02.01.2015 Views

Triple Integrals

Triple Integrals

Triple Integrals

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Math 202<br />

Lia Vas<br />

<strong>Triple</strong> <strong>Integrals</strong><br />

Let f(x, y, z) be a function of three variables defined on a solid region<br />

E = { (x, y, z) | a ≤ x ≤ b, c(x) ≤ y ≤ d(x), g(x, y) ≤ z ≤ h(x, y) }<br />

The triple integral of f over E is<br />

∫ ∫ ∫<br />

∫ ( b ∫ ( d(x) ∫ h(x,y)<br />

)<br />

f(x, y, z) dx dy dz =<br />

f(x, y, z) dz<br />

E<br />

a c(x) g(x,y)<br />

dy<br />

)<br />

dx<br />

Applications of triple integral:<br />

1. Volume. The volume of the solid region E as above is<br />

∫ ∫ ∫<br />

∫ ∫<br />

V (E) = dx dy dz = (h(x, y) − g(x, y)) dx dy<br />

where D is the projection of E onto the xy-plane.<br />

2. The average value of function f(x, y, z) over the solid region E is<br />

fave = 1 ∫ ∫ ∫<br />

f(x, y, z) dx dy dz<br />

V (E) E<br />

where V (E) is the volume of the solid region E.<br />

E<br />

3. Suppose that a solid object occupies the region E and its density at point (x, y, z) is given<br />

with ρ(x, y, z). The total mass of the object is<br />

∫ ∫ ∫<br />

m = ρ(x, y, z) dx dy dz<br />

The coordinates (x, y, z) of the center of mass of the object are given by<br />

x = 1 ∫ ∫ ∫<br />

x ρ(x, y, z) dx dy dz y = 1 ∫ ∫ ∫<br />

y ρ(x, y, z) dx dy dz<br />

m E m E<br />

z = 1 ∫ ∫ ∫<br />

z ρ(x, y, z) dx dy dz<br />

m E<br />

If the solid region E is as follows<br />

E<br />

E = { (x, y, z) | c ≤ y ≤ d, a(y) ≤ x ≤ b(y), g(x, y) ≤ z ≤ h(x, y) }<br />

D<br />

then the triple integral of a function of three variables f(x, y, z) over E is<br />

∫ ∫ ∫<br />

∫ ( d ∫ ( b(y) ∫ )<br />

h(x,y)<br />

f(x, y, z) dx dy dz =<br />

f(x, y, z) dz<br />

E<br />

c<br />

a(y)<br />

g(x,y)<br />

dx<br />

)<br />

dy


Practice problems.<br />

1. Evaluate the triple integral<br />

a) ∫ ∫ ∫<br />

E<br />

x 3 y 2 z dx dy dz<br />

where E = { (x, y, z) | 1 ≤ x ≤ 2, 0 ≤ y ≤ x, 0 ≤ z ≤ y 2 }<br />

b) ∫ ∫ ∫<br />

E<br />

2x dx dy dz<br />

where E = { (x, y, z) | 0 ≤ y ≤ 2, 0 ≤ x ≤ √ 4 − y 2 , 0 ≤ z ≤ y }<br />

c) ∫ ∫ ∫<br />

E<br />

6xy dx dy dz<br />

where E lies under the plane z = x + y + 1 and above the region in the xy-plane bounded<br />

by the curves y = √ x, y = 0 and x = 1.<br />

d) ∫ ∫ ∫<br />

E<br />

xy dx dy dz<br />

where E is the solid tetrahedron with vertices (0,0,0), (1, 0, 0), (0, 2, 0) and (0, 0, 3).<br />

2. Find the volume of the tetrahedron bounded by the coordinate planes and the plane 2x + 3y +<br />

6z = 12.<br />

3. Find the average value of the function f(x, y, z) = xyz over the cube with side length 4 that<br />

lies in the first octant with one vertex in the origin and edges parallel to the coordinate axes.<br />

4. Find the mass and the center of mass of the solid E given in problem 1c) and that has the<br />

density function ρ(x, y, z) = 2.<br />

Solutions.<br />

1. a) ∫ 2<br />

∫ x<br />

1 0<br />

∫ y 2<br />

0 x 3 y 2 z dx dy dz = ∫ 2<br />

1 x3 dx ∫ x<br />

0 y2 dy ∫ y 2<br />

0 z dz = ∫ 2<br />

1 x3 dx ∫ x<br />

0 y2 dy z2<br />

2 |y2 0 = ∫ 2<br />

1 x3 dx ∫ x<br />

0<br />

y 6<br />

2 dy = ∫ 2<br />

1 x3 dx y7<br />

14 |x 0 = ∫ 2<br />

1 x10<br />

14<br />

dx =<br />

x11<br />

14(11) |2 1 = 13.29.<br />

b) Here you have to evaluate the integral with respect to y last since all the other variables<br />

have y in the bounds. ∫ 2<br />

0 dy ∫ √ 4−y 2<br />

0 2x dx ∫ y<br />

0 dz = ∫ 2<br />

0 dy ∫ √ 4−y 2<br />

0 2x dx y = ∫ √<br />

2<br />

0 y dy x2 4−y<br />

|<br />

2<br />

0 =<br />

∫ 2<br />

0 y(4 − y2 ) dy = (2y 2 − y4<br />

4 )|2 0 = 8 − 4 = 4.<br />

c) Sketch the region in xy-plane first. The x-bounds are 0 ≤ x ≤ 1. The y-bounds are<br />

