06.12.2016 Views

Taylor Series Expansion

2016+Week4

2016+Week4

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The<br />

If<br />

the<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>Expansion</strong><br />

<strong>Taylor</strong>’s Theorem : Suppose f is continuous on the closed interval [a, b] and has<br />

n + 1 continuous derivatives on the open interval (a, b). If x and c are points in<br />

(a, b), then<br />

f ( c)<br />

<br />

or<br />

<strong>Taylor</strong><br />

f ( x)<br />

<br />

<strong>Taylor</strong><br />

f<br />

'<br />

series<br />

∞<br />

∑<br />

k 0<br />

( c)(<br />

x<br />

1<br />

k!<br />

series<br />

<strong>Series</strong> <br />

c)<br />

<br />

<br />

<br />

k 0<br />

converge,<br />

f<br />

( k )<br />

( c)<br />

expansion of<br />

1<br />

k!<br />

f<br />

f<br />

( x<br />

( c)<br />

2!<br />

(2)<br />

( k )<br />

we<br />

c)<br />

( c)<br />

k<br />

( x<br />

( x<br />

c)<br />

f ( x)<br />

2<br />

c)<br />

<br />

k<br />

can write :<br />

about c:<br />

f<br />

( c)<br />

3!<br />

(3)<br />

( x<br />

c)<br />

3<br />

...


Maclaurin <strong>Series</strong><br />

Maclaurin series is a special case of <strong>Taylor</strong> series with the<br />

center of expansion c = 0.<br />

The<br />

f<br />

If<br />

(0)<br />

the<br />

Maclaurin<br />

<br />

series<br />

(2)<br />

' f (0)<br />

f (0) x <br />

2!<br />

series converge,<br />

expansion of<br />

(3)<br />

( x) :<br />

2 f (0) 3<br />

x x ...<br />

3!<br />

we can write :<br />

f<br />

f<br />

( x)<br />

<br />

∞ ∑<br />

k0<br />

1<br />

k!<br />

f<br />

( k)<br />

(0)<br />

x<br />

k


What If we change the interval ?<br />

If we change the interval so x=x+h and c=x<br />

The<br />

<strong>Taylor</strong><br />

series<br />

expansion of<br />

f<br />

( x<br />

<br />

h)<br />

about<br />

c<br />

<br />

x<br />

f<br />

( x<br />

<br />

h)<br />

<br />

f<br />

( x)<br />

<br />

f<br />

'<br />

( x)<br />

h<br />

<br />

f<br />

( x)<br />

2!<br />

(2)<br />

h<br />

2<br />

<br />

f<br />

( x)<br />

3!<br />

(3)<br />

h<br />

3<br />

...


