07.04.2013 Views

Decapod Crustacean Phylogenetics - AToL Decapoda - Natural ...

Decapod Crustacean Phylogenetics - AToL Decapoda - Natural ...

Decapod Crustacean Phylogenetics - AToL Decapoda - Natural ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CRUSTACEAN ISSUES ] 3<br />

%. m<br />

II<br />

<strong>Decapod</strong> <strong>Crustacean</strong> <strong>Phylogenetics</strong><br />

edited by<br />

Joel W. Martin, Keith A. Crandall, and Darryl L. Felder<br />

£\ CRC Press<br />

J Taylor & Francis Group


<strong>Decapod</strong> <strong>Crustacean</strong> <strong>Phylogenetics</strong><br />

Edited by<br />

Joel W. Martin<br />

<strong>Natural</strong> History Museum of L. A. County<br />

Los Angeles, California, U.S.A.<br />

KeithA.Crandall<br />

Brigham Young University<br />

Provo,Utah,U.S.A.<br />

Darryl L. Felder<br />

University of Louisiana<br />

Lafayette, Louisiana, U. S. A.<br />

CRC Press is an imprint of the<br />

Taylor & Francis Croup, an informa business


CRC Press<br />

Taylor & Francis Group<br />

6000 Broken Sound Parkway NW, Suite 300<br />

Boca Raton, Fl. 33487 2742<br />


Contents<br />

Preface<br />

JOEL W. MARTIN, KEITH A. CRANDALL & DARRYL L. FELDER<br />

I Overviews of <strong>Decapod</strong> Phylogeny<br />

On the Origin of <strong>Decapod</strong>a<br />

FREDERICK R. SCHRAM<br />

<strong>Decapod</strong> <strong>Phylogenetics</strong> and Molecular Evolution 15<br />

ALICIA TOON. MAEGAN FINLEY. JEFFREY STAPLES & KEITH A. CRANDALL<br />

Development, Genes, and <strong>Decapod</strong> Evolution 31<br />

GERHARD SCHOLTZ. ARKHAT ABZHANOV. FREDERIKR ALWES. CATERINA<br />

BIEFIS & JULIA PINT<br />

Mitochondrial DNA and <strong>Decapod</strong> Phylogenies: The Importance of 47<br />

Pseudogenes and Primer Optimization<br />

CHRISTOPH D. SCHUBART<br />

Phylogenetic Inference Using Molecular Data 67<br />

FERRAN PALERO & KEITH A. CRANDALL<br />

<strong>Decapod</strong> Phylogeny: What Can Protein-Coding Genes Tell Us? 89<br />

K.H. CHU, L.M. TSANG. K.Y. MA. T.Y. CHAN & P.K.L. NG<br />

Spermatozoal Morphology and Its Bearing on <strong>Decapod</strong> Phylogeny 101<br />

CHRISTOPHER TUDGE<br />

The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 121<br />

AKIRA ASAKURA<br />

A Shrimp's Eye View of Evolution: How Useful Are Visual Characters in 183<br />

<strong>Decapod</strong> <strong>Phylogenetics</strong>?<br />

MEGAN L. PORTER & THOMAS W. CRONIN<br />

<strong>Crustacean</strong> Parasites as Phylogenetic Indicators in <strong>Decapod</strong> Evolution 197<br />

CHRISTOPHER B. BOYKO & JASON D. WILLIAMS<br />

The Bearing of Larval Morphology on Brachyuran Phylogeny 221<br />

PAUL F. CLARK


vi Contents<br />

II Advances in Our Knowledge of Shrimp-Like <strong>Decapod</strong>s<br />

Evolution and Radiation of Shrimp-Like <strong>Decapod</strong>s: An Overview 245<br />

CHARLES H..I.M. ERANSEN & SAMMY DE GRAVE<br />

A Preliminary Phylogenelic Analysis of the Dendrobranchiata Based on 261<br />

Morphological Characters<br />

CAROLINA TAVARES. CRISTIANA SERE.IO & JOEL W. MARTIN<br />

Phvlogeny of the Infraorder Caridea Based on Mitochondrial and Nuclear 281<br />

Genes (Crustacea: <strong>Decapod</strong>a)<br />

HEATHER D. BRACKEN. SAMMY DE GRAVE & DARRYL L. FEEDER<br />

III Advances in Our Knowledge of the Thalassinidean<br />

and Lobster-Like Groups<br />

Molecular Phylogeny of the Thalassinidea Based on Nuclear and 309<br />

Mitochondrial Genes<br />

RAFAEL ROBLES. CHRISTOPHER C. TUDGE, PETER C. DWORSCHAK, GARY C.B.<br />

POORE & DARRYL L. FBLDER<br />

Molecular Phylogeny of the Family Callianassidae Based on Preliminary 327<br />

Analyses of Two Mitochondrial Genes<br />

DARRYL L. FELDER & RAFAEL ROBLES<br />

The Timing of the Diversification of the Freshwater Crayfishes 343<br />

JESSE BREINHOLT. MARCOS PEREZ-LOSADA & KEITH A. CRANDALL<br />

Phylogeny of Marine Clawed Lobster Families Nephropidae Dana. 1852. 357<br />

and Thaumastochelidae Bate. 1888, Based on Mitochondrial Genes<br />

DALE TSHUDY. RAFAEL ROBLES. TIN-YAM CHAN, KA CHAI HO. KA HOU CHU,<br />

SHANE T. AHYONG & DARRYL L. FELDER<br />

The Polychelidan Lobsters: Phylogeny and Systematics (Polychelida: 369<br />

Polychelidae)<br />

SHANE T. AHYONG<br />

IV Advances in Our Knowledge of the Anomttra<br />

Anomuran Phylogeny: New Insights from Molecular Data 399<br />

SHANE T. AHYONG, KAREEN E. SCHNABHL & ELIZABETH W. MAAS<br />

V Advances in Our Knowledge of the Brachyura<br />

Is the Brachyura Podotremata a Monophyletic Group? 417<br />

GERHARD SCHOLTZ & COLIN L. MCLAY


Contents vii<br />

Assessing the Contribution of Molecular and Larval Morphological 437<br />

Characters in a Combined Phylogenetic Analysis of the Supcrfamily<br />

Majoidea<br />

KRISTIN M. HUI.TGREN, GUILLERMO GUHRAO, HERNANDO RL. MARQUES &<br />

EHRRAN P. PALERO<br />

Molecular Genetic Re-Examination of Subfamilies and Polyphyly in the 457<br />

Family Pinnotheridae (Crustacea: <strong>Decapod</strong>a)<br />

EMMA PALACIOS-THEIL. JOSE A. CUESTA. ERNESTO CAMPOS & DARRYL L.<br />

FELDER<br />

Evolutionary Origin of the Gall Crabs (Family Cryptochiridae) Based on 475<br />

16S rDNA Sequence Data<br />

REGINA WETZER. JOEL W. MARTIN & SARAH L. BOYCE<br />

Systematics, Evolution, and Biogeography of Freshwater Crabs 491<br />

NEIL CUMBERLIDGE & PETER K.L. NG<br />

Phylogeny and Biogeography of Asian Freshwater Crabs of the Family 509<br />

Gecarcinucidae (Brachyura: Potamoidea)<br />

SEBASTIAN KLAUS. DIRK BRANDIS. PETER K.L. NG. DARREN C.J. YEO<br />

& CHRISTOPH D. SCHUBART<br />

A Proposal for a New Classification of Porlunoidea and Cancroidea 533<br />

(Brachyura: Heterotremata) Based on Two Independent Molecular<br />

Phylogenies<br />

CHRISTOPH D. SCHUBART & SILKE RRUSCHRL<br />

Molecular Phylogeny of Western Atlantic Representatives of the Genus 551<br />

Hexapanopeus (<strong>Decapod</strong>a: Brachyura: Panopeidae)<br />

BRENT P. THOMA. CHRISTOPH D. SCHUBART & DARRYL L. FELDER<br />

Molecular Phylogeny of the Genus Cronius Stimpson, I860, with 567<br />

Reassignment of C. tumidulus and Several American Species ol' Port un us<br />

to the Genus Achelous De Haan, 1833 (Brachyura: Portunidae)<br />

FERNANDO L. MANTELATTO. RAFAEL ROBLES. CHRISTOPH D. SCHUBART<br />

& DARRYL L. FELDER<br />

Index 581<br />

Color Insert


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s<br />

AKIRAASAKURA<br />

<strong>Natural</strong> History Museum & Institute, Chiba, Japan<br />

ABSTRACT<br />

The mating systems of decapod crustaceans are reviewed and classified according to general patterns<br />

of lifestyles and male-female relations. The scheme employs criteria that focus on ecological, life<br />

history, and social determinants of both male and female behavior, and by these criteria nine types of<br />

mating systems are distinguished: (1) Short courtship: Both males and females are free-living (= not<br />

symbiotic with other organisms), and copulation occurs after brief behavioral interactions between a<br />

male and a female. (2) Precopulatory guarding: A male guards a mature female one to several days<br />

before copulation; both males and females are generally free-living. (3) Podding: In some largesize<br />

decapods, aggregations consisting of an extremely large number of individuals are formed, and<br />

mating occurs inside those aggregations. (4) Pair-bonding: In many symbiotic and some free-living<br />

species, males and females are found in a heterosexual pair and are regarded as having a monogamous<br />

mating system. They may live on or inside other organisms such as sponges, corals, molluscs,<br />

polychaetes, sea urchins, ascidians, and algal tubes. (5) Eusocial: In some sponge-dwelling snapping<br />

shrimps, a colony of shrimps contains a single reproductive female and many small individuals<br />

that apparently never breed. (6) Waving display: In many intertidal and semi-terrestrial crabs inhabiting<br />

mudflats or sandy beaches, males conduct visual displays that include species-specific dances<br />

to attract females. (7) Visiting: In some hapalocarcinid crabs, females are sealed inside a coral gall,<br />

and the male crab normally residing outside the gall is assumed to visit the gall for mating. (8)<br />

Reproductive swarm: In some pinnotherid crabs, mating occurs when a female is a free-swimming<br />

instar before she enters her definitive host. (9) Dwarf male mating: In some anomuran sand crabs,<br />

an extremely small male attaches near the gonopore of a free-living female.<br />

1 INTRODUCTION<br />

<strong>Decapod</strong> crustaceans are a large and diverse assemblage of animals. In most decapods, the sexes<br />

live separately and pair briefly as adults. Pairs are formed after a brief display, the sexes remain<br />

together for a relatively short period, the sexes separate after copulation, and the females assume<br />

all further parental duties such as selecting suitable habitat for egg incubation, aeration, and cleaning<br />

(Salmon 1983). However, recent discoveries of often-conspicuous behavior and male-female<br />

relations among decapods have shown that their mating system is highly diverse and is sometimes<br />

quite similar to mating systems of other animals such as birds, mammals, reptiles, and insects (see<br />

Shuster & Wade 2003; Duffy & Thiel 2007 for a review).<br />

As claimed by Emlen & Oring (1977) in their classic work on the relationships among ecological<br />

factors, sexual selection, and the evolution of mating system, sexual selection is the driving force that<br />

underlies the evolution of male-male competition and female choice. However, ecological factors<br />

apparently contribute to the evolution of mating systems as well as to behavioral and morphological<br />

differences between the sexes. From this point of view, much study has been conducted recently on<br />

the evolution of the mating system of decapods (see section 2 below).


122 Asakura<br />

In this paper, I describe the diversity of mating systems of decapods in an attempt to recognize<br />

and classify their general patterns from the viewpoints of the ecological, life history, and social determinants<br />

of both male and female behavior. Historically, there are two ways of describing mating<br />

systems (Shuster & Wade 2003). The first is in behavioral ecology, where mating systems are usually<br />

described in terms of the number of mates per male or female, such as monogamy, polygyny, and<br />

polyandry. The second is in terms of the genetic relationships between mating males and females,<br />

such as random mating, negative assortative mating (outbreeding), and positive assortative mating<br />

(inbreeding). My approach to describing mating systems of decapods is a "recognition of general<br />

pattern" approach, a kind of a combination of these two approaches that captures variation in the<br />

relationship between male and female, from promiscuity to monogamy, as well as the relationship<br />

between male guarding and the female tendency to settle down in certain places or to aggregate, and<br />

the complex nature of eusociality.<br />

Terminology generally follows Duffy & Thiel (2007). Additionally, some basic terms are redefined<br />

here, because these terms are sometimes used in more or less different ways according to taxa,<br />

including birds, mammals, and fish:<br />

• Monogamy (= pair bonding): One male and one female have an exclusive mating relationship.<br />

• Polygamy: One or more males have an exclusive relationship with one or more females. Three<br />

types are recognized: polygyny, where one male has an exclusive relationship with two or more<br />

females; polyandry, where one female has an exclusive relationship with two or more males;<br />

and polygynandry, where two or more males have an exclusive relationship with two or more<br />

females (the numbers of males and females need not be equal, and, in vertebrate species studied<br />

so far, the number of males is usually fewer).<br />

• Promiscuity: Any male within the group mates with any female.<br />

• Eusociality: Multigenerational (cohabitation of different generations), cooperative colonies with<br />

strong reproductive skew (reproductive division of labor, usually a single breeding female) and<br />

cooperative defense of the colony (after Duffy 2003).<br />

• Symbiosis: Here defined simply as dissimilar organisms living together.<br />

2 HISTORY OF STUDY<br />

The first important review of decapod mating systems was Hartnoll's (1969) publication on brachyuran<br />

crabs. He distinguished two types of mating systems. "Soft-female mating" was defined as copulation<br />

occurring immediately after molting of the female, usually preceded by a lengthy pre-molt<br />

courtship behavior including precopulatory guarding by the male. "Hard-female mating" was defined<br />

as mating in which the female copulates during the intermolt stage after a relatively brief<br />

courtship behavior.<br />

Through their intensive study of the harlequin shrimp Hymenocera picta, Wickler & Seibt (see<br />

Reference 16 in Appendix I, Table 10) found that these shrimp form stable heterosexual pairs based<br />

on individual recognition by chemical cues at a distance. Wickler & Seibt discussed several similar<br />

hypotheses, independently developed in research on crustaceans and humans, for the evolution of<br />

monogamy and other mating systems. Individual recognition in the monogamous mating system<br />

was intensively studied in the banded shrimp Stenopus hispidus by Johnson (1969, 1977).<br />

The report by Emlen & Oring (1977) was influential for studies on crustacean mating systems.<br />

They classified the mating system into the following categories:<br />

1. Monogamy<br />

2. Polygyny (subdivided into 2a, resource defense polygyny; 2b, female (or harem) defense<br />

polygyny; and 2c, male dominance polygyny (further subdivided into 2c-1, explosive breeding<br />

assemblages, and 2c-2, leks))


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 123<br />

3. Rapid multiple clutch polygamy<br />

4. Polyandry (subdivided into 4a, resource defense polyandry; and 4b, female access polyandry)<br />

Ridley (1983) intensively reviewed the precopulatory mate guarding behavior in various groups<br />

of animals including tardigrades, crustaceans, arachnids, and anurans, and discussed its evolution.<br />

Work on the behavior of the fiddler crabs (genus Uca) has contributed greatly to our understanding<br />

of the mating systems of brachyuran crabs. These studies include the works of H.O. von Hagen<br />

(e.g., von Hagen 1970), J. Crane (e.g., Crane 1975), J. Christy and his coworkers (e.g., Christy<br />

et al. 2003a, b), M. Salmon and his coworkers (e.g., Salmon & Hyatt 1979), R R. Y. Backwell and<br />

her coworkers (e.g., Backwell et al. 2000), M. Murai and his coworkers (e.g., Murai et al. 2002),<br />

and T. Yamaguchi (e.g., Yamaguchi 2001a, b). Based on the studies of Uca and other brachyurans,<br />

as well as other decapods, Salmon (1983) reported the diversity of behavioral interactions<br />

preceding mating in decapods, and he defined some of the consequences of these interactions in<br />

terms of sexual selection, courtship behavior, and mating systems. The book edited by Reback &<br />

Dunham (1983), which included Salmon's (1983) work, was a landmark in the study of decapod<br />

behavior.<br />

Christy (1987) reviewed the mating systems of brachyuran crabs and classified them, according<br />

to modes of competition among males for females, into three major categories and eight subcategories,<br />

as follows.<br />

1. Female-centered competition, including: la, defense of mobile females following free search;<br />

lb, defense of sedentary females following a restricted search; lc, capture, carrying, and<br />

defense of females at protected mating sites; and Id, attraction and defense of females at<br />

protected mating sites<br />

2. Resource-centered competition, including: 2a, defense of breeding sites; and 2b, defense of<br />

refuges<br />

3. Encounter rate competition, including: 3a, neighborhoods of dominance; and 3b, pure search<br />

and interception<br />

In their book on crustacean sexual biology, Bauer & Martin (1991) introduced developments in<br />

various fields and taxa of crustacean research, including studies on sex attraction, sex recognition,<br />

mating behavior, mating system, and structure and function associated with insemination. Bauer and<br />

his coworkers have extensively studied the mating behavior, mating system, and hermaphroditism<br />

of shrimps (e.g., see Bauer 2004 for a review).<br />

Through their intensive studies on the mating system of the spider crab Inachus and of the extended<br />

maternal care of semi-terrestrial grapsid crabs of Jamaica, Diesel and his coworker revealed<br />

examples of highly specialized mating and social systems in these crabs (see Diesel 1991; Diesel &<br />

Schubart 2D07 for reviews).<br />

Thiel and his students have conducted intensive research on the mating system of rock shrimps<br />

(see Reference 6 in Appendix I, Table 4) and symbiotic anomuran crabs (e.g., Baeza & Thiel 2003).<br />

Based on these studies, Thiel & Baeza (2001) and Baeza & Thiel (2007) reviewed factors affecting<br />

the social behavior of marine crustaceans living symbolically with other invertebrates. Similarly,<br />

Correa & Thiel (2003) reviewed mating systems in caridean shrimp and their evolutionary consequences<br />

for sexual dimorphism and reproductive biology. The book by Duffy & Thiel (2007) on the<br />

evolutionary ecology of social and sexual systems of crustaceans is a monumental landmark that<br />

synthesizes the state of the field in crustacean behavior and sociobiology and places it in a conceptually<br />

based, comparative framework. The relatively recent discovery of eusociality in snapping<br />

shrimp by Duffy has opened the door to a new field in social and mating systems of decapods (see<br />

Duffy 2007 for a review; see also sections 3.5 Eusocial type and 4.5 Evolution of the eusocial type<br />

below for further explanation).


124 Asakura<br />

Asakura (1987, 1990, 1993, 1994, 1995, 1998a, 1998b, 1999, 2001a, b, c), Imazu & Asakura<br />

(1994, 2006), and Nomura & Asakura (1998) reported mating systems and various aspects of sexual<br />

differences in the ecology and behavior of hermit crabs and other decapods.<br />

3 TYPES OF MATING SYSTEMS<br />

3.1 Short courtship type<br />

This type is generally seen in species whose males and females are free living, that is, not symbiotic<br />

with other organisms (Appendix 1, Tables 1, 2). Copulation occurs after a short courtship behavior<br />

by the male, or copulation occurs just after brief behavioral interactions between a male and a<br />

female. This type of courtship includes very different groups of decapods, from the most primitive<br />

group (dendrobranchiate shrimps) to groups specialized for certain habitats such as freshwater crayfishes,<br />

intertidal hermit crabs, and semi-terrestrial and terrestrial brachyuran crabs. It is perhaps the<br />

most widely seen mating system in decapods.<br />

No intensive aggressive behavior between males (for a female) has been reported in species of<br />

dendrobranchiate shrimps of the families Penaeidae and Sicyoniidae, caridean shrimps of the families<br />

Palaemonidae, Hyppolytidae, and Pandalidae, or anomuran sand crabs of the family Hippidae.<br />

In these species, females are generally similar in size to, or larger than, males. On the other hand,<br />

strong aggressive interaction is seen between males in freshwater crayfish species of all three families<br />

(Astacidae, Parastasidae and Cambaridae) as well as in brachyuran crabs of the Grapsoidea and<br />

Gecarcinidae. In these species, the male body and weaponry (chelipeds) are generally larger than<br />

the female.<br />

Among decapods exhibiting this mating system are species whose females molt before copulation<br />

(Appendix 1, Table 1) and those whose females do not molt before copulation (Appendix 1,<br />

Table 2). In species inhabiting terrestrial and semi-terrestrial habitats, females generally copulate<br />

in the hard shell condition; these species include land hermit crabs of the genus Coenobita and<br />

brachyuran crabs of the Grapsoidea and Gecarcinidae.<br />

In penaeid shrimp, the molting condition of copulating females is determined according to the<br />

type of thelycum. The thelycum is the female genital area, i.e., modifications of female thoracic<br />

sternites 7 and 8 (sometimes including thoracic sternite 6) that are related to sperm transfer and<br />

storage. A female with externally deposited spermatophores is said to have an "open thelycum,"<br />

which is formed by modifications of the posterior coxae and sternites to which the spermatophores<br />

attach. Primitive dendrobranchiate shrimps, including species of the families Aristeidae, Solenoceridae,<br />

Benthesicymidae, and the penaeid genus Litopenaeus, have open thelyca. In these species,<br />

females copulate in the hard shell condition. On the other hand, a "closed thelycum" refers to sternal<br />

plates that may (1) enclose a noninvaginated seminal or sperm receptacle, (2) cover a space that<br />

leads to spermathecal opening, or (3) form an external shield guarding the spermathecal openings.<br />

In the most advanced groups, including the penaeoid genera Fenneropenaeus, Penaeus, Farfantepenaeus,<br />

Melicertus, Marsupenaeus, Trachypenaeus, and Xiphopenaeus, females have closed thelyca.<br />

In these species, females molt just before copulation. Since no significant difference is seen in mating<br />

behavior between the open thelycum species and the closed thelycum species, Hartnoll's (1969)<br />

rule, which predicts a lengthy pre-molt courtship behavior associated with soft-female mating and a<br />

relatively brief courtship behavior with hard-female mating, does not hold in the case of the penaeid<br />

shrimps.<br />

A sperm plug, which is believed to preclude subsequent insemination by other males, is known<br />

in some species of Farfantepenaeus, Marsupenaeus, Metapenaeus, and Rimapenaeus (Appendix 1,<br />

Table 3).<br />

In all the above-mentioned taxa, copulation generally continues only for several minutes. After<br />

mating, the male separates from the female and presumably goes on to search for other females.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 125<br />

The habitat of species that exhibit this mating system varies, ranging from terrestrial through intertidal<br />

to deep water.<br />

3.2 Precopulatory guarding type<br />

This mating system also is generally seen in species whose males and females are free living<br />

(Appendix 1, Table 4). A male guards a mature female for one to several days before copulation.<br />

Generally, males aggressively fight for a female using their cheliped(s) and sometimes also the ambulatory<br />

pereopods. In some species, females always molt prior to mating and copulation; in other<br />

species, females may or may not molt prior to copulation. There are two types of guarding: (1) contact<br />

guarding of hermit crabs and brachyuran crabs, in which a male grasps part of the appendages,<br />

the body, or the shell (in the case of hermit crabs) of a mature female, and (2) non-contact guarding,<br />

as exhibited in Macrobrachium shrimps and Homarus lobsters, in which a male keeps a female<br />

without grasping her. After mating, postcopulatory guarding by a male for a female is sometimes<br />

observed (Appendix 1, Table 5). However, after postcopulatory guarding, or just after copulation,<br />

the male and female separate so that both may later mate with other individuals. Generally, in this<br />

mating system, the body size of males is larger than that of females, or weaponry (chelipeds) is<br />

more developed in males than in females.<br />

Species of the river prawn genus Macrobrachium are well known for the extremely long chelipeds<br />

in males. A male guards a female for one to several days before copulation and fights with<br />

other males using these chelipeds. In some species, such as M. australiense, a male has a nest (a<br />

saucer-shaped depression on the bottom), beckons a female to the nest, and guards and copulates<br />

with her in the nest. In the American lobster Homarus americanus, a male guards a female in his<br />

shelter, which is dug under rocks, boulders, or eelgrass, and the cohabitation of a male and a female<br />

lasts from one to three weeks.<br />

In hermit crabs of the genus Diogenes (Diogenidae) and in many species of the family Paguridae,<br />

al of which have unequal chelipeds in terms of both size and morphology, a male grasps the rim<br />

of the shell inhabited by a mature female by the minor cheliped, guards her for one to several<br />

days before copulation, and fights with other males approaching him using the major cheliped.<br />

In crab-shaped anomurans, the male Paralithodes brevipes conducts both pre-copulatory and postcopulatory<br />

guarding. The male claims a female by grasping her chelae or legs with his chelae, or<br />

he covers the female with his body. Similarly, the male Hapalogaster dentata grasps a female with<br />

his left chela and covers the female with his body; these guarding behaviors occur one to three days<br />

before copulation.<br />

In the brachyuran crab Corystes cassivelaunus (Corystidae), the male carries the female in his<br />

chelae, and, while stationary, holds one or both of the female's chelae in his own and holds her<br />

carapace close to his sternum. Such behavior continues up to several days before copulation. In<br />

species of the Cancridae and Portunidae, males carry the pre-molt female with her carapace or sternum<br />

held against the sternum of the male for a period of days; after this period the male releases<br />

the female so that she molts, and copulation occurs shortly after the molting. In many species in<br />

these two families, the male continues to carry the female after copulation in the pre-molt position<br />

until her integument has partially hardened. Sperm plugs, which are regarded as being produced<br />

by the males to block the females' genital duct to preclude subsequent insemination by other males<br />

(Diesel 1991), also are often reported for species of these families (Appendix 1, Table 6). In Menippe<br />

mercenaria (Xanthidae), the male guards the entrance to the burrow occupied by the pre-molt female,<br />

and they copulate as soon as the female molts. In species of the Majidae and Cheiragonidae,<br />

the male guards the female before copulation in a manner similar to what is seen in the Cancridae<br />

and Portunidae, where the male grasps the ambulatory pereopods, chelipeds, or body of the<br />

female.<br />

Species that exhibit this mating system are from the intertidal through shallow water to deep<br />

waters, but they are not found in terrestrial or semi-terrestrial environments.


