
λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle’s Logics: HOL1

Tobias Nipkow2 and Lawrence C. Paulson3 and Markus Wenzel4

6 October 2000

1The research has been funded by the EPSRC (grants GR/G53279, GR/
H40570, GR/K57381, GR/K77051, GR/M75440), by ESPRIT (projects 3245:
Logical Frameworks, and 6453: Types) and by the DFG Schwerpunktprogramm
Deduktion.

2Institut für Informatik, Technische Universität München, nipkow@in.tum.de
3Computer Laboratory, University of Cambridge, lcp@cl.cam.ac.uk
4Institut für Informatik, Technische Universität München, wenzelm@in.tum.de

Abstract

This manual describes Isabelle’s formalization of Higher-Order Logic, a poly-
morphic version of Church’s Simple Theory of Types. HOL can be best
understood as a simply-typed version of classical set theory. See also Isa-
belle/HOL — The Tutorial for a gentle introduction on using Isabelle/HOL,
and the Isabelle Reference Manual for general Isabelle commands.

Contents

1 Syntax definitions 1

2 Higher-Order Logic 3
2.1 Syntax . 3

2.1.1 Types and overloading 6
2.1.2 Binders . 7
2.1.3 The let and case constructions 8

2.2 Rules of inference . 8
2.3 A formulation of set theory 12

2.3.1 Syntax of set theory 15
2.3.2 Axioms and rules of set theory 15
2.3.3 Properties of functions 20

2.4 Generic packages . 20
2.4.1 Simplification and substitution 20
2.4.2 Classical reasoning . 22

2.5 Calling the decision procedure SVC 22
2.6 Types . 24

2.6.1 Product and sum types 24
2.6.2 The type of natural numbers, nat 26
2.6.3 Numerical types and numerical reasoning 29
2.6.4 The type constructor for lists, list 30
2.6.5 Introducing new types 30

2.7 Records . 36
2.7.1 Basics . 36
2.7.2 Defining records . 37
2.7.3 Record operations . 38
2.7.4 Record proof tools . 39

2.8 Datatype definitions . 40
2.8.1 Basics . 40
2.8.2 Defining datatypes . 45
2.8.3 Representing existing types as datatypes 47
2.8.4 Examples . 48

2.9 Recursive function definitions 49

i

CONTENTS ii

2.9.1 Primitive recursive functions 50
2.9.2 General recursive functions 54

2.10 Inductive and coinductive definitions 57
2.10.1 The result structure 57
2.10.2 The syntax of a (co)inductive definition 58
2.10.3 *Monotonicity theorems 59
2.10.4 Example of an inductive definition 60

2.11 The examples directories . 60
2.12 Example: Cantor’s Theorem 63

Chapter 1

Syntax definitions

The syntax of each logic is presented using a context-free grammar. These
grammars obey the following conventions:

• identifiers denote nonterminal symbols

• typewriter font denotes terminal symbols

• parentheses (. . .) express grouping

• constructs followed by a Kleene star, such as id∗ and (. . .)∗ can be
repeated 0 or more times

• alternatives are separated by a vertical bar, |

• the symbol for alphanumeric identifiers is id

• the symbol for scheme variables is var

To reduce the number of nonterminals and grammar rules required, Isabelle’s
syntax module employs priorities, or precedences. Each grammar rule is
given by a mixfix declaration, which has a priority, and each argument place
has a priority. This general approach handles infix operators that associate
either to the left or to the right, as well as prefix and binding operators.

In a syntactically valid expression, an operator’s arguments never involve
an operator of lower priority unless brackets are used. Consider first-order
logic, where ∃ has lower priority than ∨, which has lower priority than ∧.
There, P ∧ Q ∨ R abbreviates (P ∧ Q) ∨ R rather than P ∧ (Q ∨ R). Also,
∃x .P ∨Q abbreviates ∃x . (P ∨Q) rather than (∃x .P)∨Q . Note especially
that P ∨ (∃x . Q) becomes syntactically invalid if the brackets are removed.

A binder is a symbol associated with a constant of type (σ ⇒ τ) ⇒ τ ′.
For instance, we may declare ∀ as a binder for the constant All , which has
type (α ⇒ o) ⇒ o. This defines the syntax ∀x . t to mean All(λx . t). We
can also write ∀x1 . . . xm . t to abbreviate ∀x1 ∀xm . t ; this is possible for
any constant provided that τ and τ ′ are the same type. HOL’s description
operator εx . P x has type (α ⇒ bool) ⇒ α and can bind only one variable,

1

CHAPTER 1. SYNTAX DEFINITIONS 2

except when α is bool . ZF’s bounded quantifier ∀x ∈ A . P(x) cannot be
declared as a binder because it has type [i , i ⇒ o] ⇒ o. The syntax for
binders allows type constraints on bound variables, as in

∀(x ::α) (y ::β) z ::γ . Q(x , y , z)

To avoid excess detail, the logic descriptions adopt a semi-formal style.
Infix operators and binding operators are listed in separate tables, which
include their priorities. Grammar descriptions do not include numeric pri-
orities; instead, the rules appear in order of decreasing priority. This should
suffice for most purposes; for full details, please consult the actual syntax
definitions in the .thy files.

Each nonterminal symbol is associated with some Isabelle type. For ex-
ample, the formulae of first-order logic have type o. Every Isabelle expression
of type o is therefore a formula. These include atomic formulae such as P ,
where P is a variable of type o, and more generally expressions such as
P(t , u), where P , t and u have suitable types. Therefore, ‘expression of
type o’ is listed as a separate possibility in the grammar for formulae.

Chapter 2

Higher-Order Logic

The theory HOL implements higher-order logic. It is based on Gordon’s hol

system [5], which itself is based on Church’s original paper [3]. Andrews’s
book [1] is a full description of the original Church-style higher-order logic.
Experience with the hol system has demonstrated that higher-order logic is
widely applicable in many areas of mathematics and computer science, not
just hardware verification, hol’s original raison d’être. It is weaker than ZF
set theory but for most applications this does not matter. If you prefer ml

to Lisp, you will probably prefer HOL to ZF.
The syntax of HOL1 follows λ-calculus and functional programming.

Function application is curried. To apply the function f of type τ1 ⇒ τ2 ⇒ τ3

to the arguments a and b in HOL, you simply write f a b. There is no ‘apply’
operator as in ZF. Note that f (a, b) means “f applied to the pair (a, b)” in
HOL. We write ordered pairs as (a, b), not 〈a, b〉 as in ZF.

HOL has a distinct feel, compared with ZF and CTT. It identifies object-
level types with meta-level types, taking advantage of Isabelle’s built-in type-
checker. It identifies object-level functions with meta-level functions, so it
uses Isabelle’s operations for abstraction and application.

These identifications allow Isabelle to support HOL particularly nicely,
but they also mean that HOL requires more sophistication from the user —
in particular, an understanding of Isabelle’s type system. Beginners should
work with show_types (or even show_sorts) set to true.

2.1 Syntax

Figure 2.1 lists the constants (including infixes and binders), while Fig. 2.2
presents the grammar of higher-order logic. Note that a~=b is translated to
¬(a = b).

1Earlier versions of Isabelle’s HOL used a different syntax. Ancient releases of Isabelle
included still another version of HOL, with explicit type inference rules [18]. This version
no longer exists, but ZF supports a similar style of reasoning.

3

CHAPTER 2. HIGHER-ORDER LOGIC 4

name meta-type description
Trueprop bool ⇒ prop coercion to prop

Not bool ⇒ bool negation (¬)
True bool tautology (>)
False bool absurdity (⊥)

If [bool , α, α]⇒ α conditional
Let [α, α⇒ β]⇒ β let binder

Constants

symbol name meta-type description
SOME or @ Eps (α⇒ bool)⇒ α Hilbert description (ε)
ALL or ! All (α⇒ bool)⇒ bool universal quantifier (∀)
EX or ? Ex (α⇒ bool)⇒ bool existential quantifier (∃)
EX! or ?! Ex1 (α⇒ bool)⇒ bool unique existence (∃!)

LEAST Least (α :: ord ⇒ bool)⇒ α least element

Binders

symbol meta-type priority description
o [β ⇒ γ, α⇒ β]⇒ (α⇒ γ) Left 55 composition (◦)
= [α, α]⇒ bool Left 50 equality (=)
< [α :: ord , α]⇒ bool Left 50 less than (<)
<= [α :: ord , α]⇒ bool Left 50 less than or equals (≤)
& [bool , bool]⇒ bool Right 35 conjunction (∧)
| [bool , bool]⇒ bool Right 30 disjunction (∨)

--> [bool , bool]⇒ bool Right 25 implication (→)

Infixes

Figure 2.1: Syntax of HOL

CHAPTER 2. HIGHER-ORDER LOGIC 5

term = expression of class term
| SOME id . formula | @ id . formula
| let id = term; . . . ; id = term in term
| if formula then term else term
| LEAST id . formula

formula = expression of type bool
| term = term
| term ~= term
| term < term
| term <= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| ALL id id∗ . formula | ! id id∗ . formula
| EX id id∗ . formula | ? id id∗ . formula
| EX! id id∗ . formula | ?! id id∗ . formula

Figure 2.2: Full grammar for HOL

CHAPTER 2. HIGHER-ORDER LOGIC 6

! HOL has no if-and-only-if connective; logical equivalence is expressed using
equality. But equality has a high priority, as befitting a relation, while if-and-

only-if typically has the lowest priority. Thus, ¬¬P = P abbreviates ¬¬(P = P)
and not (¬¬P) = P . When using = to mean logical equivalence, enclose both
operands in parentheses.

2.1.1 Types and overloading

The universal type class of higher-order terms is called term. By default,
explicit type variables have class term. In particular the equality symbol
and quantifiers are polymorphic over class term.

The type of formulae, bool , belongs to class term; thus, formulae are
terms. The built-in type fun, which constructs function types, is overloaded
with arity (term, term) term. Thus, σ ⇒ τ belongs to class term if σ and τ
do, allowing quantification over functions.

HOL allows new types to be declared as subsets of existing types; see §2.6.
ML-like datatypes can also be declared; see §2.8.

Several syntactic type classes — plus, minus, times and power — permit
overloading of the operators +, -, *. and ^. They are overloaded to denote
the obvious arithmetic operations on types nat, int and real. (With the ^

operator, the exponent always has type nat.) Non-arithmetic overloadings
are also done: the operator - can denote set difference, while ^ can denote
exponentiation of relations (iterated composition). Unary minus is also writ-
ten as - and is overloaded like its 2-place counterpart; it even can stand for
set complement.

The constant 0 is also overloaded. It serves as the zero element of several
types, of which the most important is nat (the natural numbers). The type
class plus_ac0 comprises all types for which 0 and + satisfy the laws x +y =
y +x , (x +y)+z = x +(y +z) and 0+x = x . These types include the numeric
ones nat, int and real and also multisets. The summation operator setsum
is available for all types in this class.

Theory Ord defines the syntactic class ord of order signatures. The rela-
tions < and ≤ are polymorphic over this class, as are the functions mono, min
and max, and the LEAST operator. Ord also defines a subclass order of ord
which axiomatizes the types that are partially ordered with respect to ≤. A
further subclass linorder of order axiomatizes linear orderings. For details,
see the file Ord.thy.

If you state a goal containing overloaded functions, you may need to
include type constraints. Type inference may otherwise make the goal more
polymorphic than you intended, with confusing results. For example, the
variables i , j and k in the goal i ≤ j =⇒ i ≤ j +k have type α :: {ord , plus},

CHAPTER 2. HIGHER-ORDER LOGIC 7

although you may have expected them to have some numeric type, e.g. nat .
Instead you should have stated the goal as (i :: nat) ≤ j =⇒ i ≤ j +k , which
causes all three variables to have type nat .

! If resolution fails for no obvious reason, try setting show_types to true, caus-
ing Isabelle to display types of terms. Possibly set show_sorts to true as well,

causing Isabelle to display type classes and sorts.
Where function types are involved, Isabelle’s unification code does not guar-

antee to find instantiations for type variables automatically. Be prepared to use
res_inst_tac instead of resolve_tac, possibly instantiating type variables. Set-
ting Unify.trace_types to true causes Isabelle to report omitted search paths
during unification.

2.1.2 Binders

Hilbert’s description operator εx . P [x] stands for some x satisfying P , if
such exists. Since all terms in HOL denote something, a description is always
meaningful, but we do not know its value unless P defines it uniquely. We
may write descriptions as Eps(λx . P [x]) or use the syntax SOME x. P [x].

Existential quantification is defined by

∃x . P x ≡ P(εx . P x).

The unique existence quantifier, ∃!x . P , is defined in terms of ∃ and ∀. An
Isabelle binder, it admits nested quantifications. For instance, ∃!x y . P x y
abbreviates ∃!x . ∃!y .P x y ; note that this does not mean that there exists a
unique pair (x , y) satisfying P x y .

The basic Isabelle/HOL binders have two notations. Apart from the usual
ALL and EX for ∀ and ∃, Isabelle/HOL also supports the original notation of
Gordon’s hol system: ! and ?. In the latter case, the existential quantifier
must be followed by a space; thus ?x is an unknown, while ? x. f x=y is a
quantification. Both notations are accepted for input. The print mode “HOL”
governs the output notation. If enabled (e.g. by passing option -m HOL to
the isabelle executable), then ! and ? are displayed.

If τ is a type of class ord, P a formula and x a variable of type τ , then
the term LEAST x . P [x] is defined to be the least (w.r.t. ≤) x such that P x
holds (see Fig. 2.4). The definition uses Hilbert’s ε choice operator, so Least

is always meaningful, but may yield nothing useful in case there is not a
unique least element satisfying P .2

2Class ord does not require much of its instances, so ≤ need not be a well-ordering,
not even an order at all!

CHAPTER 2. HIGHER-ORDER LOGIC 8

refl t = (t::’a)
subst [| s = t; P s |] ==> P (t::’a)
ext (!!x::’a. (f x :: ’b) = g x) ==> (%x. f x) = (%x. g x)
impI (P ==> Q) ==> P-->Q
mp [| P-->Q; P |] ==> Q
iff (P-->Q) --> (Q-->P) --> (P=Q)
someI P(x::’a) ==> P(@x. P x)
True_or_False (P=True) | (P=False)

Figure 2.3: The HOL rules

All these binders have priority 10.

! The low priority of binders means that they need to be enclosed in parenthesis
when they occur in the context of other operations. For example, instead of

P ∧ ∀x .Q you need to write P ∧ (∀x .Q).

2.1.3 The let and case constructions

Local abbreviations can be introduced by a let construct whose syntax ap-
pears in Fig. 2.2. Internally it is translated into the constant Let. It can be
expanded by rewriting with its definition, Let_def.

HOL also defines the basic syntax

case e of c1 => e1 | . . . | cn => en

as a uniform means of expressing case constructs. Therefore case and of

are reserved words. Initially, this is mere syntax and has no logical meaning.
By declaring translations, you can cause instances of the case construct
to denote applications of particular case operators. This is what happens
automatically for each datatype definition (see §2.8).

! Both if and case constructs have as low a priority as quantifiers, which re-
quires additional enclosing parentheses in the context of most other opera-

tions. For example, instead of f x = if . . . then . . . else . . . you need to write
f x = (if . . . then . . . else . . .).