Finite Differences for Derivation<br />

<strong>Taylor</strong> expansion for F( x h)<br />

F(<br />

x <br />

h)<br />

<br />

F(<br />

x)<br />

<br />

hF'(<br />

x)<br />

<br />

2<br />

h<br />

2!<br />

F''(<br />

x)<br />

.....<br />

F(<br />

x<br />

<br />

h)<br />

<br />

F(<br />

x)<br />

<br />

hF'(<br />

x)<br />

O(<br />

h<br />

2<br />

)<br />

Use only first two terms of the<br />

expansion<br />

2<br />

F ( x h)<br />

F(<br />

x)<br />

O(<br />

h )<br />

F'(<br />

x)<br />

<br />

h<br />

h<br />

F'(<br />

x)<br />

<br />

F(<br />

x<br />

<br />

h)<br />

<br />

h<br />

F(<br />

x)<br />

Forward Difference Formula


Finite Differences for Derivation<br />

<strong>Taylor</strong> expansion for F( x h)<br />

F(<br />

x<br />

<br />

h)<br />

<br />

F(<br />

x)<br />

<br />

hF'(<br />

x)<br />

<br />

2<br />

h<br />

2!<br />

F''(<br />

x)<br />

.....<br />

F(<br />

x)<br />

<br />

F(<br />

x<br />

<br />

h)<br />

<br />

hF'(<br />

x)<br />

<br />

O(<br />

h<br />

2<br />

)<br />

F'(<br />

x)<br />

<br />

F(<br />

x)<br />

<br />

F(<br />

x<br />

h<br />

<br />

h)<br />

Backward Difference Formula


Finite Differences for Derivation<br />

.....<br />

)<br />

'''(<br />

3!<br />

)<br />

''(<br />

2!<br />

)<br />

'(<br />

)<br />

(<br />

)<br />

(<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

F<br />

h<br />

x<br />

F<br />

h<br />

x<br />

hF<br />

x<br />

F<br />

h<br />

x<br />

F<br />

.....<br />

)<br />

'''(<br />

3!<br />

2<br />

)<br />

'(<br />

2<br />

)<br />

(<br />

)<br />

(<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

F<br />

h<br />

x<br />

hF<br />

h<br />

x<br />

F<br />

h<br />

x<br />

F<br />

)<br />

(<br />

)<br />

(<br />

'<br />

2<br />

)<br />

(<br />

)<br />

( 3<br />

h<br />

O<br />

x<br />

F<br />

h<br />

h<br />

x<br />

F<br />

h<br />

x<br />

F<br />

<br />

<br />

<br />

<br />

<br />

Central Difference Formula<br />

h<br />

h<br />

x<br />

F<br />

h<br />

x<br />

F<br />

x<br />

F<br />

2<br />

)<br />

(<br />

)<br />

(<br />

)<br />

'(<br />

<br />

<br />

<br />

<br />

.....<br />

)<br />

'''(<br />

3!<br />

)<br />

''(<br />

2!<br />

)<br />

'(<br />

)<br />

(<br />

)<br />

(<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

F<br />

h<br />

x<br />

F<br />

h<br />

x<br />

hF<br />

x<br />

F<br />

h<br />

x<br />

F


Example : Derivation of<br />

Forward Difference Formula<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

2<br />

)<br />

(<br />

)<br />

''(<br />

2<br />

2 h<br />

O<br />

h<br />

h<br />

x<br />

F<br />

x<br />

F<br />

h<br />

x<br />

F<br />

x<br />

F<br />

<br />

<br />

<br />

<br />

<br />

<br />

.....<br />

)<br />

''(<br />

2!<br />

)<br />

'(<br />

)<br />

(<br />

)<br />

(<br />

2<br />

<br />

<br />

<br />

<br />

<br />

x<br />

F<br />

h<br />

x<br />

hF<br />

x<br />

F<br />

h<br />

x<br />

F<br />

.....<br />

)<br />

''(<br />

2!<br />

)<br />

'(<br />

)<br />

(<br />

)<br />

(<br />

2<br />

<br />

<br />

<br />

<br />

<br />

x<br />

F<br />

h<br />

x<br />

hF<br />

x<br />

F<br />

h<br />

x<br />

F<br />

+<br />

)<br />

''(<br />

2!<br />

)<br />

''(<br />

2!<br />

)<br />

(<br />

)<br />

'(<br />

)<br />

(<br />

2<br />

)<br />

(<br />

)<br />

(<br />

2<br />

2<br />

x<br />

F<br />

h<br />

x<br />

F<br />

h<br />

x<br />

hF<br />

x<br />

hF<br />

x<br />

F<br />

h<br />

x<br />

F<br />

h<br />

x<br />

F<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

)<br />

''(<br />

2!<br />

2<br />

)<br />

(<br />

2<br />

)<br />

(<br />

)<br />

(<br />

2<br />

x<br />

F<br />

h<br />

x<br />

F<br />

h<br />

x<br />

F<br />

h<br />

x<br />

F


Better approximations<br />

By using <strong>Taylor</strong> expansions for F( x 2h)<br />

and F( x 2h)<br />

, better approximations<br />

can be obtained:<br />

F'(<br />

x)<br />

<br />

<br />

F(<br />

x 2h)<br />

4F(<br />

x h)<br />

3F(<br />

x)<br />

2h<br />

O(<br />

h<br />

2<br />

)<br />

Forward Difference Formula<br />

F'(<br />

x)<br />

<br />

3F(<br />

x)<br />

4F(<br />

x h)<br />

<br />

2h<br />

F(<br />

x 2h)<br />

O(<br />

h<br />

2<br />

)<br />

Backward Difference Formula<br />

F'(<br />

x)<br />

<br />

<br />

F(<br />

x 2h)<br />

8F(<br />

x h)<br />

8F(<br />

x h)<br />

<br />

12h<br />

F(<br />

x 2h)<br />

O(<br />

h<br />

4<br />

)<br />

Central Difference Formula


Example : Derivation of<br />

Forward Difference Formula<br />

.....<br />

)<br />

''(<br />

2!<br />

)<br />

'(<br />

)<br />