126 Asakura<br />

3.3 Podding<br />

In large decapods inhabiting shallow waters, an aggregation consisting of an extremely large number<br />

of individuals in certain places is called a "pod." Podding is regarded as a type of behavior that is<br />

optional and that is associated with different stages in the species' life history, such as molting, mating,<br />

and the incubation period (Appendix 1, Table 7). The pod is also called a "heap" or "mound,"<br />

according to the locality and/or the species.<br />

The function of the pod may vary depending on the condition of the specimens within it (such as<br />

level of maturity, sex, intermolt stage) and possibly on changes in habitat condition, such as water<br />

temperature and presence of predators (Sampedro & Gonzalez-Gurriaran 2004). However, as listed<br />

in Appendix 1, Table 7, pods in some species have the function of facilitating mating, so I will treat<br />

this as a special kind of mass mating in some species.<br />

Stevens (2003) and Stevens et al. (1994), reporting more than 200 pods with a total of 100,000<br />

crabs of the majid Chionoecetes bairdi in an area of only 2 ha off Kodiak Island in Alaska in 1991,<br />

observed that the formation of the pods and mating synchronized with the spring tide. Similar observations<br />

were made for another majid, Hyas lyratus, by Stevens et al. (1992), who reported large<br />

aggregations during the mating season from off Kodiak Island. They found 200 mating pairs (males<br />

grasping females) among 2000 individuals in one pod. The majid crab Loxorhynchus grandis, distributed<br />

along the east coast of North America, often forms large aggregations numbering hundreds.<br />

of animals. The aggregation is composed of crabs of both sexes, and the function is thought to be<br />

the attraction of males for mating (Hobday & Rumsey 1999). DeGoursey & Auster (1992) reported<br />

large mating aggregations in another majid crab, Libinia emarginata, in April and May 1989. Many<br />

mating pairs were found in the aggregations, and the percentage of ovigerous females among all<br />

females increased from 26% on 1 May to 100% on 14 May. Males paired with females were significantly<br />

larger than unpaired males, while the paired and unpaired females were not significantly<br />

different in size. Carlisle (1957) monitored a pod consisting of 60-80 individuals of the majid crab<br />

Maja squinado in shallow waters in the English Channel; 20 were adult males and the rest were<br />

juvenile males and females in equal amounts. He observed crabs molting inside the pod and mating<br />

between intermolt males and postmolt females, which led him to conclude that the main purpose<br />

of podding is to provide protection for newly molted soft crabs against predators and to facilitate<br />

mating. However, later behavioral observations by Hartnoll (1969) indicated that copulation occurs<br />

between a male and a female in the intermolt stage. Furthermore, Sampedro & Gonzalez-Gurriaran<br />

(2004) found that the gonads of females in the pods were in an early stage of development (= not<br />

fully matured) and that the spermathecae were empty, suggesting to them that mating of this species<br />

occurs in deeper waters.<br />

In crab-shaped anomurans, large pods of the red king crab Paralithodes camtschaticus are well<br />

known in the northern Pacific Ocean, with each pod consisting of thousands of crabs in the 2-4<br />

year class (juveniles). Aggregations of adult red king crabs (ovigerous females) also were reported<br />

and are thought to be related to mating (Stone et al. 1993), but detailed surveys have not been<br />

conducted. Dense aggregations of the southern king crab Lithodes santolla have been reported from<br />

Chile (South America); however, the crabs forming these aggregations are juveniles, so this behavior<br />

is not thought be related to mating (Cardenas et al. 2007).<br />

In summary, podding is known only in large species distributed in temperate or boreal waters in<br />

both the Pacific and Atlantic oceans.<br />

3.4 Pair-bonding type<br />

Many species of decapods, in particular those that are symbiotic with other animals, have been<br />

reported as "found in a heterosexual pair" (Appendix 1, Tables 8-12). Most of these are considered


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 111<br />

to have a monogamous mating system, which is well known in birds and mammals. In species whose<br />

males engage in mate-guarding, temporal heterosexual pairing occurs, where the pair is formed<br />

when the female is close to molting or spawning a new batch of unfertilized eggs, and the mateguarding<br />

males abandon the females soon after the eggs are fertilized. However, in pair-bonding<br />

species, males cohabit with females, independent of their reproductive status or of the stage of<br />

development of the brooded embryos. Nevertheless, the observations for the monogamous nature<br />

of these pair-bonding species are often only anecdotal, and how long the pair remains together, and<br />

with whom they mate, is rarely recorded. Some well-documented studies include the formation of<br />

stable pairing and individual recognition (individuals in a pair can recognize each other as mates),<br />

as in the case of the banded shrimp Stenopus hispidus (Reference 8 in Appendix 1, Table 10), the<br />

scarlet cleaner shrimp Lysmata debelius (Reference 12 in Appendix 1, Table 10), and the harlequin<br />

shrimp Hymenocera picta (Reference 16 in Appendix 1, Table 10).<br />

Detailed observations of the monogamous nature of pairing have been made for several species<br />

of snapping shrimps, for example, Alpheus angulatus (Reference 97 in Appendix 1, Table 9),<br />

Alpheus heterochaelis (Reference 99 in Appendix 1, Table 9), Alpheus armatus (Reference 28 in<br />

Appendix 1, Table 9), and Alpheus roquensis (Reference 31 in Appendix 1, Table 9), as well as for<br />

the pontoniid shrimp Pontonia margarita (Reference 45 in Appendix 1, Table 8), the deep-water<br />

sponge-dwelling shrimp Spongicola japonica (Reference 1 in Appendix 1, Table 10), a porcelain<br />

crab Poly onyx gibbesi (Reference 11 in Appendix 1, Table 11), and several species of coral crabs<br />

of the genus Trapezia (References 2-14 in Appendix 1, Table 12). Many pair-bonding species are<br />

known in caridean shrimps of the subfamily Pontoniinae and family Alpheidae, "cleaner" shrimps<br />

of the families Stenopodidae and Spongicolidae, crab-shaped anomurans (family Porcellanidae),<br />

and brachyuran crabs of the family Trapeziidae.<br />

Most of these species are symbiotic with other animals or live in special habitats. Host animals<br />

for these species include sponges, sea anemones, black corals, reef-building corals, gastropods,<br />

opistobranch molluscs, bivalves, polychaetes, crinoid feather stars, sea stars, sea urchins, sea cucumbers,<br />

and ascidians. The special habitats include gastropod shells used by large hermit crabs; tubes<br />

of polychaetes such as Chaetopterus; soft, web-like tubes consisting of filamentous algae, sponges,<br />

and other debris built by shrimp themselves; burrows excavated in hard dead corals; burrows of gobiid<br />

fish; and burrows of the thalassinidean shrimp genus Upogebia. However, free-living species are<br />

also known, such as stenopodid shrimps inhabiting rocky subtidal zones and many alpheid shrimp<br />

species inhabiting rock crevices or found under rubble, around large algae, or in burrows of their<br />

own in mudflats and other soft bottoms.<br />

The following generalizations can be made for almost all of these species. They are territorial,<br />

and they cooperatively defend their habitats (hosts, special habitats, and burrows) against other conspecific<br />

or non-conspecific animals. Thus, the mating system of these species is termed "resourcedefense<br />

monogamy." The pairs are size-matched (— size-assortative pairing); there is strict preference<br />

exerted by either sex for mates of a particular size relative to themselves. Baeza (2008) proposed<br />

two possible explanations for this phenomenon in his study on pontoniid shrimps symbiotic<br />

with bivalves:<br />

1. The two sexes might choose large individuals of the opposite sex as sexual partners and host<br />

companions. In males, a preference for large females should be adaptive, as female size is<br />

positively correlated with fecundity in shrimps. In females, sharing a host with a large male<br />

might result in indirect benefits (i.e., good genes) or direct benefits (increased protection<br />

against predators or competitors).<br />

2. Choice of a certain-size partner could also be a consequence of constraints in the growth rates<br />

of shrimps dictated by host individuals. Space limitations for shrimps in hosts are suggested<br />

by the tight relationship between shrimp and host size, and by the fact that hosts harboring<br />

solitary or no shrimps were among the small hosts.


128 Asakura<br />

These species tend to display low sexual dimorphism in weaponry in terms of cheliped size and morphology<br />

and often in body size. This is in contrast to the large sexual differences in mate-guarding<br />

species in which the weaponry is much more developed and where body size is often much larger<br />

in males than in females. Regarding body size, there is a tendency in pair-bonding shrimp for the<br />

male to be slightly smaller, in terms of body length, and much more slender than its mate female;<br />

in trapeziid crabs the male is often slightly larger than his female mate.<br />

The bathymetric distribution of species with this mating system is generally from intertidal to<br />

shallow water, but a few groups of species, such as those of the Spongicolidae, inhabit deep water.<br />

3.5 Eusociality type<br />

Until the discovery of the eusocial shrimp Zuzalpheus regalis (as Synalpheus regalis) (Duffy 1996),<br />

eusociality was recognized only among social insects, including ants, bees, and wasps (Hymenoptera)<br />

and termites (Isoptera); in gall-making aphids (Hemiptera); in thrips (Thysanoptera); and in<br />

two mammal species, the naked mole rat (Heterocephalus glaber) and the damaraland mole rat<br />

(Cryptomys damarensis). Zuzalpheus regalis lives inside large sponges in colonies of up to >300<br />

individuals, with each colony containing a single reproductive female. Direct-developing juveniles<br />

remain in the natal sponge, and allozyme data indicate that most colony members are full siblings.<br />

Larger members of the colony, most of whom apparently never breed, defend the colony against<br />

heterospecific intruders (Duffy 1996).<br />

Following this initial discovery, Duffy and his coworkers have found several other species<br />

of Zuzalpheus exhibiting monogynous, eusocial colony organization in the western Atlantic<br />

(Appendix 1, Table 13). In the Indo-west Pacific region, Didderen et al. (2006) found a colony<br />

of a sponge-dwelling alpheid shrimp, Synalpheus neptunus neptunus, with one large ovigerous female<br />

or "queen" together with many small individuals, indicating a eusocial colony organization<br />

(Appendix 1, Table 13).<br />

Some 20 species of symbiotic decapod species have been reported as found in a group<br />

(Appendix 1, Tables 14-15). Among them, examples of Synalpheus and Zuzalpheus exhibited more<br />

than 100 individuals in one aggregation, and, in particular in the case of Zuzalpheus brooksi, more<br />

than 1000 individuals were recorded from one sponge. These aggregations are regarded either as<br />

having a non-social structure (Thiel & Baeza 2001) or with the social structure totally unknown.<br />

3.6 Waving display type<br />

In many species of the crab families Ocypodidae, Dotillidae, and Macrophthalmidae, and in species<br />

of the genus Metaplax of the family Varunidae (formerly subfamily Varuninae in the Grapsidae<br />

sensu lato), males perform waving displays using the chelipeds. As in many other territory advertisement<br />

signals in animals, this behavior is commonly thought to have the dual function of simultaneously,<br />

repelling males and attracting females (e.g., Salmon 1987; Crane 1975). These species<br />

typically live in mudflats, tidal creeks, sandbars, and mangrove forests, and each individual has its<br />

own burrow with a small territory around it. They often occur in huge numbers, with thousands of<br />

individuals living in small, adjacent territories, and with males and females living intermixed. The<br />

burrow serves various functions, including a refuge during high tide, an escape from predators, and<br />

the site of mating, oviposition, and incubation.<br />

The behavior and mating systems of fiddler crabs (genus Uca, Ocypodidae) have been intensively<br />

studied (see references in History of Study, above). There are species whose males defend<br />

burrows from which they court females and species whose males wander from their burrows and<br />

court females on the surface (Christy 1987). For the former group of species, the following generalization<br />

is possible (based mainly on P. Backwell and coworkers; see references in History of Study,<br />

above). Males wave their enlarged claw, and, when a female is ready to mate (i.e., she matures),<br />

she leaves her own burrow and wanders through the population of waving males. The female visits


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 129<br />

several males before selecting a mate, and a visit consists of a direct approach to the male. Before<br />

copulation^ both individuals enter the male's burrow, and two behavioral patterns are known: the<br />

male enters his burrow first and the female follows him in, or it happens in the reverse order, i.e.,<br />

the female enters first. The male then gathers up sand or mud to plug the burrow entrance. Mating<br />

occurs in the burrow. On the following day, the male emerges, reseals the burrow entrance with the<br />

female still underground, and leaves the area. The female remains underground for the following<br />

few weeks while she incubates her eggs.<br />

In addition to waving displays, males of some fiddler crab species employ acoustic signals to<br />

attract females. In these species, males attract females during the day first by waving and then by<br />

producing sounds just within their burrows. At night, the males produce sounds at low rates, but<br />

when touched by a female they increase their rate of sound production (Salmon & Atsaides 1968).<br />

Many species of ocypodid crabs build sand structures next to their burrows, some of which function<br />

to attract females for mating, such as pillars (Uca: Christy 1988a, b), hoods (Uca: Zucker 1974,<br />

1981; Christy et al. 2002, 2003a, b), mudballs (Uca: Oliveira et al. 1998), and pyramids (Ocypode:<br />

Linsenmair 1967; Hughes 1973).<br />

3.7 Visiting type<br />

An interesting mating system has been suggested for coral gall crabs (family Cryptochiridae), which<br />

inhabit cavities in scleractinian corals in (usually) shallow water. However, the information is still<br />

anecdotal, based on ecological observations on Hapalocarcinus marsupialis, Troglocarcinus corallicola,<br />

and Opecarcinus hypostegus (Potts 1915; Fize 1956; Kropp & Manning 1987; Takeda &<br />

Tamura 1981; Hiro 1937; Kotb & Hartnoll 2002; Carricart-Ganivet et al. 2004). In H. marsupialis<br />

and T. corallicola, the male crab normally resides outside the gall, which was constructed by the<br />

female, and is thought to visit the gall of the female for mating. The males and females apparently<br />

show promiscuity, and male-male aggressive behavior for a female has not been reported. The female<br />

is much larger than the male and in some species has a soft body with a very large abdomen. On<br />

thfe other hand, the male is usually hard, with a small abdomen. Geographical distribution includes<br />

mostly the tropics (see Wetzer et al. this volume).<br />

In Opecarcinus hypostegus, couples were found sharing cavities; ovigerous females and males<br />

are recorded inhabiting adjoining cavities on colonies of Siderastrea stellata corals (Carricart-<br />

Ganivet et al. 2004). This species may have a mating system different from the above.<br />

3.8 Reproductive swarm type<br />

This mating system is reported only in pinnotherid crabs that are considered parasitic or co-inhabiting<br />

with other animals, including bivalves, gastropods, sea slugs, chitons, polychaetes, echinoderms,<br />

burrowing crustaceans, and sea squirts (Cheng 1967; Gotto 1969). In several species of these crabs,<br />

mating occurs, or is thought to occur, when the female is in the free-swimming stage before she<br />

enters into her definitive host (Appendix 1, Table 16).<br />

The following generalization is possible for these species. Adult females have a soft, membranous<br />

carapace, and generally each one lives by itself within its host animal. These females produce<br />

broods of planktonic larvae. After development, the larvae metamorphose into the "invasive stage"<br />

crab, which is morphologically similar to the later swimming stage in having a flattened shape and<br />

ambulatory legs with dense setae adapted for swimming. Following this stage is a stage designated<br />

as "prehard"; these crabs invade, and live in, the host invertebrate animals. The crab at this stage<br />

is soft, resembling the later posthard stage. These crabs grow and mature into small adults of both<br />

sexes and leave their host to join mating swarms in open water. This stage is called the "hard stage,"<br />

swimming stage, or copulation stage, and it is characterized by a hard body, swimming legs densely<br />

fringed with setae, and a thick fringe of setae along the front of the carapace. They copulate at<br />

this stage, and, in all reported species (see Appendix 1, Table 16), females copulate in the hard


130 Asakura<br />

shell condition. After copulation, each female enters the host animal, but the male dies. The female<br />

becomes soft and grows much larger in the host, and later the female produces eggs fertilized by<br />

sperm from her single mating.<br />

This is a kind of mass mating, with males and females showing promiscuity. In the copulation<br />

stage, no intensive aggressive behavior between males for females has been reported. The males<br />

in this stage are slightly larger than the females, and the morphology is similar between the sexes.<br />

After the female enters the host animal, the female becomes soft and grows much larger and stouter.<br />

The species with this mating system are found generally from intertidal to shallow water where their<br />

host invertebrates occur. In some pinnotherid species, adult crabs are found in a heterosexual pair in<br />

the host animal, although life history and mating systems of these species are mostly unknown.<br />

3.9 Neotenous male type<br />

Extremely small, neotenous males exist in some species of anomuran sand crabs (genus Emerita)<br />

inhabiting wave-exposed sandy beaches in tropical and temperate waters (Appendix 1, Table 17). In<br />

these species, the males become sexually mature soon after their arrival on the beach as a megalopa.<br />

When copulating, a male attaches near one of the female's gonopores, which are located on the<br />

coxae of the third pereopods. Surprisingly, the size of the neotenous males is similar to, or smaller<br />

than, those coxae.<br />

Protandric hermaphroditism is described in detail in Emerita asiatica as it relates to neotenous<br />

males (Subramoniam 1981). The neotenous males occur at 3.5 mm carapace length (CL) and above,<br />

whereas females acquire sexual maturity at 19 mm CL. The neotenous males, as they continue<br />

to grow, gradually lose male functions and reverse sex at about 19 mm CL. In the CL range of<br />

19-22 mm, the male's gonad consists of inactive testicular and active ovarian portions. Androgenic<br />

glands, active in the neotenous males, show signs of degeneration in the larger males and disappear<br />

in the intersexuals.<br />

The male separates from the female after copulation. Aggressive behavior between males is not<br />

reported. As opposed to the female, the neotenous male shows a general simplicity of appendages<br />

associated with its small size. Among decapods, this phenomenon is known only in species of<br />

Emerita.<br />

4 EVOLUTION OF MATING SYSTEMS IN DECAPODA<br />

4.1 Introduction<br />

It is apparent from the above that similar mating systems have evolved independently in different<br />

taxa at different times; i.e., convergent evolution is widespread. Species in ecologically similar<br />

habitats often display patterns that are strikingly comparable. Here I discuss the possible origin and<br />

evolutionary pathway of each mating system and compare them with those of other animals.<br />

4.2 Evolution of the short courtship type and the precopulatory type<br />

These two mating systems are most dominant among decapods. The mode of life is often quite<br />

similar; both males and females are free living (not symbiotic with other organisms), and after<br />

mating the male soon separates from the female. However, the habitat is sometimes different; in<br />

terrestrial and freshwater species, only the short courtship type has been reported. Therefore, a<br />

question arises as to why some groups of species have evolved the prolonged precopulatory mate<br />

guarding, whereas others have not.<br />

Precopulatory mate guarding is known in a very broad range of taxa such as tardigrades, crustaceans,<br />

arachnids, and anurans (Parker 1974; Ridley 1983; Conlan 1991). It is thought to evolve<br />

when male-male competition for females is strong enough and female receptivity is restricted in


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 131<br />

time (Parker 1974; Jormalainen 1998), or even if receptivity is not time-limited but the guarding<br />

costs are low enough (Yamamura 1987). Guarding should be beneficial to the male, if the expected<br />

fitness gain achieved by guarding is greater than that expected by continuing to search for other<br />

females (Parker 1974). Thus, the optimal guarding duration for the male is determined by the encounter<br />

rate of females and the costs of guarding relative to those of searching (Yamamura 1987).<br />

The cost of guarding for males includes decreased mobility and feeding (Adams et al. 1985, 1991;<br />

Robinson & Doyle 1985), an increase in predation risk while guarding (Verrel 1985; Ward 1986), increased<br />

energetic costs associated with carrying females (Sparkes et al. 1996; Plaistow et al. 2003),<br />

and an increase in fighting costs through male-male conflict (Benesh et al. 2007; Yamamura &<br />

Jormalainen 1996). Additionally, a long guarding time decreases future opportunities to mate with<br />

other females (Benesh et al. 2007).<br />

Pelagic dendrobranchiate and caridean shrimps are primarily swimmers, and possibly for that<br />

reason they have not evolved prolonged, elaborate behavioral interactions before copulation. However,<br />

the above-mentioned energetic cost hypothesis (Sparkes et al. 1996; Plaistow et al. 2003) may<br />

be applicable; for males of these species, carrying a swimming female for a long duration requires<br />

much more energy than in benthic species. In fact, all species exhibiting a prolonged precoulatory<br />

guarding period are benthic species.<br />

In all freshwater crayfish studied, the mating system includes a short courtship without a lengthy<br />

precopulatory guarding, even though they have a benthic lifestyle and male-male aggression is<br />

often common. They may live in their burrows separately, or underneath boulders or heaps of fallen<br />

leaves, and these habitats are quite similar to, or virtually the same as, those of shrimps of the genus<br />

Macrobrachium. Why males of Macrobrachium adopt a precopulatory guarding strategy whereas<br />

male crayfish do not is not known.<br />

A similar question arises in intertidal and shallow water decapods. For example, intertidal hermit<br />

crab species exhibiting precopulatory guarding have a tendency toward vastly unequal chelipeds,<br />

with a well-developed major cheliped particularly in males, who use it for fighting with<br />

olher males during guarding. Such species include those of the genera Pagurus (Paguridae) and<br />

Dmgenes (Diogenidae). On the other hand, species of Paguristes have small and similar right and<br />

left chelipeds and execute short courtship mating; males do not aggressively fight with other males.<br />

Species of Calcinus, which conduct short courtship type mating, often have vastly unequal chelipeds,<br />

with the well-developed major cheliped similar to those species that display precopulatory<br />

guarding. However, males of Calcinus species do not aggressively fight with each other during mating.<br />

Further study is needed to clarify the relationship between mating behavior and morphology.<br />

In land hermits and land brachyurans, the above-mentioned predation risk hypothesis (Verrel<br />

1985; Ward 1986) may be applicable to those species where mating system is the short-courtship<br />

type with hard-female mating. Male-male aggression is common in these taxa, but they have never<br />

evolved precopulatory guarding. Prolonged guarding may carry the risk of attack by visual predators<br />

such as birds in a terrestrial environment. In these taxa, a strong connection exists between a<br />

prolonged precopulatory guarding and soft-female mating as well as between a short courtship and<br />

hard-female mating. When marine species adapted to land, the former mating system might have<br />

been lost and changed to the latter, i.e., from soft-female to hard-female, to avoid desiccation and<br />

to deal with the large and often unpredicted fluctuations in availabilities of females in a terrestrial<br />

environment.<br />

The evolution of sperm plugs in species of short-courtship type (penaeid shrimps) and precopulatory<br />

type (brachyuran crabs) is interesting. The sperm plug has virtually the same function as<br />

the copulation plug (= copulatory plug, mating plug) in mammals (rodents, bats, monkeys, koala),<br />

reptiles (snakes and lizards), insects (butterflies, ants, dragonflies, and stinkbugs), spiders, and acanthocephalan<br />

worms (Smith 1984). These plugs, secreted by the male after mating, serve to block the<br />

female tract for some time to prevent further mating by other males.