2.2 Rules of inference

Figure 2.3 shows the primitive inference rules of HOL, with their ml names.
Some of the rules deserve additional comments:

CHAPTER 2. HIGHER-ORDER LOGIC 9

True_def True == ((%x::bool. x)=(%x. x))
All_def All == (%P. P = (%x. True))
Ex_def Ex == (%P. P(@x. P x))
False_def False == (!P. P)
not_def not == (%P. P-->False)
and_def op & == (%P Q. !R. (P-->Q-->R) --> R)
or_def op | == (%P Q. !R. (P-->R) --> (Q-->R) --> R)
Ex1_def Ex1 == (%P. ? x. P x & (! y. P y --> y=x))

o_def op o == (%(f::’b=>’c) g x::’a. f(g x))
if_def If P x y ==

(%P x y. @z::’a.(P=True --> z=x) & (P=False --> z=y))
Let_def Let s f == f s
Least_def Least P == @x. P(x) & (ALL y. P(y) --> x <= y)"

Figure 2.4: The HOL definitions

ext expresses extensionality of functions.

iff asserts that logically equivalent formulae are equal.

someI gives the defining property of the Hilbert ε-operator. It is a form of
the Axiom of Choice. The derived rule some_equality (see below) is
often easier to use.

True_or_False makes the logic classical.3

HOL follows standard practice in higher-order logic: only a few connec-
tives are taken as primitive, with the remainder defined obscurely (Fig. 2.4).
Gordon’s hol system expresses the corresponding definitions [5, page 270]
using object-equality (=), which is possible because equality in higher-order
logic may equate formulae and even functions over formulae. But the-
ory HOL, like all other Isabelle theories, uses meta-equality (==) for defi-
nitions.

! The definitions above should never be expanded and are shown for complete-
ness only. Instead users should reason in terms of the derived rules shown

below or, better still, using high-level tactics (see §2.4).

Some of the rules mention type variables; for example, refl mentions the
type variable ’a. This allows you to instantiate type variables explicitly by
calling res_inst_tac.

3In fact, the ε-operator already makes the logic classical, as shown by Diaconescu; see
Paulson [18] for details.

CHAPTER 2. HIGHER-ORDER LOGIC 10

sym s=t ==> t=s
trans [| r=s; s=t |] ==> r=t
ssubst [| t=s; P s |] ==> P t
box_equals [| a=b; a=c; b=d |] ==> c=d
arg_cong x = y ==> f x = f y
fun_cong f = g ==> f x = g x
cong [| f = g; x = y |] ==> f x = g y
not_sym t ~= s ==> s ~= t

Equality

TrueI True
FalseE False ==> P

conjI [| P; Q |] ==> P&Q
conjunct1 [| P&Q |] ==> P
conjunct2 [| P&Q |] ==> Q
conjE [| P&Q; [| P; Q |] ==> R |] ==> R

disjI1 P ==> P|Q
disjI2 Q ==> P|Q
disjE [| P | Q; P ==> R; Q ==> R |] ==> R

notI (P ==> False) ==> ~ P
notE [| ~ P; P |] ==> R
impE [| P-->Q; P; Q ==> R |] ==> R

Propositional logic

iffI [| P ==> Q; Q ==> P |] ==> P=Q
iffD1 [| P=Q; P |] ==> Q
iffD2 [| P=Q; Q |] ==> P
iffE [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
%
%eqTrueI P ==> P=True
%eqTrueE P=True ==> P

Logical equivalence

Figure 2.5: Derived rules for HOL

CHAPTER 2. HIGHER-ORDER LOGIC 11

allI (!!x. P x) ==> !x. P x
spec !x. P x ==> P x
allE [| !x. P x; P x ==> R |] ==> R
all_dupE [| !x. P x; [| P x; !x. P x |] ==> R |] ==> R

exI P x ==> ? x. P x
exE [| ? x. P x; !!x. P x ==> Q |] ==> Q

ex1I [| P a; !!x. P x ==> x=a |] ==> ?! x. P x
ex1E [| ?! x. P x; !!x. [| P x; ! y. P y --> y=x |] ==> R

|] ==> R

some_equality [| P a; !!x. P x ==> x=a |] ==> (@x. P x) = a

Quantifiers and descriptions

ccontr (~P ==> False) ==> P
classical (~P ==> P) ==> P
excluded_middle ~P | P

disjCI (~Q ==> P) ==> P|Q
exCI (! x. ~ P x ==> P a) ==> ? x. P x
impCE [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
iffCE [| P=Q; [| P;Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R
notnotD ~~P ==> P
swap ~P ==> (~Q ==> P) ==> Q

Classical logic

if_P P ==> (if P then x else y) = x
if_not_P ~ P ==> (if P then x else y) = y
split_if P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))

Conditionals

Figure 2.6: More derived rules

CHAPTER 2. HIGHER-ORDER LOGIC 12

Some derived rules are shown in Figures 2.5 and 2.6, with their ml names.
These include natural rules for the logical connectives, as well as sequent-style
elimination rules for conjunctions, implications, and universal quantifiers.

Note the equality rules: ssubst performs substitution in backward proofs,
while box_equals supports reasoning by simplifying both sides of an equa-
tion.

The following simple tactics are occasionally useful:

strip_tac i applies allI and impI repeatedly to remove all outermost uni-
versal quantifiers and implications from subgoal i .

case_tac "P" i performs case distinction on P for subgoal i : the latter is
replaced by two identical subgoals with the added assumptions P and
¬P , respectively.

smp_tac j i applies j times spec and then mp in subgoal i , which is typi-
cally useful when forward-chaining from an induction hypothesis. As a
generalization of mp_tac, if there are assumptions ∀~x . P~x → Q~x and
P~a, (~x being a vector of j variables) then it replaces the universally
quantified implication by Q~a. It may instantiate unknowns. It fails if
it can do nothing.

2.3 A formulation of set theory

Historically, higher-order logic gives a foundation for Russell and Whitehead’s
theory of classes. Let us use modern terminology and call them sets, but
note that these sets are distinct from those of ZF set theory, and behave
more like ZF classes.

• Sets are given by predicates over some type σ. Types serve to define
universes for sets, but type-checking is still significant.

• There is a universal set (for each type). Thus, sets have complements,
and may be defined by absolute comprehension.

• Although sets may contain other sets as elements, the containing set
must have a more complex type.

Finite unions and intersections have the same behaviour in HOL as they do
in ZF. In HOL the intersection of the empty set is well-defined, denoting the
universal set for the given type.

CHAPTER 2. HIGHER-ORDER LOGIC 13

name meta-type description
{} α set the empty set

insert [α, α set]⇒ α set insertion of element
Collect (α⇒ bool)⇒ α set comprehension
INTER [α set , α⇒ β set]⇒ β set intersection over a set
UNION [α set , α⇒ β set]⇒ β set union over a set
Inter (α set)set ⇒ α set set of sets intersection
Union (α set)set ⇒ α set set of sets union
Pow α set ⇒ (α set)set powerset

range (α⇒ β)⇒ β set range of a function

Ball Bex [α set , α⇒ bool]⇒ bool bounded quantifiers

Constants

symbol name meta-type priority description
INT INTER1 (α⇒ β set)⇒ β set 10 intersection
UN UNION1 (α⇒ β set)⇒ β set 10 union

Binders

symbol meta-type priority description
‘‘ [α⇒ β, α set]⇒ β set Left 90 image
Int [α set , α set]⇒ α set Left 70 intersection (∩)
Un [α set , α set]⇒ α set Left 65 union (∪)
: [α, α set]⇒ bool Left 50 membership (∈)
<= [α set , α set]⇒ bool Left 50 subset (⊆)

Infixes

Figure 2.7: Syntax of the theory Set

CHAPTER 2. HIGHER-ORDER LOGIC 14

external internal description
a ~: b ~(a : b) not in

{a1, . . .} insert a1 . . . {} finite set
{x. P [x]} Collect(λx . P [x]) comprehension

INT x:A. B [x] INTER A λx . B [x] intersection
UN x:A. B [x] UNION A λx . B [x] union

ALL x:A. P [x] or ! x:A. P [x] Ball A λx . P [x] bounded ∀
EX x:A. P [x] or ? x:A. P [x] Bex A λx . P [x] bounded ∃

Translations

term = other terms. . .
| {}

| { term (,term)∗ }

| { id . formula }

| term ‘‘ term
| term Int term
| term Un term
| INT id:term . term
| UN id:term . term
| INT id id∗ . term
| UN id id∗ . term

formula = other formulae. . .
| term : term
| term ~: term
| term <= term
| ALL id:term . formula | ! id:term . formula
| EX id:term . formula | ? id:term . formula

Full Grammar

Figure 2.8: Syntax of the theory Set (continued)

CHAPTER 2. HIGHER-ORDER LOGIC 15

2.3.1 Syntax of set theory

HOL’s set theory is called Set. The type α set is essentially the same as
α ⇒ bool . The new type is defined for clarity and to avoid complications
involving function types in unification. The isomorphisms between the two
types are declared explicitly. They are very natural: Collect maps α⇒ bool
to α set , while op : maps in the other direction (ignoring argument order).

Figure 2.7 lists the constants, infixes, and syntax translations. Figure 2.8
presents the grammar of the new constructs. Infix operators include union
and intersection (A ∪ B and A ∩ B), the subset and membership relations,
and the image operator ‘‘. Note that a~:b is translated to ¬(a ∈ b).

The {a1, . . .} notation abbreviates finite sets constructed in the obvious
manner using insert and {}:

{a, b, c} ≡ insert a (insert b (insert c {}))

The set {x. P [x]} consists of all x (of suitable type) that satisfy P [x],
where P [x] is a formula that may contain free occurrences of x . This syntax
expands to Collect(λx . P [x]). It defines sets by absolute comprehension,
which is impossible in ZF; the type of x implicitly restricts the comprehen-
sion.

The set theory defines two bounded quantifiers:

∀x ∈ A . P [x] abbreviates ∀x . x ∈ A→ P [x]

∃x ∈ A . P [x] abbreviates ∃x . x ∈ A ∧ P [x]

The constants Ball and Bex are defined accordingly. Instead of Ball A
P and Bex A P we may write ALL x:A. P [x] and EX x:A. P [x]. The
original notation of Gordon’s hol system is supported as well: ! and ?.

Unions and intersections over sets, namely
⋃

x∈A B [x] and
⋂

x∈A B [x], are
written UN x:A. B [x] and INT x:A. B [x].

Unions and intersections over types, namely
⋃

x B [x] and
⋂

x B [x], are
written UN x. B [x] and INT x. B [x]. They are equivalent to the previous
union and intersection operators when A is the universal set.

The operators
⋃

A and
⋂

A act upon sets of sets. They are not binders,
but are equal to

⋃
x∈A x and

⋂
x∈A x , respectively.

2.3.2 Axioms and rules of set theory

Figure 2.9 presents the rules of theory Set. The axioms mem_Collect_eq

and Collect_mem_eq assert that the functions Collect and op : are iso-
morphisms. Of course, op : also serves as the membership relation.

CHAPTER 2. HIGHER-ORDER LOGIC 16

mem_Collect_eq (a : {x. P x}) = P a
Collect_mem_eq {x. x:A} = A

empty_def {} == {x. False}
insert_def insert a B == {x. x=a} Un B
Ball_def Ball A P == ! x. x:A --> P x
Bex_def Bex A P == ? x. x:A & P x
subset_def A <= B == ! x:A. x:B
Un_def A Un B == {x. x:A | x:B}
Int_def A Int B == {x. x:A & x:B}
set_diff_def A - B == {x. x:A & x~:B}
Compl_def -A == {x. ~ x:A}
INTER_def INTER A B == {y. ! x:A. y: B x}
UNION_def UNION A B == {y. ? x:A. y: B x}
INTER1_def INTER1 B == INTER {x. True} B
UNION1_def UNION1 B == UNION {x. True} B
Inter_def Inter S == (INT x:S. x)
Union_def Union S == (UN x:S. x)
Pow_def Pow A == {B. B <= A}
image_def f‘‘A == {y. ? x:A. y=f x}
range_def range f == {y. ? x. y=f x}

Figure 2.9: Rules of the theory Set

All the other axioms are definitions. They include the empty set, bounded
quantifiers, unions, intersections, complements and the subset relation. They
also include straightforward constructions on functions: image (‘‘) and
range.

Figures 2.10 and 2.11 present derived rules. Most are obvious and resem-
ble rules of Isabelle’s ZF set theory. Certain rules, such as subsetCE, bexCI
and UnCI, are designed for classical reasoning; the rules subsetD, bexI, Un1
and Un2 are not strictly necessary but yield more natural proofs. Similarly,
equalityCE supports classical reasoning about extensionality, after the fash-
ion of iffCE. See the file HOL/Set.ML for proofs pertaining to set theory.

Figure 2.12 presents lattice properties of the subset relation. Unions form
least upper bounds; non-empty intersections form greatest lower bounds.
Reasoning directly about subsets often yields clearer proofs than reasoning
about the membership relation. See the file HOL/subset.ML.

Figure 2.13 presents many common set equalities. They include commu-
tative, associative and distributive laws involving unions, intersections and
complements. For a complete listing see the file HOL/equalities.ML.

! Blast_tac proves many set-theoretic theorems automatically. Hence you sel-
dom need to refer to the theorems above.