(<br />

)<br />

(<br />

2<br />

<br />

<br />

<br />

<br />

<br />

x<br />

F<br />

h<br />

x<br />

hF<br />

x<br />

F<br />

h<br />

x<br />

F<br />

.....<br />

)<br />

''(<br />

2!<br />

4<br />

)<br />

'(<br />

2<br />

)<br />

(<br />

)<br />

2<br />

(<br />

2<br />

<br />

<br />

<br />

<br />

<br />

x<br />

F<br />

h<br />

x<br />

hF<br />

x<br />

F<br />

h<br />

x<br />

F<br />

∗ (−4)<br />

+<br />

)<br />

''(<br />

2!<br />

4<br />

.<br />

)<br />

''(<br />

2!<br />

4<br />

)<br />

'(<br />

4<br />

)<br />

'(<br />

2<br />

)<br />

(<br />

4<br />

)<br />

(<br />

)<br />

(<br />

4<br />

)<br />

2<br />

(<br />

2<br />

2<br />

x<br />

F<br />

h<br />

x<br />

F<br />

h<br />

x<br />

hF<br />

x<br />

hF<br />

x<br />

F<br />

x<br />

F<br />

h<br />

x<br />

F<br />

h<br />

x<br />

F<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

)<br />

(<br />

2<br />

)<br />

(<br />

3<br />

)<br />

(<br />

4<br />

)<br />

2<br />

( x<br />

hF<br />

x<br />

F<br />

h<br />

x<br />

F<br />

h<br />

x<br />

F<br />

<br />

<br />

<br />

<br />

<br />

<br />

h<br />

x<br />

F<br />

h<br />

x<br />

F<br />

h<br />

x<br />

F<br />

x<br />

F<br />

2<br />

)<br />

(<br />

3<br />

)<br />

(<br />

4<br />

)<br />

2<br />

(<br />

)<br />

(


Second Derivatives<br />

Similarly various approximations for second derivatives are possible :<br />

F(<br />

x 2h)<br />

2F(<br />

x h)<br />

F(<br />

x)<br />

F' '( x)<br />

<br />

O(<br />

h)<br />

2<br />

h<br />

F''(<br />

x)<br />

<br />

F(<br />

x<br />

<br />

h)<br />

2F(<br />

x)<br />

F(<br />

x h)<br />

O(<br />

h<br />

2<br />

h<br />

2<br />

)<br />

F''(<br />

x)<br />

<br />

<br />

F(<br />

x 2h)<br />

16F(<br />

x h)<br />

30F(<br />

x)<br />

16F(<br />

x h)<br />

F(<br />

x 2h)<br />

O(<br />

h<br />

2<br />

12h<br />

4<br />

)


Derivatives of Bivariate &<br />

Multivariate Functions


First Order Partial Derivatives<br />

For functions with more variables, the partial derivatives can be approximated<br />

by grouping together all of the same variables and applying the univariate<br />

approximation for that group.<br />

For example, if F(x, y) is our function, then some first order partial derivative<br />

approximations are:<br />

F(<br />

x h,<br />

y)<br />

F(<br />

x<br />

f x<br />

( x,<br />

y)<br />

<br />

2h<br />

<br />

h,<br />

y)<br />

F(<br />

x,<br />

y k)<br />

F(<br />

x,<br />

f y<br />

( x,<br />

y)<br />

<br />

2k<br />

y<br />

<br />

k)


Second Partial Derivatives<br />

hk<br />

k<br />

y<br />

h<br />

x<br />

F<br />

k<br />

y<br />

h<br />

x<br />

F<br />

k<br />

y<br />

h<br />

x<br />

F<br />

k<br />

y<br />

h<br />

x<br />

F<br />

x<br />

f<br />

y<br />

x<br />

y<br />

f<br />

y<br />

x<br />

f xy 4<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

2<br />

2<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

2<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

h<br />

y<br />

h<br />

x<br />

F<br />

y<br />

x<br />

f<br />

y<br />

h<br />

x<br />

F<br />

x<br />

f<br />

x<br />

x<br />

f<br />

y<br />

x<br />

f xx<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

2<br />

2<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

2<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

k<br />

k<br />

y<br />

x<br />

F<br />

y<br />

x<br />

f<br />

k<br />

y<br />

x<br />

F<br />

y<br />

f<br />

y<br />

y<br />

f<br />

y<br />

x<br />

f yy<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Following formulas can be verified by taking the limits<br />

and<br />

0<br />

h 0<br />

<br />

k


The derivatives F x , F y , F xx and F yy just use the univariate approximation formulas.<br />

The mixed derivative requires slightly more work. The important observation is that the<br />

approximation for F xy is obtained by applying the x–derivative approximation for F x ,<br />

then applying the y–derivative approximation to the previous approximation.<br />

1 - the x–derivative approximation for F x :<br />

F(<br />

x h,<br />

y)<br />

F(<br />

x<br />

f x<br />

( x,<br />

y)<br />

<br />

2h<br />

h,<br />

y)<br />

2- the y–derivative approximation:<br />

F(<br />

x,<br />

y k)<br />

F(<br />

x,<br />

f y<br />

( x,<br />

y)<br />

<br />

2k<br />

y<br />

<br />

k)<br />

3- Apply the 2 nd formula to the 1st one:<br />

F(<br />

x h,<br />

y k)<br />

F(<br />

x h,<br />

y k)<br />

F(<br />

x<br />

f xy<br />

( x,<br />

y)<br />

<br />

4hk<br />

h,<br />

y<br />

<br />

k)<br />

<br />

F(<br />

x<br />

<br />

h,<br />

y<br />

k)