132 Asakura<br />

4.3 Evolution of the podding type<br />

Why many animal species (e.g., insects, fish, birds, and herbivorous mammals) group together is<br />

one of the most fundamental questions in evolutionary ecology. It is believed that strong selective<br />

pressures lead to aggregation rather than to a solitary existence in most of these groups. These pressures<br />

include protection against predators, increased foraging efficiency, increased ease of assessing<br />

potential mates, and increased information exchange about the location of food (Barta & Giraldeau<br />

2001). Similarly, various ecological reasons for the formation of pods have been proposed, including<br />

protection during molting, location of mates, aiding in food capture, and protection from predation<br />

(see References in Appendix 1, Table 7). Why some species evolved aggregating behavior and others<br />

did not is unknown.<br />

4.4 Evolution of the pair-bonding type<br />

Heterosexual pairing behavior ("social monogamy," Gowaty 1996; Bull et al. 1998; Gillette et al.<br />

2000; Wickler & Seibt 1981) has evolved many times in a broad range of animal taxa, including<br />

mammals, birds, reptiles, amphibians, fish, insects, and crustaceans. For example, a colony of<br />

scleractinian coral sometimes yields a pair of goby fish, alpheid shrimps, and trapeziid crabs. Researchers<br />

interested in social system evolution must look for ecological and physiological factors<br />

(beyond basic sexual differences) that may make social monogamy selectively advantageous to individual<br />

males and/or females. Of particular interest are factors that may consistently correlate with<br />

such behavior across taxonomic groups. Several hypotheses for the evolution of social monogamy<br />

have been developed [see also Mathews (2002b), Baeza (2008), Baeza & Thiel (2007) for a review],<br />

as follows.<br />

Biparental care hypothesis: Kleiman (1977) argued that the advantages of monogamy in mammals<br />

can lead to social monogamy. The hypothesis also implies that both males and females would<br />

suffer significantly reduced or zero fitness if they did not cooperate in caring for the offspring. However,<br />

this is not the case for marine decapods, where only the females care for the fertilized eggs<br />

and where neither parent cares for the larvae.<br />

Extended mate guarding hypothesis: If males are under selection to guard females for some<br />

time before, during, and/or after courtship and mating, they may be forced into partner-exclusive<br />

behavior by some other factor, such as female dispersion (Kleiman 1977; Wickler & Seibt 1981)<br />

or female-female aggression (Wittenberger & Tilson 1980). In other words, monogamy can result<br />

from males guarding females over one or multiple reproductive cycles, because the female's synchronous<br />

receptivity, density, or abundance relative to males renders other male mating strategies<br />

(pure searching) less successful (Parker 1970; Grafen & Ridley 1983).<br />

Territorial cooperation hypothesis: The fact that most monogamous species are territorial leads<br />

to this hypothesis. Territoriality correlates in various ways with social system evolution (Emlen &<br />

Oring 1977; Hixon 1987), and cooperation in territorial defense can lead to individual advantages<br />

in social groups or pairs (Brown 1982; Davies & Houston 1984; Fricke 1986; Clifton 1989, 1990;<br />

Farabaugh et al. 1992). In other words, males and females benefit by sharing a refuge (a territory)<br />

as heterosexual pairs because, for example, the risk of being evicted from the territory by intruders<br />

decreases (Wickler & Seibt 1981).<br />

Recent intensive behavioral studies in various species shrimps have supported the predictions of<br />

the mate-guarding and/or territorial cooperation hypotheses (e.g., in Hymenocera picta, Wickler &<br />

Seibt 1981; Alpheus angulatus, Mathews 2002a, b, 2003; and Alpheus heterochelis, Rahman et al.<br />

2002,2003).<br />

Another hypothesis about social monogamy (Baeza & Thiel 2007) concerns species symbiotic<br />

to other organisms (= host). Baeza & Thiel predicted that monogamy evolved when hosts are<br />

small enough to support few individuals and are relatively rare, and when predation risk away<br />

from the hosts is high. Under these circumstances, movements among hosts are constrained, and


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 133<br />

monopolization of hosts is favored in males and females due to their scarcity and because of the<br />

host's value in offering protection against predators. Because spatial constraints allow only a few<br />

adult symbiotic individuals to cohabit in/on the same host, both adult males and females would<br />

maximize their reproductive success by sharing "their" dwelling with a member of the opposite sex.<br />

This hypothesis was supported by Baeza's (2008) intensive study on a heterosexual pair of Pontonia<br />

margarita, a species symbiotic to the pearl oyster.<br />

However, as mentioned before, most of observations for this mating system are anecdotal,<br />

and further detailed study is needed to clarify actual conditions of monogamous features of those<br />

species.<br />

4.5 Evolution of the eusocial type<br />

Hypotheses explaining how eusociality has evolved include Trophallaxis Theory (Roubaud 1916),<br />

Parental Manipulation Theory (Michener & Brothers 1974), Superorganism Theory (Reeve &<br />

Holldobler 2007), and Inclusive Fitness Theory (Hamilton 1964a, b), of which the last one is most<br />

widely accepted. According to the Inclusive Fitness Theory, eusociality may evolve more easily in<br />

species exhibiting haplodiploidy, which facilitates the operation of kin selection. Although eusocial<br />

mole rats and termites exhibit diploidy, they display high levels of inbreeding by living as a family<br />

in a single burrow, such that colony members share more than 50% of their genes, and therefore<br />

the same model is considered to apply to these species and also to eusocial Zuzalpheus shrimps, in<br />

which all members of a colony share a single sponge.<br />

4.6 Evolution of the waving display type<br />

As compared to terrestrial species, courtship in aquatic species may be short and may not involve<br />

elaborate visual signaling (display) by the males; in aquatic species, chemical or visual cues are<br />

more important stimuli. In species of several genera of semi-terrestrial (-upper intertidal) decapods<br />

including Uca and other ocypodid crabs, visual signalling for prolonged periods is common, and<br />

sounds are often emitted by males to "call" females from their burrows to the surface for mating.<br />

Salmon •& Atsaides (1968) presented ecological arguments to account for these differences in terms<br />

of optimal strategy of distance communications in the terrestrial and aquatic environments. Most<br />

aquatic decapods are nocturnally active and cryptic and live in an acoustically noisy environment,<br />

and this situation virtually eliminates all but the chemical channel for effective distance communication.<br />

On the other hand, visual and acoustic signals are effective in terrestrial species and are well<br />

developed in most terrestrial animals such as insects, birds, mammals, and also ocypodid and other<br />

terrestrial and semi-terrestrial decapods, probably because of the greater visibility in the terrestrial<br />

environment.<br />

Waving displays seen in a variety of semi-terrestrial crabs is a case of convergent evolution<br />

(Kitaura et al. 2002). Grapsid crabs of the genus Metaplax conduct waving displays like species<br />

of the ocypodid crab genera Uca, Macrophthalmus, Scopimera, and Dottila (Kitaura et al. 2002).<br />

Species of Metaplax, unlike other grapsid crabs, which generally live along rocky shores, live in<br />

mud flats and burrow into the mud like many ocypodids. Salmon & Atsaides (1968) proposed the<br />

following factors as advantageous for the evolution of visual signaling in semi-terrestrial crabs: the<br />

substrate, which is flat and relatively free from the vegetational obstructions and other discontinuities;<br />

diurnal activity of the crabs; and the feeding proximity to their shelters, which leads crabs<br />

to live in aggregations so that social contacts are frequent. Therefore, it is assumed that habitat<br />

similarity between Metaplax and ocypodid crabs resulted in convergent evolution of these displays.<br />

A recent molecular phylogenetic analysis suggested that even the waving display in Uca has<br />

multiple origins (Sturmbauer et al. 1996). Indo-west Pacific Uca species have simpler reproductive<br />

social behaviors, are more marine, and were thought to be ancestral to the behaviorally more complex<br />

and more terrestrial American species. It was also thought that the evolution of more complex


134 Asakura<br />

social and reproductive behavior was associated with the colonization of the higher intertidal zones.<br />

However, Sturmbauer et al. (1996) demonstrated that species bearing the set of "derived traits" are<br />

phylogenetically ancestral, suggesting an alternative evolutionary scenario: the evolution of reproductive<br />

behavioral complexity in fiddler crabs may have arisen multiple times during their evolution,<br />

possibly by co-opting of a series of other adaptations for high intertidal living and antipredator<br />

escape.<br />

This mating system is quite similar to male-territory-visiting polygamy (Kuwamura 1996) in<br />

fish, in which many examples are known in intertidal or shallow species; males have a burrow or a<br />

territory, and, when a mature female approaches a male, the male changes the color of part of his<br />

body and/or conducts species-specific courtship displays, after which the female enters the burrow<br />

or territory of the male and spawns (e.g., Miyano et al. 2006). In these fish species, males are brilliantly<br />

colored, as are male Uca species.<br />

4.7 Evolution of the visiting type<br />

A widely recognized tendency among various kinds of animals is that females live in a particular<br />

place and have a narrow home range, whereas males have a comparatively wider home range<br />

(Clutton-Brock et al. 1982). This "visiting type" mating system (seen in cryptochirid crabs) probably<br />

has evolved as one extremity of this tendency, with females living in a very specialized habitat<br />

(inside coral galls).<br />

4.8 Evolution of the reproductive swarm type<br />

Surprisingly, the function of the reproductive swarm in pinnotherid crabs is very similar to that of<br />

the nuptial flight (mating swarm) in ants (Insecta, Formicidae), and indeed their life history is quite<br />

similar. In most species of ants, breeding females and males that mature in their mothers' nest have<br />

wings and, during the breeding season, fly away from their nests and form swarms. Mating occurs<br />

during this period, and the males die shortly afterward. The surviving females land, and each female<br />

digs a burrow for the new nest. As eggs are laid in the burrow, stored sperm, obtained during their<br />

single nuptial flight, is used to fertilize all future eggs produced.<br />

In the pinnotherids, crabs first grow in their host animals (vs. ants in their initial burrow). Then<br />

the crabs with swimming setae leave the hosts and swarm (vs. ants with wings fly away from their<br />

nests and conduct the nuptial flight). Mating occurs during this period (in ants, too), after which the<br />

female crabs enter the hosts, whereas the males die just after the mating (vs. the female ants make<br />

burrows of their own, with males dying just after the mating). As in the case of the ants, the female<br />

crabs reproduce by fertilizing their eggs with sperm from a single mating.<br />

4.9 Evolution of the neotenous male type<br />

The miniaturization of male mole crabs in the anomuran genus Emerita coupled with neoteny is<br />

similar to "dwarf males" (parasitic males, complemental males, miniature males), which are tiny<br />

males often attached to females. This condition has evolved in various groups of animals, including<br />

thoracican barnacles (Yamaguchi et al. 2007), acrothoracican barnacles (Kolbasov 2002), the oyster<br />

Ostreapuelchanas (Castro & Lucas 1987; Pascual 1997), epicaridean isopods (Mizoguchi et al.<br />

2002), an echiuran Bonellia (Berec et al. 2005), anglerfish (Lophiiformes) (Pietsch 2005), blanket<br />

octopus (Tremoctopodidae), argonauts (Argonautidae), football octopus (Ocythoidae), and a deeper<br />

water octopus Haliphron atlanticus (Alloposidae) (Norman et al. 2002). The evolutionary cause for<br />

these phenomena has not been fully studied. The neoteny of male Emerita is considered to be one<br />

rather radical evolutionary solution to the problem of keeping the male and female together in the<br />

harsh and turbulent surf zone environment (Salmon 1983; Subramoniam & Gunamalai 2003).


ACKNOWLEDGEMENTS<br />

The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 135<br />

I am deeply grateful to Joel W. Martin (<strong>Natural</strong> History Museum of Los Angeles County, U.S.A.)<br />

for giving me the opportunity to present my work at the symposium on decapod phylogenetics at<br />

the TCS Winter Meeting in San Antonio, Texas. Thanks are also due to the following persons who<br />

provided me with important literature or aided me in my bibliographical survey: Keiichi Nomura<br />

(Kushimoto Marine Park, Japan), Tomomi Saito (Port of Nagoya Public Aquarium), Annie Mercier<br />

(Memorial University of Newfoundland, Canada), Juan P. Carricart-Ganivet (El Colegio de la Frontera<br />

Sur, Unidad Chetumal, Mexico), Jorge Contreras Gardufio (Entomologia Aplicada, Instituto<br />

de Ecologfa, Mexico), Ana Maria S. Pires-Vanin (Instituto Oceanografico, Universidade de Sao<br />

Paulo, Brazil), J. Antonio Baeza (Smithsonian Tropical Research Institute, Republic of Panama),<br />

Martha Nizinski (NOAA/NMFS Systematics Laboratory, Smithsonian Institution, U.S.A.), Panwen<br />

Hsueh (National Chung Hsing University, Taiwan), Estela Anahi Delgado (Undecimar, Facultad<br />

de Ciencias, Uruguay), Michiya Kamio (Georgia State University, U.S.A.), Satoshi Wada<br />

(Hokkaido University, Japan), Yoichi Yusa (Nara Women's University, Japan), Tomoki Sunobe<br />

(Tokyo University of Marine Science and Technology), Charles H. J. M. Fransen (Nationaal Natuurhistorisch<br />

Museum <strong>Natural</strong>is, The Netherlands), E. Gaten (University of Leicester, U.K.), Gil<br />

G. Rosenthal (Texas A&M University, U.S.A.), and Hiromi Watanabe (JAMSTEC, Japan). Special<br />

thanks are due to Raymond Bauer (University of Louisiana Lafayette) and Joel W. Martin for the<br />

careful review of an earlier draft of the manuscript.<br />

REFERENCES<br />

Adams, J., Edwards, A.J. & Emberton, H. 1985. Sexual size dimorphism and assortative mating<br />

in the obligate coral commensal Trapezia ferruginea Latreille (<strong>Decapod</strong>a, Xanthidae). <strong>Crustacean</strong>aAK:<br />

188-194.<br />

Adams, J., Greenwood, P., Pollitt, R. & Yonow, T. 1991. Loading constraints and sexual size dimor-<br />

, phism in Asellus aquaticus. Behaviour-92: 277'-287.<br />

Asakura, A. 1987. Population ecology of the sand-dwelling hermit crab, Diogenes nitidimanus<br />

Terao. 3. Mating system. Bull Mar. Sci. 41: 226-233.<br />

Asakura, A. 1990. Evolution of mating system in decapod crustaceans, with particular emphasis on<br />

recent advances in study on precopulatory guarding. Biol. Sci., Tokyo 42: 192-200.<br />

Asakura, A. 1993. Recent advances in study on aggressive and agonistic behavior of hermit crabs.<br />

I. General introduction and aggressive behavior. Biol. Sci., Tokyo 45: 143-160.<br />

Asakura, A. 1994. Recent advances in study on aggressive and agonistic behavior of hermit crabs.<br />

II. Shell fighting and evolution of ritualization. Biol. Sci, Tokyo 46: 102-112.<br />

Asakura, A. 1995. Sexual differences in life history and patterns of resource utilization by the hermit<br />

crab. Ecology 76: 2295-2313.<br />

Asakura, A. 1998a. Sociality in decapod crustaceans. I. Relationship between males and females in<br />

species found in pair. Biol. Sci., Tokyo 49: 228-242.<br />

Asakura, A. 1998b. Sociality in decapod crustaceans. II. Relationship between individuals in species<br />

found in group, symbiotic to other organisms. Biol Sci., Tokyo 50: 37-43.<br />

Asakura, A. 1999. Preliminary notes on classification of mating systems in decapod crustaceans.<br />

Aquabiol, Tokyo 125: 516-521.<br />

Asakura, A. 2001a. Sexual difference and intraspecific competition in hermit crabs (Crustacea:<br />

<strong>Decapod</strong>a: Anomura). I. Morphological aspects. Aquabiol, Tokyo 135: 398-403.<br />

Asakura, A. 2001b. Sexual difference and intraspecific competition in hermit crabs (Crustacea:<br />

<strong>Decapod</strong>a: Anomura). II. Difference in growth and survivorship patterns between the sexes.<br />

Aquabiol, Tokyo 135: 404-410.<br />

Asakura, A. 2001c. Sexual difference and intraspecific competition in hermit crabs (Crustacea:<br />

<strong>Decapod</strong>a: Anomura). II. Behavioral aspects. Aquabiol, Tokyo 137: 589-593.


136 Asakura<br />

Backwell, RR.Y, Christy, J.H., Telford S.R., Jennions, M.D. & Passmore, N.I. 2000. Dishonest<br />

signalling in a fiddler crab. Proc. Royal Soc. Ser. B 261: 719-724.<br />

Baeza, J.A. 2008. Social monogamy in the shrimp Pontonia margarita, & symbiont of Pinctada<br />

mazatlanica, off the Pacific coast of Panama. Mar. Biol. 153: 387-395.<br />

Baeza, J.A. & Thiel, M. 2003. Predicting territorial behavior in symbiotic crabs using host characteristics:<br />

a comparative study and proposal of a model. Mar. Biol. 142: 93-100.<br />

Baeza, J.A. & Thiel, M. 2007. The mating system of symbiotic crustaceans. A conceptual model<br />

based on optimality and ecological constraints. In: Duffy, J.E. & Thiel, M. (eds.), Evolutionary<br />

Ecology of Social and Sexual Systems: <strong>Crustacean</strong>s as Model Organisms'. 249-267. Texas:<br />

Oxford Univ. Press.<br />

Barta, Z. & Giraldeau, L.A. 2001. Breeding colonies as information centers: a reappraisal of<br />

information-based hypotheses using the producer-scrounger game. Behav. Ecol. 12: 121-127.<br />

Bauer, R.T. 2004. Remarkable shrimps: natural history and adaptations of the carideans. Norman:<br />

Univ. Oklahoma Press.<br />

Bauer, R.T. & Martin, J.W. (eds.) 1991. <strong>Crustacean</strong> Sexual Biology. New York: Columbia Univ.<br />

Press.<br />

Benesh, D., Valtonen, T. & Jormalainen, V. 2007. Reduced survival associated with precopulatory<br />

mate guarding in male Asellus aquaticus (Isopoda). Ann. Zool. Fennici 44: 425-434.<br />

Berec, L., Schembri, P.J. & Boukal, D.S. 2005. Sex determination in Bonellia viridis (Echiura:<br />

Bonelliidae): population dynamics and evolution. Oikos 108: 473-484.<br />

Brown, J.L. 1982. Optimal group size in territorial animals. J. Theor. Biol. 95: 793-810.<br />

Bull, CM., Cooper, S.J.B. & Baghurst, B.C. 1998. Social monogamy and extra-pair fertilization in<br />

an Australian lizard, Tiliqua rugosa. Behav. Ecol. Sociobiol. 44: 63-72.<br />

Cardenas, C.A., Canete, J., Oyarzun, S. & Mansilla, A. 2007. Agregaciones de juveniles de centolla<br />

Lithodes santolla (Molina, 1782) (Crustacea) en asociacion con discos de fijacion de Macrocystispyrifera<br />

(Linnaeus) C. Agardh, 1980. Investig. Mar., Mayo. 35: 105-110.<br />

Carlisle, D.B. 1957. On the hormonal inhibition of moulting in decapod Crustacea. II. The terminal<br />

anecdysis in crabs. J. Mar. Biol. Ass. U.K. 36: 291-307.<br />

Carricart-Ganivet, J.P., Carrera-Parra, L.F., Quan-Young, L.I. & Garcia-Madrigal, M.S. 2004. Ecological<br />

note on Troglocarcinus corallicola (Brachyura: Cryptochiridae) living in symbiosis with<br />

Manicina areolata (Cnidaria: Scleractinia) in the Mexican Caribbean. Coral Reefs 23: 215-217.<br />

Castro, N.F. & Lucas, A. 1987. Variability of the frequency of male neoteny in Ostrea puelchana<br />

(Mollusca: Bivalvia). Mar. Biol. 96: 359-365.<br />

Cheng, T.C. 1967. Marine molluscs as hosts for symbiosis. Adv. Mar. Biol. 5: 1-424.<br />

Christy, J.H. 1987. Competitive mating, mate choice and mating association of brachyuran crabs.<br />

Bull. Mar. Sci. 41: 177-191.<br />

Christy, J.H. 1988a. Pillar function in the fiddler crab Uca beebei. I. Effects on male spacing and<br />

aggression. Ethology 78: 53-71.<br />

Christy, J.H. 1988b. Pillar function in the fiddler crab Uca beebei. II. Competitive courtship signaling.<br />

Ethology 78: 113-128.<br />

Christy, J.H., Backwell, RR.Y, Goshima, S. & Kreuter, T.J. 2002. Sexual selection for structure<br />

building by courting male fiddler crabs: an experimental study of behavioral mechanisms. Behav.<br />

Ecol. 13:366-374.<br />

Christy, J.H., Backwell, RR.Y & Schober, U.M. 2003a. Interspecific attractiveness of structures<br />

built by courting male fiddler crabs: experimental evidence of a sensory trap. Behav. Ecol. Sociobiol.<br />

53 (2): 84-91.<br />

Christy, J.H., Baum, J.K. & Backwell, PR.Y 2003b. Attractiveness of sand hoods built by courting<br />

male fiddler crabs, Uca musica: test of a sensory trap hypothesis. Anim. Behav. 66: 89-94.<br />

Clifton, K.E. 1989. Territory sharing by the Caribbean striped parrotfish. Anim. Behav. 37: 97-103.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 137<br />

Clifton, K.E. 1990. The costs and benefits of territory sharing for the Caribbean coral reef fish,<br />

Scarus iserti. Behav. Ecol. Sociobiol 26: 139-147.<br />

Clutton-Brock, T.H., Guinness, F.E. & Albon, S.D. 1982. Red Deer: Behavior and Ecology of Two<br />

Sexes. Chicago: Univ. Chicago Press.<br />

Conlan, K.E. 1991. Precopulatory mating behavior and sexual dimorphism in the amphipod Crustacea.<br />

Hydrobiol. 223: 255-282.<br />

Correa, C. & Thiel, M. 2003. Mating systems in caridean shrimp (<strong>Decapod</strong>a: Caridea) and their<br />

evolutionary consequences for sexual dimorphism and reproductive biology. Rev. Chil. Hist.<br />

Nat. 76: 187-203.<br />

Crane, J. 1975. Fiddler Crabs of the World: Ocypodidae: Genus Uca. Princeton: Princeton Univ.<br />

Press.<br />

Davies, N.B. & Houston, A.I. 1984. Territory economics. In: Krebs, J.R. & Davies, N.B. (eds.),<br />

Behavioural Ecology, an Evolutionary Approach (2nd ed): 148-169. Oxford: Blackwell Publ.<br />

DeGoursey, R.E. & Auster, P.J. 1992. A mating aggregation of the spider crab, Libinia emarginata.<br />

J. Northwest Atlantic Fish. Sci. 13:77-82.<br />

Didderen, K., Fransen, C.HJ.M. & de Voogd, N.J. 2006. Observations on sponge-dwelling colonies<br />

of Synalpheus (<strong>Decapod</strong>a, Alpheidae) of Sulawesi, Indonesia. <strong>Crustacean</strong>a 79: 961-975.<br />

Diesel, R. 1991. Sperm competition and the evolution of mating behavior in Brachyura, with special<br />

reference to spider crabs (<strong>Decapod</strong>a: Majidae). In: Bauer, R.T. & Martin, J.W. (eds.), <strong>Crustacean</strong><br />

Sexual Biology: 145-163, New York: Columbia Univ. Press.<br />

Diesel, R. & Schubart, CD. 2007. The social breeding system of the Jamaican bromeliads crab,<br />

Metopaulias depressus. In: Duffy, J.E. & Thiel, M. (eds.), Evolutionary Ecology of Social and<br />

Sexual Systems: <strong>Crustacean</strong>s as Model Organisms: 365-386. Oxford: Oxford Univ. Press.<br />

Duffy, J.E. 1996. Eusociality in a coral-reef shrimp. Nature 381: 512-514.<br />

Duffy, J.E. 2003. The ecology and evolution of eusociality in sponge-dwelling shrimp. In: Kikuchi,<br />

T., Azuma, N. & Higashi, S. (eds.), Genes, Behavior and Evolution in Social Insects: 217-252.<br />

> Sapporo: Hokkaido Univ. Press.<br />

Duffy, J.E. 2007. Ecology and evolution of eusociality in sponge-dwelling shrimp. In: Duffy, J.E.<br />

& Thiel, M. (eds.), Evolutionary Ecology of Social and Sexual Systems: <strong>Crustacean</strong>s as Model<br />

Organisms: 3%1-All. Oxford: Oxford University Press.<br />

Duffy, J.E. & Thiel, M. 2007. Evolutionary Ecology of Social and Sexual Systems: <strong>Crustacean</strong>s as<br />

Model Organisms. Oxford: Oxford Univ. Press.<br />

Emlen, S.T. & Oring, L.W. 1977. Ecology, sexual selection, and the evolution of mating systems.<br />

Science 197:215-223.<br />

Farabaugh, S.M., Brown, E.D. & Hughes, J.M. 1992. Cooperative territorial defense in the Australian<br />

Magpie, Gymnorhina tibicen (Passeriformes, Cracticidae), a group-living songbird. Ethology<br />

92: 283-292.<br />

Fize, A. 1956. Observations biologiques sur les hapalocarcinides. Ann. Fac. Sci. Univ. Nat. Viet<br />

Nam Inst. Oceanogr. Nhat. 22: 1-30.<br />

Frieke, H.W. 1986. Pair swimming and mutual partner guarding in monogamous butterflyfish (Pisces,<br />

Chaetodontidae): a joint advertisement for territory. Ethology 73: 307-333.<br />

Gillette, J.R., Jaeger, R.G. & Peterson, M.G. 2000. Social monogamy in a territorial salamander.<br />

Anim. Behav. 59: 1241-1250.<br />

Gotto, R.V. 1969. Marine animals: partnerships and other associations. Amsterdam: Elsevier Publ.<br />

Gowaty, P.A. 1996. Multiple mating by females selects for males that stay: another hypothesis for<br />

monogamy in passerine birds. Anim. Behav. 51: 482^-84.<br />

Grafen, A. & Ridley, M. 1983. A model of mate guarding. J. Theor. Biol. 102: 549-567.<br />

Hamilton, W.D. 1964a. The genetical evolution of social behaviour I. J. Theor. Biol. 1: 1-16.<br />

Hamilton, W.D. 1964b. The genetical evolution of social behaviour II. J. Theor. Biol. 7: 17-52.<br />

Hartnoll, R.G. 1969. Mating in the Brachyura. <strong>Crustacean</strong>a 16: 161-181.