CHAPTER 2. HIGHER-ORDER LOGIC 17

CollectI [| P a |] ==> a : {x. P x}
CollectD [| a : {x. P x} |] ==> P a
CollectE [| a : {x. P x}; P a ==> W |] ==> W

ballI [| !!x. x:A ==> P x |] ==> ! x:A. P x
bspec [| ! x:A. P x; x:A |] ==> P x
ballE [| ! x:A. P x; P x ==> Q; ~ x:A ==> Q |] ==> Q

bexI [| P x; x:A |] ==> ? x:A. P x
bexCI [| ! x:A. ~ P x ==> P a; a:A |] ==> ? x:A. P x
bexE [| ? x:A. P x; !!x. [| x:A; P x |] ==> Q |] ==> Q

Comprehension and Bounded quantifiers

subsetI (!!x. x:A ==> x:B) ==> A <= B
subsetD [| A <= B; c:A |] ==> c:B
subsetCE [| A <= B; ~ (c:A) ==> P; c:B ==> P |] ==> P

subset_refl A <= A
subset_trans [| A<=B; B<=C |] ==> A<=C

equalityI [| A <= B; B <= A |] ==> A = B
equalityD1 A = B ==> A<=B
equalityD2 A = B ==> B<=A
equalityE [| A = B; [| A<=B; B<=A |] ==> P |] ==> P

equalityCE [| A = B; [| c:A; c:B |] ==> P;
[| ~ c:A; ~ c:B |] ==> P

|] ==> P

The subset and equality relations

Figure 2.10: Derived rules for set theory

CHAPTER 2. HIGHER-ORDER LOGIC 18

emptyE a : {} ==> P

insertI1 a : insert a B
insertI2 a : B ==> a : insert b B
insertE [| a : insert b A; a=b ==> P; a:A ==> P |] ==> P

ComplI [| c:A ==> False |] ==> c : -A
ComplD [| c : -A |] ==> ~ c:A

UnI1 c:A ==> c : A Un B
UnI2 c:B ==> c : A Un B
UnCI (~c:B ==> c:A) ==> c : A Un B
UnE [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P

IntI [| c:A; c:B |] ==> c : A Int B
IntD1 c : A Int B ==> c:A
IntD2 c : A Int B ==> c:B
IntE [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P

UN_I [| a:A; b: B a |] ==> b: (UN x:A. B x)
UN_E [| b: (UN x:A. B x); !!x.[| x:A; b:B x |] ==> R |] ==> R

INT_I (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)
INT_D [| b: (INT x:A. B x); a:A |] ==> b: B a
INT_E [| b: (INT x:A. B x); b: B a ==> R; ~ a:A ==> R |] ==> R

UnionI [| X:C; A:X |] ==> A : Union C
UnionE [| A : Union C; !!X.[| A:X; X:C |] ==> R |] ==> R

InterI [| !!X. X:C ==> A:X |] ==> A : Inter C
InterD [| A : Inter C; X:C |] ==> A:X
InterE [| A : Inter C; A:X ==> R; ~ X:C ==> R |] ==> R

PowI A<=B ==> A: Pow B
PowD A: Pow B ==> A<=B

imageI [| x:A |] ==> f x : f‘‘A
imageE [| b : f‘‘A; !!x.[| b=f x; x:A |] ==> P |] ==> P

rangeI f x : range f
rangeE [| b : range f; !!x.[| b=f x |] ==> P |] ==> P

Figure 2.11: Further derived rules for set theory

CHAPTER 2. HIGHER-ORDER LOGIC 19

Union_upper B:A ==> B <= Union A
Union_least [| !!X. X:A ==> X<=C |] ==> Union A <= C

Inter_lower B:A ==> Inter A <= B
Inter_greatest [| !!X. X:A ==> C<=X |] ==> C <= Inter A

Un_upper1 A <= A Un B
Un_upper2 B <= A Un B
Un_least [| A<=C; B<=C |] ==> A Un B <= C

Int_lower1 A Int B <= A
Int_lower2 A Int B <= B
Int_greatest [| C<=A; C<=B |] ==> C <= A Int B

Figure 2.12: Derived rules involving subsets

Int_absorb A Int A = A
Int_commute A Int B = B Int A
Int_assoc (A Int B) Int C = A Int (B Int C)
Int_Un_distrib (A Un B) Int C = (A Int C) Un (B Int C)

Un_absorb A Un A = A
Un_commute A Un B = B Un A
Un_assoc (A Un B) Un C = A Un (B Un C)
Un_Int_distrib (A Int B) Un C = (A Un C) Int (B Un C)

Compl_disjoint A Int (-A) = {x. False}
Compl_partition A Un (-A) = {x. True}
double_complement -(-A) = A
Compl_Un -(A Un B) = (-A) Int (-B)
Compl_Int -(A Int B) = (-A) Un (-B)

Union_Un_distrib Union(A Un B) = (Union A) Un (Union B)
Int_Union A Int (Union B) = (UN C:B. A Int C)
%Un_Union_image (UN x:C.(A x) Un (B x)) = Union(A‘‘C) Un Union(B‘‘C)

Inter_Un_distrib Inter(A Un B) = (Inter A) Int (Inter B)
Un_Inter A Un (Inter B) = (INT C:B. A Un C)
%Int_Inter_image (INT x:C.(A x) Int (B x)) = Inter(A‘‘C) Int Inter(B‘‘C)

Figure 2.13: Set equalities

CHAPTER 2. HIGHER-ORDER LOGIC 20

name meta-type description
inj surj (α⇒ β)⇒ bool injective/surjective

inj_on [α⇒ β, α set]⇒ bool injective over subset
inv (α⇒ β)⇒ (β ⇒ α) inverse function

inj_def inj f == ! x y. f x=f y --> x=y
surj_def surj f == ! y. ? x. y=f x
inj_on_def inj_on f A == !x:A. !y:A. f x=f y --> x=y
inv_def inv f == (%y. @x. f(x)=y)

Figure 2.14: Theory Fun

2.3.3 Properties of functions

Figure 2.14 presents a theory of simple properties of functions. Note that
inv f uses Hilbert’s ε to yield an inverse of f . See the file HOL/Fun.ML for a
complete listing of the derived rules. Reasoning about function composition
(the operator o) and the predicate surj is done simply by expanding the
definitions.

There is also a large collection of monotonicity theorems for constructions
on sets in the file HOL/mono.ML.

2.4 Generic packages

HOL instantiates most of Isabelle’s generic packages, making available the
simplifier and the classical reasoner.

2.4.1 Simplification and substitution

Simplification tactics tactics such as Asm_simp_tac and Full_simp_tac use
the default simpset (simpset()), which works for most purposes. A quite
minimal simplification set for higher-order logic is HOL_ss; even more frugal
is HOL_basic_ss. Equality (=), which also expresses logical equivalence, may
be used for rewriting. See the file HOL/simpdata.ML for a complete listing of
the basic simplification rules.

See the Reference Manual for details of substitution and simplification.

! Reducing a = b ∧ P(a) to a = b ∧ P(b) is sometimes advantageous. The left
part of a conjunction helps in simplifying the right part. This effect is not

available by default: it can be slow. It can be obtained by including conj_cong
in a simpset, addcongs [conj_cong].

CHAPTER 2. HIGHER-ORDER LOGIC 21

! By default only the condition of an if is simplified but not the then and else
parts. Of course the latter are simplified once the condition simplifies to True

or False. To ensure full simplification of all parts of a conditional you must remove
if_weak_cong from the simpset, delcongs [if_weak_cong].

If the simplifier cannot use a certain rewrite rule — either because of
nontermination or because its left-hand side is too flexible — then you might
try stac:

stac thm i , where thm is of the form lhs = rhs , replaces in subgoal i in-
stances of lhs by corresponding instances of rhs . In case of multiple
instances of lhs in subgoal i , backtracking may be necessary to select
the desired ones.

If thm is a conditional equality, the instantiated condition becomes an
additional (first) subgoal.

HOL provides the tactic hyp_subst_tac, which substitutes for an equal-
ity throughout a subgoal and its hypotheses. This tactic uses HOL’s general
substitution rule.

Case splitting

HOL also provides convenient means for case splitting during rewriting.
Goals containing a subterm of the form if b then...else... often require
a case distinction on b. This is expressed by the theorem split_if:

?P(if ?b then ?x else ?y) = ((?b → ?P(?x)) ∧ (¬?b → ?P(?y))) (∗)

For example, a simple instance of (∗) is

x ∈ (if x ∈ A then A else {x}) = ((x ∈ A→ x ∈ A)∧(x /∈ A→ x ∈ {x}))

Because (∗) is too general as a rewrite rule for the simplifier (the left-hand
side is not a higher-order pattern in the sense of the Reference Manual),
there is a special infix function addsplits of type simpset * thm list ->

simpset (analogous to addsimps) that adds rules such as (∗) to a simpset,
as in

by(simp_tac (simpset() addsplits [split_if]) 1);

The effect is that after each round of simplification, one occurrence of if is
split acording to split_if, until all occurences of if have been eliminated.

It turns out that using split_if is almost always the right thing to do.
Hence split_if is already included in the default simpset. If you want to
delete it from a simpset, use delsplits, which is the inverse of addsplits:

CHAPTER 2. HIGHER-ORDER LOGIC 22

by(simp_tac (simpset() delsplits [split_if]) 1);

In general, addsplits accepts rules of the form

?P(c ?x1 . . . ?xn) = rhs

where c is a constant and rhs is arbitrary. Note that (∗) is of the right form
because internally the left-hand side is ?P(If ?b ?x ?y). Important further
examples are splitting rules for case expressions (see §2.6.4 and §2.8.1).

Analogous to Addsimps and Delsimps, there are also imperative versions
of addsplits and delsplits

Addsplits: thm list -> unit
Delsplits: thm list -> unit

for adding splitting rules to, and deleting them from the current simpset.

2.4.2 Classical reasoning

HOL derives classical introduction rules for ∨ and ∃, as well as classical
elimination rules for → and ↔, and the swap rule; recall Fig. 2.6 above.

The classical reasoner is installed. Tactics such as Blast_tac and
Best_tac refer to the default claset (claset()), which works for most
purposes. Named clasets include prop_cs, which includes the proposi-
tional rules, and HOL_cs, which also includes quantifier rules. See the file
HOL/cladata.ML for lists of the classical rules, and the Reference Manual for
more discussion of classical proof methods.

2.5 Calling the decision procedure SVC

The Stanford Validity Checker (SVC) is a tool that can check the valid-
ity of certain types of formulae. If it is installed on your machine, then
Isabelle/HOL can be configured to call it through the tactic svc_tac. It is
ideal for large tautologies and complex problems in linear arithmetic. Subex-
pressions that SVC cannot handle are automatically replaced by variables,
so you can call the tactic on any subgoal. See the file HOL/ex/svc_test.ML

for examples.

svc_tac : int -> tactic
Svc.trace : bool ref initially false

svc_tac i attempts to prove subgoal i by translating it into a formula rec-
ognized by SVC. If it succeeds then the subgoal is removed. It fails if

CHAPTER 2. HIGHER-ORDER LOGIC 23

SVC is unable to prove the subgoal. It crashes with an error message
if SVC appears not to be installed. Numeric variables may have types
nat, int or real.

Svc.trace is a flag that, if set, causes svc_tac to trace its operations: ab-
straction of the subgoal, translation to SVC syntax, SVC’s response.

Here is an example, with tracing turned on:

set Svc.trace;
val it : bool = true

Goal "(#3::nat)*a <= #2 + #4*b + #6*c & #11 <= #2*a + b + #2*c & \
\ a + #3*b <= #5 + #2*c --> #2 + #3*b <= #2*a + #6*c";

by (svc_tac 1);
Subgoal abstracted to

#3 * a <= #2 + #4 * b + #6 * c &

#11 <= #2 * a + b + #2 * c & a + #3 * b <= #5 + #2 * c -->

#2 + #3 * b <= #2 * a + #6 * c

Calling SVC:

(=> (<= 0 (F_c)) (=> (<= 0 (F_b)) (=> (<= 0 (F_a))

(=> (AND (<= * 3 (F_a) + + 2 * 4 (F_b)

* 6 (F_c)) (AND (<= 11 + + * 2 (F_a) (F_b)

* 2 (F_c)) (<= + (F_a) * 3 (F_b) + 5

* 2 (F_c)))) (< + 2 * 3 (F_b) + 1 +

* 2 (F_a) * 6 (F_c))))))

SVC Returns:

VALID

Level 1

#3 * a <= #2 + #4 * b + #6 * c &

#11 <= #2 * a + b + #2 * c & a + #3 * b <= #5 + #2 * c -->

#2 + #3 * b <= #2 * a + #6 * c

No subgoals!

! Calling svc_tac entails an above-average risk of unsoundness. Isabelle does
not check SVC’s result independently. Moreover, the tactic translates the

submitted formula using code that lies outside Isabelle’s inference core. Theorems
that depend upon results proved using SVC (and other oracles) are displayed with
the annotation [!] attached. You can also use #der (rep_thm th) to examine
the proof object of theorem th, as described in the Reference Manual.

To start, first download SVC from the Internet at URL

http://agamemnon.stanford.edu/~levitt/vc/index.html

and install it using the instructions supplied. SVC requires two environment
variables:

CHAPTER 2. HIGHER-ORDER LOGIC 24

SVC_HOME is an absolute pathname to the SVC distribution directory.

SVC_MACHINE identifies the type of computer and operating system.

You can set these environment variables either using the Unix shell or through
an Isabelle settings file. Isabelle assumes SVC to be installed if SVC_HOME
is defined.

Acknowledgement. This interface uses code supplied by Søren Heilmann.

2.6 Types

This section describes HOL’s basic predefined types (α × β, α + β, nat and
α list) and ways for introducing new types in general. The most important
type construction, the datatype, is treated separately in §2.8.

2.6.1 Product and sum types

Theory Prod (Fig. 2.15) defines the product type α×β, with the ordered pair
syntax (a, b). General tuples are simulated by pairs nested to the right:

external internal
τ1 × . . .× τn τ1 × (. . . (τn−1 × τn) . . .)
(t1, . . . , tn) (t1, (. . . , (tn−1, tn) . . .)

In addition, it is possible to use tuples as patterns in abstractions:

%(x,y). t stands for split(%x y. t)

Nested patterns are also supported. They are translated stepwise:

%(x,y,z). t ; %(x,(y,z)). t

; split(%x.%(y,z). t)

; split(%x. split(%y z. t))

The reverse translation is performed upon printing.

! The translation between patterns and split is performed automatically by the
parser and printer. Thus the internal and external form of a term may differ,

which can affects proofs. For example the term (%(x,y).(y,x))(a,b) requires
the theorem split (which is in the default simpset) to rewrite to (b,a).

CHAPTER 2. HIGHER-ORDER LOGIC 25

symbol meta-type description
Pair [α, β]⇒ α× β ordered pairs (a, b)
fst α× β ⇒ α first projection
snd α× β ⇒ β second projection

split [[α, β]⇒ γ, α× β]⇒ γ generalized projection
Sigma [α set , α⇒ β set]⇒ (α× β)set general sum of sets

%fst_def fst p == @a. ? b. p = (a,b)
%snd_def snd p == @b. ? a. p = (a,b)
%split_def split c p == c (fst p) (snd p)
Sigma_def Sigma A B == UN x:A. UN y:B x. {(x,y)}

Pair_eq ((a,b) = (a’,b’)) = (a=a’ & b=b’)
Pair_inject [| (a, b) = (a’,b’); [| a=a’; b=b’ |] ==> R |] ==> R
PairE [| !!x y. p = (x,y) ==> Q |] ==> Q

fst_conv fst (a,b) = a
snd_conv snd (a,b) = b
surjective_pairing p = (fst p,snd p)

split split c (a,b) = c a b
split_split R(split c p) = (! x y. p = (x,y) --> R(c x y))

SigmaI [| a:A; b:B a |] ==> (a,b) : Sigma A B

SigmaE [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P
|] ==> P

Figure 2.15: Type α× β

CHAPTER 2. HIGHER-ORDER LOGIC 26

In addition to explicit λ-abstractions, patterns can be used in any variable
binding construct which is internally described by a λ-abstraction. Some
important examples are

Let: let pattern = t in u

Quantifiers: ALL pattern:A. P

Choice: SOME pattern. P

Set operations: UN pattern:A. B

Sets: {pattern. P}

There is a simple tactic which supports reasoning about patterns:

split_all_tac i replaces in subgoal i all !!-quantified variables of product
type by individual variables for each component. A simple example:

1. !!p. (%(x,y,z). (x, y, z)) p = p

by(split_all_tac 1);
1. !!x xa ya. (%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)

Theory Prod also introduces the degenerate product type unit which
contains only a single element named () with the property

unit_eq u = ()

Theory Sum (Fig. 2.16) defines the sum type α+β which associates to the
right and has a lower priority than ∗: τ1 +τ2 +τ3∗τ4 means τ1 +(τ2 +(τ3∗τ4)).

The definition of products and sums in terms of existing types is not
shown. The constructions are fairly standard and can be found in the re-
spective theory files. Although the sum and product types are constructed
manually for foundational reasons, they are represented as actual datatypes
later (see §2.8.3). Therefore, the theory Datatype should be used instead of
Sum or Prod.

2.6.2 The type of natural numbers, nat

The theory NatDef defines the natural numbers in a roundabout but tradi-
tional way. The axiom of infinity postulates a type ind of individuals, which
is non-empty and closed under an injective operation. The natural num-
bers are inductively generated by choosing an arbitrary individual for 0 and
using the injective operation to take successors. This is a least fixedpoint
construction. For details see the file NatDef.thy.

