869917379)

ρ̄R : (53297 · x)/100000

σ̄2
R : (2921636370399683 · x2)/72057594037927936

U3,3 : x

parameters : x

conditions : x , 8450005869917379/4503599627370496

and 1092377939026684/1134585740486955 < x

and x < 94629380960987124190769606260819/93361808206451582058909819058880
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6.3.4 The Cost-push Shock Model

The steps and solution forms look very similar to An& Schorfheide case, here’s the observational

equivalence set for the first posterior draw.

ψ̄π : − (18567476663545134437002172836354 · x+ 2725175536675775611678249887487)/

(9007199254740992 · (2251799813685248 · x − 3967300010722725))

ψ̄y : − (11419659612338326 · x − 8975929578081457)/

(4503599627370496 · x − 7934600021445450)

ρ̄R : (56759 · x)/100000

σ̄2
R : (2859004378036277 · x2)/72057594037927936

U3,3 : x

parameters : x

conditions : x < 3967300010722725/2251799813685248

and x , 3967300010722725/2251799813685248

and 33009086163239882578714353555713/38849886267196804860949424122370 < x

It is worth noting that although the coding I show above is model specific in SINGULAR and MAT-

LAB. This algorithm can be in principle, generalized without going to (almost manually) decipher

the solutions of reduced Gröbner basis. This unfortunately, will ask more coding techniques than

what the author is capable of.

6.4 Methodology

6.4.1 LREMs: Solutions and Indeterminacy

Linear rational expectation models can be seen as a generalization of classical linear systems, where

the state of the system depends only on past and present values of the state variables and shocks.

The state in LREMs can depend on information available to form expectations about future states

(Al-Sadoon, 2018). In other words, LREMs are both backward-looking and forward-looking. The

literature regarding how to solve or regularize a LREM is huge. Sims (2002) derived the existence

and uniqueness conditions to solve a LREM. This paper is also known for deriving a widely-used
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algorithm to solve LREMs numerically called gensys. Lubik and Schorfheide (2003) characterize

the complete set of solutions to LREMs with indeterminacies. While all these papers focus on the

numerical side, Al-Sadoon (2018) and Al-Sadoon and Zwiernik (2019) rigorously define the solution

space, the solution concept, as well as existence and uniqueness under both linear system approach

and the spectral approach. In this paper, the numerical results are based on Sims (2002) using

QZ decomposition (generalized Schur decomposition) whereas theoretical steps are derived using

results from Al-Sadoon and Zwiernik (2019). Therefore I briefly discuss this numerical method

allowing for indeterminacy.

Write the LREM in a canonical form

Γ0St = Γ1St−1 +Ψ εt +Πηt

A stable solution of this form exists if there exist expectation errors ηt as a function of the exogenous

shocks εt such that the explosive components of yt will be offset.

Assume for some ξ,

Et

(
ξ−hSt+h

) h→∞−→ 0, ξ > 1

Perform a QZ decomposition (generalized Schur decomposition) 35 to Γ0 and Γ1. There exist matrices

Q,Z,Λ, and Ω, such that Q′ΛZ ′ = Γ0,Q
′ΩZ ′ = Γ1,QQ

′ = ZZ ′ = In×n, and both Λ and Ω are upper-

triangular. Although the QZ decomposition is not unique, the resulting generalized eigenvalues

ωii/λii are, where ωii and λii are diagonal element of Ω and Λ. Let wt = Z ′yt, pre-multiply the

canonical form by Q to obtain Λ11 Λ12

0 Λ22


 w1,t

w2,t

 =

 Ω11 Ω12

0 Ω22


 w1,t−1

w2,t−1

+

 Q1·

Q2·

(Ψ εt +Πηt
)

(28)

Where the first set of equations has absolute generalized eigenvalues smaller than threshold ξ and

is therefore non-explosive. The second set of equations can be rewritten as

w2,t = Λ−1
22Ω22w2,t−1 +Λ−1

22Q2.