Second Partial Derivatives<br />

Following formulas can be verified by taking the limits<br />

To find the<br />

F<br />

xy<br />

partial derivative first use the formula for<br />

h 0 and k 0<br />

F<br />

x<br />

Then apply the approximation for<br />

( f y<br />

)<br />

f xx<br />

( x,<br />

y)<br />

<br />

F(<br />

x<br />

<br />

h,<br />

y)<br />

<br />

2<br />

f<br />

( x,<br />

h<br />

2<br />

y)<br />

<br />

F(<br />

x<br />

<br />

h,<br />

y)<br />

f yy<br />

( x,<br />

y)<br />

<br />

F(<br />

x,<br />

y<br />

<br />

k)<br />

<br />

2<br />

f<br />

( x,<br />

k<br />

2<br />

y)<br />

<br />

F(<br />

x,<br />

y<br />

<br />

k)<br />

F(<br />

x h,<br />

y k)<br />

F(<br />

x h,<br />

y k)<br />

F(<br />

x<br />

f xy<br />

( x,<br />

y)<br />

<br />

4hk<br />

h,<br />

y<br />

<br />

k)<br />

<br />

F(<br />

x<br />

<br />

h,<br />

y<br />

k)


Classification of the Methods<br />

Numerical Methods<br />

for Solving ODE<br />

Single-Step Methods<br />

Multiple-Step Methods<br />

Estimates of the solution<br />

at a particular step are<br />

entirely based on<br />

information on the<br />

Estimates of the solution<br />

at a particular step are<br />

based on information on<br />

more than one step<br />

previous step<br />

17


<strong>Taylor</strong> <strong>Series</strong> Method<br />

The problem to be solved is a first order ODE:<br />

dy(<br />

x)<br />

dx<br />

<br />

f<br />

( x ,<br />

y ),<br />

y ( x<br />

0 )<br />

<br />

y<br />

0<br />

Estimates of the solution at different base points:<br />

y<br />

(<br />

0<br />

x0 h),<br />

y(<br />

x0<br />

2h),<br />

y(<br />

x 3h),<br />

....<br />

are computed using the truncated <strong>Taylor</strong> series<br />

expansions.<br />

18


<strong>Taylor</strong> <strong>Series</strong> <strong>Expansion</strong><br />

Truncated <strong>Taylor</strong> <strong>Series</strong><br />

<strong>Expansion</strong><br />

y(<br />

x<br />

0<br />

<br />

h)<br />

<br />

n<br />

<br />

k<br />

h <br />

<br />

k!<br />

<br />

<br />

k<br />

d y<br />

dx<br />

k<br />

k 0 xx<br />

, y<br />

y<br />

0<br />

0<br />

<br />

<br />

<br />

<br />

<br />

y(<br />

x<br />

0<br />

)<br />

<br />

h<br />

dy<br />

dx<br />

xx<br />

y<br />

y<br />

0<br />

0<br />

,<br />

<br />

2<br />

h<br />

2!<br />

2<br />

d y<br />

2<br />

dx<br />

xx<br />

y<br />

y<br />

0<br />

0<br />

,<br />

...<br />

<br />

n<br />

h<br />

n!<br />

n<br />

d y<br />

n<br />

dx<br />

xx<br />

y<br />

y<br />

0<br />

0<br />

,<br />

The n th order <strong>Taylor</strong> series method uses the<br />

n th order Truncated <strong>Taylor</strong> series expansion.<br />

19


Euler Method<br />

• First order <strong>Taylor</strong> series method is known as<br />

Euler Method.<br />

• Only the constant term and linear term are<br />

used in the Euler method.<br />

• The error due to the use of the truncated<br />

<strong>Taylor</strong> series is of order O(h 2 ).<br />

20


21<br />

First Order <strong>Taylor</strong> <strong>Series</strong> Method<br />

(Euler Method)<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

),<br />

(<br />

,<br />

:<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

1<br />

,<br />

0<br />

2<br />

,<br />

0<br />

0<br />

0<br />

0<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

y<br />

y<br />

x<br />

x<br />

n<br />

n<br />

n<br />