CHAPTER 2. HIGHER-ORDER LOGIC 27

symbol meta-type description
Inl α⇒ α+ β first injection
Inr β ⇒ α+ β second injection

sum_case [α⇒ γ, β ⇒ γ, α+ β]⇒ γ conditional

Inl_not_Inr Inl a ~= Inr b

inj_Inl inj Inl
inj_Inr inj Inr

sumE [| !!x. P(Inl x); !!y. P(Inr y) |] ==> P s

sum_case_Inl sum_case f g (Inl x) = f x
sum_case_Inr sum_case f g (Inr x) = g x

surjective_sum sum_case (%x. f(Inl x)) (%y. f(Inr y)) s = f s
sum.split_case R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) &

(! y. s = Inr(y) --> R(g(y))))

Figure 2.16: Type α + β

Type nat is an instance of class ord, which makes the overloaded functions
of this class (especially < and <=, but also min, max and LEAST) available on
nat . Theory Nat builds on NatDef and shows that <= is a linear order, so
nat is also an instance of class linorder.

Theory Arith develops arithmetic on the natural numbers. It defines
addition, multiplication and subtraction. Theory Divides defines division,
remainder and the “divides” relation. The numerous theorems proved include
commutative, associative, distributive, identity and cancellation laws. See
Figs. 2.17 and 2.18. The recursion equations for the operators +, - and * on
nat are part of the default simpset.

Functions on nat can be defined by primitive or well-founded recursion;
see §2.9. A simple example is addition. Here, op + is the name of the infix
operator +, following the standard convention.

primrec
"0 + n = n"

"Suc m + n = Suc (m + n)"

There is also a case-construct of the form

case e of 0 => a | Suc m => b

Note that Isabelle insists on precisely this format; you may not even change
the order of the two cases. Both primrec and case are realized by a recursion

CHAPTER 2. HIGHER-ORDER LOGIC 28

symbol meta-type priority description
0 α zero

Suc nat ⇒ nat successor function
* [α, α]⇒ α Left 70 multiplication

div [α, α]⇒ α Left 70 division
mod [α, α]⇒ α Left 70 modulus
dvd [α, α]⇒ bool Left 70 “divides” relation

+ [α, α]⇒ α Left 65 addition
- [α, α]⇒ α Left 65 subtraction

Constants and infixes

nat_induct [| P 0; !!n. P n ==> P(Suc n) |] ==> P n

Suc_not_Zero Suc m ~= 0
inj_Suc inj Suc
n_not_Suc_n n~=Suc n

Basic properties

Figure 2.17: The type of natural numbers, nat

0+n = n
(Suc m)+n = Suc(m+n)

m-0 = m
0-n = n
Suc(m)-Suc(n) = m-n

0*n = 0
Suc(m)*n = n + m*n

mod_less m<n ==> m mod n = m
mod_geq [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n

div_less m<n ==> m div n = 0
div_geq [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)

Figure 2.18: Recursion equations for the arithmetic operators

CHAPTER 2. HIGHER-ORDER LOGIC 29

operator nat_rec, which is available because nat is represented as a datatype
(see §2.8.3).

Tactic induct_tac "n" i performs induction on variable n in subgoal i
using theorem nat_induct. There is also the derived theorem less_induct:

[| !!n. [| ! m. m<n --> P m |] ==> P n |] ==> P n

2.6.3 Numerical types and numerical reasoning

The integers (type int) are also available in HOL, and the reals (type real)
are available in the logic image HOL-Real. They support the expected oper-
ations of addition (+), subtraction (-) and multiplication (*), and much else.
Type int provides the div and mod operators, while type real provides real
division and other operations. Both types belong to class linorder, so they
inherit the relational operators and all the usual properties of linear order-
ings. For full details, please survey the theories in subdirectories Integ and
Real.

All three numeric types admit numerals of the form #sd . . . d , where s is
an optional minus sign and d . . . d is a string of digits. Numerals are repre-
sented internally by a datatype for binary notation, which allows numerical
calculations to be performed by rewriting. For example, the integer division
of #54342339 by #3452 takes about five seconds. By default, the simpli-
fier cancels like terms on the opposite sites of relational operators (reducing
z+x<x+y to z<y, for instance. The simplifier also collects like terms, replacing
x+y+x*#3 by #4*x+y.

Sometimes numerals are not wanted, because for example n+#3 does not
match a pattern of the form Suc k . You can re-arrange the form of an
arithmetic expression by proving (via subgoal_tac) a lemma such as n+#3

= Suc (Suc (Suc n)). As an alternative, you can disable the fancier sim-
plifications by using a basic simpset such as HOL_ss rather than the default
one, simpset().

Reasoning about arithmetic inequalities can be tedious. Fortunately HOL
provides a decision procedure for quantifier-free linear arithmetic (that is, ad-
dition and subtraction). The simplifier invokes a weak version of this decision
procedure automatically. If this is not sufficent, you can invoke the full pro-
cedure arith_tac explicitly. It copes with arbitrary formulae involving =, <,
<=, +, -, Suc, min, max and numerical constants; other subterms are treated
as atomic; subformulae not involving numerical types are ignored; quanti-
fied subformulae are ignored unless they are positive universal or negative
existential. Note that the running time is exponential in the number of oc-
currences of min, max, and - because they require case distinctions. Note

CHAPTER 2. HIGHER-ORDER LOGIC 30

also that arith_tac is not complete: if divisibility plays a role, it may fail
to prove a valid formula, for example m + m 6= n + n + 1. Fortunately such
examples are rare in practice.

If arith_tac fails you, try to find relevant arithmetic results in the li-
brary. The theory NatDef contains theorems about < and <=, the theory
Arith contains theorems about +, - and *, and theory Divides contains
theorems about div and mod. Use thms_containing or the find-functions
to locate them (see the Reference Manual).

2.6.4 The type constructor for lists, list

Figure 2.19 presents the theory List: the basic list operations with their
types and syntax. Type α list is defined as a datatype with the constructors
[] and #. As a result the generic structural induction and case analysis
tactics induct tac and cases tac also become available for lists. A case

construct of the form

case e of [] => a | x#xs => b

is defined by translation. For details see §2.8. There is also a case splitting
rule split_list_case

P(case e of [] => a | x#xs => f x xs) =
((e = []→ P(a)) ∧ (∀x xs . e = x#xs → P(f x xs)))

which can be fed to addsplits just like split_if (see §2.4.1).
List provides a basic library of list processing functions defined by prim-

itive recursion (see §2.9.1). The recursion equations are shown in Figs. 2.20
and 2.21.

2.6.5 Introducing new types

The HOL-methodology dictates that all extensions to a theory should be
definitional. The type definition mechanism that meets this criterion is
typedef. Note that type synonyms, which are inherited from Pure and de-
scribed elsewhere, are just syntactic abbreviations that have no logical mean-
ing.

! Types in HOL must be non-empty; otherwise the quantifier rules would be
unsound, because ∃x . x = x is a theorem [18, §7].

CHAPTER 2. HIGHER-ORDER LOGIC 31

symbol meta-type priority description
[] α list empty list
[α, α list]⇒ α list Right 65 list constructor

null α list ⇒ bool emptiness test
hd α list ⇒ α head
tl α list ⇒ α list tail

last α list ⇒ α last element
butlast α list ⇒ α list drop last element

@ [α list , α list]⇒ α list Left 65 append
map (α⇒ β)⇒ (α list ⇒ β list) apply to all

filter (α⇒ bool)⇒ (α list ⇒ α list) filter functional
set α list ⇒ α set elements
mem α⇒ α list ⇒ bool Left 55 membership

foldl (β ⇒ α⇒ β)⇒ β ⇒ α list ⇒ β iteration
concat (α list)list ⇒ α list concatenation

rev α list ⇒ α list reverse
length α list ⇒ nat length

! α list ⇒ nat ⇒ α Left 100 indexing
take, drop nat ⇒ α list ⇒ α list take/drop a prefix
takeWhile,
dropWhile (α⇒ bool)⇒ α list ⇒ α list take/drop a prefix

Constants and infixes

external internal description
[x1, . . ., xn] x1 # · · · # xn # [] finite list

[x:l. P] filter (λx .P) l list comprehension

Translations

Figure 2.19: The theory List

CHAPTER 2. HIGHER-ORDER LOGIC 32

null [] = True
null (x#xs) = False

hd (x#xs) = x

tl (x#xs) = xs
tl [] = []

[] @ ys = ys
(x#xs) @ ys = x # xs @ ys

set [] = {}
set (x#xs) = insert x (set xs)

x mem [] = False
x mem (y#ys) = (if y=x then True else x mem ys)

concat([]) = []
concat(x#xs) = x @ concat(xs)

rev([]) = []
rev(x#xs) = rev(xs) @ [x]

length([]) = 0
length(x#xs) = Suc(length(xs))

xs!0 = hd xs
xs!(Suc n) = (tl xs)!n

Figure 2.20: Simple list processing functions

CHAPTER 2. HIGHER-ORDER LOGIC 33

map f [] = []
map f (x#xs) = f x # map f xs

filter P [] = []
filter P (x#xs) = (if P x then x#filter P xs else filter P xs)

foldl f a [] = a
foldl f a (x#xs) = foldl f (f a x) xs

take n [] = []
take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)

drop n [] = []
drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)

takeWhile P [] = []
takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])

dropWhile P [] = []
dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)

Figure 2.21: Further list processing functions

A type definition identifies the new type with a subset of an existing
type. More precisely, the new type is defined by exhibiting an existing type τ ,
a set A :: τ set , and a theorem of the form x : A. Thus A is a non-empty
subset of τ , and the new type denotes this subset. New functions are defined
that establish an isomorphism between the new type and the subset. If type τ
involves type variables α1, . . . , αn , then the type definition creates a type
constructor (α1, . . . , αn)ty rather than a particular type.

The syntax for type definitions is shown in Fig. 2.22. For the definition
of ‘typevarlist’ and ‘infix’ see the appendix of the Reference Manual . The
remaining nonterminals have the following meaning:

type: the new type constructor (α1, . . . , αn)ty with optional infix annotation.

name: an alphanumeric name T for the type constructor ty , in case ty is a
symbolic name. Defaults to ty .

set: the representing subset A.

witness: name of a theorem of the form a : A proving non-emptiness. It can
be omitted in case Isabelle manages to prove non-emptiness automati-
cally.

CHAPTER 2. HIGHER-ORDER LOGIC 34

typedef

typedef
�� ���� (

����name)
����
�
�

type =
����set witness

type

typevarlist name �
� (
����infix)

����
�
�

set

string

witness

�
� (
����id)
����
�
�

Figure 2.22: Syntax of type definitions

CHAPTER 2. HIGHER-ORDER LOGIC 35

If all context conditions are met (no duplicate type variables in ‘typevarlist’,
no extra type variables in ‘set’, and no free term variables in ‘set’), the
following components are added to the theory:

• a type ty :: (term, . . . , term)term

• constants

T :: τ set

Rep T :: (α1, . . . , αn)ty ⇒ τ

Abs T :: τ ⇒ (α1, . . . , αn)ty

• a definition and three axioms

T def T ≡ A
Rep T Rep T x ∈ T
Rep T inverse Abs T (Rep T x) = x
Abs T inverse y ∈ T =⇒ Rep T (Abs T y) = y

stating that (α1, . . . , αn)ty is isomorphic to A by Rep T and its inverse
Abs T .

Below are two simple examples of HOL type definitions. Non-emptiness is
proved automatically here.

typedef unit = "{True}"

typedef (prod)
(’a, ’b) "*" (infixr 20)

= "{f . EX (a::’a) (b::’b). f = (%x y. x = a & y = b)}"

Type definitions permit the introduction of abstract data types in a safe
way, namely by providing models based on already existing types. Given
some abstract axiomatic description P of a type, this involves two steps:

1. Find an appropriate type τ and subset A which has the desired prop-
erties P , and make a type definition based on this representation.

2. Prove that P holds for ty by lifting P from the representation.

You can now forget about the representation and work solely in terms of the
abstract properties P .

! If you introduce a new type (constructor) ty axiomatically, i.e. by declaring the
type and its operations and by stating the desired axioms, you should make

sure the type has a non-empty model. You must also have a clause

arities ty :: (term, . . ., term) term

in your theory file to tell Isabelle that ty is in class term, the class of all HOL
types.

CHAPTER 2. HIGHER-ORDER LOGIC 36

2.7 Records

At a first approximation, records are just a minor generalisation of tuples,
where components may be addressed by labels instead of just position (think
of ml, for example). The version of records offered by Isabelle/HOL is slightly
more advanced, though, supporting extensible record schemes. This admits
operations that are polymorphic with respect to record extension, yielding
“object-oriented” effects like (single) inheritance. See also [10] for more de-
tails on object-oriented verification and record subtyping in HOL.

2.7.1 Basics

Isabelle/HOL supports fixed and schematic records both at the level of terms
and types. The concrete syntax is as follows:

record terms record types
fixed (|x = a, y = b|) (|x :: A, y :: B |)
schematic (|x = a, y = b, . . . = m|) (|x :: A, y :: B , . . . :: M |)

The ascii representation of (|x = a|) is (| x = a |).
A fixed record (|x = a, y = b|) has field x of value a and field y of value b.

The corresponding type is (|x :: A, y :: B |), assuming that a :: A and b :: B .
A record scheme like (|x = a, y = b, . . . = m|) contains fields x and y

as before, but also possibly further fields as indicated by the “. . .” notation
(which is actually part of the syntax). The improper field “. . .” of a record
scheme is called the more part. Logically it is just a free variable, which is
occasionally referred to as row variable in the literature. The more part of
a record scheme may be instantiated by zero or more further components.
For example, above scheme might get instantiated to (|x = a, y = b, z =
c, . . . = m ′|), where m ′ refers to a different more part. Fixed records are
special instances of record schemes, where “. . .” is properly terminated by
the () :: unit element. Actually, (|x = a, y = b|) is just an abbreviation for
(|x = a, y = b, . . . = ()|).

There are two key features that make extensible records in a simply typed
language like HOL feasible:

1. the more part is internalised, as a free term or type variable,

2. field names are externalised, they cannot be accessed within the logic
as first-class values.

CHAPTER 2. HIGHER-ORDER LOGIC 37

In Isabelle/HOL record types have to be defined explicitly, fixing their
field names and types, and their (optional) parent record (see §2.7.2). After-
wards, records may be formed using above syntax, while obeying the canon-
ical order of fields as given by their declaration. The record package also
provides several operations like selectors and updates (see §2.7.3), together
with characteristic properties (see §2.7.4).

There is an example theory demonstrating most basic aspects of extensi-
ble records (see theory HOL/ex/Records in the Isabelle sources).

2.7.2 Defining records

The theory syntax for record type definitions is shown in Fig. 2.23. For
the definition of ‘typevarlist’ and ‘type’ see the appendix of the Reference
Manual .

record

record
�� ��typevarlist name =

����parent field�
�
�
�

parent

�
�type +
����
�
�

field

name ::
����type

Figure 2.23: Syntax of record type definitions

A general record specification is of the following form:

record (α1, . . . , αn) t = (τ1, . . . , τm) s + c1 :: σ1 . . . cl :: σl

where ~αn are distinct type variables, and ~τm , ~σl are types containing at most
variables from ~αn . Type constructor t has to be new, while s has to specify
an existing record type. Furthermore, the ~cl have to be distinct field names.
There has to be at least one field.