(
Ψ εt +Πηt

)
A stable solution exists if and only if w2,0 = 0 and the column space of Q2·Ψ is contained in the

35See Golub and Van Loan (2013) for a reference
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column space of Q2·Π, i.e.,

span(Q2·Ψ ) ⊂ span(Q2·Π) , or Q2·Ψ =Q2·Πλ for some matrix λ

The solution is unique if and only if the row space of Q1Π is contained in the row space of Q2·Π,

i.e.,

Q1·Π = ΦQ2·Π, for some matrix Φ

When there are multiple solutions, use SVD decomposition to get rid of the linearly dependent

rows,

Q2.Π =
[
U·1 U·2

] D11 0

0 0


 V

∗
·1

V ∗·2

 =U·1D11V
∗
·1,

where V ∗ is the conjugate transpose of V . [U·1 U·2] and [V·1 V·2] are unitary matrices. Solving for

forecast errors ηt is then reduced to solving

U·1D11V
∗
·1ηt = −Q2·Ψ εt for all t > 0

The solution presented below are in the the same form as Qu and Tkachenko (2017) result, equiva-

lent to expression (17) in Lubik and Schorfheide (2003), only they use a different decomposition

strategy by incorporate the last two terms, which sum up to an element in the null space of V·2. The

full solution of forecast errors can be characterized by

ηt = −V·1D−1
11U

∗
·1Q2·Ψ εt +V·2εt with Et−1εt = 0.

for any εt that is conformable with V·2.

Premultiply (28) by

 I Φ

0 I

 to get

 Λ11 Λ12 −ΦΛ22

0 I


 w1,t

w2,t

 =

 Ω11 Ω12 −ΦΩ22

0 0


 w1,t−1

w2,t−1

+

 Q1· −ΦQ2·

0

(Ψ εt +Πηt
)

Plug in the solutions of ηt, and then preply again by Z

 Λ11 Λ12 −ΦΛ22

0 I


−1

, we end up with

our solutions of the form St = ΘSSt−1 +Θεεt +Θεεt, where Θ1 = Z·1Λ
−1
11 [Ω11Ω12 −ΦΩ22]Z∗, Θε =
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Z·1Λ
−1
11 (Q1· −ΦQ2·)Ψ , and Θε = Z·1Λ

−1
11Q1·Π

(
I −V·1V ∗·1

)
V·2.

6.4.2 Whittle’s Approximation

To solve the problem of estimation the spectral denstiy and other parameters in times series models,

Whittle (1951, 1953) introduced an approximate likelihood function under Gaussian settings. The

Whittle likelihood is a frequency-domain approximation to the exact likelihood and is considered

a standard method in parametric spectral analysis on account of its O(T logT ) computational

efficiency. The one-time computational burden is insignificant with a sample size of three digits.

However, with multiple draws of parameters to compare, it is still extremely beneficial to reduce

the cost. While bias can exist in the finite sample, when one try to approximate MLE of a continuous

times series with discrete observation, or when the data is multivariate, researchers have derived

all kinds of variations for the Whittle likelihood (Pawitan and O’sullivan, 1994; Choudhuri et al.,

2004; Krafty and Collinge, 2013; Jesus and Chandler, 2017; Sykulski et al., 2019). We only present

here the original Whittle likelihood for the sake of compactness.

The likelihood function for the parameters θ conditional on observations of Yt in a SSM

(state-space model) can be represented at

L(θ | Y ) = P (Y1:T | θ) = ΠT
t=1p(yt | Y1:t−1,θ)

which is not directly computable because of unobserved St. We then compute the density p(yt |

Y1:t−1,θ) using

p (st | Y1:t−1,θ) =
∫
p (st | st−1,Y1:t−1,θ)p (st−1 | Y1:t−1,θ)dst−1

p
(
yt | Y1:t−1,θ

)
=

∫
p
(
yt | st ,Y1:t−1,θ

)
p (st | Y1:t−1,θ)dst

where p (st | st−1,Y1:t−1,θ) and p
(
yt | st ,Y1:t−1,θ

)
are directly parametrized by vec(A,B,C,D,Σ). This

algorithm, although conceptually easy to understand, will involve inversion of covariance matrices,

which largely increases computational cost. An alternative approximation to the log likelihood

function −2logL(θ | Y ) is defined as

−2logL(θ | Y ) ≈ 2n log2π+
n−1∑
j=0

[
logfθ

(
ωj

)
+ Ij /fθ

(
ωj

)]

where fθ(ωj) is the spectral density evaluated at ωj = j
T . Ij is the periodogram formed from
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the distribution of the Fourier transformed data Ij = X ′jXj , evaluated at the same point ωk.

Xj = T −1/2 ∑T
t=1Yt exp

(
−2πiωjt

)
, j = 1, . . . , J . Fox and Taqqu (1986) have shown that the θ̂W that

minimizes the Wittle likelihood, is asymptotically efficient, therefore asymptotically equivalent to

MLE in ARFIMA models, indicating the efficiency for ARMA models.
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