138 Asakura<br />

Hiro, F. 1937. Studies on the animals inhabiting reef corals. I. Hapalocarcinus and Cryptochirus.<br />

Palao Trop. Biol. Stat. Stud. 1: 137-154.<br />

Hixon, M.A. 1987. Territory area as a determinant of mating systems. Am. Zool. 27: 229-247.<br />

Hobday, A. J. & Rumsey, S.M. 1999. Population dynamics of the sheep crab Loxorhynchus grandis<br />

(Majidae) Stimpson, 1857, at La Jolla California. Scripps Inst. Oceanogr. Tech. Rep. 29: 1-32.<br />

Hughes, D.A. 1973. On mating and the "copulation burrows" of crabs of the genus Ocypode<br />

(<strong>Decapod</strong>a, Brachyura). <strong>Crustacean</strong>a 24: 72-76.<br />

Imazu, M. & Asakura, A. 1994. Distribution, reproduction and shell utilization patterns in three<br />

species of intertidal hermit crabs on a rocky shore on the Pacific coast of Japan. J. Exp. Mar.<br />

Biol. Ecol. Ill: 1-25.<br />

Imazu, M. & Asakura, A. 2006. Descriptions of agonistic, aggressive and sexual behaviors of five<br />

species of hermit crabs from Japan (<strong>Decapod</strong>a: Anomura: Paguridae and Diogenidae). Crust.<br />

Res., Spec. No. 6:95-107.<br />

Johnson, V.R., Jr. 1969. Behavior associated with pair formation in the banded shrimp Stenopus<br />

hispidus (Olivier). Pac. Sci. 23: 40-50.<br />

Johnson, V.R., Jr. 1977. Individual recognition in the banded shrimp Stenopus hispidus. Anim. Behav.<br />

25: 418-428.<br />

Jormalainen, V. 1998. Precopulatory mate guarding in crustaceans: male competitive strategy and<br />

intersexual conflict. Quart. Rev. Biol. 73: 275-304.<br />

Kitaura, J., Nishida, M. & Wada, K. 2002 Genetic and behavioral diversity in the Macrophthalmus<br />

japonicus species complex (Crustacea: Brachyura: Ocypodidae). Mar. Biol. 140: 1-8.<br />

Kleiman, D.G. 1977. Monogamy in mammals. Quart. Rev. Biol. 52: 39-69.<br />

Kolbasov, G. A. 2002. Cuticular structures of some acrothoracican dwarf males (Crustacea: Thecostraca:<br />

Cirripedia: Acrothoracica). Zool. Anz. 241: 85-94.<br />

Kotb, M.A. & Hartnoll, R.G. 2002. Aspects of the growth and reproduction of the coral gall crab<br />

Hapalocarcinus marsupialis. J. Crust. Biol. 22: 558-566.<br />

Kropp, R.K. & Manning, R.B. 1987. The Atlantic gall crabs, family Cryptochiridae (Crustacea:<br />

<strong>Decapod</strong>a: Brachyura). Smith. Contrib. Zool. 462: 1-21.<br />

Kuwamura, T. 1996. An introduction to reproductive strategies of fishes. In: Kuwamura, T. &<br />

Nakashima, Y. (eds.), Reproductive Strategies in Fishes, Vol. 1: 1-41. Tokyo: Kaiyusha.<br />

Linsenmair, K.E. 1967. Konstruktion und Signalfunktion der Sandpyramide der Reiterkrabbe Ocypode<br />

saratan Forsk. Z. Tierpsychol. 24: 403-456.<br />

Mathews, L.M. 2002a. Territorial cooperation and social monogamy: factors affecting intersexual<br />

interactions in pair-living snapping shrimp. Anim. Behav. 63: 767-777.<br />

Mathews, L.M. 2002b. Tests of the mate-guarding hypothesis for social monogamy: does population<br />

density, sex ratio, or female synchrony affect behavior of male snapping shrimp (Alpheus<br />

angulatus)! Behav. Ecol. Sociobiol. 51: 426-432.<br />

Mathews, L.M. 2003. Tests of the mate-guarding hypothesis for social monogamy: male snapping<br />

shrimp prefer to associate with high-value females. Behav. Ecol. 14: 63-67.<br />

Michener, CD. & Brothers, D.J. 1974. Were workers of eusocial Hymenoptera initially altruistic or<br />

oppressed? Proc. Nat. Acad. Sci. 68: 1242-1245.<br />

Miyano, T., Takegaki, T. & Natsukari, Y. 2006. Spawning and egg-tending behavior of the barredchin<br />

blenny Rhabdoblennius ellipes. Bull. Fac. Fish., Nagasaki Univ. 87: 1-5.<br />

Mizoguchi, K., Henmi, Y. & Yamaguchi, T. 2002. Parasitic status of epicaridean isopods (Crustacea:<br />

Malacostraca) and the effects on their brachyuran crab hosts. Jpn. J. Benthol. 57: 79-84<br />

Murai, M., Koga, T. & Yong, H.-S. 2002. The assessment of female reproductive state during<br />

courtship and scramble competition in the fidder crab, Uca paradussumieri. Behav. Ecol.<br />

Sociobiol. 52: 137-142.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 139<br />

Nomura, K. & Asakura, A. 1998. The alpheid shrimps (<strong>Decapod</strong>a: Alpheidae) collected from Kushimoto.on<br />

the Pacific coast of central Japan, and their spatial distributions, zoogeographical affinities,<br />

social structures, and life styles. Nanki Seibutsu 40: 25-34.<br />

Norman, M.D., Paul, D., Finn, J. & Tregenza, T. 2002. First encounter with a live male blanket<br />

octopus: the world's most sexually size-dimorphic large animal. New Zealand J. Mar. Freshwt.<br />

Res. 36: 733-736.<br />

Oliveira, R.F., McGregor, P.K., Burford, F.R.L., Custodio, M.R. & Latruffe, C. 1998. Functions of<br />

mudballing behaviour in the European fiddler crab Uca tangeri. Anim. Behav. 55: 1299-1309.<br />

Parker, G.A. 1970. Sperm competition and its evolutionary consequences in the insects. Biol. Rev.<br />

45: 525-567.<br />

Parker, G.A. 1974. Courtship persistence and female quarding as male time investment strategies.<br />

Behaviour 48: 157-184.<br />

Pascual, M.S. 1997. Carriage of dwarf males by adult female puelche oysters: the role of chitons.<br />

J. Exp. Mar. Biol. Ecol. 212: 173-185.<br />

Pietsch, T.W. 2005. Dimorphism, parasitism, and sex revisited: modes of reproduction among deepsea<br />

ceratioid anglerfishes (Teleostei: Lophiiformes). Ichthyol. Res. 52: 207-236.<br />

Plaistow, S.J., Outreman, Y., Moret, Y. & Rigaud, T. 2003. Variation in the risk of being wounded:<br />

an overlooked factor in studies of invertebrate immune function? Ecol. Letters 6: 489-494.<br />

Potts, F.A. 1915. Hapalocarcinus, the gall-forming crab, with some notes on the related genus Cryptochirus.<br />

Pap. Dep. Mar. Biol. Carnegie Inst. Wash. 8: 33-69.<br />

Rahman, N., Dunham, D.W. & Govind, C.K. 2002. Size-assortative pairing in the big-clawed snapping<br />

shrimp, Alpheus heterochelis. Behaviour 139: 1443-1468.<br />

Rahman, N., David, W., Dunham, D.W. & Govind, C.K. 2003. Social monogamy in the big-clawed<br />

snapping shrimp, Alpheus heterochelis. Ethology 109: 457-473.<br />

Reback, S. & Dunham, D.W. (eds.) 1983. Studies in adaptation: the behavior of higher Crustacea.<br />

New York: J. Wiley and Sons.<br />

Reeve, H.K. & Holldobler, B. 2007. The emergence of a superorganism through intergroup competition.<br />

Proc. Nat. Acad. Sci. 104: 9736-9740.<br />

Ridley, M. 1983. The Explanation of Organic Diversity: The Comparative Method and Adaptations<br />

for Mating. Oxford: Oxford Univ. Press.<br />

Robinson, B.W. & Doyle, R.W. 1985. Trade-off between male reproduction (amplexus) and growth<br />

in the amphipod Gammarus lawrencianus. Biol. Bull. 168: 482-488.<br />

Roubaud, E. 1916. Recherches biologiques sur les guepes solitaires et sociales d'Afrique. La genese<br />

de la vie sociaje et revolution de 1'instinct maternel chez les vespides. Ann. Sci. Nat. 1: 1-160.<br />

Salmon, M. 1983. Courtship, mating systems, and sexual selection in decapods. In: Rebach, S. &<br />

Dunham, D.W. (eds.), Studies in Adaptation: The Behavior of Higher Crustacea: 143-169. New<br />

York: John Wiley & Sons.<br />

Salmon, M. 1987. On the reproductive behavior of the fiddler crab Uca thayeri, with comparisons<br />

to U. pugilator and U. vocans: evidence for behavioral convergence. J. Crust. Biol. 7: 2544.<br />

Salmon, M. & Atsaides, S.P. 1968. Visual and acoustical signaling during courtship by fiddler crabs<br />

(genus: Uca). Am. Zool. 8: 623-639.<br />

Salmon, M. & Hyatt, G.W. 1979. The development of acoustic display in the fiddler crab Uca<br />

pugilator and its hybrid with U. panacea. Mar. Behav. Physiol. 6: 197-209.<br />

Sampedro, M.-P. & Gonzalez-Gurriaran, E. 2004. Aggregating behaviour of the spider crab Maja<br />

squinado in shallow waters. J. Crust. Biol. 24: 168-177.<br />

Shuster, S..M. & Wade, M.J. 2003. Mating Systems and Strategies. New Jersey: Princeton University<br />

Press.<br />

Smith, R.L. (ed.) 1984. Sperm Competition and the Evolution of Animal Mating Systems. New York:<br />

Academic Press.


140 Asakura<br />

Sparkes, T.C., Keogh, D.P. & Pary, R.A. 1996. Energetic costs of mate guarding behavior in male<br />

stream-dwelling isopods. Oecologia 106: 166-171.<br />

Stevens, B.G. 2003. Timing of aggregation and larval release by Tanner crabs, Chionoecetes bairdi,<br />

in relation to tidal current patterns. Fish. Res. 65: 201-216.<br />

Stevens, B.G., Donaldson, W.E. & Haaga, J.A. 1992. First observations of podding behavior for the<br />

Pacific lyre crab Hyas lyratus (<strong>Decapod</strong>a: Majidae). J. Crust. Biol. 12: 193-195.<br />

Stevens, B.G., Haaga, J.A. & Donaldson, W.E. 1994. Aggregative mating of Tanner crabs, Chionoectes<br />

bairdi. Canad. J. Fish. Aquat. Sci. 51: 1273-1280.<br />

Stone, C.E., O'Clair, C.E. & Shirley, T.C. 1993. Aggregating behavior of ovigerous female red<br />

king crab, Paralithodes camtschaticus, in Auke Bay, Alaska. Canada. J. Fish. Aquat. Sci. 50:<br />

750-758.<br />

Sturmbauer, C, Levinton, J.S. & Christy, J.H. 1996. Molecular phylogeny analysis of fiddler crabs:<br />

test of the hypothesis of increasing behavioral complexity in evolution Proc. Natl. Acad. Sci.<br />

U.S.A. 93: 10855-10857.<br />

Subramoniam, T. 1981. Protandric hermaphroditism in a mole crab, Emerita asiatica (<strong>Decapod</strong>a:<br />

Anomura). Biol. Bull. 160: 161-174.<br />

Subramoniam, T. & Gunamalai, V. 2003. Breeding biology of the intertidal sand crab, Emerita<br />

(<strong>Decapod</strong>a: Anomura). Adv. Mar. Biol. 46: 91-182.<br />

Takeda, M. & Tamura, Y. 1981. Coral-inhabiting crabs of the family Hapalocarcinidae from Japan.<br />

VIII. Genus Pseudocryptochirus and two new genera. Bull. Biogeogr. Soc. Jap. 36: 13-27.<br />

Thiel, M. & Baeza, J.A. 2001. Factors affecting the social behaviour of symbiotic Crustacea: a<br />

modelling approach. Symbiosis 30: 163-190.<br />

Verrel, PA. 1985. Predation and the evolution of precopula in the isopod Asellus aquaticus. Behaviour<br />

95: 198-202.<br />

von Hagen, H.O. 1970. Verwandtschaftliche Gruppierung und Verbreitung der Karibischen<br />

Winkerkrabben (Ocypodidae, Gattung Uca). Zool. Meded., Leiden 44: 217-235.<br />

Ward, P.I. 1986. A comparative field study of the breeding behaviour of a stream and a pond population<br />

of Gammarus pulex (Amphipoda). Oikos 46: 29-36.<br />

Wetzer, R., Martin, J.W. & Boyce, S. (this volume). Evolutionary origin of the gall crabs (family<br />

Cryptochiridae) based on 16S rDNA sequence data. In: Martin, J.W., Crandall, K.A. & Felder,<br />

D.L. (eds.), <strong>Crustacean</strong> Issues: <strong>Decapod</strong> <strong>Crustacean</strong> <strong>Phylogenetics</strong>. Boca Raton, Florida: Taylor<br />

& Francis/CRC Press.<br />

Wickler, W. & Seibt, U. 1981. Monogamy in Crustacea and man. Z. Tierpsychol. 57: 215-234.<br />

Wittenberger, J.F. & Tilson, R.L. 1980. The evolution of monogamy: hypotheses and evidence. Ann.<br />

Rev. Ecol Syst. 11: 197-232.<br />

Yamaguchi, T. 2001a. The breeding period of the fiddler crab Uca lactea (<strong>Decapod</strong>a, Brachyura,<br />

Ocypodidae) in Japan. <strong>Crustacean</strong>a 74: 285-293.<br />

Yamaguchi, T. 2001b. Incubation of eggs and embryonic development of the fiddler crab, Uca lactea<br />

(<strong>Decapod</strong>a, Brachyura, Ocypodidae). <strong>Crustacean</strong>a 74: 449-458.<br />

Yamaguchi, Y, Ozaki, Y, Yusa, Y & Takahashi, S. 2007. Do tiny males grow up? Sperm competition<br />

and optimal resource allocation schedule of dwarf males of barnacles. 7. Theor. Biol. 245:<br />

319-328.<br />

Yamamura, N. 1987. A model on correlation between precopulatory guarding and short receptivity<br />

to copulation. J. Theor. Biol. 127: 171-180.<br />

Yamamura, N. & Jormalainen, V. 1996. Compromised strategy resolves intersexual conflict over<br />

pre-copulatory guarding duration. Evol. Ecol. 10: 661-680.<br />

Zucker, N. 1974. Shelter building as a means of reducing territory size in the fiddler crab, Uca<br />

terpsichores (Crustacea: Ocypodidae). Am. Mid. Nat. 91: 224-236.<br />

Zucker, N. 1981. The role of hood-building in defending territories and limiting combat in fiddler<br />

crabs. Anim. Behav. 29: 387-395.


APPENDIX!<br />

The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 141<br />

Table 1. Species of the short courtship type, in which females molt before copulation (= soft-female mating<br />

sensu Hartnoll 1969).<br />

DENDROBRANCHIATA<br />

Penaeidae: Marsupenaeus japonicus (1), Melicertus kerathurus (2), Melicertus brasiliensis (3),<br />

Melicertus paulensis (4), Farfantepenaeus aztecus (5), Fenneropenaeus merguiensis(6),Penaeus<br />

monodon (7), Penaeus semisulcatus (8), Trachypenaeus similis (9), Xiphopenaeus sp. (10)*,<br />

Sieyoniidae: Sicyonia dorsalis (11), Sicyonia parri (12), Sicyonia laevigata (13)<br />

PLEOCYEMATA<br />

Caridea<br />

Palaemonidae: Palaemonetes vulgarus (14), Palaemonetes varians (15), Palaemonetes pugio<br />

(16), Palaemon serratus (17), Palaemon elegans (18), Palaemon squilla (19)<br />

Alpheidae: Athanus nitescens (20), Alpheus dentipes (21)<br />

Hippolytidae: Heptacarpus picta (22), Heptacarpus paludicola (23)<br />

Pandalidae: Pandalus dona (24), Pandalus platyceros (25), Pandalus borealis (26)<br />

Crangonidae: Crangon crangon (27), Crangon vulgaris (28)<br />

Astacidea<br />

Nephropidae: Nephrops norvegicus (29)<br />

Palinuridea<br />

Palinuridae: Jasus lalandii (30)*<br />

Anomura<br />

Hippidae: Emerita asiatica (31), Emerita analoga (32)<br />

Diogenidae: Calcinus latens (33), Calcinus seurati (34), Clibanarius tricolor (35), Clibanarius<br />

; antillensis (36), Clibanarius zebra (37), Paguristes cadenati (38), Paguristes tortugae (39),<br />

Paguristes anomalus (40), Paguristes hummi (41), Paguristes oculatus (42)<br />

*Hard-female mating was rarely reported in addition to the soft-female mating. References: (1) Hudinaga<br />

(1942 as Penaeus japonicus), (2) Heldt (1931 as Penaeus caramote), (3) Brisson (1986), (4) de<br />

Saint-Brisson (1985), (5)-(6) Aquacop (1977), (7) Primavera (1979), Aquacop (1977), (8) Browdy<br />

(1989), (9)-(10) Bauer (1991), (11) Bauer (1992, 1996), (12)-(13) Bauer (1991), (14) Burkenroad<br />

(1947), Bauer (1976), (15) Antheunisse et al. (1968), Jefferies (1968), (16) Berg & Sandifer (1984),<br />

Bauer & Abdalla (2001), Caskey & Bauer (2005), (17) Nouvel & Nouvel (1937), Forster (1951),<br />

Bauer (1976), (18) Hoglund (1943), (19) Hoglund (1943), Bauer (1976), (20) Nouvel & Nouvel<br />

(1937), (21) Volz (1938), (22) Bauer (1976), (23) Bauer (1979), (24) Needier (1931), (25) Hoffman<br />

(1973), (26) Carlisle (1959), (27) Nouvel (1939), (28) Lloyd & Young (1947), Havinga (1930),<br />

Bodekke et al. (1991), (29) Farmer (1974), (30) von Bonde (1936), Silberbauer (1971), McKoy<br />

(1979), (3 1) Menon (1933), Subramoniam (1979), (32) MacGinitie (1938), Efford (1965), (33) Hazlett<br />

(1972), (34) Hazlett (1989), (35)-(36) Hazlett (1966), (37) Hazlett (1966, 1989), (38)-(42)<br />

Hazlett (1966).


142 Asakura<br />

Table 2. Species of the short courtship type, in which females do not molt before copulation (= hard-female<br />

mating sensu Hartnoll 1969).<br />

DENDROBRANCHIATA<br />

Penaeoidea: Litopenaeus vannanmei (1), Litopenaeus setiferus (2), Litopenaeus stylirostris (3),<br />

Litopenaeus schmitti (4)<br />

PLEOCYEMATA<br />

Astacidea<br />

Astacidae: Pacifastacus trowbridgii (5), Pacifastacus leniusculus (6), Austropotamobius pallipes<br />

(7), Austropotamobius italicus (8), Austropotamobius torrentium (9), Astacus astacus (10),<br />

Astacus leptodactylus (11)<br />

Parastacidae: Cherax quadricarinatus (12)<br />

Cambaridae: Orconectes nais (13), Orconectes limosus (14), Faxonella clypeata (15),<br />

Orconectes rusticus (16), Orconectes propinquus (17), Orconectes virilis (18), Orconectes<br />

inermis inermis (19), Orconectes pellucidus (20), Cambarus blandingi (21), Cambaroides<br />

japonicus (22), Cambarus immunis (23), Procambarus alleni (24), Procambarus clarkii (25),<br />

Procambarus hayi (26)<br />

Palinuridea<br />

Palinuridae: Panulirus homarus (27)*, Panulirus argus (28)*, Panulirus longipes cygnus (29)<br />

Anomura<br />

Diogenidae: Calcinus verilli (30), Calcinus laevimanus (31), Calcinus seurati (32), Calcinus<br />

elegans (33), Calcinus hazletti (34), Calcinus laurentae (35)<br />

Coenobitidae: Birgus latro (36), Coenobita perlatus (37), Coenobita clypeatus (38), Coenobita<br />

compressus (39)<br />

Brachyura<br />

Leucosiidae: Philyra scabriuscula (40), Ebalia tuberosa (41)<br />

Xanthidae: Lophopanopeus bellus (42), Lophopanopeus diegensis (43), Paraxanthias taylori<br />

(44), Pilumnus hirtellus (45), Xantho incisus (46), Nanopanope sayi (47), Eurypanopeus<br />

depressus (48), Panopeus herbstii (49)<br />

Majidae: Microphrs bicornutus (50), Pw


Table 2. continued.<br />

The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 143<br />

* Soft-female mating was rarely reported in addition to the hard-female mating. References: (1)<br />

Yano et al. (1988), Misamore & Browdy (1996), Palacios et al. (2003), (2) Misamore & Browdy<br />

(1996), (3) Aquacop (1977), (4) Bueno (1990), (5) Mason (1970a, b), (6) Lowery & Holdich (1988),<br />

Stebbing et al. (2003), (7) Ingle & Thomas (1974), Brewis & Bowler (1985), Carral et al. (1994),<br />

Villanelli & Gherardi (1998), (8) Galeotti et al. (2007), Rubolini et al. (2006, 2007), (9) Laurent<br />

(1988), (10) Cukerzis (1988), (11) Koksal (1988), (12) Barki & Karplus (1999), (13) Pippit (1977),<br />

(14) Schone (1968), Holdich & Black (2007), (15) Smith (1953), (16) Berrill & Arsenault (1982),<br />

Snedden (1990), Simon & Moore (2007), (17) Tierney & Dunham (1982), (18) Bovbjerg (1953),<br />

Rubenstein & Hazlett (1974), Tierney & Dunham (1982), (19)-(20) Bechler (1981), (21) Pearse<br />

(1909), (22) Kawai & Saito (2001), (23) Tack (1941), (24) Bovbjerg (1956), Mason (1970a, b),<br />

(25) Ameyaw-Akumfi (1981), Corotto et al. (1999), (26) Payne (1972), (27) Berry (1970), Heydon<br />

(1969), (28) Sutcliffe (1952, 1953), Kaestner (1970), Lipcius et al. (1983), Lipcius & Herrnkind<br />

(1987), (29) Chittleborough (1976), Sheard (1949), (30)-(35) Hazlett (1972), (36) Helfman<br />

(1977), (37) Page & Willason (1982), (38) Dunham & Gilchrist (1988), (39) Contreras-Garduno<br />

et al. (2007), (40) Naidu (1954), (41) Schenibri (1983), (42)-(43) Knudsen (1960, 1964), (44)-<br />

(46) Bourdon (1962), (47)-(49) Swartz (1976a, b), (50) Hartnoll (1965a), (51) Vernet-Cornubert<br />

(1958a), (52) Knudsen (1964), (57) Boolootian et al. (1959), Grigg personal communication in<br />

Hartnoll (1969), Knudsen (1964), (54) Berry & Hartnoll (1970), (55) Arakawa (1964), (56) Warner<br />

(1967, 1970), (57) Broekhuysen (1941), (58) Hartnoll (1965b), (59)-(60) Brockerhoff & McLay<br />

(2005a, b)5 (61) Hoestlandt (1948), Peters et al. (1933), (62) Kobayashi & Matsuura (1994), (63)<br />

Schone & Schone (1963), Warner (1967, 1970), (64) Kramer (1967), Schone & Schone (1963),<br />

(65) Brockerhoff & McLay (2005a, b, c), (66) Knudsen (1964), (67) Yaldwyn (1966b), Brockerhoff<br />

(2,002), (68) Knudsen (1964), (69) Brockerhoff & McLay (2005a, b, c), (70) Bovbjerg (1960), Hiatt<br />

(1948), (71) Brockerhoff & McLay (2005a, b), (72) Vernet-Cornubert (1958b), (73) Fukui (1991,<br />

1994), "(74) Hartnoll (1969), (75)-(77) Brockerhoff & McLay (2005a, b), (78) Warner (1967 as<br />

Sesarma ricordt)r(19) Seiple & Salmon (1982), (80)-(81) Hartnoll (1969), (82) von Hagen (1967),<br />

(83) Hartnoll (1969), (84) Seiple & Salmon (1982 as Sesarma cinereum), (85) Hartnoll (1969 as<br />

Sesarma angustipes), (86) Hartnoll (1969 as Sesarma curacaoense), (87) Nye (1977), Beer (1959),<br />

Brockerhoff & McLay (2005a, b), (88) Hicks (1985), (89) Abele et al. (1973), Klassen (1975), Bliss<br />

et al. (1978), (90) Gifford (1962), Henning (1975), (91) Ameyaw-Akumfi (1987).<br />

Table 3. Penaeid shrimp species in which a sperm plug has been reported.<br />

Penaeidae<br />

Rimapenaeus similis (1)<br />

Farfantepenaeus aztecus (2)<br />

Rimapenaeus constrictus (3)<br />

Marsupenaeus japonicus (4)<br />

Metapenaeus joyneri (5)<br />

References: (1) Bauer & Min (1993 as Trachypenaeus similis), (2) Bauer & Min (1993), (3) Costa<br />

& Fransoso (2004), (4) Fuseya (2006), (5) Miyake (1982).