CHAPTER 2. HIGHER-ORDER LOGIC 38

In principle, field names may never be shared with other records. This
is no actual restriction in practice, since ~cl are internally declared within a
separate name space qualified by the name t of the record.

Above definition introduces a new record type (~αn) t by extending an
existing one (~τm) s by new fields ~cl :: ~σl . The parent record specification is
optional, by omitting it t becomes a root record. The hierarchy of all records
declared within a theory forms a forest structure, i.e. a set of trees, where
any of these is rooted by some root record.

For convenience, (~αn) t is made a type abbreviation for the fixed record
type (|~cl :: ~σl |), and (~αn , ζ) t scheme is made an abbreviation for (|~cl ::
~σl , . . . :: ζ|).

The following simple example defines a root record type point with fields
x :: nat and y :: nat , and record type cpoint by extending point with an
additional colour component.

record point =
x :: nat
y :: nat

record cpoint = point +
colour :: string

2.7.3 Record operations

Any record definition of the form presented above produces certain standard
operations. Selectors and updates are provided for any field, including the
improper one “more”. There are also cumulative record constructor func-
tions.

To simplify the presentation below, we first assume that (~αn) t is a root
record with fields ~cl :: ~σl .

Selectors and updates are available for any field (including “more”) as
follows:

ci :: (|~cl :: ~σl , . . . :: ζ|)⇒ σi

ci update :: σi ⇒ (|~cl :: ~σl , . . . :: ζ|)⇒ (|~cl :: ~σl , . . . :: ζ|)

There is some special syntax for updates: r (|x := a|) abbreviates term
x update a r . Repeated updates are supported as well: r (|x := a|) (|y :=
b|) (|z := c|) may be written as r (|x := a, y := b, z := c|). Note that because
of postfix notation the order of fields shown here is reverse than in the actual

CHAPTER 2. HIGHER-ORDER LOGIC 39

term. This might lead to confusion in conjunction with special proof tools
such as ordered rewriting.

Since repeated updates are just function applications, fields may be freely
permuted in (|x := a, y := b, z := c|), as far as the logic is concerned. Thus
commutativity of updates can be proven within the logic for any two fields,
but not as a general theorem: fields are not first-class values.

Make operations provide cumulative record constructor functions:

make :: ~σl ⇒ (|~cl :: ~σl |)
make scheme :: ~σl ⇒ ζ ⇒ (|~cl :: ~σl , . . . :: ζ|)

These functions are curried. The corresponding definitions in terms of actual
record terms are part of the standard simpset. Thus point .make a b rewrites
to (|x = a, y = b|).

Any of above selector, update and make operations are declared within a
local name space prefixed by the name t of the record. In case that different
records share base names of fields, one has to qualify names explicitly (e.g.
t .ci update). This is recommended especially for operations like make or
update more that always have the same base name. Just use t .make etc. to
avoid confusion.

We reconsider the case of non-root records, which are derived of some
parent record. In general, the latter may depend on another parent as well,
resulting in a list of ancestor records. Appending the lists of fields of all
ancestors results in a certain field prefix. The record package automatically
takes care of this by lifting operations over this context of ancestor fields. As-
suming that (~αn) t has ancestor fields ~dk :: ~ρk , selectors will get the following
types:

ci :: (|~dk :: ~ρk ,~cl :: ~σl , . . . :: ζ|)⇒ σi

Update and make operations are analogous.

2.7.4 Record proof tools

The record package declares the following proof rules for any record type t .

1. Standard conversions (selectors or updates applied to record construc-
tor terms, make function definitions) are part of the standard simpset
(via addsimps).

2. Selectors applied to updated records are automatically reduced by sim-
plification procedure record_simproc, which is part of the default
simpset.

CHAPTER 2. HIGHER-ORDER LOGIC 40

3. Inject equations of a form analogous to ((x , y) = (x ′, y ′)) ≡ x = x ′∧y =
y ′ are made part of the standard simpset and claset (via addIffs).

4. The introduction rule for record equality analogous to x r = x r ′ =⇒
y r = y r ′ =⇒ . . . =⇒ r = r ′ is added to the simpset and to the claset
(as an “extra introduction”).

5. A tactic for record field splitting (record_split_tac) may be made
part of the claset (via addSWrapper). This tactic is based on rules
analogous to (

∧
x .PROP P x) ≡ (

∧
a b .PROP P(a, b)) for any field.

The first two kinds of rules are stored within the theory as t .simps and
t .iffs , respectively; record equality introduction is available as t .equality . In
some situations it might be appropriate to expand the definitions of updates:
t .update defs . Note that these names are not bound at the ml level.

Most of the time, plain Simplification should be sufficient to solve
goals involving records. Combinations of the Simplifier and Classical Rea-
soner (Auto_tac or Force_tac) are very useful, too. The example theory
HOL/ex/Records demonstrates typical proofs concerning records.

2.8 Datatype definitions

Inductive datatypes, similar to those of ml, frequently appear in applica-
tions of Isabelle/HOL. In principle, such types could be defined by hand via
typedef (see §2.6.5), but this would be far too tedious. The datatype defi-
nition package of Isabelle/HOL (cf. [2]) automates such chores. It generates
an appropriate typedef based on a least fixed-point construction, and proves
freeness theorems and induction rules, as well as theorems for recursion and
case combinators. The user just has to give a simple specification of new
inductive types using a notation similar to ml or Haskell.

The current datatype package can handle both mutual and indirect re-
cursion. It also offers to represent existing types as datatypes giving the
advantage of a more uniform view on standard theories.

2.8.1 Basics

A general datatype definition is of the following form:

datatype (~α)t1 = C 1
1 τ 1

1,1 . . . τ 1
1,m1

1
| . . . | C 1

k1
τ 1

k1,1
. . . τ 1

k1,m1
k1

...
and (~α)tn = C n

1 τn
1,1 . . . τn

1,mn
1
| . . . | C n

kn
τn

kn ,1 . . . τn
kn ,mn

kn

CHAPTER 2. HIGHER-ORDER LOGIC 41

where ~α = (α1, . . . , αh) is a list of type variables, C j
i are distinct constructor

names and τ j
i ,i ′ are admissible types containing at most the type variables

α1, . . . , αh . A type τ occurring in a datatype definition is admissible if and
only if

• τ is non-recursive, i.e. τ does not contain any of the newly defined type
constructors t1, . . . , tn , or

• τ = (~α)tj ′ where 1 ≤ j ′ ≤ n, or

• τ = (τ ′1, . . . , τ
′
h′)t ′, where t ′ is the type constructor of an already existing

datatype and τ ′1, . . . , τ
′
h′ are admissible types.

• τ = σ → τ ′, where τ ′ is an admissible type and σ is non-recursive (i.e.
the occurrences of the newly defined types are strictly positive)

If some (~α)tj ′ occurs in a type τ j
i ,i ′ of the form

(. . . , . . . (~α)tj ′ . . . , . . .)t ′

this is called a nested (or indirect) occurrence. A very simple example of a
datatype is the type list, which can be defined by

datatype ’a list = Nil
| Cons ’a (’a list)

Arithmetic expressions aexp and boolean expressions bexp can be modelled
by the mutually recursive datatype definition

datatype ’a aexp = If_then_else (’a bexp) (’a aexp) (’a aexp)
| Sum (’a aexp) (’a aexp)
| Diff (’a aexp) (’a aexp)
| Var ’a
| Num nat

and ’a bexp = Less (’a aexp) (’a aexp)
| And (’a bexp) (’a bexp)
| Or (’a bexp) (’a bexp)

The datatype term, which is defined by

datatype (’a, ’b) term = Var ’a
| App ’b (((’a, ’b) term) list)

is an example for a datatype with nested recursion. Using nested recursion
involving function spaces, we may also define infinitely branching datatypes,
e.g.

CHAPTER 2. HIGHER-ORDER LOGIC 42

datatype ’a tree = Atom ’a | Branch "nat => ’a tree"

Types in HOL must be non-empty. Each of the new datatypes (~α)tj

with 1 ≤ j ≤ n is non-empty if and only if it has a constructor C j
i with the

following property: for all argument types τ j
i ,i ′ of the form (~α)tj ′ the datatype

(~α)tj ′ is non-empty.
If there are no nested occurrences of the newly defined datatypes, ob-

viously at least one of the newly defined datatypes (~α)tj must have a con-
structor C j

i without recursive arguments, a base case, to ensure that the new
types are non-empty. If there are nested occurrences, a datatype can even
be non-empty without having a base case itself. Since list is a non-empty
datatype, datatype t = C (t list) is non-empty as well.

Freeness of the constructors

The datatype constructors are automatically defined as functions of their
respective type:

C j
i :: [τ j

i ,1, . . . , τ
j

i ,mj
i

]⇒ (α1, . . . , αh)tj

These functions have certain freeness properties. They construct distinct
values:

C j
i x1 . . . xmj

i
6= C j

i ′ y1 . . . ymj

i′
for all i 6= i ′.

The constructor functions are injective:

(C j
i x1 . . . xmj

i
= C j

i y1 . . . ymj
i
) = (x1 = y1 ∧ . . . ∧ xmj

i
= ymj

i
)

Since the number of distinctness inequalities is quadratic in the number of
constructors, the datatype package avoids proving them separately if there
are too many constructors. Instead, specific inequalities are proved by a
suitable simplification procedure on demand.4

4This procedure, which is already part of the default simpset, may be referred to by
the ML identifier DatatypePackage.distinct_simproc.

CHAPTER 2. HIGHER-ORDER LOGIC 43

Structural induction

The datatype package also provides structural induction rules. For datatypes
without nested recursion, this is of the following form:∧

x1 . . . xm1
1
. [[Ps1

1,1
xr1

1,1
; . . . ; Ps1

1,l1
1

xr1

1,l1
1

]] =⇒ P1

(
C 1

1 x1 . . . xm1
1

)
...∧

x1 . . . xm1
k1
. [[Ps1

k1,1
xr1

k1,1
; . . . ; Ps1

k1,l
1
k1

xr1

k1,l
1
k1

]] =⇒ P1

(
C 1

k1
x1 . . . xm1

k1

)
...∧

x1 . . . xmn
1
. [[Psn

1,1
xrn

1,1
; . . . ; Psn

1,ln
1

xrn
1,ln

1

]] =⇒ Pn

(
C n

1 x1 . . . xmn
1

)
...∧

x1 . . . xmn
kn
. [[Psn

kn ,1
xrn

kn ,1
; . . .Psn

kn ,l
n
kn

xrn
kn ,l

n
kn

]] =⇒ Pn

(
C n

kn
x1 . . . xmn

kn

)
P1 x1 ∧ . . . ∧ Pn xn

where

Recj
i :=

{(
r j

i ,1, s
j
i ,1

)
, . . . ,

(
r j

i ,l j
i

, s j

i ,l j
i

)}
={

(i ′, i ′′)
∣∣∣ 1 ≤ i ′ ≤ m j

i ∧ 1 ≤ i ′′ ≤ n ∧ τ j
i ,i ′ = (α1, . . . , αh)ti ′′

}
i.e. the properties Pj can be assumed for all recursive arguments.

For datatypes with nested recursion, such as the term example from
above, things are a bit more complicated. Conceptually, Isabelle/HOL un-
folds a definition like

datatype (’a,’b) term = Var ’a
| App ’b (((’a, ’b) term) list)

to an equivalent definition without nesting:

datatype (’a,’b) term = Var
| App ’b ((’a, ’b) term_list)

and (’a,’b) term_list = Nil’
| Cons’ ((’a,’b) term) ((’a,’b) term_list)

Note however, that the type (’a,’b) term_list and the constructors Nil’
and Cons’ are not really introduced. One can directly work with the original
(isomorphic) type ((’a, ’b) term) list and its existing constructors Nil
and Cons. Thus, the structural induction rule for term gets the form∧

x . P1 (Var x)∧
x1 x2 . P2 x2 =⇒ P1 (App x1 x2)

P2 Nil∧
x1 x2 . [[P1 x1; P2 x2]] =⇒ P2 (Cons x1 x2)

P1 x1 ∧ P2 x2

CHAPTER 2. HIGHER-ORDER LOGIC 44

Note that there are two predicates P1 and P2, one for the type (’a,’b) term

and one for the type ((’a, ’b) term) list.
For a datatype with function types such as ’a tree, the induction rule

is of the form∧
a . P (Atom a)

∧
ts . (∀x . P (ts x)) =⇒ P (Branch ts)

P t

In principle, inductive types are already fully determined by freeness and
structural induction. For convenience in applications, the following derived
constructions are automatically provided for any datatype.

The case construct

The type comes with an ml-like case-construct:

case e of C j
1 x1,1 . . . x1,mj

1
⇒ e1

...

| C j
kj

xkj ,1 . . . xkj ,m
j
kj

⇒ ekj

where the xi ,j are either identifiers or nested tuple patterns as in §2.6.1.

! All constructors must be present, their order is fixed, and nested patterns are
not supported (with the exception of tuples). Violating this restriction results

in strange error messages.

To perform case distinction on a goal containing a case-construct, the
theorem tj .split is provided:

P(tj case f1 . . . fkj e) = ((∀x1 . . . xmj
1
. e = C j

1 x1 . . . xmj
1
→ P(f1 x1 . . . xmj

1
))

∧ . . . ∧
(∀x1 . . . xmj

kj

. e = C j
kj

x1 . . . xmj
kj

→ P(fkj x1 . . . xmj
kj

)))

where tj_case is the internal name of the case-construct. This theorem can
be added to a simpset via addsplits (see §2.4.1).

Case splitting on assumption works as well, by using the rule tj .split_asm
in the same manner. Both rules are available under tj .splits (this name is
not bound in ML, though).

! By default only the selector expression (e above) in a case-construct is simpli-
fied, in analogy with if (see page 21). Only if that reduces to a constructor is

one of the arms of the case-construct exposed and simplified. To ensure full simpli-
fication of all parts of a case-construct for datatype t , remove t.case_weak_cong
from the simpset, for example by delcongs [thm "t.weak_case_cong"].

CHAPTER 2. HIGHER-ORDER LOGIC 45

The function size

Theory Arith declares a generic function size of type α ⇒ nat . Each
datatype defines a particular instance of size by overloading according to
the following scheme:

size(C j
i x1 . . . xmj

i
) =


0 if Recj

i = ∅

1 +
l j
i∑

h=1
size xr j

i,h
if Recj

i =
{(

r j
i ,1, s

j
i ,1

)
, . . . ,

(
r j

i ,l j
i

, s j

i ,l j
i

)}

where Recj
i is defined above. Viewing datatypes as generalised trees, the size

of a leaf is 0 and the size of a node is the sum of the sizes of its subtrees + 1.

2.8.2 Defining datatypes

The theory syntax for datatype definitions is shown in Fig. 2.24. In order
to be well-formed, a datatype definition has to obey the rules stated in the
previous section. As a result the theory is extended with the new types, the
constructors, and the theorems listed in the previous section.

Most of the theorems about datatypes become part of the default simpset
and you never need to see them again because the simplifier applies them
automatically. Only induction or case distinction are usually invoked by
hand.

induct_tac "x" i applies structural induction on variable x to subgoal i ,
provided the type of x is a datatype.

induct_tac "x1 . . . xn" i applies simultaneous structural induction on the
variables x1, . . . , xn to subgoal i . This is the canonical way to prove
properties of mutually recursive datatypes such as aexp and bexp, or
datatypes with nested recursion such as term.