y<br />

y<br />

x<br />

x<br />

y<br />

x<br />

f<br />

h<br />

y<br />

y<br />

Method<br />

Euler<br />

y<br />

x<br />

f<br />

dx<br />

dy<br />

x<br />

y<br />

y<br />

nh<br />

x<br />

x<br />

Notation<br />

h<br />

O<br />

dx<br />

dy<br />

h<br />

x<br />

y<br />

h<br />

x<br />

y<br />

i<br />

i


22<br />

Euler Method<br />

1,2,...<br />

)<br />

,<br />

(<br />

)<br />

(<br />

Method:<br />

Euler<br />

1,2,...<br />

)<br />

(<br />

Determine :<br />

)<br />

(<br />

condition :<br />

initial<br />

with the<br />

)<br />

,<br />

(<br />

)<br />

(<br />

ODE:<br />

order<br />

first<br />

Given the<br />

Problem :<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

for<br />

y<br />

x<br />

f<br />

h<br />

y<br />

y<br />

x<br />

y<br />

y<br />

i<br />

for<br />

ih<br />

x<br />

y<br />

y<br />

x<br />

y<br />

y<br />

y<br />

x<br />

f<br />

x<br />

y<br />

i<br />

i<br />

i<br />

i<br />

i


Interpretation of Euler Method<br />

y 2<br />

y 1<br />

y 0<br />

x 0 x 1 x 2 x<br />

23


Interpretation of Euler Method<br />

y 1<br />

Slope=f(x 0 ,y 0 )<br />

y 1 =y 0 +hf(x 0 ,y 0 )<br />

hf(x 0 ,y 0 )<br />

y 0<br />

x 0 x 1 x 2 x<br />

h<br />

24


Interpretation of Euler Method<br />

y 2<br />

Slope=f(x 1 ,y 1 )<br />

hf(x 1 ,y 1 )<br />

y 1<br />

Slope=f(x 0 ,y 0 )<br />

y 2 =y 1 +hf(x 1 ,y 1 )<br />

y 1 =y 0 +hf(x 0 ,y 0 )<br />

hf(x 0 ,y 0 )<br />

y 0<br />

x 0 x 1 x 2 x<br />

h<br />

h<br />

25


Example 1<br />

Use Euler method to solve the ODE:<br />

dy<br />

dx<br />

1<br />

x<br />

2<br />

, y(1)<br />

4<br />

to determine y(1.01), y(1.02) and y(1.03).<br />

26


27<br />

Example 1<br />

0.01<br />

4,<br />

1,<br />

,<br />

1<br />

)<br />

,<br />

( 0<br />

0<br />

2<br />

<br />

<br />

<br />

<br />

<br />

h<br />

y<br />

x<br />

x<br />

y<br />

x<br />

f<br />

<br />

<br />

<br />

<br />

<br />

<br />

9394<br />

3.<br />

1.02<br />

0.011<br />

3.9598<br />

)<br />

,<br />

(<br />

3:<br />

3.9598<br />

1.01<br />

0.011<br />

3.98<br />

)<br />

,<br />

(<br />

2 :<br />

3.98<br />

)<br />

(1)<br />

0.01(1<br />

4<br />

)<br />

,<br />

(<br />

1:<br />

)<br />

,<br />

(<br />

Method<br />

Euler<br />

2<br />

2<br />

2<br />

2<br />

3<br />

2<br />

1<br />

1<br />

1<br />

2<br />

2<br />

0<br />

0<br />

0<br />

1<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

x<br />

f<br />

h<br />

y<br />

y<br />

Step<br />

y<br />

x<br />

f<br />

h<br />

y<br />

y<br />

Step<br />

y<br />

x<br />

f<br />

h<br />

y<br />

y<br />

Step<br />

y<br />

x<br />

f<br />

h<br />

y<br />

y<br />

i<br />

i<br />

i<br />

i


Example 1<br />

f<br />

2<br />

( x,<br />

y)<br />

1<br />

x , x0<br />

1,<br />

y0<br />

4,<br />

h<br />

<br />

0.01<br />

Summary of the result:<br />

i xi yi<br />

0 1.00 -4.00<br />

1 1.01 -3.98<br />

2 1.02 -3.9595<br />

3 1.03 -3.9394<br />

28


Example 1<br />

f<br />

2<br />

( x,<br />

y)<br />

1<br />

x , x0<br />

1,<br />

y0<br />

4,<br />

h<br />

<br />

0.01<br />

Comparison with true value:<br />

i xi yi True value of yi<br />

0 1.00 -4.00 -4.00<br />

1 1.01 -3.98 -3.97990<br />

2 1.02 -3.9595 -3.95959<br />

3 1.03 -3.9394 -3.93909<br />

29


Example 1<br />

f<br />

2<br />

( x,<br />

y)<br />

1<br />

x , x0<br />

1,<br />

y0<br />

4,<br />

h<br />

<br />

0.01<br />

A graph of the<br />

solution of the<br />