0 ≤ y ≤ √ x. The z-bounds are determined by the plane z = x + y + 1 and the xy-plane<br />

and so 0 ≤ z ≤ x + y + 1. So ∫ 1 ∫ √ x ∫ x+y+1<br />

0 0 0 6xy dx dy dz = ∫ 1<br />

0 6xdx ∫ √ x<br />

0 y dy ∫ x+y+1<br />

0 dz =<br />

∫ 1<br />

0 6xdx ∫ √ x<br />

0 y dy(x + y + 1) = ∫ 1<br />

y2<br />

0 6xdx (x + y3<br />

+ y2<br />

2 3 2 )|√ x<br />

0 = ∫ 1<br />

0 6xdx (x x + x3/2 + x) = 65.<br />

2 3 2 28


d) First, find the equation of the plane determined by P = (1, 0, 0), Q = (0, 2, 0) and R =<br />

(0, 0, 3). Vectors −→ P Q = (−1, 2, 0) and −→ P R = (−1, 0, 3) are in the plane so the vector perpendicular<br />

to the plane can be taken to be the cross product −→ P Q× −→<br />

⃗i ⃗j ⃗ k<br />

P R =<br />

−1 2 0<br />

= (6, 3, 2). The<br />

∣ −1 0 3 ∣<br />

equation of plane, using point P for example, is 6(x − 1) + 3y + 2z = 0 ⇒ 6x + 3y + 2z = 6 ⇒<br />

z = 3 − 3x − 3y.<br />

2<br />

Thus, the upper bound for z is 3 − 3x − 3 y. The lower bound for z is 0. In xy-plane we have<br />

2<br />

a triangle with vertices (0,0), (1,0) and (0,2). So, the bounds for x are 0 ≤ x ≤ 1. The lower<br />

bound for y is 0 and the upper bound is the line passing (0,2) and (1,0). The equation of this<br />

line is y = −2x + 2. Thus,<br />

∫ ∫ ∫ ∫ xy dx dy dz = 1<br />

0 xdx ∫ −2x+2<br />

0 ydy ∫ 3−3x− 3 2 y<br />

0 dz = ∫ 1<br />

0 xdx ∫ −2x+2<br />

0 ydy (3 − 3x − 3y) = 2<br />

∫ 1<br />

0<br />

xdx (3<br />

y2<br />

= 1<br />

10 .<br />

2<br />

− 3x<br />

y2<br />

2 − y3<br />

2 )|−2x+2<br />

0 = ∫ 1<br />

0<br />

xdx (3<br />

(−2x+2)2<br />

2<br />

− 3x (−2x+2)2<br />

2<br />

− (−2x+2)3<br />

2<br />

) = use calculator<br />

2. The upper bound for z can be obtained by solving 2x + 3y + 6z = 12 for z. So, 0 ≤ z ≤<br />

2 − 1x − 1 y. The projection of the relevant region in xy-plane is a triangle determined by the<br />

3 2<br />

coordinate axes and by the line 2x + 3y + 6(0) = 12 ⇒ y = 4 − 2 x (alternatively, find the<br />

3<br />

equation of the line passing (6,0) and (0,4)). The bounds for x are 0 ≤ x ≤ 6. The volume is<br />

V = ∫ 6<br />

0 dx ∫ 4− 2 3 x<br />

0 dy ∫ 2− 1 3 x− 1 2 y<br />

0 dz = ∫ 6<br />

0 dx ∫ 4− 2 3 x<br />

0 dy (2− 1x− 1y) = ∫ 6<br />

3 2 0 dx (2y − 1 y2<br />

xy − 2 3 4 )|4− 3 x<br />

0 =<br />

∫ 6<br />

0 dx (2(4 − 2x) − 1x(4 − 2x) − (4− 2 3 x)2<br />

) = use calculator = 8.<br />

3 3 3 4<br />

3. When integrating over the cube, the bounds for all three variables are 0 and 4. The volume of<br />

the cube of side 4 is 4 3 = 64 (which agrees with the fact that V = ∫ 4 ∫ 4 ∫ 4<br />

0 0 0 dxdydz = x|4 0y| 4 0z| 4 0 =<br />

64).<br />

The average value is f ave = 1<br />

64<br />

∫ 4 ∫ 4 ∫ 4<br />

0 0 0<br />

1 x<br />

xyz dxdydz = 2<br />

64 2 |4 y 2<br />

0 2 |4 0 z2<br />

2 |4 0 = 1<br />

64 83 = 8.<br />

4. The bounds are the same as in problem 1c. The mass is m = ∫ 1<br />

0<br />

∫ 1<br />

0 2 dx ∫ √ x<br />

0 (x + y + 1)dy = ∫ 1<br />

∫ √ x ∫ x+y+1<br />

0 0 2 dx dy dz =<br />

0 2(x√ x + x + √ x) dx = 2.633.<br />

2<br />

The x-coordinate is x = 1 ∫ √<br />

2.633 int1 x ∫ x+y+1<br />

0 0 0 2xdx dy dz = 1<br />

2.633 int1 02x(x √ x + x + √ x) dx =<br />

2<br />

= 0.647. Similarly you find that y = 0.418, and z = 1.032.<br />

1.705<br />

2.633

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!