In some cases, induction is overkill and a case distinction over all constructors
of the datatype suffices.

case_tac "u" i performs a case analysis for the term u whose type must be
a datatype. If the datatype has kj constructors C j

1 , . . . C j
kj

, subgoal i is
replaced by kj new subgoals which contain the additional assumption
u = C j

i ′ x1 . . . xmj

i′
for i ′ = 1, . . ., kj .

Note that induction is only allowed on free variables that should not occur
among the premises of the subgoal. Case distinction applies to arbitrary
terms.

CHAPTER 2. HIGHER-ORDER LOGIC 46

datatype

datatype
�� ��typedecls

typedecls

newtype =
���� cons�
� |
����
�
�

�

� and
�� ��

�

�
newtype

typevarlist id �
� (
����infix)

����
�
�

cons

name �
�argtype

�
�
�
� (
����mixfix)

����
�
�

argtype

id�
�tid

� (
����typevarlist id)

����

�
�
�

Figure 2.24: Syntax of datatype declarations

CHAPTER 2. HIGHER-ORDER LOGIC 47

For the technically minded, we exhibit some more details. Processing
the theory file produces an ml structure which, in addition to the usual
components, contains a structure named t for each datatype t defined in the
file. Each structure t contains the following elements:

val distinct : thm list
val inject : thm list
val induct : thm
val exhaust : thm
val cases : thm list
val split : thm
val split_asm : thm
val recs : thm list
val size : thm list
val simps : thm list

distinct, inject, induct, size and split contain the theorems described
above. For user convenience, distinct contains inequalities in both direc-
tions. The reduction rules of the case-construct are in cases. All theorems
from distinct, inject and cases are combined in simps. In case of mut-
ually recursive datatypes, recs, size, induct and simps are contained in a
separate structure named t1 . . . tn .

2.8.3 Representing existing types as datatypes

For foundational reasons, some basic types such as nat, *, +, bool and unit

are not defined in a datatype section, but by more primitive means using
typedef. To be able to use the tactics induct_tac and case_tac and to
define functions by primitive recursion on these types, such types may be
represented as actual datatypes. This is done by specifying an induction rule,
as well as theorems stating the distinctness and injectivity of constructors in
a rep_datatype section. For type nat this works as follows:

rep_datatype nat
distinct Suc_not_Zero, Zero_not_Suc
inject Suc_Suc_eq
induct nat_induct

The datatype package automatically derives additional theorems for recur-
sion and case combinators from these rules. Any of the basic HOL types
mentioned above are represented as datatypes. Try an induction on bool

today.

CHAPTER 2. HIGHER-ORDER LOGIC 48

2.8.4 Examples

The datatype α mylist

We want to define a type α mylist . To do this we have to build a new theory
that contains the type definition. We start from the theory Datatype instead
of Main in order to avoid clashes with the List theory of Isabelle/HOL.

MyList = Datatype +
datatype ’a mylist = Nil | Cons ’a (’a mylist)

end

After loading the theory, we can prove Cons x xs 6= xs , for example. To
ease the induction applied below, we state the goal with x quantified at the
object-level. This will be stripped later using qed_spec_mp.

Goal "!x. Cons x xs ~= xs";
Level 0

! x. Cons x xs ~= xs

1. ! x. Cons x xs ~= xs

This can be proved by the structural induction tactic:

by (induct_tac "xs" 1);
Level 1

! x. Cons x xs ~= xs

1. ! x. Cons x Nil ~= Nil

2. !!a mylist.

! x. Cons x mylist ~= mylist ==>

! x. Cons x (Cons a mylist) ~= Cons a mylist

The first subgoal can be proved using the simplifier. Isabelle/HOL has al-
ready added the freeness properties of lists to the default simplification set.

by (Simp_tac 1);
Level 2

! x. Cons x xs ~= xs

1. !!a mylist.

! x. Cons x mylist ~= mylist ==>

! x. Cons x (Cons a mylist) ~= Cons a mylist

Similarly, we prove the remaining goal.

by (Asm_simp_tac 1);
Level 3

! x. Cons x xs ~= xs

No subgoals!

qed_spec_mp "not_Cons_self";
val not_Cons_self = "Cons x xs ~= xs" : thm

Because both subgoals could have been proved by Asm_simp_tac we could
have done that in one step:

by (ALLGOALS Asm_simp_tac);

CHAPTER 2. HIGHER-ORDER LOGIC 49

The datatype α mylist with mixfix syntax

In this example we define the type α mylist again but this time we want to
write [] for Nil and we want to use infix notation # for Cons. To do this we
simply add mixfix annotations after the constructor declarations as follows:

MyList = Datatype +
datatype ’a mylist =
Nil ("[]") |
Cons ’a (’a mylist) (infixr "#" 70)

end

Now the theorem in the previous example can be written x#xs ~= xs.

A datatype for weekdays

This example shows a datatype that consists of 7 constructors:

Days = Main +
datatype days = Mon | Tue | Wed | Thu | Fri | Sat | Sun

end

Because there are more than 6 constructors, inequality is expressed via a func-
tion days_ord. The theorem Mon ~= Tue is not directly contained among
the distinctness theorems, but the simplifier can prove it thanks to rewrite
rules inherited from theory Arith:

Goal "Mon ~= Tue";
by (Simp_tac 1);

You need not derive such inequalities explicitly: the simplifier will dispose of
them automatically.

2.9 Recursive function definitions

Isabelle/HOL provides two main mechanisms of defining recursive functions.

1. Primitive recursion is available only for datatypes, and it is some-
what restrictive. Recursive calls are only allowed on the argument’s
immediate constituents. On the other hand, it is the form of recursion
most often wanted, and it is easy to use.

2. Well-founded recursion requires that you supply a well-founded re-
lation that governs the recursion. Recursive calls are only allowed if
they make the argument decrease under the relation. Complicated re-
cursion forms, such as nested recursion, can be dealt with. Termination

CHAPTER 2. HIGHER-ORDER LOGIC 50

can even be proved at a later time, though having unsolved termination
conditions around can make work difficult.5

Following good HOL tradition, these declarations do not assert arbitrary
axioms. Instead, they define the function using a recursion operator. Both
HOL and ZF derive the theory of well-founded recursion from first prin-
ciples [15]. Primitive recursion over some datatype relies on the recursion
operator provided by the datatype package. With either form of function
definition, Isabelle proves the desired recursion equations as theorems.

2.9.1 Primitive recursive functions

Datatypes come with a uniform way of defining functions, primitive re-
cursion. In principle, one could introduce primitive recursive functions by
asserting their reduction rules as new axioms, but this is not recommended:

Append = Main +

consts app :: [’a list, ’a list] => ’a list

rules

app_Nil "app [] ys = ys"

app_Cons "app (x#xs) ys = x#app xs ys"

end

Asserting axioms brings the danger of accidentally asserting nonsense, as in
app [] ys = us.

The primrec declaration is a safe means of defining primitive recursive
functions on datatypes:

Append = Main +
consts app :: [’a list, ’a list] => ’a list
primrec

"app [] ys = ys"
"app (x#xs) ys = x#app xs ys"

end

Isabelle will now check that the two rules do indeed form a primitive recursive
definition. For example

primrec
"app [] ys = us"

is rejected with an error message “Extra variables on rhs”.

The general form of a primitive recursive definition is

5This facility is based on Konrad Slind’s TFL package [21]. Thanks are due to Konrad
for implementing TFL and assisting with its installation.

CHAPTER 2. HIGHER-ORDER LOGIC 51

primrec
reduction rules

where reduction rules specify one or more equations of the form

f x1 . . . xm (C y1 . . . yk) z1 . . . zn = r

such that C is a constructor of the datatype, r contains only the free variables
on the left-hand side, and all recursive calls in r are of the form f . . . yi . . .
for some i . There must be at most one reduction rule for each constructor.
The order is immaterial. For missing constructors, the function is defined to
return a default value.

If you would like to refer to some rule by name, then you must prefix the
rule with an identifier. These identifiers, like those in the rules section of a
theory, will be visible at the ml level.

The primitive recursive function can have infix or mixfix syntax:

consts "@" :: [’a list, ’a list] => ’a list (infixr 60)
primrec

"[] @ ys = ys"
"(x#xs) @ ys = x#(xs @ ys)"

The reduction rules become part of the default simpset, which leads to
short proof scripts:

Goal "(xs @ ys) @ zs = xs @ (ys @ zs)";
by (induct tac "xs" 1);
by (ALLGOALS Asm simp tac);

Example: Evaluation of expressions

Using mutual primitive recursion, we can define evaluation functions evala

and eval_bexp for the datatypes of arithmetic and boolean expressions men-
tioned in §2.8.1:

CHAPTER 2. HIGHER-ORDER LOGIC 52

consts
evala :: "[’a => nat, ’a aexp] => nat"
evalb :: "[’a => nat, ’a bexp] => bool"

primrec
"evala env (If_then_else b a1 a2) =

(if evalb env b then evala env a1 else evala env a2)"
"evala env (Sum a1 a2) = evala env a1 + evala env a2"
"evala env (Diff a1 a2) = evala env a1 - evala env a2"
"evala env (Var v) = env v"
"evala env (Num n) = n"

"evalb env (Less a1 a2) = (evala env a1 < evala env a2)"
"evalb env (And b1 b2) = (evalb env b1 & evalb env b2)"
"evalb env (Or b1 b2) = (evalb env b1 & evalb env b2)"

Since the value of an expression depends on the value of its variables, the
functions evala and evalb take an additional parameter, an environment of
type ’a => nat, which maps variables to their values.

Similarly, we may define substitution functions substa and substb for
expressions: The mapping f of type ’a => ’a aexp given as a parameter is
lifted canonically on the types ’a aexp and ’a bexp:

consts
substa :: "[’a => ’b aexp, ’a aexp] => ’b aexp"
substb :: "[’a => ’b aexp, ’a bexp] => ’b bexp"

primrec
"substa f (If_then_else b a1 a2) =

If_then_else (substb f b) (substa f a1) (substa f a2)"
"substa f (Sum a1 a2) = Sum (substa f a1) (substa f a2)"
"substa f (Diff a1 a2) = Diff (substa f a1) (substa f a2)"
"substa f (Var v) = f v"
"substa f (Num n) = Num n"

"substb f (Less a1 a2) = Less (substa f a1) (substa f a2)"
"substb f (And b1 b2) = And (substb f b1) (substb f b2)"
"substb f (Or b1 b2) = Or (substb f b1) (substb f b2)"

In textbooks about semantics one often finds substitution theorems, which
express the relationship between substitution and evaluation. For ’a aexp

and ’a bexp, we can prove such a theorem by mutual induction, followed by
simplification:

CHAPTER 2. HIGHER-ORDER LOGIC 53

Goal
"evala env (substa (Var(v := a’)) a) =

evala (env(v := evala env a’)) a &
evalb env (substb (Var(v := a’)) b) =
evalb (env(v := evala env a’)) b";

by (induct_tac "a b" 1);
by (ALLGOALS Asm_full_simp_tac);

Example: A substitution function for terms

Functions on datatypes with nested recursion, such as the type term men-
tioned in §2.8.1, are also defined by mutual primitive recursion. A substitu-
tion function subst_term on type term, similar to the functions substa and
substb described above, can be defined as follows:

consts
subst_term :: "[’a => (’a,’b) term, (’a,’b) term] => (’a,’b) term"
subst_term_list ::
"[’a => (’a,’b) term, (’a,’b) term list] => (’a,’b) term list"

primrec
"subst_term f (Var a) = f a"
"subst_term f (App b ts) = App b (subst_term_list f ts)"

"subst_term_list f [] = []"
"subst_term_list f (t # ts) =

subst_term f t # subst_term_list f ts"

The recursion scheme follows the structure of the unfolded definition of type
term shown in §2.8.1. To prove properties of this substitution function,
mutual induction is needed:

Goal
"(subst_term ((subst_term f1) o f2) t) =

(subst_term f1 (subst_term f2 t)) &
(subst_term_list ((subst_term f1) o f2) ts) =
(subst_term_list f1 (subst_term_list f2 ts))";

by (induct_tac "t ts" 1);
by (ALLGOALS Asm_full_simp_tac);

Example: A map function for infinitely branching trees

Defining functions on infinitely branching datatypes by primitive recursion
is just as easy. For example, we can define a function map_tree on ’a tree

as follows:

CHAPTER 2. HIGHER-ORDER LOGIC 54

consts
map_tree :: "(’a => ’b) => ’a tree => ’b tree"

primrec
"map_tree f (Atom a) = Atom (f a)"
"map_tree f (Branch ts) = Branch (%x. map_tree f (ts x))"

Note that all occurrences of functions such as ts in the primrec clauses must
be applied to an argument. In particular, map_tree f o ts is not allowed.

2.9.2 General recursive functions

Using recdef, you can declare functions involving nested recursion and
pattern-matching. Recursion need not involve datatypes and there are few
syntactic restrictions. Termination is proved by showing that each recursive
call makes the argument smaller in a suitable sense, which you specify by
supplying a well-founded relation.

Here is a simple example, the Fibonacci function. The first line declares
fib to be a constant. The well-founded relation is simply < (on the natural
numbers). Pattern-matching is used here: 1 is a macro for Suc 0.

consts fib :: "nat => nat"
recdef fib "less_than"

"fib 0 = 0"
"fib 1 = 1"
"fib (Suc(Suc x)) = (fib x + fib (Suc x))"

With recdef, function definitions may be incomplete, and patterns may
overlap, as in functional programming. The recdef package disambiguates
overlapping patterns by taking the order of rules into account. For missing
patterns, the function is defined to return a default value.

The well-founded relation defines a notion of “smaller” for the function’s
argument type. The relation ≺ is well-founded provided it admits no in-
finitely decreasing chains

· · · ≺ xn ≺ · · · ≺ x1.

If the function’s argument has type τ , then ≺ has to be a relation over τ : it
must have type (τ × τ)set .

Proving well-foundedness can be tricky, so Isabelle/HOL provides a col-
lection of operators for building well-founded relations. The package recog-
nises these operators and automatically proves that the constructed relation
is well-founded. Here are those operators, in order of importance:

CHAPTER 2. HIGHER-ORDER LOGIC 55

• less_than is “less than” on the natural numbers. (It has type (nat ×
nat)set , while < has type [nat , nat]⇒ bool .

• measure f , where f has type τ ⇒ nat , is the relation ≺ on type τ such
that x ≺ y if and only if f (x) < f (y). Typically, f takes the recursive
function’s arguments (as a tuple) and returns a result expressed in
terms of the function size. It is called a measure function. Recall
that size is overloaded and is defined on all datatypes (see §4).

• inv imageR f is a generalisation of measure. It specifies a relation
such that x ≺ y if and only if f (x) is less than f (y) according to R,
which must itself be a well-founded relation.

• R1**R2 is the lexicographic product of two relations. It is a relation
on pairs and satisfies (x1, x2) ≺ (y1, y2) if and only if x1 is less than y1

according to R1 or x1 = y1 and x2 is less than y2 according to R2.

• finite_psubset is the proper subset relation on finite sets.

We can use measure to declare Euclid’s algorithm for the greatest com-
mon divisor. The measure function, λ(m, n) . n, specifies that the recursion
terminates because argument n decreases.

recdef gcd "measure ((%(m,n). n) ::nat*nat=>nat)"
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

The general form of a well-founded recursive definition is

recdef function rel
congs congruence rules (optional)
simpset simplification set (optional)
reduction rules

where

• function is the name of the function, either as an id or a string.