ODE for<br />

1


Types of Errors<br />

– Local truncation error:<br />

Error due to the use of truncated <strong>Taylor</strong> series<br />

to compute x(t+h) in one step.<br />

– Global Truncation error:<br />

Accumulated truncation over many steps.<br />

– Round off error:<br />

Error due to finite number of bits used in<br />

representation of numbers. This error could be<br />

accumulated and magnified in succeeding<br />

steps.<br />

31


Second Order <strong>Taylor</strong> <strong>Series</strong> Methods<br />

Given<br />

Second<br />

dy(<br />

x)<br />

dx<br />

<br />

f<br />

( y,<br />

x),<br />

order <strong>Taylor</strong> <strong>Series</strong><br />

y(<br />

x<br />

0<br />

)<br />

<br />

y<br />

method<br />

0<br />

y<br />

d<br />

i1<br />

2<br />

dx<br />

y<br />

2<br />

<br />

y<br />

i<br />

dy<br />

h <br />

dx<br />

h<br />

2<br />

2!<br />

d<br />

needs to be derived analytically.<br />

2<br />

dx<br />

y<br />

2<br />

O(<br />

h<br />

3<br />

)<br />

32


Third Order <strong>Taylor</strong> <strong>Series</strong> Methods<br />

Given<br />

dy(<br />

x)<br />

dx<br />

<br />

( y,<br />

x),<br />

Third order <strong>Taylor</strong> <strong>Series</strong><br />

f<br />

y(<br />

x<br />

0<br />

) <br />

method<br />

y<br />

0<br />

y<br />

d<br />

i1<br />

2<br />

dx<br />

y<br />

2<br />

<br />

y<br />

i<br />

and<br />

dy<br />

h <br />

dx<br />

d<br />

3<br />

dx<br />

y<br />

3<br />

h<br />

2<br />

2!<br />

d<br />

2<br />

dx<br />

y<br />

2<br />

<br />

h<br />

3<br />

3!<br />

need to be derived analytically.<br />

d<br />

3<br />

dx<br />

y<br />

3<br />

O(<br />

h<br />

4<br />

)<br />

33


34<br />

High Order <strong>Taylor</strong> <strong>Series</strong> Methods<br />

to be derived analytically.<br />

need<br />

,.....,<br />

,<br />

)<br />

(<br />

!<br />

....<br />

2!<br />

method<br />

<strong>Series</strong><br />

order <strong>Taylor</strong><br />

n<br />

)<br />

(<br />

),<br />

,<br />

(<br />

)<br />

(<br />

3<br />

3<br />

2<br />

2<br />

1<br />

2<br />

2<br />

2<br />

1<br />

th<br />

0<br />

0<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

i<br />

i<br />

dx<br />

y<br />

d<br />

dx<br />

y<br />

d<br />

dx<br />

y<br />

d<br />

h<br />

O<br />

dx<br />

y<br />

d<br />

n<br />

h<br />

dx<br />

y<br />

d<br />

h<br />

dx<br />

dy<br />

h<br />

y<br />

y<br />

y<br />

x<br />

y<br />

x<br />

y<br />

f<br />

dx<br />

x<br />

dy<br />

Given


Higher Order <strong>Taylor</strong> <strong>Series</strong> Methods<br />

• High order <strong>Taylor</strong> series methods are more<br />

accurate than Euler method.<br />

• But, the 2 nd , 3 rd , and higher order derivatives<br />

need to be derived analytically which may not<br />

be easy.<br />

35


Example 2<br />

Second order <strong>Taylor</strong> <strong>Series</strong> Method<br />

Use<br />

Second<br />

order<br />

<strong>Taylor</strong> <strong>Series</strong><br />

method<br />

to<br />

solve:<br />

dx<br />

dt<br />

2x<br />

2<br />

<br />

t<br />

1,<br />

x(0)<br />

1,<br />

use<br />

h<br />

<br />

0.01<br />

What<br />

is :<br />

2<br />

d x(<br />

t)<br />

2<br />

dt<br />

?<br />

36


37<br />

Example 2<br />

))<br />

2<br />

(1<br />

4<br />

1<br />

(<br />

2<br />

)<br />

2<br />

(1<br />

1<br />

)<br />

2<br />

(1<br />

4<br />

1<br />

4<br />

0<br />