144 Asakura<br />

Table 4. Species of the precopulatory guarding type, in which males guard females before copulation. S =<br />

species in which females molt before copulation. H = species in which females do not molt before copulation.<br />

V = species in which both types (S and H) have been reported. ? = molting condition has not been reported.<br />

CARIDEA<br />

Palaemonidae: Macrobrachium amazonicum [S](l), Macrobrachium rosenbergii [S](2), Macrobrachium<br />

austoraliense [S](3), Macrobrachium nipponense [S](4), Macrobrachium longipes<br />

[S](5)<br />

Rhynchocinetidae: Rhynchocinetes typus [H](6)<br />

ASTACIDEA<br />

Homaridae: Homarus americanus [V](7)<br />

ANOMURA<br />

Diogenidae: Diogenes pugilator [S](8), Diogenes nitidimanus [V](9), Dardanus punctulatus<br />

[?](10), Calcinustibicen [Sl](ll)<br />

Paguridae: Pagurus miamensis [V](12), Pagurus pygmaeus [V](13), Pagurus bonairensis (H](14),<br />

Pagurus marshi [S](15), Pagurus bernhardus [S](16), Pagurus cuanensis [H](17), Pagurus<br />

anachoretus [H](18), Pagurus alatus [H](19), Pagurus marshi [S](20), Pagurus nigrofascia<br />

[S](21), Pagurus lanuginosus [V](22), Pagurus prideauxi [H](23), Pagurus hirsutiuculus<br />

[S](24), Pagurus maculosus [?](25), Pagurus minutus [V](26), Pagurus filholi [V](27), Pagurus<br />

gracilipes [?](28), Pagurus middendorffii [H](29), Pagurus nigrivittatus [V](30), Anapagurus<br />

chiroacanthus [V](31), Anapagurus breriaculeatus [V](32), Pylopagurus sp. sensu Hazlett<br />

(1975)[H](33)<br />

Lithodidae: Paralithodes camtschaticus [S](34), Paralithodes brevipes [S](35), Lithodes maja<br />

[S](36), Lithodes santolla [S](37), Paralomis granulose [S](38), Hapalogaster dentata [S](39)<br />

BRACHYURA<br />

Leucosiidae: Philyrd laevis [H](40)<br />

Majidae: Chionoecetes opilio [S](41), Chionoeceies bairdi [S](42), Macropodia longirostris<br />

[S](43), Macropodia rostrata [S](44)<br />

Hymenosomatidae: Halicarcinus sp.'[S](45), Hymenosoma orbiculare [S](46)<br />

Cancridae: Cancer gracilis [S](47), Cancer irroratus [S](48), Cancer magister [S](49), Cancer<br />

oregonensis [S](50), Cancer pagurus [S](51), Cancer pro ductus [S](52), Cancer borealis<br />

[S](53), Cancer antennarius [S](54)<br />

Cheiragonidae: Telmessus cheiragonus [S](55), Erimacrus isenbeckii [S](56)<br />

Corystidae: Corystes cassivelaunus [H](57)<br />

Portunidae: Callinectes sapidus [S](58), Carcinus maenas [S](59), Macropipes holsatus [S](60),<br />

Ovalipes ocellsatus [S](61), Portunus pelagicus [S](62), Portunus sanguinolentus [S](63),<br />

Portunus puber [S](64), Portunus trituberculatus [S](65), Scylla serrata [S](66)<br />

Xanthidae: Menippe mercenaria [S](67)


Table 4. continued.<br />

The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 145<br />

References: (1) Guest (1979), (2) Bhimachar (1965), Rao (1967), Ra'anan & Sagi (1985), Kuris<br />

et al. (1987), (3) Ruello et al. (1973), Lee & Felder (1983), (4) Ogawa et al. (1981), Mashiko (1981),<br />

(5) Shokita (1966), (6) Correa et al. (2000, 2003), Hinojosa &' Thiel (2003), Correa & Thiel (2003a,<br />

b), Diaz & Thiel (2003), Thiel & Hinojosa (2003), Diaz & Thiel (2004), Thiel & Correa (2004), van<br />

Son & Thiel (2006), Dennenmoser & Thiel (2007), (7) Herrick (1909), Templeman (1934, 1936),<br />

McLeese (1970, 1973), Hughes & Matthiessen (1962), Aiken & Waddy (1980), Waddy & Aiken<br />

(1981), Aiken et al. (2004), (8) Bloch (1935), Hazlett (1968), (9) Asakura (1987), (10) Matthews<br />

(1956), (11)-(13) Hazlett (1966), (14)-(17) Hazlett (1968), (18) Hazlett (1968), Hazlett (1975),<br />

(19) Hazlett (1968), (20) Hazlett (1975), (21)-(22) Wada et al. (2007), (23) Hazlett (1968), (24)<br />

MacGinitie (1935), (25) Imazu & Asakura (2006), (26) Imazu & Asakura (2006), Wada et al. (2007),<br />

(27) Imafuku (1986), Goshima et al. (1998), Minouchi & Goshima (1998,2000), Wada et al. (2007),<br />

(28) Imazu & Asakura (2006), (29) Wada et al. (1996, 1999), (30) Wada et al. (2007), (31M32)<br />

Hazlett (1968), (33) Hazlett (1975), (34) Marukawa (1933), Powell & Nickerson (1965a, b), Gray<br />

& Powell (1966), Wallace et al. (1949), McMullen (1969), Matsuura & Takeshita (1976), Takeshita<br />

& Matsuura (1989), (35) Wada et al. (1997, 2000), Sato et al. (2005a, b), (36) Pike & Williamson<br />

(1959), (37)-(38) Lovrich & Vinuesa (1999), (39) Goshima et al. (1995), (40) Schembri (1983),<br />

(41) Watson (1972), (42) Paul (1984), Donaldson & Adams (1989), (43)-(44) Hartnoll (1969),<br />

(45) Lucas personal communication in Hartnoll (1969), (46) Broekhuysen (1955), (47) Knudsen<br />

(1964), (48) Chidchester (1911), Elner & Elner (1980), Elner & Stasko (1978), Haefner Jr. (1976),<br />

(49) Bulter (1960), Cleaver (1949), Snow & Nielsen (1966), (50) Knudsen (1964), (51) Edwards<br />

(1966), (52) Knudsen (1964), (53) Elner et al. (1985), (54) Knudsen (1960), (55) Kamio et al.<br />

(2000, 2002, 2003), (56) Sasaki & Ueda (1992), (57) Hartnoll (1968), (58) Childchester (1911),<br />

Churchill (1919), Hay (1905), Gleeson (1980), Ryan (1966), Gleeson et al. (1984), Christofferson<br />

(1970), Teytaud (1971), Jivoff & Hines (1998), (59) Broekhuysen (1936, 1937), Cheung (1966),<br />

Childchester (1911), Spalding (1942), Veillet (1945), Williamson (1903), Berrill (1982), Berrill &<br />

Arsenault (1982), Jensen (1972), (60) Broekhuysen (1936), (61) Childchester (1911), (62) Delsman<br />

& de Man (1925), Broekhuysen (1936), Fielder & Eales (1972), (63) George (1963), Ryan (1966,<br />

1967a, b), Christofferson (1970, 1978), (64) Duteutre (1930), (65) Oshima (1938), (66) Hill (1975),<br />

(67) Binford (1913), Cheung (1968), Savage (1971), Porter (1960), Wilber (1989).


146 Asakura<br />

Table 5. Duration of guarding time in selected species of decapod crustaceans.<br />

Species<br />

ANOMURA<br />

Lithodidae<br />

Paralithodes brevipes<br />

Paralithodes brevipes<br />

3 males & 3 females<br />

1 male & 5 females<br />

Hapalogaster dentata<br />

BRACHYURA<br />

Cancridae<br />

Cancer pagurus<br />

Conner irroratus<br />

Carcinus maenas<br />

1 male & 1 female<br />

2 or 3 males - 1 female<br />

Majidae<br />

Chionoecets bairdi<br />

Chionoecets opilio<br />

Cheiragonidae<br />

Telmessus cheiragonus<br />

Corystidae<br />

Corystes cassivelaunus<br />

Precopulatory<br />

guarding time<br />

9-84 hrs<br />

(mean 38.9+24.9 hrs)<br />

32.1+44.1 hrs<br />

15.1+20.1 hrs<br />

2-3 days<br />

3-21 days<br />

4.5 days<br />

2-16 days<br />

3-10 days<br />

1-12 days<br />

•7-9 days<br />

11.8 ± 5 SD days<br />

Up to several days<br />

Female condition<br />

when copulating<br />

Soft<br />

Soft<br />

Soft<br />

Soft<br />

Soft<br />

Soft<br />

Soft<br />

Soft<br />

Various<br />

Soft<br />

Soft<br />

Hard<br />

Postcopulatory<br />

guarding time<br />

?<br />

?<br />

?<br />

?<br />

1-12 days<br />

5 days<br />

0-1.5 days<br />

1-3.5 days<br />

?<br />

8 hrs<br />

4.0 ± 6.6 hrs<br />

0<br />

Refere<br />

References: (1) Wada et al. (1997), (2)-(3) Wada et al. (2000), (4) Goshima et al. (1995), (5) Edwa<br />

(1966), (6) Elner & Elner (1980), (7)-(8) Berrill & Arsenault (1982), (9) Donaldson & Adams (198<br />

(10) Watson (1972), (11) Kamio et al. (2003), (12) Hartnoll (1968).<br />

(1)<br />

(2)<br />

(3)<br />

(4)<br />

(5)<br />

(6)<br />

(7)<br />

(8)<br />

(9)<br />

(10)<br />

(11)<br />

(12)


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 147<br />

Table 6. Brachyuran crab species, in which a sperm plug has been reported.<br />

Gancridae<br />

Cancer magister (1)<br />

Cancer irroratus (2)<br />

Cancer pagurus (3)<br />

Geryonidae<br />

Geryon fenneri (4)<br />

Portunidae<br />

Callinectes sapidus (5)<br />

Carcinoplax vestita (6)<br />

Carcinus maenas (7)<br />

Macropipus holsatus (8)<br />

Ovalipes ocellsatus (9)<br />

Portunus sanguinolentus (10)<br />

Necorapuber (11)<br />

Liocarcinus depurator (12)<br />

Cheiragonidae<br />

Telmessus cheiragonus (13)<br />

Eriphiidae<br />

Eriphia smithii (14)<br />

References: (1) Oh & Hankin (2004), (2) Childchester (1911), (3) Edwards (1966), (4) Hinsch<br />

(1988), (5) Childchester (1911), Wenner (1989), Johnson & Oito (1981), Jivoff (1997), (6) Doi &<br />

Watanabe (2006), (7) Broekhuysen (1936, 1937), Spalding (1942), (8) Broekhuysen (1936), (9)<br />

Childchester (1911), (10) George (1963), (11) Gonzalez-Gurriaran & Freire (1994), Norman &<br />

Jones (1993), (12) Abello (1989), (13) Kamio et al. (2003), (14) Tomikawa &Watanabe (1990).<br />

Table 7. Species found in large aggregations called a "pod," "heap," or "mound."<br />

Species<br />

ANOMURA<br />

Lithodidae<br />

Paralithodes camtschaticus<br />

Lithodes santolla<br />

BRACHYURA<br />

Majidac<br />

Maya squinado<br />

Chionoecetesbairdi<br />

Hym lyratus<br />

LojKorhynchus grandis<br />

Libinia emarginata<br />

Number of crabs in<br />

each aggregation Reference<br />

1000 or more<br />

70 ind-m-2 or more<br />

22-50,000 or more<br />

100,000s<br />

2,000<br />

100s<br />

5,000?<br />

References: (1) Dew (1990), Dew et al. (1992), Powell & Nickelson (1965a, b), Powell et al. (1973),<br />

Zhou & Siiirley (1997), Stone et al. (1993), (2) Cardenas et al. (2007), (3) Baal (1953), Le Sueur<br />

(1954), Carlisle (1957), Sampedro & Gonzalez-Gurriaran (2004), (4) Stevens (2003), Stevens et al.<br />

(1994), (5 ) Stevens et al. (1992), (6) Debelius (1999), Hobday & Rumsey (1999), (7) DeGoursey &<br />

Auster (1992), Hinsch (1968).<br />

(1)<br />

(2)<br />

(3)<br />

(4)<br />

(5)<br />

(6)<br />

(7)


148 Asakura<br />

Table 8. Species of the Pontoniinae reported as "found in pair." Species of shrimps with [host animals in<br />

brackets] are listed according to the phyla of the host animals (large capitals).<br />

PORIFERA<br />

Apopontonia dubia [Spongia sp.](l), Onycocaris amakusensis [Callyspongia elegans](2),<br />

Onycocaris oligodentata [purplish sponge](3), Onycocaris spinosa [small sponge](4),<br />

Onycocaridella prima (5)[Mycale sulcata], Onycocaridella monodoa (= Onycocaris monodoa)<br />

[Pavaesperella hidentata](6), Onycocaridites anornodactylus [sponge] (7), Orthopontonia<br />

ornatus [Jaspis stellifera]{%), Periclimenaeus stylirostris [sponge](9), Typton dentatus [Reniera<br />

sp.](10)<br />

CNIDARIA<br />

Antipatharia<br />

Dasycaris zanzibarica [black coral, sea whips] (11)<br />

Actiniaria<br />

Periclimenes brevicarpalis [Cryptodendron adhaesivum](12), Periclimenes colemani<br />

[Asthenosoma intermedium](l3), Periclimenes ornatus [Entacmaea quadricolor, Heteroactis<br />

malu, Parasicyonis actinostroides](\4)<br />

Scleractinia<br />

Anapontonia denticauda [Galaxeafascicularis](\5), Coralliocaris superba [Acropora tubicinaria<br />

and other 15 spp. of Acropora](\6), Jocaste lucina [Acropora tubicinaria](ll), Jocaste japonica<br />

[Acropora sp., Acropora humilis, Acropora variabilis, Acropora tubicinaria, Acropora<br />

nasuta](18), Ischnopontonia lophos [Galaxea fascicularis]{\9), Periclimenes lutescens (20),<br />

Periclimenes koroensis [Fungia actiniformis](21), Philarius imperialis [Acropora sp., Acropora<br />

millepora](22), Vir euphyllius [Euphyllia spp.](23), Vir philippinensis [Plerogyra sinuosa](24)<br />

Scleractinia [in network of fissures on surface of faviid coral]<br />

Ctenopontonia cyphastreophila [Cyphastrea microphthalma](25)<br />

Scleractinia [forming galls or bilocular cyst in corals]<br />

Paratypton siebenrocki [Acropora hyacinthus and other 6 spp. of Acropord\{26)<br />

MOLLUSCA<br />

Opistobranchia<br />

Periclimenes imperator [Hexabranchus marginatus](21)<br />

Bivalvia<br />

Anchistus demani [Tridacna maxima](2S), Anchistus miersi [Tridacna squamosa, Tridacna<br />

maxima](29), Anchistus pectinis [Pecten sp., Pecten albicans], Anchistus custos [Pinna saccata,<br />

Pinna sp.](31), Chernocaris plaunae [Placunaplacenta](32), Conchodytes biunguiculatus<br />

[Pinna bicolor](33), Conchodytes meleagrinea [Meleagrina margaritifera](34), Conchodytes<br />

monodactylus [Pecten sp.,Atrina sp.](35), Conchodytes nipponensis [Pinna sp., Pecten laquetus,<br />

Atrina japonica](36), Conchodytes tridacnae [Tridacna maxima](31), Bruceonia ardeae<br />

(= Pontonia ardeae)[Chama pacifica](3%), Pontonia domestica [Atrina seminuda, Atrina rigida,<br />

Pinna muricata](39), Pontonia mexicana [Pinna cornea, Pinna rigida, Atrina seminuda]{40),<br />

Ascidonia miserabilis (= Pontonia miserabilis)[Spondylus americanus]{4\), lAscidonia<br />

miserabilis (as IPontonia miserabilis)[Spondylus americanus](42), Pontonia pinnae [Pinna<br />

rugosa, Atrina tuberculosa]{43), Pontonia pinnophylax [Pinna rudis, Pinna nobilis]{44),<br />

Pontonia margarita [Pinctada mazatlanica](45), Platypontonia hyotis [Pycnodonta hyotis]{46)


Table 8. continued.<br />

The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 149<br />

ECHINODERMATA<br />

Crinoidea: Comatulida<br />

Palaemonellapottsi [Comanthina schlegelii, Comanthus briareus, Stephanometra briareus](47),<br />

Parapontonia nudirostris [Tropiometra afra, Himerometra robustipinna] (48), Periclimenes<br />

alegrias [Lamprometra palmata, Lamprometra klunzingeri, Stephanometra spicata](49),<br />

Periclimenes attenuatus [Comaster multifidus](50), Periclimenes novaecaledoninae<br />

[Lamprometra klunzingeri](51)<br />

Echinoidea<br />

Tuleariocaris holthuisi [Astropyge radiata](52), Tuleariocaris zanzibarica [Astropyge radiata, Diadema<br />

setosum](53)<br />

CHORDATA<br />

Ascidiacea: compound ascidian<br />

Periclimenaeus diplosomatis [Diplosoma lrayneri](54), Periclimenaeus serrula [Leptoclinoides<br />

incertus](55), Periclimenaeus tridentatus [unidentified &scidmn](56),Ascidoniaflavomaculata<br />

(= Pontonia flavomaculata)[Ascidia mentula, Ascidia mammillata, Ascidia involuta, Ascidia<br />

interrupta](51), Odontoma sibogae (= Pontonia sibogae)[Styela whiteleggei, Pyura momus,<br />

Rhopalaea crassa](5&)<br />

Ascidiacea: solitary ascidian<br />

Dasella ansoni [Phallusia depressiuscula](59)<br />

References: (1) Bruce (1983a), (2)-(4) Fujino & Miyake (1969), (5)-(6) Bruce (1981a), (7) Bruce<br />

(1987), (8) Bruce (1982), (9) Bruce & Coombes (1995), (10) Bruce & Coombes (1995), Bruce<br />

(1980a), (11) Gosliner et al. (1996), (12) Bruce & Svoboda (1983), (13) Bruce (1975), (14) Bruce &<br />

Svoboda (1983), Omori et al. (1994), (15) Bruce (1967), (16)-(17) Bruce (1980b), (18) Bruce (1974,<br />

1980b, 1981c), (19) Bruce (1980b, 1981c), Bruce & Coombes (1995), (20) Bruce (1981c), Bruce<br />

& Coombes (1995), (21) Bruce & Svobboda (1984), (22) Bruce & Coombes (1995), (23) Martin<br />

(2007), (24) Bruce & Svoboda (1984), (25) Bruce (1979), (26) Bruce (1980a, b), (27) Bruce (1972a,<br />

1976a), Bruce & Svoboda (1983), Strack (1993), (28) Bruce (1972a), (29) Bruce (1972a), Debelius<br />

(1999), (30) Bruce (1972a), Fujino & Miyake (1967), (31) Bruce (1972a, 1989), Hipeau-Jacquotte<br />

(1973), (32) Bruce (1972a), (33) Bruce (1972a), Hipeau-Jacquotte (1973), (34) Bruce (1973), (35)-<br />

(36) Bruce (1972a), (37) Bruce (1974), (38) Bruce (1981b), Fransen (2002), (39) Bruce (1972a),<br />

Courtney & Couch (1981), Fransen (2002), (40) Bruce (1972a), Criales (1984), Fransen (2002),<br />

(41) Fransen (2002), (42) Criales (1984), (43) Bruce (1972a), (44) Debelius (1999), Richardson et<br />

al. (1997), (45) Baeza (2008), (46) Hipeau-Jacquotte (1971), (47) Bruce & Coombes (1995), Bruce<br />

(1989), (4.8) Bruce (1992), (49) Bruce (1986), Bruce & Coombes (1995), (50) Bruce (1992), (51)<br />

Bruce & Coombes (1995), (52)-(53) Bruce (1967), (54) Bruce (1980b), (55) Bruce & Coombes<br />

(1995), (56) Bruce & Coombes (1995), (57) Monniot (1965), Millar (1971), Fransen (2002), (58)<br />

Bruce (1972b), Fransen (2002), (59) Bruce & Coombes (1995).