• rel is a HOL expression for the well-founded termination relation.

• congruence rules are required only in highly exceptional circumstances.

• The simplification set is used to prove that the supplied relation is
well-founded. It is also used to prove the termination conditions:
assertions that arguments of recursive calls decrease under rel. By
default, simplification uses simpset(), which is sufficient to prove well-
foundedness for the built-in relations listed above.

CHAPTER 2. HIGHER-ORDER LOGIC 56

• reduction rules specify one or more recursion equations. Each left-hand
side must have the form f t , where f is the function and t is a tuple of
distinct variables. If more than one equation is present then f is defined
by pattern-matching on components of its argument whose type is a
datatype.

The ml identifier f .simps contains the reduction rules as a list of
theorems.

With the definition of gcd shown above, Isabelle/HOL is unable to prove
one termination condition. It remains as a precondition of the recursion
theorems:

gcd.simps;
["! m n. n ~= 0 --> m mod n < n

==> gcd (?m,?n) = (if ?n=0 then ?m else gcd (?n, ?m mod ?n))"]

: thm list

The theory HOL/ex/Primes illustrates how to prove termination conditions
afterwards. The function Tfl.tgoalw is like the standard function goalw,
which sets up a goal to prove, but its argument should be the identifier
f .simps and its effect is to set up a proof of the termination conditions:

Tfl.tgoalw thy [] gcd.simps;
Level 0

! m n. n ~= 0 --> m mod n < n

1. ! m n. n ~= 0 --> m mod n < n

This subgoal has a one-step proof using simp_tac. Once the theorem is
proved, it can be used to eliminate the termination conditions from elements
of gcd.simps. Theory HOL/Subst/Unify is a much more complicated exam-
ple of this process, where the termination conditions can only be proved by
complicated reasoning involving the recursive function itself.

Isabelle/HOL can prove the gcd function’s termination condition auto-
matically if supplied with the right simpset.

recdef gcd "measure ((%(m,n). n) ::nat*nat=>nat)"
simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]"
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

If all termination conditions were proved automatically, f .simps is added
to the simpset automatically, just as in primrec. The simplification rules
corresponding to clause i (where counting starts at 0) are called f .i and can
be accessed as thms "f .i", which returns a list of theorems. Thus you can,
for example, remove specific clauses from the simpset. Note that a single

CHAPTER 2. HIGHER-ORDER LOGIC 57

clause may give rise to a set of simplification rules in order to capture the
fact that if clauses overlap, their order disambiguates them.

A recdef definition also returns an induction rule specialised for the
recursive function. For the gcd function above, the induction rule is

gcd.induct;
"(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm

This rule should be used to reason inductively about the gcd function. It
usually makes the induction hypothesis available at all recursive calls, leading
to very direct proofs. If any termination conditions remain unproved, they
will become additional premises of this rule.

2.10 Inductive and coinductive definitions

An inductive definition specifies the least set R closed under given rules.
(Applying a rule to elements of R yields a result within R.) For example,
a structural operational semantics is an inductive definition of an evalua-
tion relation. Dually, a coinductive definition specifies the greatest set R
consistent with given rules. (Every element of R can be seen as arising by ap-
plying a rule to elements of R.) An important example is using bisimulation
relations to formalise equivalence of processes and infinite data structures.

A theory file may contain any number of inductive and coinductive defi-
nitions. They may be intermixed with other declarations; in particular, the
(co)inductive sets must be declared separately as constants, and may have
mixfix syntax or be subject to syntax translations.

Each (co)inductive definition adds definitions to the theory and also
proves some theorems. Each definition creates an ml structure, which is
a substructure of the main theory structure.

This package is related to the ZF one, described in a separate paper,6

which you should refer to in case of difficulties. The package is simpler than
ZF’s thanks to HOL’s extra-logical automatic type-checking. The types of
the (co)inductive sets determine the domain of the fixedpoint definition, and
the package does not have to use inference rules for type-checking.

2.10.1 The result structure

Many of the result structure’s components have been discussed in the paper;
others are self-explanatory.

6It appeared in CADE [14]; a longer version is distributed with Isabelle.

CHAPTER 2. HIGHER-ORDER LOGIC 58

sig
val defs : thm list
val mono : thm
val unfold : thm
val intrs : thm list
val elims : thm list
val elim : thm
val mk_cases : string -> thm
(Inductive definitions only)
val induct : thm
(coinductive definitions only)
val coinduct : thm
end

Figure 2.25: The ml result of a (co)inductive definition

defs is the list of definitions of the recursive sets.

mono is a monotonicity theorem for the fixedpoint operator.

unfold is a fixedpoint equation for the recursive set (the union of the recur-
sive sets, in the case of mutual recursion).

intrs is the list of introduction rules, now proved as theorems, for the re-
cursive sets. The rules are also available individually, using the names
given them in the theory file.

elims is the list of elimination rule. This is for compatibility with ML
scripts; within the theory the name is cases.

elim is the head of the list elims. This is for compatibility only.

mk_cases is a function to create simplified instances of elim using freeness
reasoning on underlying datatypes.

For an inductive definition, the result structure contains the rule induct.
For a coinductive definition, it contains the rule coinduct.

Figure 2.25 summarises the two result signatures, specifying the types of
all these components.

2.10.2 The syntax of a (co)inductive definition

An inductive definition has the form

CHAPTER 2. HIGHER-ORDER LOGIC 59

inductive inductive sets
intrs introduction rules
monos monotonicity theorems
con_defs constructor definitions

A coinductive definition is identical, except that it starts with the keyword
coinductive.

The monos and con_defs sections are optional. If present, each is speci-
fied by a list of identifiers.

• The inductive sets are specified by one or more strings.

• The introduction rules specify one or more introduction rules in the
form ident string, where the identifier gives the name of the rule in the
result structure.

• The monotonicity theorems are required for each operator applied to
a recursive set in the introduction rules. There must be a theorem of
the form A ⊆ B =⇒ M (A) ⊆ M (B), for each premise t ∈ M (Ri) in an
introduction rule!

• The constructor definitions contain definitions of constants appearing
in the introduction rules. In most cases it can be omitted.

2.10.3 *Monotonicity theorems

Each theory contains a default set of theorems that are used in monotonicity
proofs. New rules can be added to this set via the mono attribute. Theory
Inductive shows how this is done. In general, the following monotonicity
theorems may be added:

• Theorems of the form A ⊆ B =⇒ M (A) ⊆ M (B), for proving mono-
tonicity of inductive definitions whose introduction rules have premises
involving terms such as t ∈ M (Ri).

• Monotonicity theorems for logical operators, which are of the general
form [[· · · → · · · ; . . . ; · · · → · · ·]] =⇒ · · · → · · ·. For example, in the
case of the operator ∨, the corresponding theorem is

P1 → Q1 P2 → Q2

P1 ∨ P2 → Q1 ∨Q2

• De Morgan style equations for reasoning about the “polarity” of ex-
pressions, e.g.

(¬¬P) = P (¬(P ∧Q)) = (¬P ∨ ¬Q)

CHAPTER 2. HIGHER-ORDER LOGIC 60

• Equations for reducing complex operators to more primitive ones whose
monotonicity can easily be proved, e.g.

(P → Q) = (¬P ∨Q) Ball A P ≡ ∀x . x ∈ A→ P x

2.10.4 Example of an inductive definition

Two declarations, included in a theory file, define the finite powerset opera-
tor. First we declare the constant Fin. Then we declare it inductively, with
two introduction rules:

consts Fin :: ’a set => ’a set set
inductive "Fin A"
intrs
emptyI "{} : Fin A"
insertI "[| a: A; b: Fin A |] ==> insert a b : Fin A"

The resulting theory structure contains a substructure, called Fin. It con-
tains the Fin A introduction rules as the list Fin.intrs, and also individually
as Fin.emptyI and Fin.consI. The induction rule is Fin.induct.

For another example, here is a theory file defining the accessible part of
a relation. The paper [14] discusses a ZF version of this example in more
detail.

Acc = WF + Inductive +

consts acc :: "(’a * ’a)set => ’a set" (* accessible part *)

inductive "acc r"
intrs
accI "ALL y. (y, x) : r --> y : acc r ==> x : acc r"

end

The Isabelle distribution contains many other inductive definitions. Sim-
ple examples are collected on subdirectory HOL/Induct. The theory
HOL/Induct/LList contains coinductive definitions. Larger examples may
be found on other subdirectories of HOL, such as IMP, Lambda and Auth.

2.11 The examples directories

Directory HOL/Auth contains theories for proving the correctness of crypto-
graphic protocols [17]. The approach is based upon operational semantics
rather than the more usual belief logics. On the same directory are proofs

CHAPTER 2. HIGHER-ORDER LOGIC 61

for some standard examples, such as the Needham-Schroeder public-key au-
thentication protocol and the Otway-Rees protocol.

Directory HOL/IMP contains a formalization of various denotational, op-
erational and axiomatic semantics of a simple while-language, the neces-
sary equivalence proofs, soundness and completeness of the Hoare rules
with respect to the denotational semantics, and soundness and complete-
ness of a verification condition generator. Much of development is taken
from Winskel [22]. For details see [12].

Directory HOL/Hoare contains a user friendly surface syntax for Hoare
logic, including a tactic for generating verification-conditions.

Directory HOL/MiniML contains a formalization of the type system of the
core functional language Mini-ML and a correctness proof for its type infer-
ence algorithm W [7, 9].

Directory HOL/Lambda contains a formalization of untyped λ-calculus in
de Bruijn notation and Church-Rosser proofs for β and η reduction [11].

Directory HOL/Subst contains Martin Coen’s mechanization of a theory of
substitutions and unifiers. It is based on Paulson’s previous mechanisation in
LCF [13] of Manna and Waldinger’s theory [6]. It demonstrates a complicated
use of recdef, with nested recursion.

Directory HOL/Induct presents simple examples of (co)inductive defini-
tions and datatypes.

• Theory PropLog proves the soundness and completeness of classical
propositional logic, given a truth table semantics. The only connective
is→. A Hilbert-style axiom system is specified, and its set of theorems
defined inductively. A similar proof in ZF is described elsewhere [15].

• Theory Term defines the datatype term.

• Theory ABexp defines arithmetic and boolean expressions as mutually
recursive datatypes.

• The definition of lazy lists demonstrates methods for handling infinite
data structures and coinduction in higher-order logic [16].7 Theory
LList defines an operator for corecursion on lazy lists, which is used to
define a few simple functions such as map and append. A coinduction
principle is defined for proving equations on lazy lists.

• Theory LFilter defines the filter functional for lazy lists. This func-
tional is notoriously difficult to define because finding the next element

7To be precise, these lists are potentially infinite rather than lazy. Lazy implies a
particular operational semantics.

CHAPTER 2. HIGHER-ORDER LOGIC 62

meeting the predicate requires possibly unlimited search. It is not
computable, but can be expressed using a combination of induction
and corecursion.

• Theory Exp illustrates the use of iterated inductive definitions to ex-
press a programming language semantics that appears to require mu-
tual induction. Iterated induction allows greater modularity.

Directory HOL/ex contains other examples and experimental proofs in
HOL.

• Theory Recdef presents many examples of using recdef to define re-
cursive functions. Another example is Fib, which defines the Fibonacci
function.

• Theory Primes defines the Greatest Common Divisor of two natural
numbers and proves a key lemma of the Fundamental Theorem of Arith-
metic: if p is prime and p divides m×n then p divides m or p divides n.

• Theory Primrec develops some computation theory. It inductively de-
fines the set of primitive recursive functions and presents a proof that
Ackermann’s function is not primitive recursive.

• File cla.ML demonstrates the classical reasoner on over sixty predi-
cate calculus theorems, ranging from simple tautologies to moderately
difficult problems involving equality and quantifiers.

• File meson.ML contains an experimental implementation of the meson

proof procedure, inspired by Plaisted [20]. It is much more powerful
than Isabelle’s classical reasoner. But it is less useful in practice because
it works only for pure logic; it does not accept derived rules for the set
theory primitives, for example.

• File mesontest.ML contains test data for the meson proof procedure.
These are mostly taken from Pelletier [19].

• File set.ML proves Cantor’s Theorem, which is presented in §2.12 be-
low, and the Schröder-Bernstein Theorem.

• Theory MT contains Jacob Frost’s formalization [4] of Milner and Tofte’s
coinduction example [8]. This substantial proof concerns the soundness
of a type system for a simple functional language. The semantics of
recursion is given by a cyclic environment, which makes a coinductive
argument appropriate.

CHAPTER 2. HIGHER-ORDER LOGIC 63

2.12 Example: Cantor’s Theorem

Cantor’s Theorem states that every set has more subsets than it has elements.
It has become a favourite example in higher-order logic since it is so easily
expressed:

∀f :: α⇒ α⇒ bool . ∃S :: α⇒ bool . ∀x :: α . f x 6= S

Viewing types as sets, α ⇒ bool represents the powerset of α. This version
states that for every function from α to its powerset, some subset is outside
its range.

The Isabelle proof uses HOL’s set theory, with the type α set and the
operator range.

context Set.thy;

The set S is given as an unknown instead of a quantified variable so that we
may inspect the subset found by the proof.

Goal "?S ~: range (f :: ’a=>’a set)";
Level 0

?S ~: range f

1. ?S ~: range f

The first two steps are routine. The rule rangeE replaces ?S ∈ range f by
?S = f x for some x .

by (resolve_tac [notI] 1);
Level 1

?S ~: range f

1. ?S : range f ==> False

by (eresolve_tac [rangeE] 1);
Level 2

?S ~: range f

1. !!x. ?S = f x ==> False

Next, we apply equalityCE, reasoning that since ?S = f x , we have ?c ∈ ?S
if and only if ?c ∈ f x for any ?c.

by (eresolve_tac [equalityCE] 1);
Level 3

?S ~: range f

1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False

2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False

Now we use a bit of creativity. Suppose that ?S has the form of a comprehen-
sion. Then ?c ∈ {x .?P x} implies ?P ?c. Destruct-resolution using CollectD

instantiates ?S and creates the new assumption.

CHAPTER 2. HIGHER-ORDER LOGIC 64

by (dresolve_tac [CollectD] 1);
Level 4

{x. ?P7 x} ~: range f

1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False

2. !!x. [| ?c3 x ~: {x. ?P7 x}; ?c3 x ~: f x |] ==> False

Forcing a contradiction between the two assumptions of subgoal 1 completes
the instantiation of S . It is now the set {x . x 6∈ f x}, which is the standard
diagonal construction.

by (contr_tac 1);
Level 5

{x. x ~: f x} ~: range f

1. !!x. [| x ~: {x. x ~: f x}; x ~: f x |] ==> False

The rest should be easy. To apply CollectI to the negated assumption, we
employ swap_res_tac:

by (swap_res_tac [CollectI] 1);
Level 6

{x. x ~: f x} ~: range f

1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x

by (assume_tac 1);
Level 7

{x. x ~: f x} ~: range f

No subgoals!

How much creativity is required? As it happens, Isabelle can prove this theo-
rem automatically. The default classical set claset() contains rules for most
of the constructs of HOL’s set theory. We must augment it with equalityCE

to break up set equalities, and then apply best-first search. Depth-first search
would diverge, but best-first search successfully navigates through the large
search space.

choplev 0;
Level 0

?S ~: range f

1. ?S ~: range f

by (best_tac (claset() addSEs [equalityCE]) 1);
Level 1

{x. x ~: f x} ~: range f

No subgoals!