)<br />

(<br />

2<br />

1<br />

0.01<br />

1,<br />

(0)<br />

1,<br />

2<br />

solve:<br />

to<br />

method<br />

<strong>Taylor</strong> <strong>Series</strong><br />

order<br />

Second<br />

Use<br />

2<br />

2<br />

2<br />

1<br />

2<br />

2<br />

2<br />

2<br />

2<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

t<br />

x<br />

x<br />

h<br />

t<br />

x<br />

h<br />

x<br />

x<br />

t<br />

x<br />

x<br />

dt<br />

dx<br />

x<br />

dt<br />

t<br />

x<br />

d<br />

t<br />

x<br />

dt<br />

dx<br />

h<br />

use<br />

x<br />

t<br />

x<br />

dt<br />

dx


38<br />

Example 2<br />

))<br />

2<br />

(1<br />

4<br />

1<br />

(<br />

2<br />

)<br />

2<br />

(1<br />

0.01<br />

1,<br />

0,<br />

,<br />

2<br />

1<br />

)<br />

,<br />

(<br />

2<br />

2<br />

2<br />

1<br />

0<br />

0<br />

2<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

t<br />

x<br />

x<br />

h<br />

t<br />

x<br />

h<br />

x<br />

x<br />

h<br />

x<br />

t<br />

t<br />

x<br />

x<br />

t<br />

f<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0.9716<br />

3:<br />

0.9807<br />

0.01))<br />

2(0.9901)<br />

4(0.9901)(1<br />

1<br />

(<br />

2<br />

0.01<br />

0.01)<br />

2(0.9901)<br />

0.01(1<br />

0.9901<br />

2 :<br />

0.9901<br />

0))<br />

2<br />

4(1)(1<br />

1<br />

(<br />

2<br />

0.01<br />

0)<br />

2(1)<br />

0.01(1<br />

1<br />

1:<br />

3<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

Step<br />

x<br />

Step<br />

x<br />

Step


Example 2<br />

f<br />

2<br />

( t,<br />

x)<br />

1<br />

2x<br />

t<br />

, t0<br />

0, x0<br />

1,<br />

h<br />

<br />

0.01<br />

Summary of the results:<br />

i t i x i<br />

0 0.00 1<br />

1 0.01 0.9901<br />

2 0.02 0.9807<br />

3 0.03 0.9716<br />

39


Programming Euler Method<br />

Write a MATLAB program to implement Euler<br />

method to solve:<br />

dv<br />

<br />

1<br />

2v<br />

2<br />

<br />

t.<br />

v(0)<br />

<br />

1<br />

dt<br />

for<br />

t<br />

i<br />

<br />

0.01i,<br />

i<br />

<br />

1,2,...,100<br />

40


Programming Euler Method<br />

f=inline('1-2*v^2-t','t','v')<br />

h=0.01<br />

t=0<br />

v=1<br />

T(1)=t;<br />

V(1)=v;<br />

for i=1:100<br />

v=v+h*f(t,v)<br />

t=t+h;<br />

T(i+1)=t;<br />

V(i+1)=v;<br />

end<br />

41


Programming Euler Method<br />

f=inline('1-2*v^2-t','t','v')<br />

h=0.01<br />

t=0<br />

v=1<br />

T(1)=t;<br />

V(1)=v;<br />

for i=1:100<br />

v=v+h*f(t,v)<br />

t=t+h;<br />

T(i+1)=t;<br />

V(i+1)=v;<br />

end<br />

Definition of the ODE<br />

Initial condition<br />

Main loop<br />

Euler method<br />

Storing information<br />

42


Programming Euler Method<br />

Plot of the<br />

solution<br />

plot(T,V)<br />

43


Example 1:<br />

Find y(0.5) if y is the solution of IVP y' = -2x-y, y(0) = -1 using Euler's method<br />

with step length 0.1. Also find the error in the approximation.<br />

Solution: f(x, y) = -2x - y,<br />

y 1 = y 0 + h f(x 0 , y 0 ) = -1 + 0.1* (-2*0 - (-1)) = -0.8999<br />

y 2 = y 1 + h f(x 1 , y 1 ) = -0.8999 + 0.1* (-2*0.1 - (-0.8999)) = -0.8299<br />

y 3 = y 2 + h f(x 2 , y 2 ) = -0.8299 + 0.1* (-2*0.2 - (-0.8299)) = -0.7869<br />

y 4 = y 3 + h f(x 3 , y 3 ) = -0.7869 + 0.1* (-2*0.3 - (-0.7869)) = -0.7683<br />

y 5 = y 4 + h f(x 4 , y 4 ) = -0.7683 + 0.1* (-2*0.4 - (-0.7683)) = -0.7715


Example 2:<br />

Use Eulers method to solve for y[0.1] from y' = x + y + xy, y(0) = 1 with h = 0.01 also<br />