150 Asakura<br />

Table 9. Species of the Alpheidae reported as "found in pair." Species of shrimps with [host animals in brackets]<br />

are listed according to the phyla of host animals (large captals) with higher taxa or habitat when known.<br />

PORIFERA<br />

Synalpheus bituberculatus [sponge] (1), Synalpheus hastilicrassus [sponge] (2), Synalpheus<br />

jedanensis [sponge](3), Synalpheus streptodactylus [sponge](4), Synalpheus theano [sponge](5),<br />

Synalpheus fossor [sponge](6), Synalpheus harpagatrus [sponge] (7), Synalpheus nilandensis<br />

[sponge](8), Synalpheus tumidomanus [sponge] (9), Zuzalpheus androsi [Hyattella<br />

intestinalis](lO), Synalpheus couitere [sponge](l 1), Zuzalpheus bousfield [Hymeniacidon<br />

spp.](12), Zuzalpheus carpenteri [Aeglas spp.](13), Zuzalpheus goodei [Xestospongia<br />

wiedenmayeri, Pachypellina podatypa](l4), Zuzalpheus paraneptunus [Hyattella intestinalis,<br />

Oceanapia sp.](15), Zuzalpheus ruetzleri [Hymeniacidon cf. caerulea](16), Zuzalpheus<br />

sanctithomae [Hymeniacidon caerulea etc.](17), Alpheus parvirostris [sponge](18), Alpheus<br />

alcyone [sponge](19), Alpheus aff. eulimene*[sponge](20), Alpheusparalcyone [sponge](21),<br />

Alpheus spongiarum [sponge] (22)<br />

CNIDARIA<br />

Scyphozoa: Coronatae<br />

Synalpheus modestus (23), Synalpheus aff. modestus sensu Nomura & Asakura (1998)<br />

[Stephanoscyphus racemosus](24)<br />

Anthozoa: Gorgonacea<br />

Synalpheus iphinoe [Solenocaulon sp.](25), Synalpheus trispinosus [gorgonacean](26)<br />

Anthozoa: Alcyonacea<br />

Synalpheus neomeris [Dendronephthya](27)<br />

Anthozoa: Actiniaria<br />

Alpheus armatus [Bartholomea annulata](2S), Alpheus immaculatus [Bartholomea annulata](29),<br />

Alpheus polystuctus [Bartholomea annulata](30), Alpheus roquensis [Heteractis lucida](31)<br />

Anthozoa: Scleractinia<br />

Alpheus lottini [reef coral, Pocillopora](32), Alpheus ventrosus (33), Synalpheus charon<br />

[Pocillopora, reef coral](34), Synalpheus scaphoceris [Madracis decactis](35), Racilius<br />

compressus [Galaxea fascicularis](36)<br />

Anthozoa: Scleractinia (in fissures on massive coral)<br />

Alpheus deuteropus [Asteropora, Porites, Acropora, Montipora, Pavona](37)<br />

Anthozoa: Scleractinia (coral borer, in dead coral head)<br />

Alpheus saxidomus (38), Alpheus simus (39), Alpheus schmitti (40), Alpheus idiocheles (41),<br />

Alpheus colluminaus (42)<br />

ANNELIDA<br />

Polychaeta<br />

Alpheus sulcatus [Eurythoe complanata](43)<br />

CRUSTACEA<br />

Shell used by hermit crab<br />

Aretopsis amabilis [Dardanus sanguinolentus, Dardanus megistos, Dardanus guttatus, Dardanus<br />

lagopodes, Clibanarius eurysternus, Calcinus latens](44), Aretopsis manazuruensis [Aniculus<br />

miyakei](45)<br />

In burrow of thalassinidean shrimps<br />

Betaeus longidactylus [Upogebia pugettensis](46), Betaeus harrimani [Upogebiapugettensis](47),<br />

Betaeus ensenadensis [Upogebia pugettensis] (48)<br />

In burrow of mantis shrimp<br />

Athanas squillophilus [Oratosquilla oratoria](49)


Table 9. continued.<br />

The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 151<br />

ECHINODERMATA<br />

Crinoidea: Comatulida<br />

Synalpheus carinatus [crinoids](50), Synalpheus comatularum [Comanthus timorensis](51),<br />

Synalpheus demani [criniod](52), Synalpheus stimpsoni [Comaster multibrachiatus, Comaster<br />

multifidus, Comaster gracilis, Comaster alternans](53), Synalpheus odontophorus [crinoid](54)<br />

Echinoidea<br />

Athanas indicus [Echinometra mathaei](55)<br />

ECHIURA<br />

Athanopsis rubricinctuta [Ochetostoma erythrogrammon](56), Betaeus longidactylus [Urechis<br />

sp.](57)<br />

"PISCES" [in burrow of goby fish]<br />

Alpheus bellulus [Tomiyamichthys spp, Amblyeleotris spp.](58), Alpheus purpurilenticularis<br />

[Amblyeleotris steinitzi], (59) Alpheus rapacida [Myersina spp., Vanderhorstia spp., Mahidoria<br />

spp.], (60) Alpheus rapax [Crypto centrus spp.](61)<br />

ALGAE TUBE<br />

Alpheus frontalis [tube of filamentous blue-green algae such as Microcoelus spp.](62), Alpheus<br />

bucephalus [tube of pure algae or algae with sponges and other material](63), Alpheus brevipes<br />

[tube of red filamentous alga](64), Alpheus clypeatus [tube of red filamentous alga<br />

Acrochaetium](65), Alpheus pachychirus [tube of algae](66)<br />

FREE LIVING [crack of rock, under rubble, around large algae, burrow in mudflat]<br />

Alpheopsis chilensis (67), Alpheus normanni (68), Alpheus euphrosyne richardsoni (69), Alpheus<br />

strenuus cremnus (70), Alpheus diadema (71), Alpheus architectus (72), Alpheus amirantei (73),<br />

Alpheus bisincisus (74), Alpheus brevicristatus (75) (might be commensal with goby?), Alpheus<br />

edwardsii (76), Alpheus aff. gracilipes* (77), Alpheus heeia (78), Alpheus'aff. heeia*(19),<br />

Alpheus aff. leviuscuius sp. 1*(80), Alpheus aff. leviusculus sp. 2* ; (81), Alpheus lobidens (82),<br />

Alpheus aff. lobidens sp. 1*(83), Alpheus aff. lobidens sp. 2*(84), Alpheus aff. lobidens sp.<br />

3*(85), Alpheus malleodigitus (86), Alpheus miersi (SI), Alpheus obesomanus (88), Alpheus<br />

pacificus (89), Alpheus aff. pacificus (90), Alpheus paradentipes (91), Alpheus parvirostris (92),<br />

Alpheus polyxo (93), Alpheus serenei (94), Alpheus suluensis (95), Alpheus tenuipes (96),<br />

Alpheus angulatus (97), Alpheus armillatus (98), Alpheus heterochaelis (99), Alpheus floridanus<br />

(100), Alpheus inca (101), Metalpheusparagracilis (102)


152 Asakura<br />

Table 9. continued.<br />

*sensu Nomura & Asakura (1998). References: (1) Banner & Banner (1975), Nomura & Asakura<br />

(1998), (2)-(5) Nomura & Asakura (1998), (6) Didderen et al. (2006), (7) Banner & Banner (1975),<br />

(8)-(9) Nomura & Asakura (1998), (10) Rios & Duffy (2007), (11) Nomura & Asakura (1998), (12)<br />

Rios & Duffy (2007), (13) Macdonald III et al. (2006), Rios & Duffy (2007), (14)-(17) Rios & Duffy<br />

(2007), (18) Banner & Banner (1982), (19)-(27) Nomura & Asakura (1998), (28) Knowlton (1980),<br />

Knowlton & Keller (1982, 1983, 1985), Criales (1984), (29)-(31) Knowlton (1980), Knowlton &<br />

Keller (1982, 1983, 1985), (32) Vannini (1985), Nomura & Asakura (1998), Abele & Patton (1976),<br />

Tsuchiya & Yonaha (1992), (33) Patton (1966), (34) Patton (1966), Nomura & Asakura (1998), (35)<br />

Dardeau (1984, 1986), (36) Bruce (1972c), (37) Banner & Banner (1983), (38) Fischer & Meyer<br />

(1985), Fischer (1980), (39)-(40) Werding (1990), (41) Kropp (1987), Nomura & Asakura (1998),<br />

(42) Banner & Banner (1982), Nomura & Asakura (1998), (43) Banner & Banner (1982), (44)<br />

Bruce (1969), Banner & Banner (1973), Kamezaki & Kamezaki (1986), (45) Suzuki (1971), (46)-<br />

(48) MacGinitie (1937), (49) Hayashi (2002), (50) Bruce (1989), (51) Banner & Banner (1975),<br />

(52) Bruce (1989), Nomura & Asakura (1998), (53) Nomura & Asakura (1998), Van den Spiegel et<br />

al. (1998), (54) Nomura & Asakura (1998), (55) Gherardi (1991), (56) Anker et al. (2005), Berggren<br />

(1991), (57) MacGinitie (1935), (58) Miya & Miyake (1969), Nomura & Asakura (1998), Nomura<br />

(2003), (59) Macnae & Kalk (1962), Karplus (1979), Nomura (2003), (61) Macnae & Kalk (1962),<br />

Nomura (2003), (62) Fishelson (1966), Banner & Banner (1982), (63) Banner & Banner (1982),<br />

Nomura & Asakura (1998), (64)-(65) Banner & Banner (1982), (66) Cowles (1913), Banner &<br />

Banner (1982), (67) Boltana & Thiel (2001), (68) Nolan & Salmon (1970), (69)-(70) Banner &<br />

Banner (1982), (71)-(75) Nomura & Asakura (1998), (76) Nomura & Asakura (1998), Jeng (1994),<br />

(77)-(96) Nomura & Asakura (1998), (97) Mathews (2002a, b, 2003, 2006, 2007), Mathews et<br />

al. (2002), (98) Mathews et al. (2002), (99) Nolan & Salmon (1970), Schein (1975), Obermeier<br />

& Schmitz (2003a, b), Rahman et al. (2001, 2002, 2003, 2005), Schmitz & Herberholz (1998),<br />

Dworschak & Ott (1993), (100) Dworschak & Ott (1993), (101) Boltana & Thiel (2001), (102)<br />

Nomura & Asakura (1998).


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 153<br />

Table 10. Species of shrimps other than Pontoniinae and Alpheidae reported as "found in pair." Species of<br />

shrimps with [host animals in brackets] are listed according to the phyla of host animals (large capitals) with<br />

higher taxa or habitat when known.<br />

SPONGICOLIDAE<br />

PORIFERA<br />

Spongicola japonica [Euplectella oweni](l), Spongicola venusta [Euplectella aspergillum](2),<br />

Spongicola levigata [Euplectella oweni1](3), Spongiocaris semiteres [hexactinellid sponge], (4)<br />

Spongicoloides iheyaensis [Euplectellidae & Hyalonematidae](5), Globospongicola spinulatus<br />

[hexactinellid sponge Semperella sp.](6)<br />

FREE LIVING<br />

Microprosthema validum (7)<br />

STENOPODIDAE<br />

FREE LIVING<br />

Stenopus hispidus ($), Stenopus scutellatus (9), Stenopus tenuirostris (10), Stenopus<br />

zanzibaricus (11)<br />

HIPPOLIYTIDAE<br />

FREE LIVING<br />

Lysmata debelius (12), Lysmata grabhami (13)<br />

CNIDARIA<br />

Actiniaria, Scleractinia<br />

Thor amboinensis'(14)<br />

GNATHOPHYLLIDAE<br />

ECHINODERMATA<br />

Holothuroidea<br />

Pycnocaris chagoae [Holothuria cinerascens](15)<br />

Asteroidea<br />

Hymenocera picta [prey on sea star](16)<br />

References: (1) Saito et al. (2001), (2) Miyake (1982), Hayashi & Ogawa (1987), (3) Hayashi &<br />

Ogawa (1987), (4) Bruce & Baba (1973), (5) Saito et al. (2006), (6) Komai & Saito (2006), (7)<br />

Davie (2002), (8) Johnson (1969,1977), Castro & Jory (1983), Zhang et al. (1998), Yaldwyn (1964,<br />

1966a), (9) Debelius (1999), (10) Bruce (1976b), (11) Gosliner et al. (1996), (12) Rufino & Jones<br />

(2001), Gosliner et al. (1996), (13) Wirtz (1997), Debelius (1999), (14) Stanton (1977), (15) Bruce<br />

(1983b), (16) Seibt & Wickler (1972, 1979, 1981), Wickler & Seibt (1970, 1972, 1981), Seibt<br />

(1973a, b, 1974,1980), Wasserthal & Seibt (1976), Wickler (1973), Kraul & Nelson (1986), Fiedler<br />

(2002).


154 Asakura<br />

Table 11. Species of Thalassinidea and Anomura reported as "found in pair." Species with [host animals or<br />

habitat in brackets] are listed according to the phyla of host animals (in capitals) with higher taxa or habitat<br />

where known.<br />

THALASSINIDEA<br />

Axiidae<br />

FREE LIVING<br />

Axiopsis serratifrons [in burrow in sediments with a higher content of coral rubble](l)<br />

Laomediidae<br />

FREE LIVING<br />

Axianassa australis [in burrow in mud flat](2)<br />

Callianassidae<br />

"PISCES"<br />

Neotrypaea affinis [burrow of blind goby Typhlogobius californiensis](3)<br />

FREE LIVING<br />

Neotrypaea gigas [burrow in mud] (4)<br />

Upogebiidae<br />

PORIFERA<br />

Upogebia synagelas [Agelas sceptrum](5)<br />

CNIDARIA: Scleractinia<br />

Pomatogebia rugosa [inside live colony of Pontes lobata](6), Pomatogebia operculata [inside live<br />

coral colony](7), Upogebia corallifora [inside dead coral colony](8)<br />

FREE LIVING<br />

Upogebia pugettensis [U- or Y-shaped burrow in mudflat](9), Upogebia affinis [burrow in mud](10)<br />

ANOMURA<br />

Porcellanidae<br />

CNIDARIA<br />

Gorgonacea<br />

Aliaporcellana telestophila [Solenocaulon](11)<br />

Pennatulacea<br />

Porcellanella haigae [Cavernularia sp.](12)<br />

Actiniaria<br />

Neopetrolisthes oshimai [Soichactis spp.](13), Neopetrolisthes maculatus [Stychodactyla](l4),<br />

Neopetrolisthes alobatus, Neopetrolisthes spinatus [Heteroactis malu](\5)<br />

ANNELIDA<br />

, Polychaeta [in tube of large polychaete species]<br />

Poly onyx macroheles [Chaetopterus variopedatus](\6), Poly onyx quadriungulatus [Chaetopterus<br />

variopedatus](ll), Polyonyx transversus [Chaetopterus sp.](18), Polyonyx vermicola<br />

[Sasekumaria selangora](19), Polyonyx bella [Chaetopterus variopedatus](20), Polyonyx gibbesi<br />

[Chaetopterus variopedatus](2l), Polyonyx utinomii [Chaetopterus sp.](22), Heteropolyonyx<br />

biforma [Chaetopterus sp.](23), Polyonyx biunguiculatus [Chaetopterus sp.](24)<br />

CRUSTACEA [in shell being used by hermit crab]<br />

Porcellana cancrisocialis [Petrochirus californiensis, Dardanus sinistripes, Aniculus elegans,<br />

Paguristes digueti](25), Porcellana paguriconviva [Petrochirus calif orniensis, Dardanus<br />

sinistripes, Aniculus elegans, Paguristes digueti](26)<br />

ECHINODERMATA<br />

Echinoidea<br />

Clastotoechus vanderhorsti [Echinometra lucunter](27), Clastotoechus vanderhorsti [Echinometra<br />

lucunter](2%)<br />

Asteroida<br />

Minyocerus angustus [Luidia, Astropecten, Tethyaster](29)


Table 11. continued.<br />

The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 155<br />

FREE LIVING<br />

Pachycheles rudis [underside of stone, basal portion of large algae](30)<br />

Galatheidae<br />

ECHINODERMATA<br />

Crinoidea<br />

Galathea inflata [Comanthus parvicirrus, Comaster schlehelii](31)<br />

References: (1) Dworschak & Ott (1993), (2) Coelho & Rodrigues (1999), Coelho (2001), (3)-(4)<br />

Meinkoth (1981), (5) Williams (1987), (6) Fonseca & Cortes (1998), (7) Kleeman (1984), Williams<br />

& Ngoc-Ho (1990), Coelho & Rodrigues (1999), Coelho (2001), (8) Williams & Scott (1989), (9)<br />

Jensen (1995), (10) Meinkoth (1981), (11) Ng & Goh (1996), (12) Nakasone & Miyake (1972),<br />

(13) Seibt & Wickler (1971), (14) Debelius (1984), (15) Osawa & Fujita (2001), (16) Gray (1961),<br />

(17) Kudenov & Haig (1974), (18) McNeill & Ward (1930), (19) Ng & Sasekumar (1993), (20)<br />

Hsueh & Huang (1998), (21) Rickner (1975), Williams (1984), Grove & Woodin (1996), (22)-(23)<br />

Osawa (2001), (24) Macnae & Kalk (1962), (25) Glassell (1936), Parente & Hendrickx (2000),<br />

Williams & McDermott (2004), (26) Parente & Hendrickx (2000), Williams & McDermott (2004),<br />

(27) Werding (1983), (28) Werding (1983), Schoppe (1991), (29) Werding (1983), Gore & Shoup<br />

(1968), (30) Meinkoth (1981), (31) Fujita & Baba (1999).<br />

Table 12. Species of brachyuran crabs reported as "found in pair." Species of crabs with [host animals in<br />

brackets] are listed within family or superfamily according to the phyla of host animals (in capitals) with<br />

higher taxa or habitat where known.<br />

XANTHIDAE<br />

CNIDARIA: Scleractinia<br />

Cymo andreossyi \Pocillopora\{\)<br />

TRAPEZHDAE<br />

CNIDARIA<br />

Scleraetinia: Pocillopora<br />

Trapezia areolata (2), Trapezia corallina (3), Trapezia cymodoce (4), Trapezia dentata (5),<br />

Trapezia digitalis (6), Trapezia ferruginea (7), Trapezia flavomaculata (8), Trapezia guttata (10),<br />

Trapezia intermedia (11), Trapezia rufopunctata (12), Trapezia tigrina (13), Trapezia wardi (14)<br />

Antipatharia<br />

Quadrella maculosa [Antipathes] (15), Quadrella spp. [Cirrhipathes abies, Antipathes spp.}(16),<br />

Quadrella reticulata [Antipathes sp.](17)<br />

TETRALIIDAE<br />

CNIDARIA<br />

Scleractinia: Acropora<br />

Tetraliafulva (18), Tetralia nigrolineata (19), Tetralia rubridactyla (20)<br />

CARPILHDAE<br />

FREE LIVING<br />

Carpilius corallinus (21)


156 Asakura<br />

Table 12. continued.<br />

PINNOTHERIDAE<br />

ANNELIDA<br />

Polychaeta [in tube of large polychaetes]<br />

Pinnixa tubicola [terebellids and chaetopterids, Eupolymnia heterobranchia, Amphitrite sp., Eupolymnia<br />

heterobranchia, Neoamphitrite rohusta, Thelepus crispus, Chaetopterus variopedatus](22),<br />

Pinnixa chaetopterana [Chaetopterida spp. Chaetopterus variopedatus, Amphitrite ornata](23),<br />

Pinnixa transversalis [Chaetopterus variopedatus](24)<br />

MOLLUSCA<br />

Bivalvia<br />

Pinnixa faba [Tresus capax, Tresus nuttalli](25), Pinnixa littoralis [Tresus capax](26)<br />

Gastropoda [inside mantle cavity]<br />

Orthotheres turboe [Turbo sp.](27), Orthotheres haliotidis [Haliotis asinina, Haliotis<br />

squamatd\{2%)<br />

SIPUNCULA & ECHIURA<br />

Mortensenella forceps [Ochetostoma erythrogrammon](29)<br />

ECHINODERMATA<br />

Echinoidea<br />

Dissodactylus mellitae [Mellita quinguiesperforata, Echinarachnius parrna, Encope<br />

michelini](30), Dissodactylus crinitichelis [Mellita sexiesperforata](3l)<br />

Holothuroidea<br />

Holotheres halingi (= Pinnotheres halingi) [Holothuria scarba](32), Holotheres semperi (= Pinnotheres<br />

semperi)[Holothuriafursocinerea, Holothuria scabra\{33)<br />

BURROWS OF OTHER ANIMALS<br />

Scleroplax granulata [burrow of echiuroid Urechis caupo, mud shrimps Neotrypaea californiensis,<br />

Neotrypaea gigas, Upogebia pugettensis, Upogebia macginiteorum](34)<br />

GRAPSOIDEA<br />

"REPTILIA": Testudines<br />

Planes minutus [loggerhead sea turtle Caretta caretta, inanimate flotsam](35)<br />

ECHINODERMATA<br />

Echinoidea<br />

Percnon gibbesi [Diadema antillarum](36)<br />

References: (1) Castro (1976), Guinot (1978), Miyake (1983), (2) Miyake (1983), Tsuchiya & Yonaha<br />

(1992), Tsuchiya & Taira (1999), (3) Patton (1966), Miyake (1983), Huber (1985), Gotelli et al.<br />

(1985), Castro (1996), (4) Patton (1966), Tsuchiya & Yonaha (1992), Tsuchiya & Taira (1999), (5)<br />

Patton (1966), Huber (1985), (6) Patton (1966), Preston (1973), Huber (1985,1987), Huber & Coles<br />

(1986), Tsuchiya & Taira (1999), (7) Patton (1966), Preston (1973), Abele & Patton (1976), Finney<br />

& Abele (1981), Miyake (1983), Adams et al. (1985), Huber & Coles (1986), Castro (1978, 1996),<br />

Tsuchiya & Taira (1999), (8) Patton (1966), Preston (1973), Miyake (1983), (9) Gotelli et al. (1985),<br />

Castro (1996), (10) Miyake (1983), Tsuchiya & Yonaha (1992), Tsuchiya & Taira (1999), (11) Preston<br />

(1973), Huber & Coles (1986), Huber (1987), (12)-(13) Huber (1985), (14) Preston (1973),<br />

Miyake (1983), Huber & Coles (1986), (15) Shih & Mok (1996), (16) Tazioli et al. (2007), (17)<br />

Castro (1999), (18) Vytopil & Willis (2001), (19)-(20) Sin (1999), (21) Laughlin (1982), (22) Hart<br />

(1982), Wells (1928), Garth & Abbott (1980), Zmarzly (1992), (23) Gray (1961), Grove & Woodin<br />

(1996), Grove et al. (2000), McDermott (2005), (24) Baeza (1999), (25) Pearce (1965, 1966a), Hart<br />

(1982), Zmarzly (1992), (26) Pearce (1966a), Zmarzly (1992), (27) Sakai (1969), (28) Geiger &<br />

Martin (1999), (29) Anker et al. (2005), (30) Bell & Stancyk (1983), Bell (1984), George & Boone<br />

(2003), (31) Telford (1978), (32) Hamel et al. (1999), (33) Ng & Manning (2003), (34) Anker et al.<br />

(2005), Campos (2006), (35) Dellinger et al. (1997), Frick et al. (2000, 2004, 2006), Carranza et al.<br />

(2003), (36) Hayes et al. (1998).


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 157<br />

Table 13. Eusocial species. All species found inhabiting cavity of sponge.<br />

Alpheidae<br />

Zuzalpheus rathbunae [sponge] (1)<br />

Zuzalpheus elizabethae.(= Synalpheus "rathbunae A")[Lissodendoryx] (2)<br />

Zuzalpheus "paraneptunus small" [sponge] (3)<br />

Zuzalpheus regalis [Xestospongia etc.] (4)<br />

Zuzalpheus filidigitus [Xestospongia etc.] (5)<br />

Zuzalpheus chacei [Aeglas, Hyattella etc.] (6)<br />

Zuzalpheus elizabethae [Lissodendoryx etc.] (7)<br />

Synalpheus neptunus neptunus [sponge] (8)<br />

References: (1) Duffy (2003), (2) Duffy (1996c, 2003), Morrison et al. (2004), (3) Duffy et al.<br />

(2000), Duffy (2003), (4) Duffy (1996a, b), Duffy et al. (2002), Rios & Duffy (2007), (5) Duffy<br />

(1996c), Duffy & Macdonald (1999), Rios & Duffy (2007), (6) Chace (1972), Duffy (1998), Rios<br />

& Duffy (2007),(7) Duffy (1996c), Morrison et al. (2004), Rios & Duffy (2007),(8) Didderen et al.<br />

(2006).<br />

Table 14. Species found in small groups. Species with [host animals] are listed, according to the phyla of host<br />

animals (large capitals) with higher taxa or habitat. One group consists of fewer than 20 individuals on a single<br />

host (species, host, number of individuals found, and reference).<br />

CARIDEA<br />

CNIDARIA<br />

Scyphozoa<br />

Periclimenes holthuisi [Cassiopei]<br />

Actiniaria<br />

Periclimenes holthuisi [sea anemone]<br />

Periclimenes tenuipes [Megalactis, Cryptodendron]<br />

Periclimenes longicarpus [Entacmaea]<br />

Periclimenes anthophilus [Condylactis gigantea]<br />

Scleractinia<br />

Thor marguitae[Porites andrewsi]<br />

Jocaste japonica [Acropora divaricata]<br />

Periclimenes holthuisi [corals]<br />

Periclimenes pederosoni [Antipathe]<br />

Anapontonia denticauda [Galaxea]<br />

ECHINODERMATA<br />

Echinoidea<br />

Gnathophylloides mineri [Tripneustes ventricosus]<br />

GALATHEOIDEA<br />

CNIDARIA<br />

Scleractinia<br />

Lissoporcellana spinuligera [Solenocaulon]<br />

CRUSTACEA: shell used by hermit crab<br />

Porcellana sdyana [Dardanus, Petrochirus, Paguristes]<br />

Max. 8 (various sizes and sexes)(l)<br />

Several individuals (2)<br />

Max. 6 (various sizes and sexes)(3)<br />

Max. 7 (various sizes and sexes)(4)<br />

Up to 9 (5)<br />

10 (2 cf, 5 ov. $, 2 non-ov. 9, 1 juv.)(6)<br />

15 (5 d\ 6 ov. $, 3 non-ov. 9, 1 juv.)(7)<br />

Several individuals (8)<br />

7 (2 cf, 3 ov. 9, 2 non-ov. $)(9)<br />

5(la\l9,3juv.)(10)<br />

Up to 13, with females greatly<br />

outnumbering males (11)<br />

7(ld\3ov. 9, 3juv.)(12)<br />

Max. 11 (several cf, several ov. 9)(13)


158 Asakura<br />

Table 14. continued.<br />

BRACHYURA<br />

MOLLUSCA<br />

Bivalvia<br />

Pinnixafaba [Tresus] More than 3(1 d\ 1 9, fewjuv.)(14)<br />

References: (1) Bruce & Svoboda (1983), (2) Coleman (1991), (3)-(4) Bruce & Svoboda (1983),<br />

(5) Nizinski (1989), (6) Bruce (1978), (7) Bruce (1981b), (8) Coleman (1991), (9) Spotte (1996),<br />

(10) Bruce (1967), (11) Patton et al. (1985), (12) Ng & Goh (1996), (13) Gore (1970), (14) Haig &<br />

Abbott (1980).<br />

Table 15. Species found in large groups. Species with [host animals] are listed, according to the phyla of host<br />

animals (large capitals) with higher taxa or habitat. One group consists of more than 20 individuals on a single<br />

host.<br />

CARIDEA<br />

PORIFERA<br />

Synalpheus dorae [Reiniere]<br />

Synalpheus streptodactylus [sponge]<br />

Synalpheus crosnieri [sponge]<br />

Synalpheus paradoxus [sponge]<br />

Zuzalpheus brooksi [sponge]<br />

Zuzalpheus idios [Hymeniacidon etc.]<br />

Zuzalpheus pectiniger [Spheciospongia]<br />

CNIDARIA<br />

. Scyphozoa<br />

Latreutes anoplonyx [Nemopilema nomurai]<br />

Scleractinia<br />

Coralliocaris macrophthalma [Acropora hyacinthus]<br />

Fennera chacei [Pocillopora]<br />

Periclimenes toloensis [Lytocarpus philippinensis]<br />

ECHINODERMATA<br />

Periclimenes affinis [Heterometra magnipinna]<br />

Periclimenes meyeri [Nemaster grandis]<br />

136 (all cf)(l)<br />

105 (68 cT, 37 ov. 9, several non- ov. $)(2)<br />

147 (144 d\ 3 9)(3)<br />

112 (110 d\ 2 $), 132 (130 cT, 2 ?)(4)<br />

10s to 1000s (5)<br />

Several 10s (including many ov. 9 & juv.)(6)<br />

Few 100s (7)<br />

More than 100 (8)<br />

24 (including 16 ?)(9)<br />

Max. 49 (all adults) (10)<br />

110 (including 43 ov.9)( 11)<br />

64 (including 16 ov. 9)(12)<br />

Max. 25 (various sizes and sexes)(13)<br />

References: (1) Bruce (1988), (2) Banner & Banner (1975, 1982), (3) Banner & Banner (1983), (4)<br />

Banner & Banner (1982), (5)-(7) Rios & Duffy (2007), (8) Hayashi et al. (2003), (9) Bruce (1977),<br />

(10) Gotelli et al. (1985), (11)-(12) Bruce & Coombes (1995), (13) Criales (1984).