If you run this example interactively, make sure your current theory con-
tains theory Set, for example by executing context Set.thy. Otherwise the
default claset may not contain the rules for set theory.

Bibliography

[1] Peter Andrews. An Introduction to Mathematical Logic and Type The-
ory: to Truth through Proof. Computer Science and Applied Mathemat-
ics. Academic Press, 1986.

[2] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL —
lessons learned in Formal-Logic Engineering. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving in
Higher Order Logics: TPHOLs ’99, LNCS 1690, 1999.

[3] Alonzo Church. A formulation of the simple theory of types. J. Symb.
Logic, 5:56–68, 1940.

[4] Jacob Frost. A case study of co-induction in Isabelle HOL. Technical
Report 308, Comp. Lab., Univ. Camb., August 1993.

[5] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University
Press, 1993.

[6] Zohar Manna and Richard Waldinger. Deductive synthesis of the unifi-
cation algorithm. Science of Computer Programming, 1(1):5–48, 1981.

[7] Robin Milner. A theory of type polymorphism in programming. J.
Comp. Sys. Sci., 17:348–375, 1978.

[8] Robin Milner and Mads Tofte. Co-induction in relational semantics.
Theoretical Computer Science, 87:209–220, 1991.

[9] Wolfgang Naraschewski and Tobias Nipkow. Type inference verified:
Algorithm W in Isabelle/HOL. In E. Giménez and C. Paulin-Mohring,
editors, Types for Proofs and Programs: Intl. Workshop TYPES ’96,
volume 1512 of Lect. Notes in Comp. Sci., pages 317–332. Springer-
Verlag, 1998.

[10] Wolfgang Naraschewski and Markus Wenzel. Object-oriented verifica-
tion based on record subtyping in higher-order logic. In Jim Grundy

65

BIBLIOGRAPHY 66

and Malcom Newey, editors, Theorem Proving in Higher Order Logics:
TPHOLs ’98, LNCS 1479, 1998.

[11] Tobias Nipkow. More Church-Rosser proofs (in Isabelle/HOL). In
M. McRobbie and J.K. Slaney, editors, Automated Deduction — CADE-
13, volume 1104 of Lect. Notes in Comp. Sci., pages 733–747. Springer-
Verlag, 1996.

[12] Tobias Nipkow. Winskel is (almost) right: Towards a mechanized se-
mantics textbook. Formal Aspects Comput., 10:171–186, 1998.

[13] Lawrence C. Paulson. Verifying the unification algorithm in LCF. Sci-
ence of Computer Programming, 5:143–170, 1985.

[14] Lawrence C. Paulson. A fixedpoint approach to implementing
(co)inductive definitions. In Alan Bundy, editor, Automated Deduc-
tion — CADE-12 International Conference, LNAI 814, pages 148–161.
Springer, 1994.

[15] Lawrence C. Paulson. Set theory for verification: II. Induction and
recursion. J. Auto. Reas., 15(2):167–215, 1995.

[16] Lawrence C. Paulson. Mechanizing coinduction and corecursion in
higher-order logic. J. Logic and Comput., 7(2):175–204, March 1997.

[17] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. J. Comput. Secur., 6:85–128, 1998.

[18] Lawrence C. Paulson. A formulation of the simple theory of types (for
Isabelle). In P. Martin-Löf and G. Mints, editors, COLOG-88: In-
ternational Conference on Computer Logic, LNCS 417, pages 246–274,
Tallinn, Published 1990. Estonian Academy of Sciences, Springer.

[19] F. J. Pelletier. Seventy-five problems for testing automatic theorem
provers. J. Auto. Reas., 2:191–216, 1986. Errata, JAR 4 (1988), 235–
236 and JAR 18 (1997), 135.

[20] David A. Plaisted. A sequent-style model elimination strategy and a
positive refinement. J. Auto. Reas., 6(4):389–402, 1990.

[21] Konrad Slind. Function definition in higher order logic. In J. von Wright,
J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Or-
der Logics, volume 1125 of Lect. Notes in Comp. Sci., pages 381–397.
Springer-Verlag, 1996.

BIBLIOGRAPHY 67

[22] Glynn Winskel. The Formal Semantics of Programming Languages. MIT
Press, 1993.

Index

! symbol, 4, 7, 14, 15, 31
[] symbol, 31
symbol, 31
& symbol, 4
* symbol, 6, 28
* type, 24
+ symbol, 6, 28
+ type, 24
- symbol, 6, 28
--> symbol, 4
: symbol, 13
< constant, 27
< symbol, 28
<= constant, 27
<= symbol, 13
= symbol, 4
? symbol, 4, 7, 15
?! symbol, 4
@ symbol, 4, 31
^ symbol, 6
‘‘ symbol, 13
{} symbol, 13
| symbol, 4

0 constant, 6, 28

Addsplits, 22
addsplits, 21, 30, 44
ALL symbol, 4, 14, 15
All constant, 4
All_def theorem, 9
all_dupE theorem, 11
allE theorem, 11
allI theorem, 11
and_def theorem, 9

arg_cong theorem, 10
Arith theory, 27
arith_tac, 29

Ball constant, 13, 15
Ball_def theorem, 16
ballE theorem, 17
ballI theorem, 17
Bex constant, 13, 15
Bex_def theorem, 16
bexCI theorem, 16, 17
bexE theorem, 17
bexI theorem, 16, 17
bool type, 6
box_equals theorem, 10, 12
bspec theorem, 17
butlast constant, 31

case symbol, 27, 30, 44
case_tac, 12, 45
case_weak_cong, 44
ccontr theorem, 11
classical theorem, 11
coinductive, 57–60
Collect constant, 13, 15
Collect_mem_eq theorem, 15, 16
CollectD theorem, 17, 63
CollectE theorem, 17
CollectI theorem, 17, 64
Compl_def theorem, 16
Compl_disjoint theorem, 19
Compl_Int theorem, 19
Compl_partition theorem, 19
Compl_Un theorem, 19
ComplD theorem, 18

68

INDEX 69

ComplI theorem, 18
concat constant, 31
cong theorem, 10
conj_cong, 20
conjE theorem, 10
conjI theorem, 10
conjunct1 theorem, 10
conjunct2 theorem, 10
context, 64

datatype, 40, 40–49
Delsplits, 22
delsplits, 21
disjCI theorem, 11
disjE theorem, 10
disjI1 theorem, 10
disjI2 theorem, 10
div symbol, 28
div_geq theorem, 28
div_less theorem, 28
Divides theory, 27
double_complement theorem, 19
drop constant, 31
dropWhile constant, 31
dvd symbol, 28

empty_def theorem, 16
emptyE theorem, 18
Eps constant, 4, 7
eqTrueE theorem, 10
eqTrueI theorem, 10
equalityCE theorem, 16, 17, 63,

64
equalityD1 theorem, 17
equalityD2 theorem, 17
equalityE theorem, 17
equalityI theorem, 17
EX symbol, 4, 14, 15
Ex constant, 4
EX! symbol, 4
Ex1 constant, 4

Ex1_def theorem, 9
ex1E theorem, 11
ex1I theorem, 11
Ex_def theorem, 9
exCI theorem, 11
excluded_middle theorem, 11
exE theorem, 11
exI theorem, 11
Exp theory, 62
ext theorem, 8, 9

False constant, 4
False_def theorem, 9
FalseE theorem, 10
filter constant, 31
foldl constant, 31
fst constant, 25
fst_conv theorem, 25
fst_def theorem, 25
Fun theory, 20
fun type, 6
fun_cong theorem, 10

hd constant, 31
higher-order logic, 3–64
HOL, 7
HOL theory, 3
hol system, 3, 7
HOL_basic_ss, 20
HOL_cs, 22
HOL_ss, 20
hyp_subst_tac, 21

If constant, 4
if, 21
if_def theorem, 9
if_not_P theorem, 11
if_P theorem, 11
if_weak_cong, 21
iff theorem, 8, 9
iffCE theorem, 11, 16
iffD1 theorem, 10

INDEX 70

iffD2 theorem, 10
iffE theorem, 10
iffI theorem, 10
image_def theorem, 16
imageE theorem, 18
imageI theorem, 18
impCE theorem, 11
impE theorem, 10
impI theorem, 8
in symbol, 5
ind type, 26
induct_tac, 29, 45
inductive, 57–60
inj constant, 20
inj_def theorem, 20
inj_Inl theorem, 27
inj_Inr theorem, 27
inj_on constant, 20
inj_on_def theorem, 20
inj_Suc theorem, 28
Inl constant, 27
Inl_not_Inr theorem, 27
Inr constant, 27
insert constant, 13
insert_def theorem, 16
insertE theorem, 18
insertI1 theorem, 18
insertI2 theorem, 18
INT symbol, 13–15
Int symbol, 13
int theorem, 6, 29
Int_absorb theorem, 19
Int_assoc theorem, 19
Int_commute theorem, 19
INT_D theorem, 18
Int_def theorem, 16
INT_E theorem, 18
Int_greatest theorem, 19
INT_I theorem, 18
Int_Inter_image theorem, 19
Int_lower1 theorem, 19

Int_lower2 theorem, 19
Int_Un_distrib theorem, 19
Int_Union theorem, 19
IntD1 theorem, 18
IntD2 theorem, 18
IntE theorem, 18
INTER constant, 13
Inter constant, 13
INTER1 constant, 13
INTER1_def theorem, 16
INTER_def theorem, 16
Inter_def theorem, 16
Inter_greatest theorem, 19
Inter_lower theorem, 19
Inter_Un_distrib theorem, 19
InterD theorem, 18
InterE theorem, 18
InterI theorem, 18
IntI theorem, 18
inv constant, 20
inv_def theorem, 20

last constant, 31
LEAST constant, 6, 7, 27
Least constant, 4
Least_def theorem, 9
length constant, 31
less_induct theorem, 29
Let constant, 4, 8
let symbol, 5
Let_def theorem, 8, 9
LFilter theory, 61
linorder class, 6, 27, 29
List theory, 30, 31
list type, 30
LList theory, 61

map constant, 31
max constant, 6, 27
mem symbol, 31
mem_Collect_eq theorem, 15, 16

INDEX 71

min constant, 6, 27
minus class, 6
mod symbol, 28
mod_geq theorem, 28
mod_less theorem, 28
mono constant, 6
mp theorem, 8

n_not_Suc_n theorem, 28
Nat theory, 27
nat type, 27, 28
nat type, 26–30
nat theorem, 6
nat_induct theorem, 28
nat_rec constant, 29
NatDef theory, 26
Not constant, 4
not_def theorem, 9
not_sym theorem, 10
notE theorem, 10
notI theorem, 10
notnotD theorem, 11
null constant, 31

o symbol, 4, 20
o_def theorem, 9
of symbol, 8
or_def theorem, 9
Ord theory, 6
ord class, 6, 7, 27
order class, 6

Pair constant, 25
Pair_eq theorem, 25
Pair_inject theorem, 25
PairE theorem, 25
plus class, 6
plus_ac0 class, 6
Pow constant, 13
Pow_def theorem, 16
PowD theorem, 18
power class, 6

PowI theorem, 18
primrec, 50, 50–54
primrec symbol, 27
priorities, 1
Prod theory, 24
prop_cs, 22

qed_spec_mp, 48

range constant, 13, 63
range_def theorem, 16
rangeE theorem, 18, 63
rangeI theorem, 18
real theorem, 6, 29
recdef, 54–57
record, 37
record_simproc, 39
record_split_tac, 40
recursion

general, 54–57
primitive, 50–54

recursive functions, see recursion
refl theorem, 8
res_inst_tac, 7
rev constant, 31

search
best-first, 64

Set theory, 15
set constant, 31
set type, 15
set_diff_def theorem, 16
setsum constant, 6
show_sorts, 7
show_types, 7
Sigma constant, 25
Sigma_def theorem, 25
SigmaE theorem, 25
SigmaI theorem, 25
simplification

of case, 44
of if, 21

INDEX 72

of conjunctions, 20
size constant, 45
smp_tac, 12
snd constant, 25
snd_conv theorem, 25
snd_def theorem, 25
SOME symbol, 4
some_equality theorem, 9, 11
someI theorem, 8, 9
spec theorem, 11
split constant, 25
split theorem, 25
split_all_tac, 26
split_def theorem, 25
split_if theorem, 11, 21
split_list_case theorem, 30
split_split theorem, 25
ssubst theorem, 10, 12
stac, 21
strip_tac, 12
subset_def theorem, 16
subset_refl theorem, 17
subset_trans theorem, 17
subsetCE theorem, 16, 17
subsetD theorem, 16, 17
subsetI theorem, 17
subst theorem, 8
Suc constant, 28
Suc_not_Zero theorem, 28
Sum theory, 26
sum.split_case theorem, 27
sum_case constant, 27
sum_case_Inl theorem, 27
sum_case_Inr theorem, 27
sumE theorem, 27
surj constant, 20
surj_def theorem, 20
surjective_pairing theorem, 25
surjective_sum theorem, 27
SVC decision procedure, 22–24
Svc.trace, 23

SVC_HOME, 24
SVC_MACHINE, 24
svc_tac, 22, 22, 23
swap theorem, 11
swap_res_tac, 64
sym theorem, 10

take constant, 31
takeWhile constant, 31
term class, 6
times class, 6
tl constant, 31
tracing

of unification, 7
trans theorem, 10
True constant, 4
True_def theorem, 9
True_or_False theorem, 8, 9
TrueI theorem, 10
Trueprop constant, 4
type definition, 33
typedef, 30

UN symbol, 13–15
Un symbol, 13
Un1 theorem, 16
Un2 theorem, 16
Un_absorb theorem, 19
Un_assoc theorem, 19
Un_commute theorem, 19
Un_def theorem, 16
UN_E theorem, 18
UN_I theorem, 18
Un_Int_distrib theorem, 19
Un_Inter theorem, 19
Un_least theorem, 19
Un_Union_image theorem, 19
Un_upper1 theorem, 19
Un_upper2 theorem, 19
UnCI theorem, 16, 18
UnE theorem, 18

INDEX 73

UnI1 theorem, 18
UnI2 theorem, 18
unification

incompleteness of, 7
Unify.trace_types, 7
UNION constant, 13
Union constant, 13
UNION1 constant, 13
UNION1_def theorem, 16
UNION_def theorem, 16
Union_def theorem, 16
Union_least theorem, 19
Union_Un_distrib theorem, 19
Union_upper theorem, 19
UnionE theorem, 18
UnionI theorem, 18
unit_eq theorem, 26

ZF theory, 3

	Syntax definitions
	Higher-Order Logic
	Syntax
	Types and overloading
	Binders
	The let and case constructions

	Rules of inference
	A formulation of set theory
	Syntax of set theory
	Axioms and rules of set theory
	Properties of functions

	Generic packages
	Simplification and substitution
	Classical reasoning

	Calling the decision procedure SVC
	Types
	Product and sum types
	The type of natural numbers, nat
	Numerical types and numerical reasoning
	The type constructor for lists, list
	Introducing new types

	Records
	Basics
	Defining records
	Record operations
	Record proof tools

	Datatype definitions
	Basics
	Defining datatypes
	Representing existing types as datatypes
	Examples

	Recursive function definitions
	Primitive recursive functions
	General recursive functions

	Inductive and coinductive definitions
	The result structure
	The syntax of a (co)inductive definition
	*Monotonicity theorems
	Example of an inductive definition

	The examples directories
	Example: Cantor's Theorem