estimate how small h would need to obtain four-decimal accuracy.<br />

Solution : f(x, y) = x + y + xy,<br />

y 1 = y 0 + h f(x 0 , y 0 ) = 1.0 + .01*(0 + 1 + 0*1) = 1.01<br />

y 2 = y 1 + h f(x 1 , y 1 ) = 1.01 + .01*(0.01 + 1.01 + 0.01*1.01) =1.02<br />

y 3 = y 2 + h f(x 2 , y 2 ) = 1.02 + .01*(0.02 + 1.02 + 0.02*1.02) =1.031<br />

y 4 = y 3 + h f(x 3 , y 3 ) = 1.031 + .01*(0.03 + 1.031 + 0.03*1.031) =1.042<br />

y 5 = y 4 + h f(x 4 , y 4 ) = 1.042 + .01*(0.04 + 1.042 + 0.04*1.042) = 1.053<br />

y 6 = y 5 + h f(x 5 , y 5 ) = 1.053 + .01*(0.05 + 1.053 + 0.05*1.053) = 1.065<br />

y 7 = y 6 + h f(x 6 , y 6 ) = 1.065 + .01*(0.06 + 1.065 + 0.06*1.065) = 1.076<br />

y 8 = y 8 + h f(x 7 , y 7 ) = 1.076 + .01*(0.07 + 1.076 + 0.07*1.076) = 1.089<br />

y 9 = y 9 + h f(x 8 , y 8 ) = 1.089 + .01*(0.08 + 1.089 + 0.08*1.089) = 1.101<br />

y 10 = y 10 + h f(x 9 , y 9 ) = 1.101 + .01*(0.09 + 1.101 + 0.09*1.101) = 1.114


Example 3:<br />

Solve the differential equation y' = x/y, y(0)=1 by Euler's method to get y(1). Use the step<br />

lengths h = 0.1 and 0.2 and compare the results with the analytical solution (y 2 = 1 + x 2 )<br />

Solution:<br />

f(x, y) = x/y,<br />

with h = 0.1<br />

y 1 = y 0 + h f(x 0 , y 0 ) = 1.0 + 0.1*0.0/1.0 = 1.00<br />

y 2 = y 1 + h f(x 1 , y 1 ) = 1.0 + 0.1*0.1/1.0 = 1.01<br />

y 3 = y 2 + h f(x 2 , y 2 ) = 1.01 + 0.1*0.2/1.01 = 1.0298<br />

y 4 = y 3 + h f(x 3 , y 3 ) = 1.0298 + 0.1*0.3/1.0298 = 1.0589<br />

y 5 = y 4 + h f(x 4 , y 4 ) = 1.0589 + 0.1*0.4/1.0589 = 1.0967<br />

y 6 = y 5 + h f(x 5 , y 5 ) = 1.0967 + 0.1*0.5/1.0967 = 1.1423<br />

y 7 = y 6 + h f(x 6 , y 6 ) = 1.1423 + 0.1*0.6/1.1423 = 1.1948<br />

y 8 = y 7 + h f(x 7 , y 7 ) = 1.1948 + 0.1*0.7/1.1948 = 1.2534<br />

y 9 = y 8 + h f(x 8 , y 8 ) = 1.2534 + 0.1*0.8/1.2534 = 1.3172<br />

y 10 = y 9 + h f(x 9 , y 9 ) = 1.3172 + 0.1*0.9/1.3172 = 1.3855


with h = 0.2<br />

y 1 = y 0 + h f(x 0 , y 0 ) = 1.0 + 0.2*0.0/1.0 = 1.0<br />

y 2 = y 1 + h f(x 1 , y 1 ) = 1.0 + 0.2*0.2/1.0 = 1.0400<br />

y 3 = y 2 + h f(x 2 , y 2 ) = 1.0400 + 0.2*0.4/1.0400 = 1.1169<br />

y 4 = y 3 + h f(x 3 , y 3 ) = 1.1169 + 0.2*0.6/1.1169 = 1.2243<br />

y 5 = y 4 + h f(x 4 , y 4 ) = 1.2243 + 0.2*0.8/1.2243 = 1.3550


Comparison of numerical and<br />

analytical solutions<br />

x<br />

Numerical Solution<br />

h = 0.1 h = 0.2<br />

Analytical solution<br />

0.0 1.0 1.0 1.0<br />

0.1 1.0 1.0050<br />

0.2 1.01 1.0 1.0198<br />

0.3 1.0298 1.0440<br />

0.4 1.0589 1.0400 1.0770<br />

0.5 1.0967 1.1180<br />

0.6 1.1423 1.1169 1.1662<br />

0.7 1.1948 1.2207<br />

0.8 1.2534 1.2243 1.2806<br />

0.9 1.3172 1.3454<br />

1.0 1.3855 1.3550 1.4142

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!