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 159<br />

Table 16. Selected species of pinnotherid crabs (and their hosts) in which life history has been studied.<br />

MOLLUSCA<br />

Bivalvia<br />

Fabia subquadrata [Modiohis modiolus] (1)<br />

Tumidotheres maculatus (= Pinnotheres maculatus) [Mytilus edulis, Argopecten irradians etc.] (2)<br />

Pinnotheres ostreum [Crass ostrea virginica, Mytilus edulis] (3)<br />

Pinnotheres pisum [Mytilus edulis etc.] (4)<br />

Pinnotheres taichungae [Laternula marilina] (5)<br />

Pinnotheres bidentatus [Laternula marilina] (6)<br />

ANNELIDA: Polychaeta<br />

Tritodynamia horvathi [in tube of Loimia verrucosa] (7)<br />

References: (1) Pearce (1962, 1966b), (2) Pearce (1964), Williams (1984), (3) Christensen & Mc-<br />

Dermott (1958), (4) Atkins (1926), Christensen (1958), Hartnoll (1972), Williams (1984), (5)<br />

Hsueh (2003), (6) Hsueh (2001a, b), (7) Matsuo (1998, 1999), Takahashi et al. (1999).<br />

Table 17. Species in which neotenous males have been reported.<br />

Hippidae<br />

Emerita brasiliensis<br />

Emerita asiatica<br />

Emerita emeritus<br />

Emerita holthuisi<br />

Emerita talpoida<br />

Emerita rathbunae<br />

(i)<br />

(2)<br />

(3)<br />

(4)<br />

• (5)<br />

(6)<br />

References: (1) Delgado & Defeo (2006, 2008), (2) Subramoniam (1981), (3)-(4) Subramoniam &<br />

Gunamalai (2003), (5)-(6) Efford (1967).


160 Asakura<br />

APPENDIX 2:<br />

REFERENCES FOR TABLES OF APPENDIX 1<br />

Abele, L.G. & Patton, W.K. 1976. The size of coral heads and the community biology of associated<br />

decapod crustaceans. /. Biogeogr. 3: 35-47.<br />

Abele, L.G., Robinson, M.H. & Robinson, B. 1973. Observations on sound production by two<br />

species of crabs from Panama (<strong>Decapod</strong>a, Gecarcinidae and Pseudothelphusidae). <strong>Crustacean</strong>a<br />

25: 147-152.<br />

Abello, P. 1989. Reproduction and moulting in Liocarcinus depurator (Linnaeus, 1758) (Brachyura:<br />

Portunidae) in the northwestern Mediterranean Sea. Sci. Mar. 53: 127-134.<br />

Adams, J., Edwards, A.J. & Emberton, H. 1985. Sexual size dimorphism and assortative mating<br />

in the obligate coral commensal Trapezia ferruginea Latreille (<strong>Decapod</strong>a, Xanthidae). <strong>Crustacean</strong>a<br />

48: 188-194.<br />

Aiken, D.E. & Waddy, S.L. 1980. Reproductive biplogy. In: Cobb, J.C. & Phillips, B.F. (eds.), The<br />

Biology and Management of Lobsters. Volume 1: 215-276. New York: Academic Press.<br />

Aiken, D.E., Waddy, S.L. & Mercer, S.M. 2004. Confirmation of external fertilization in the<br />

American lobster, Homarus americanus. J. Crust. Biol. 24: 474-480.<br />

Ameyaw-Akumfl, C. 1981. Courtship in the crayfish Procambarus clarkii (Girad) (<strong>Decapod</strong>a,<br />

Astacidea). <strong>Crustacean</strong>a 40: 57-64.<br />

Ameyaw-Akumfi, C. 1987. Mating in the lagoon crab Cardisoma armatum Herklots. J. Crust. Biol.<br />

7:433-436.<br />

Anker, A., Murina, G.V., Lira, C, Caripe, J.A.V., Palmer, A.R. & Jeng, M.S. 2005. Macrofauna associated<br />

with echiuran burrows: a review with new observations on the innkeeper worm Ochetostoma<br />

erythrogramm on Leuckartana Riippelin, Venezuela. Zool. Stud. 44: 157-190.<br />

Antheunisse, L.J., van den Hoven, N.P. & Jeffries, D.J. 1968. The breeding characters of Palaemonetes<br />

varians (Leach) (<strong>Decapod</strong>a, Palaemonidae). <strong>Crustacean</strong>a 14: 259-270.<br />

Aquacop. 1977. Observations sur la maturation et la reproduction en captivite des crevettes peneides<br />

en milieu tropical. Third Meet. ICES Work. G. Maricult., Brest, France, Actes Colloq. CNEXO<br />

4: 157-178.<br />

Arakawa, K.Y. 1964. On mating behavior of giant Japanese crab, Macrocheira kaempferi De Haan.<br />

Res. Crust. 1:40-46.<br />

Asakura, A. 1987. Population ecology of the sand-dwelling hermit crab, Diogenes nitidimanus<br />

Terao. 3. Mating system. Bull. Mar. Sci. 41: 226-233.<br />

Atkins, D. 1926. The moulting stages of the pea crab {Pinnotheres pisum). J. Mar. Biol. Ass. U.K.<br />

14: 475-493.<br />

Baal, H.J. 1953. Behaviour of spider crabs in the presence of octopuses. Nature 111: 887.<br />

Baeza, J.A. 1999. Indicadores de monogamia en el cangrejo comensal Pinnixa transversalis (Milne<br />

Edwards and Lucas) (<strong>Decapod</strong>a: Brachyura: Pinnotheridae): distribucion poblacional, asociacion.<br />

macho-hembra y dimorfismo sexual. Anal. Mus. Hist. Nat. Valparaeo (Chile) 34: 303-313.<br />

Baeza, J.A. 2008. Social monogamy in the shrimp Pontonia margarita, a symbiont of Pinctada<br />

mazatlanica, off the Pacific coast of Panama. Man Biol. 153: 387-395.<br />

Banner, A.H. & Banner, D.M. 1983. An annotated checklist of the alpheid shrimp from the Western<br />

Indian Ocean. Trav.Doc. ORSTOM 158: 1-164.<br />

Banner, D.M. & Banner, A.H. 1973. The alpheid shrimp of Australia. Parti: the lower genera. Rec.<br />

Aust. Mus. 28: 291-382.<br />

Banner, D.M. & Banner, A.H. 1975. The alpheid shrimp of Australia. Part II: the genus Synalpheus.<br />

Rec. Aust. Mus. 29: 261-3%9.<br />

Banner, D.M. & Banner, A.H. 1982. The alpheid shrimp of Australia. Part III: the remaining<br />

alpheids, principally the genus Alpheus, and the family Ogyrididae. Rec. Aust. Mus. 341: 1-357.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 161<br />

Barki, A. & Karplus, I. 1999. Mating behavior and a behavioral assay for female receptivity in the<br />

red-claw crayfish Cherax quadricarinatus. J. Crust. Biol 19: 493-497.<br />

Bauer, R.T. 1976. Mating behaviour and spermatophore transfer in the shrimp Heptacarpus pictus<br />

(Stimpson) (<strong>Decapod</strong>a: Caridea: Hippolytidae). J. Nat. Hist. 10: 315-440.<br />

Bauer, R.T. 1979. Sex attraction and recognition in the caridean shrimp Heptacarpus paludicola<br />

Holmes (<strong>Decapod</strong>a: Hippolytidae). Mar. Behav. Physiol. 6: 157-174.<br />

Bauer, R.T. 1991. Sperm transfer and storage structures in penaeoid shrimps: a functional and phylogenetic<br />

perspective. In: Bauer, R.T. & Martin, J.W. (eds.), <strong>Crustacean</strong> Sexual Biology: 183-207.<br />

New York: Columbia Univ. Press.<br />

Bauer, R.T. 1992. Repetitive copulation and variable success of insemination in the marine shrimp<br />

Sicyonia dorsalis (<strong>Decapod</strong>a: Penaeoidea). J. Crust. Biol 12: 153-160.<br />

Bauer, R.T. 1996. A test of hypotheses on male mating systems and female molting in decapod<br />

shrimp, using Sicyonia dorsalis (<strong>Decapod</strong>a: Penaeoidea). J. Crust. Biol. 16: 429-436.<br />

Bauer, R.T. & Abdalla, J.A. 2001. Male mating tactics in the shrimp Palaemonetes pugio (<strong>Decapod</strong>a,<br />

Caridea): precopulatory mate guarding vs. pure searching. Ethology 107: 185-199.<br />

Bauer, R.T. & Min, L.J. 1993. Spermatophores and plug substances of the marine shrimp Trachypenaeus<br />

similis (Crustacea: <strong>Decapod</strong>a: Penaeidae): formation in the male reproductive tract and<br />

disposition in the inseminated female. Biol. Bull. 185: 174-185.<br />

Bechler, D.L. 1981. Copulatory and maternal-offspring behavior in the hypogean crayfish,<br />

Orconectes inermis inermis Cope and Orconectes pellucidus (Tellkampf) (<strong>Decapod</strong>a, Astacidea).<br />

<strong>Crustacean</strong>a 40: 136-143.<br />

Beer, C.G. 1959. Notes on the behaviour of two estuarine crab species. Trans. Royal Soc. New<br />

Zealand 86: 197-203.<br />

Bell, J.L. 1984. Changing residence: dynamics of the symbiotic relationship between Dissodactylus<br />

mellitae (Rathbun) (Pinnotheridae) and Mellita quinquiesperforata (Leske) (Echinodermata).<br />

J. Exp. Mar. Biol Ecol 82: 101-115.<br />

Bell, J.L. 8c Stancyk, S.E. 1983. Population dynamics and reproduction of Dissodactylus mellitae<br />

(Brachyura: Pinnotheridae) on its sand dollar host Mellita quinquiesperforata (Echinodermata).<br />

Mar. Ecol Prog. Sen 13: 141-149.<br />

Berg, A.B. & Sandifer, LA. 1984. Mating behavior of the grass shrimp Palaemonetes pugio.<br />

J. Crust. Biol. 4: 417-424.<br />

Berggren, M. 1991. Athanopsis rubricinctuta, new species (<strong>Decapod</strong>a: Natantia: Alpheidae), a<br />

shrimp associated with an echiuroid at Inhaca Island, Mozambique. J. Crust. Biol. 11: 166-178.<br />

Berrill, M. 1982. The life cycle of the green crab Carcinus maenas at the northern end of its range.<br />

J. Crust. Biol 2: 31-39.<br />

Berrill, M. & Arsenault, M. 1982. Mating behaviour of the green shore crab Carcinus maenas. Bull.<br />

Mar. Scl 32: 632-638.<br />

Berry, P.F. 1970. Mating behavior, oviposition, and fertilization in the spiny lobster Panulirus homarus<br />

(Linnaeus). S. Afr. Oceanogr. Res. Inst. Invest. Rep. 24: 1-16.<br />

Berry, P.F. & Hartnoll, R.G. 1970. Mating in captivity of the spider crab Pleistacantha moseleyi<br />

(Miers) (<strong>Decapod</strong>a, Majidae). <strong>Crustacean</strong>a 19: 214-215.<br />

Bhimachar^ B.S. 1965. Life history and behaviour of Indian prawns. Fish. Technol, Ernakulam 2:<br />

1-11.<br />

Binford, R. 1913. The germ cells and the process of fertilization in the crab, Menippe mercenaria.<br />

J. Morphol. 24: Ul-202.<br />

Bliss, D.E., van Montfrans, J., van Montfrans, M. & Boyer, J.R. 1978. Behavior and growth of the<br />

land crab Gecarcinus lateralis (Freminville) in southern Florida. Bull. Am. Mus. Nat. Hist. 160: .<br />

111-152.


162 Asakura<br />

Bloch, D.R 1935. Contribution a letude des gametes et de la fecondation chez les Crustaces <strong>Decapod</strong>es,<br />

Trav. Stn. Zool. Wimereux 12: 185-270.<br />

Bodekke, R., Bosschieter, J.R. & Goudswaard, P.C. 1991. Sex change, mating, and sperm transfer<br />

in Crangon crangon (L.). In: Bauer, R.T. & Martin, J.W. (eds.), <strong>Crustacean</strong> Sexual Biology:<br />

164-182. New York: Columbia University Press.<br />

Boltana, S. & Thiel, M. 2001. Associations between two species of snapping shrimp, Alpheus inca<br />

and Alpheus chilensis (<strong>Decapod</strong>a: Caridea: Alpheidae). J. Mar. Biol Ass. U.K. 81: 633-638.<br />

Boolootian, R.A., Giese, A.C., Farmanfarmaian, A. & Tucker, J. 1959. Reproductive cycles of five<br />

west coast crabs. Physiol. Zool. 32: 213- 220.<br />

Bourdon, R. 1962. Observations preliminaries sur la ponte des Xanthidae. Bull. Soc. Lorraine Sci.<br />

2:3-28.<br />

Bovbjerg, R.V. 1953. Dominance order in the crayfish Orconectes virilis (Hagan). Physiol. Zool.<br />

26:173-178.<br />

Bovbjerg, R.V. 1956. Some factors affecting aggressive behavior in crayfish. Physiol. Zool. 29:<br />

127-136.<br />

Bovbjerg, R.V. 1960. Courtship behavior of the lined shore crab, Pachygrapsus crassipes Randall.<br />

Pac. Sci. 14: 421^122.<br />

Brewis, J. M. & Bowler, K. 1985. A study of reproductive females of the freshwater crayfish Austropotamobius<br />

pallipes. Hydrobiol. 121: 145-149.<br />

Brisson, S. 1986. Observations on the courtship of Penaeus brasiliensis. Aquacult. 53: 75-78.<br />

Brockerhoff, A.M. & McLay, C. 2005a. Mating behaviour, female receptivity and male-male competition<br />

in the intertidal crab Hemigrapsus sexdentatus (Brachyura: Grapsidae). Mar. Ecol. Prog.<br />

to 290: 179-191.<br />

Brockerhoff, A.M. & McLay, C. 2005b. Factors influencing the onset and duration of receptivity of<br />

female purple rock crabs, Hemigrapsus sexdentatus (Brachyura: Grapsidae). /. Exp. Mar. Biol.<br />

Ecol. 314: 123-135.<br />

Brockerhoff, A. & McLay, C. 2005c. Comparative analysis of the mating strategies in grapsid crabs<br />

with special reference to the intertidal crabs Cyclograpsus lavauxi and Helice crassa (<strong>Decapod</strong>a:<br />

Grapsidae) from New Zealand. J. Crust. Biol. 23: 507-520.<br />

Brockerhoff, A.M. 2002. Comparative studies of the reproductive strategies of New Zealand grapsid<br />

crabs (Brachyura: Grapsidae) and the effects of parasites on reproductive success. New<br />

Zealand: Ph.D. Thesis, Univ. Canterbury. (Cited from Brockerhoff, A.M. & McLay, C. 2005a.)<br />

Broekhuysen, G.J. 1936. On development, growth and distribution of Carcinides maenas. Arch.<br />

Need. Zool. 2: 255-399.<br />

Broekhuysen, G.J. 1937. Some notes on sex recognition in Carcinides maenas (L.). Arch. Neerl.<br />

Zool. 3: 156-164.<br />

Broekhuysen, G.J. 1941. The life history of Cyclograpsus punctatus,M. Edw.: breeding and growth.<br />

Trans. Royal Soc. S. Afr. 28: 331-366.<br />

Broekhuysen, G.J. 1955. The breeding and growth of Hymenosoma orbiculareDesm. (Crustacea,<br />

Brachyura). Ann. S. Afr. Mas. 41: 313-343.<br />

Browdy, C.L. 1989. Aspects of the reproductive biology of Penaeus semisulcatus. Dr. Thesis. Tel<br />

Aviv Univ., Israel.<br />

Bruce, A.J. 1967. Notes on some Indo-Pacific Pontoniinae, III-IX. Descriptions of some new genera<br />

and species from the western Indian Ocean and South China Sea. Zool. Verhandl, Leiden 87:<br />

1-73.<br />

Bruce, A.J. 1969. Aretopsis amabilis de Man, an alpheid shrimp commensal of pagurid crabs in the<br />

Seychelle Islands. J. Mar. Biol. Ass. India 11: 175-181.<br />

Bruce, A.J. 1972a. Shrimps that live with molluscs. Sea Frontiers 18: 218-227.<br />

Bruce, A.J. 1972b. An association between a pontoniinid shrimp and a rhizostomatous scyphozoan.<br />

<strong>Crustacean</strong>a 23: 300-302.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 163<br />

Bruce, A.J. 1972c. On the association of the shrimp Racilius compressus Paulson (<strong>Decapod</strong>a, Alpheidae)<br />

with the coral Galaxea clavus (Dana). <strong>Crustacean</strong>a 22: 92-93.<br />

Bruce, A.J. 1973. The pontoniinid shrimps collected by the Yale-Seychelles expedition, 1957-1958<br />

(<strong>Decapod</strong>a, Palaemoniidae). <strong>Crustacean</strong>a 24: 132-142.<br />

Bruce, A.J. 1974. A report on a small collection of pontoniine shrimps from the Island of Farquhar<br />

(<strong>Decapod</strong>a, Palaemonidae). <strong>Crustacean</strong>a 27: 189-203.<br />

Bruce, A.J. 1975. Periclimenes colemani sp. nov., a new shrimp associate of a rare sea urchin from<br />

Heron Island, Queensland. Rec. Aust. Mus. 29: 485-502.<br />

Bruce, A.J. 1976a. A report on a small collection of shrimps from the Kenya National Marine Parks<br />

atMalindi, with notes on selected species. Zool. VerhandL, Leiden 145: 1-72.<br />

Bruce, A.J. 1976b. Studies on Indo-West Pacific Stenopodidea, 1. Stenopus zanzibaricus sp. nov., a<br />

new species from East Africa. <strong>Crustacean</strong>a 31: 90-102.<br />

Bruce, A.J. 1977. A report on a small collection of pontoniine shrimps from Queensland, Australia.<br />

<strong>Crustacean</strong>a^: 167-181.<br />

Bruce, A.J. 1978. Thor marguitae sp. nov., a new hippolytid shrimp from Heron Island, Australia.<br />

<strong>Crustacean</strong>a 35: 159-169.<br />

Bruce, A.J. 1979. Ctenopontonia cyphastreophila, a new genus and species of coral associated pontoniine<br />

shrimp from Eniwetok Atoll. Bull Mar. Sci. 29: 423-435.<br />

Bruce, A.J. 1980a. Notes on some Indo-Paciflc pontoniinae, XXXIV. Further observations on Typton<br />

dentatus Fujino & Miyake (<strong>Decapod</strong>a, Palaemonidae). <strong>Crustacean</strong>a 39: 113-120.<br />

Bruce, A.J. 1980b. Pontoniine shrimps from the Great Astrolabe Reef, Fiji. Pac. Sci. 34: 389-400.<br />

Bruce, A.J. 1981a. Onycocaridella prima, new genus, new species, a new pontoniine spongeassociate<br />

from the Capricorn Islands, Australia (<strong>Decapod</strong>a, Caridea, Pontoniinae). J. Crust. Biol.<br />

1:241-250.<br />

Bruce, A.J. 1981b. Pontoniine shrimps from Viti Levu, Fijian Islands. Micronesica 17: 77-95.<br />

Bruce, A.J. 1981c. Pontoniine shrimps of Heron Island. Atoll Res. Bull. 245: 1-33.<br />

Bluce, A.J. 1982. Notes on some Indo-Pacific Pontontinae, XLI. Orthopontonia, a new genus prom<br />

posed for Periclimenaeus ornatus Bruce. <strong>Crustacean</strong>a 43:163-176.<br />

Bruce, A.J. 1983a. Further information on Apopontonia dubia Bruce (<strong>Decapod</strong>a Pontoniinae). <strong>Crustacean</strong>a<br />

45:210-213.<br />

Bruce, A.J. 1983b. A further note on Pycnocaris chagoae Bruce (<strong>Decapod</strong>a, Gnathophyllidae).<br />

<strong>Crustacean</strong>a 45: 107-109.<br />

Bruce, A.J. 1986. Three new species of commensal shrimps from Port Essington, Arnhem Land,<br />

Northern Australia (Crustacea: <strong>Decapod</strong>a: Palaemonidae). Beagle 3:143-166.<br />

Bruce, A.J. 1987. Onycocaridites anomodactylus, new genus, new species (<strong>Decapod</strong>a: Palaemonidae),<br />

a commensal shrimp from the Arafura Sea. J. Crust. Biol. 7: 771-779.<br />

Bruce, A.J. 1988. Synalpheus dome, a new commensal alpheid shrimp from the Australian Northwest<br />

shelf. Proc. Biol. Soc. Wash. 101: 843-852.<br />

Bruce, A.J. 1989. A report on some coral reef shrimps from the Philippine Islands. Asian Mar. Biol.<br />

6: 173-192.<br />

Bruce, A.J. 1992. Two new species of Periclimenes (Crustaces, <strong>Decapod</strong>a, Palaemonidae) from<br />

Lizard Island, Queensland, with notes on some related taxa. Rec. Aust. Mus. 44: 45-84.<br />

Bruce, A.J. & Baba, K. 1973. Spongiocaris, a new genus of stenopodidean shrimp from New<br />

Zealand and South African waters, with a description of two new species (<strong>Decapod</strong>a, Natantia,<br />

Stenopodidea). <strong>Crustacean</strong>a 25: 153-170.<br />

Bruce, A.J. & Coombes, K.E. 1995. The palaemonoid shrimp fauna (Crustacea: <strong>Decapod</strong>a: Caridea)<br />

of the Cobourg Peninsula, Northern Territory. Beagle 12: 101-144.<br />

Bruce, A.J. & Svoboda, A. 1983. Observations upon some pontoniine shrimps from Aqaba, Jordan.<br />

Zool. VerhandL, Leiden 205: 1^4.


164 Asakura<br />

Bruce, A.J. & Svoboda, A. 1984. A report on a small collection of coelenterate-associated pontoniine<br />

shrimps from Cebu, Philippines Islands. Asian Mar. Biol. 1: 87-99.<br />

Bueno, S.L.S. 1990. Maturation and spawning of the white shrimp Penaeus schmitti Burkenroad,<br />

1936, under large scale rearing conditions. J. World Aquacult. Soc. 21: 170-179.<br />

Bulter, T.N. 1960. Maturity and breeding of the Pacific edible crab Cancer magister Dana. J. Fish.<br />

Res. Bd. Canada 17: 641-646.<br />

Burkenroad, M.D. 1947. Reproductive activities of decapod Crustacea. Am. Nat. 81: 392-398.<br />

Campos, E. 2006. Systematics of the genus Scleroplax Rathbun, 1893 (Crustacea: Brachyura: Pinnotheridae).<br />

Zootaxa 1344: 33^41.<br />

Cardenas, C.A., Canete, J., Oyarzun, S. & Mansilla, A. 2007. Agregaciones de juveniles^de centolla<br />

Lithodes santolla (Molina, 1782) (Crustacea) en asociacion con discos de fijacion de Macrocystis<br />

pyrifera (Linnaeus) C. Agardh, 1980. Investig. Mar., Mayo. 35: 105-110.<br />

Carlisle, D.B. 1957. On the hormonal inhibition of moulting in decapod Crustacea. II. The terminal<br />

anecdysis in crabs. J. Mar. Biol. Ass. U.K. 36: 291-307.<br />

Carlisle, D.B. 1959. On the sexual biology of Pandalus borealis (Crustacea <strong>Decapod</strong>a) II. The termination<br />

of the male phase. J. Mar. Biol. Ass. U.K. 38: 481-491.<br />

Carral, J.M., Celada, J.D., Gonzalez, J., Saez-Royuela, M. & Gaudioso, V.R. 1994. Mating and<br />

spawning of. freshwater crayfish (Austropotamobius pallipes Lereboullet) under laboratory conditions.<br />

Aquacult. Fish. Manag. 25: 721-727.<br />

Carranza, A., Domingo, A., Verdi, A., Forselledo, R. & Estrades, A. 2003. First report of an association<br />

between Planes cyaneus (<strong>Decapod</strong>a: Grapsidae) and loggerhead sea turtles in the southwestern<br />

Atlantic Ocean. Mar. Turtle News I. 102: 5-7.<br />

Caskey, J.L. & Bauer, R.T. 2005. Behavioral tests for a possible contact sex pheromone. /. Crust.<br />

Biol. 25: 571-576.<br />

Castro, A.D. & Jory, D.E. 1983. Preliminary experiments on the culture of the banded coral shrimp,<br />

Stenopus hispidus Oliver. J. Aquacult. Aquat. Sci. 3: 84-89.<br />

Castro, P. 1976. Brachyuran crabs symbiotic with scleractinian corals: a review of their biology.<br />

Micronesica 121: 95-110.<br />

Castro, P. 1978. Movements between coral colonies in Trapezia ferruginea (Crustacea: Brachyura),<br />

an obligate symbiont of scleractinian corals. Mar. Biol. 46: 237-245.<br />

Castro, P. 1996. Eastern Pacific species of Trapezia (Crustacea, Brachyura: Trapeziidae), sibling<br />

species symbiotic with reef corals. Bull. Mar. Sci. 58: 531-554.<br />

Castro, P. 1999. Results of the Rumphius Biohistorical Expedition to Ambon (1990). Part 7. The<br />

Trapeziidae (Crustacea: Brachyura: Xanthoidea) of Indonesia. Zool. Meded. 73: 27-61.<br />

Chace, F.A., Jr. 1972. The shrimps of the Smithsonian-Bredin Caribbean Expeditions with a summary<br />

of the West Indian shallow water species (Crustacea: <strong>Decapod</strong>a: Natantia). Smith. Contr.<br />

Zool. 98: 1-179.<br />

Cheung, T.S. 1966. An observed act of copulation in the shore crab, Carcinus maenus (L.).<br />

<strong>Crustacean</strong>a 11: 107-108.<br />

Cheung, T.S. 1968. Trans-molt retention of sperm in the female stone crab, Menippe mercenaria<br />

(Say). <strong>Crustacean</strong>a 15: 117-120.<br />

Childchester, F.E. 1911. The mating habits of four species of the Brachyura. Biol. Bull. 21: 235-248.<br />

Chittleborough, R.G. 1976. Breeding of Panulirus longipes cygnus George under natural and controlled<br />

conditions. Aust. J: Mar. Freshwt. Res. 27: 499-516.<br />

Christensen, A.M. 1958. On the life history and biology of Pinnotheres pisum. Proc. XVth Int.<br />

Congr. Zool, London: 267-270.<br />

Christensen, A.M. & McDermott, J.J. 1958. Life history and biology of the oyster crab, Pinnotheres<br />

ostreum Say. Biol. Bull. 114: 146-179.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 165<br />

Christofferson, J.R 1970. An electrophysiological and chemical investigation of the female sex<br />

pheromone of the crab Portunus sanguinolentus. Manoa: Ph.D. Thesis, Univ. Hawaii. (Cited<br />

from Dunham 1978.)<br />

Christofferson, J.R 1978. Evidence for the controlled release of a crustacean sex pheromone.<br />

/. Chem. Ecol. 4: 633-639.<br />

Churchill, E.R 1919. Life history of the blue crab. Bull. U.S. Bur. Fish. 36: 91-128.<br />

Cleaver, RC. 1949. Preliminary results of the coastal crab (Cancer magister) investigation. Wash.<br />

State Dep. Fish. Biol. Rep. 49A: 47-82.<br />

Coelho, V.R. 2001. Intraspeciflc behavior of two pair-bonding thalassinidean shrimp, Axianassa<br />

australis and Pomatogebia operculata. Fifth Int. Congr. Crust (Abs.), Melbourne, Australia: 51.<br />

Coelho, V.R. & Rodrigues, S.A. 1999. Comparison between the setal types present on the feeding<br />

appendages of two callianassid shrimps. TCS Summer Meeting (Abs.), Lafayette, Louisiana: 27.<br />

Coleman, N. 1991. Encyclopedia of Marine Animals. New York: Harper Collins Publ.<br />

Contreras-Garduno, J., Osorno, J.L. & Cordoba-Aguilar, A. 2007. Male-male competition and female<br />

behavior as determinants of male mating success in the semi-terrestrial hermit crab Coenbbita<br />

compressus (H. Milne Edwards). J. Crust. Biol. 27: 411-416.<br />

Corotto, F.S., Bonenberger, D.M., Bounkeo, J.M. & Dukas, C.C. 1999. Antennule ablation, sex<br />

discrimination, and mating behavior in the crayfish Procambarus clarkii. J. Crust. Biol. 19:<br />

708-712.<br />

Correa, C. & Thiel, M. 2003a. Mating systems in caridean shrimp (<strong>Decapod</strong>a: Caridea) and their<br />

evolutionary consequences for sexual dimorphism and reproductive biology. Rev. Chil. Hist. Nat.<br />

76: 187-203.<br />

Correa, C. & Thiel, M. 2003b. Population structure and operational sex ratio in the rock shrimp<br />

Rhynchocinetes typus (<strong>Decapod</strong>a: Caridea). J. Crust. Biol. 23: 849-861.<br />

Correa, C, Baeza, J.A., Dupre, E., Hinojosa, LA. & Thiel, M. 2000. Mating behavior and fertiliza-<br />

£ tion success of three ontogenetic stages of male rock shrimp Rhynchocinetes typus (<strong>Decapod</strong>a:<br />

t Caridea). J. Crust. Biol. 20: 628-640.<br />

Correa, C.? Baeza, LA., Hinojosa, LA. & Thiel, M. 2003. Male dominance hierarchy and mating<br />

tactics in the rock shrimp Rhynchocinetes typus (<strong>Decapod</strong>a: Caridea). J. Crust. Biol. 23: 33-45.<br />

Costa, R. C. da. & Fransozo, A. 2004. Reproductive biology of the shrimp Rimapenaeus constrictus<br />

(<strong>Decapod</strong>a, Penaeidae) in the Ubatuba Region of Brazil. /. Crust. Biol. 24: 274-281.<br />

Courtney, L.A. & Couch, J.A. 1981. Aspects of the host-commensal relationship between a palaemonid<br />

shrimp (Pontonia domestica) and the Pen Shell (Atrina rigida). Northeast Gulf Sci. 5:<br />

49-54.<br />

Cowles, R.P. 1913. The habits of some tropical Crustacea. Philippine J. Sci. 8 (D): 119-125.<br />

Criales, M,M. 1984. Shrimps associated with coelenterates, echinoderms, and molluscs in the Santa<br />

Marta Region, Colombia. J. Crust. Biol. 4: 307-317.<br />

Cukerzis, J.M. 1988. Astacus astacus in Europe. In: Holdich, D.M. & Lowery, R.S. (eds.), Freshwater<br />

Crayfish: Biology, Management, and Exploitation: 309-340. London: Champman & Hall.<br />

Dardeau, M.R. 1984. Synalpheus shrimps (Crustacea: <strong>Decapod</strong>a: Alpheidae). I. The Gambarelloides<br />

group, with a description of a new species. Mem. Hourglass Cruises 7, Part 2: 1-125.<br />

Dardeau, M.R. 1986. Redescription of Synalpheus scaphocerisCoutiere, 1910 (<strong>Decapod</strong>a: Alpheidae)<br />

with new records from the Gulf of Mexico. J. Crust. Biol. 6: 491-496.<br />

Davie, P.J.F. 2002. Crustacea: Malacostraca: Eucarida (Part 2): <strong>Decapod</strong>a: Anomura, Brachyura.<br />

In: Wells, A. & Houston, W.W.K. (eds.), Zoological Catalogue of Australia 19.3B: 1-641.<br />

Melbourne: CSIRO Publ., Glaessner MR<br />

de Saint-Brisson, S.C. 1985. The mating behavior of Penaeuspaulensis. <strong>Crustacean</strong>a 50: 108-110.<br />

Debelius, H. 1984. Armoured Knights of the Sea. Essen: Kernen Verlag.<br />

Debelius, H. 1999. Indian Ocean Reef Guide. IKAN-Unterwasserarchiv.


166 Asakura<br />

DeGoursey, R.E. & Auster, P.J. 1992. A mating aggregation of the spider crab, Libinia emarginata.<br />

J. Northwest Atlantic Fish. Sci. 13: 77-82.<br />

Delgado, D. & Defeo, O. 2006. A complex sexual cycle in sandy beaches: the reproductive strategy<br />

of Emerita brasiliensis (<strong>Decapod</strong>a: Anomura). J. Mar. Biol. Ass. U.K. 86: 361-368.<br />

Delgado, D. & Defeo, O. 2008. Reproductive plasticity in mole crabs, Emerita brasiliensis, in sandy<br />

beaches with contrasting morphodynamics. Mar. Biol. 153: 1065-1074.<br />

Dellinger, T., Davenport, J. & Wirtz, P. 1997. Comparisons of social structure of Columbus crabs<br />

living on loggerhead sea turtles and inanimate flotsam. J. Mar. Biol. Ass. U.K.77: 185-194.<br />

Delsman, C. & de Man, J.G. 1925. On the "Radjungans" of the Bay of Batavia. Treubia 6: 308-323.<br />

Dennenmoser, S. & Thiel, M. 2007. Competition for food and mates by dominant and subordinate<br />

male rock shrimp, Rhynchocinetes typus. Behaviour 144: 33-59.<br />

Dew, C.B. 1990. Behavioral ecology of podding red king crab, Paralithodes camtschatica. Canad.<br />

J. Fish. Aqua. Sci. 47: 1944-1958.<br />

Dew, C.B., Cummiskey, RA. & Munk, J.E. 1992. The behavioral ecology and spatial distribution<br />

of red king crab and other target species: Implications for sampling design and data treatment.<br />

In: White, L. & Nielson, C. (eds.), Proceedings of the International Crab Rehabilitation and<br />

Enhancement Symposium: 39-67. Kidiak: Alaska Dept. Fish Game.<br />

Diaz, E. & Thiel, M. 2003. Female rock shrimp prefer dominant males. J. Mar. Biol. Ass. U.K. 83:<br />

941-942.<br />

Diaz, E. & Thiel, M. 2004. Chemical and visual communication during mate searching in rock<br />

shrimp. Biol. Bull. 206: 134-143.<br />

Didderen, K., Fransen, C.H.J.M. & de Voogd, N.J. 2006. Observations on sponge-dwelling colonies<br />

of Synalpheus (<strong>Decapod</strong>a, Alpheidae) of Sulawesi, Indonesia. <strong>Crustacean</strong>a 79: 961-975.<br />

Doi, W. & Watanabe, S. 2006. Occurrence of the sperm plugs in Carcinoplax vestita (Brachyura:<br />

Goneplacidae). Cancer 15: 13-15.<br />

Donaldson, W.E. & Adams, A.E. 1989. Ethogram of behavior with emphasis on mating for the<br />

Tanner crab Chionoecetes bairdi Rathbun. J. Crust. Biol. 9: 37-53.<br />

Duffy, J. E. 1996a. Synalpheus regalis, new species, a sponge-dwelling shrimp from the Belize<br />

Barrier Reef, with comments on host specificity in Synalpheus. J. Crust. Biol. 16: 564-573.<br />

Duffy, J.E. 1996b. Eusociality in a coral-reef shrimp. Nature 381: 512-514.<br />

Duffy, J.E. 1996c. Resource-associated population subdivision in a symbiotic coral-reef shrimp.<br />

Evolution 50: 360-373.<br />

Duffy, J.E. 1998. On the frequency of eusociality in snapping shrimps with description of a new<br />

eusocial species. Bull. Mar. Sci. 62: 387-400.<br />

Duffy, J.E. 2003. The ecology and evolution of eusociality in sponge-dwelling shrimp. In: Kikuchi,<br />

T., Azuma, N. & Higashi, S. (eds.), Genes, Behavior and Evolution in Social Insects: 217-252.<br />

Sapporo: Hokkaido Univ. Press.<br />

Duffy, J.E. & Macdonald, K.S. 1999. Colony structure of the social snapping shrimp Synalpheus<br />

filidigitus in Belize. J. Crust. Biol. 19: 283-292.<br />

Duffy, J.E., Morrison, C.L. & Rios, R. 2000. Multiple origins of eusociality among sponge-dwelling<br />

shrimps {Synalpheus). Evolution 54: 503-516.<br />

Duffy, J.E., Morrison, C.L. & Macdonald, K.S. III. 2002. Colony defense and behavioral differentiation<br />

in the eusocial shrimp Synalpheus regalis. Behav. Ecol. Sociobiol. 51: 488-495.<br />

Dunham, D.W. & Gilchrist, S.L. 1988. Behavior. In: Burggren, W.W. & McMahon, B.R. (eds.),<br />

Biology of the Land Crabs: 97-138. Cambridge: Cambridge Univ. Press.<br />

Duteutre, M. 1930. Mensurations de Carcinus moenas en promenade pre-nuptiale. Ass. Fran. Uavanc.<br />

Sci. 54: 294-250.<br />

Dworschak, PC. & Ott, J.A. 1993. <strong>Decapod</strong> burrows in mangrove-channel and back-reef environments<br />

at the Atlantic Barrier Reef, Belize. Ichnos 2: 277-290.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 167<br />

Edwards, E. 1966. Mating behaviour in the European edible crab (Cancerpagurus L.). <strong>Crustacean</strong>a<br />

10:23-30.<br />

Efford, I.E. 1965. Aggregation in the sand crab, Emerita analoga (Stimpson). J. Anim. Ecol. 34:<br />

63-75.<br />

Efford, I.E. 1967. Neoteny in sand crabs of the genus Emerita (<strong>Decapod</strong>a, Hippidae). <strong>Crustacean</strong>a<br />

13:81-93.<br />

Elner, R.W. & Elner, J.K. 1980. Observations on a simultaneous mating embrace between a male<br />

and two female rock crabs Cancer irroratus (<strong>Decapod</strong>a, Brachyura). <strong>Crustacean</strong>a 38: 96-98.<br />

Elner, R.W. & Stasko, A.B. 1978. Mating behavior of the rock crab, Cancer irroratus. J. Fish. Res.<br />

Bd. Canada 35: 1385-1388.<br />

Elner, R.W., Gass, C.A. & Campbell, A. 1985. Mating behavior of the Jonah crab, Cancer borealis<br />

Stimpson (<strong>Decapod</strong>a, Brachyura). <strong>Crustacean</strong>a 48: 34-39.<br />

Farmer, A.S.D. 1974. Reproduction in Nephrops novergicus (<strong>Decapod</strong>a: Nephroidae). J. Zool. London<br />

174: 161-183.<br />

Fiedler, G.C. 2002. The influence of social environment on sex determination in harlequin shrimp<br />

(Hymenocera picta: <strong>Decapod</strong>a, Gnathophyllidae). J. Crust. Biol. 22: 750-761.<br />

Fielder, P.R. & Eales, A.J. 1972. Observations on courtship, mating and sexual maturity in Portunus<br />

pelagicus (L., 1766) (Crustacea, Portunidae). J.Nat. Hist. 6: 273-277.<br />

Finney, W.C. & Abele, L.G. 1981. Allometric variation and sexual maturity in the obligate coral<br />

commensal Trapezia ferruginea Latreille (<strong>Decapod</strong>a, Xanthidae). <strong>Crustacean</strong>a 41: 113-130.<br />

Fischer, R. 1980. Bioerosion of basalt of the Pacific Coast of Costa Rica. Senckenberg. Marit. 13:<br />

1-41.<br />

Fischer, R. & Meyer, W. 1985. Observations on rock boring by Alpheus saxidomus (Crustacea:<br />

Alpheidae). Mar. Biol. 89: 213-219.<br />

Fishelson, L. 1966. Observations on the littoral fauna of Israel, V. On the habitat and behaviour of<br />

Alpheus frontalis H. Milne Edwards (<strong>Decapod</strong>a, Alpheidae). <strong>Crustacean</strong>a 11: 98-104.<br />

Fonseca, A.C.E. & Cortes, J. 1988. Coral borers of the Eastern Pacific: Asidosiphon (A.) elegans<br />

•> (Sipuncula: Aspidosiphonidae) and Pomatogebia rugosa (Crustacea: Upogebiidae). Pac. Sci. 52:<br />

170-175.<br />

Forster, G.R. 1951. The biology of the common prawn Leander serratus Pennant. J. Mar. Biol. Ass.<br />

U.K. 30: 333-360?<br />

Fransen, C.H.J.M. 2002. Taxonomy, phylogeny, historical biogeography, and historical ecology of<br />

the genus Pontonia (Crustacea: <strong>Decapod</strong>a: Caridea: Palaemonidae). Zool. Verhandl, Leiden 336:<br />

1-433.<br />

Frick, M., Williams, K. & Veljacic, D. 2000. Additional evidence supporting a cleaning association<br />

between epibiotic crabs and sea turtles: how will the harvest of sargassum seaweed impact this<br />

relationship? Mar. Turtle Newsl. 90: 11-13.<br />

Frick, M.G., Williams, K.L., Bolten, A.B., Bjorndal, K.A. & Martins, H.R. 2004. Diet and fecundity<br />

of columbus crabs, Planes minutus, associated with oceanic-stage loggerhead sea turtles, Caretta<br />

caretta, and inanimate flotsam. J. Crust. Biol. 24: 350-355.<br />

Frick, M.G., Williams, K.L., Bresette, M, Singewald, D.A. & Herren, R.M. 2006. On the occurrence<br />

of columbus crabs (Planes minutus) from loggerhead turtles in Florida, USA. Mar. Turtle Newsl.<br />

114:12-14.<br />

Fujino, T. & Miyake, S. 1967. Two species of pontoniid prawns commensal with bivalves (Crustacea,<br />

<strong>Decapod</strong>a, Palaemonidae). Publ. Seto Mar. Biol. Lab. 15: 291-296.<br />

Fujino, T. & Miyake, S. 1969. Studies on the genus Onycocaris with descriptions of five new species<br />

(Crustacea, <strong>Decapod</strong>a, Palaemonidae). J. Fac. Agr., Kyushu Univ. 15: 403-448.


168 Asakura<br />

Fujita, Y. & Baba, K. 1999. Two galatheid associates of crinoids from the Ryukyu Islands<br />

(<strong>Decapod</strong>a: Anomura: Galatheidae), with their ecological notes. Crust. Res. 28: 112-124.<br />

Fukui, Y. 1991. Mating behavior of brachyuran crabs. Benthos Res. 40: 35-46.<br />

Fukui, Y. 1994. Mating behavior of the grapsid crab, Gaetice depressus (De Haan) (Brachyura:<br />

Grapsidae). Crust. Res. 23: 32-39.<br />

Fuseya, R. 2006. Notes on the stopper of the kuruma prawn Marsupenaeus japonicus. Cancer 15:<br />

7-19.<br />

Galeotti, P., Pupin, F., Rubolini, D., Sacchi, R., Nardi, P.A. & Fasola, M. 2007. Effects of female<br />

mating status on copulation behaviour and sperm expenditure in the freshwater crayfish Austropotamobius<br />

italicus. Behav. Ecol. Sociobiol. 61: 711-718.<br />

Garth, J.S. & Abbott, D.P. 1980. Brachyura: the true crabs. In: Morris, R.H., Abbott, D.P. & Haderlie,<br />

E.C. (eds.), Intertidal Invertebrates of California: 594-630. Stanford: Stanford Univ. Press.<br />

Geiger, D.L. & Martin, J.W. 1999. The pea crab Orthotheres haliotidis new species (<strong>Decapod</strong>a:<br />

Brachyura: Pinnotheridae) in the Australian abalones Haliotis asinina Linnaeus, 1758 and H.<br />

squamata Reeve, 1846 (Gastropoda: Vetigastropoda: Haliotidae). Bull Mar. Sci. 64:<br />

269-280.<br />

George, M.J. 1963. The anatomy of the crab Neptunus sanguinolentus Herbst. Part IV. Reproductive<br />

system and embryological studies. /. Madras Univ. (Sect. B) 33: 289-304.<br />

George, S.B. & Boone, S. 2003. The ectosymbiont crab Dissodactylus mellitae-sand dollar Mellita<br />

isometra relationship. J. Exp. Mar. Biol. Ecol. 294: 235-255.<br />

Gherardi, F. 1991. Eco-ethological aspects of the symbiosis between the shrimp Athanas indicus<br />

(Coutiere 1903) and the sea urchin Echinometra mathaei (de Blainville, 1825). Trop. Zool. 4:<br />

107-128.<br />

Gifford, C.A. 1962. Some observations on the general biology of the land crab, Cardisoma. guanhumi<br />

(Latreille), in South Florida. Biol. Bull. 123: 207-223.<br />

Glassell, S.A. 1936. New porcellanids and pinnotherids from tropical North American Waters.<br />

Trans. San Diego Soc. Nat. Hist. 8: 227-304.<br />

Gleeson, R.A. 1980. Pheromone communication in the reproductive behavior of the blue crab, Callinectes<br />

sapidus. Mar. Behav. Physiol. 7: 119-134.<br />

Gleeson, R.A., Adams, M.A. & Smith, A.B. III. 1984. Characterization of a sex pheromone in the<br />

blue crab, Callinectes sapidus: Crustecdysone studies. J. Chem. Ecol. 10: 913-921.<br />

Gonzalez-Gurriaran, E. & Freire, J. 1994. Sexual maturity in the velvet swimming crab Necora<br />

puber (Brachyura, Portunidae): morphometric and reproductive analyses. ICES J. Mar. Set,<br />

J. Cornell 51:133-145.<br />

Gore, R.H. 1970. Pachycheles cristobalensis, sp. nov., with notes on the porcellanid crabs of the<br />

southwestern Caribbean. Bull. Mar. Sci. 20: 957-970.<br />

Gore, R.H. & Shoup, J.B. 1968. A new starfish host and an extension of range for the commensed<br />

crab, Minyocerus angustus (Dana, 1852) (Crustacea: Porcellanidae). Bull. Mar. Sci. 18:<br />

240-248.<br />

Goshima, S., Ito, K., Wada, S., Shimizu, M. & Nakao, S. 1995. Reproductive biology of the stone<br />

crab Hapalogaster dentata (Anomura: Lithodidae). Crust. Res. 24: 8-18.<br />

Goshima S., Kawashima, T. & Wada, S. 1998. Mate choice by males of the hermit crab Pagurus<br />

filholi: do males assess ripeness and/or fecundity of females? Ecol. Res. 13: 151-162.<br />

Gosliner, T.M., Behrens, D.W. & Williams, G.C. 1996. Coral Reef Animals of the Indo-Pacific:<br />

Animal Life from Africa to Hawaii, Exclusive of the Vertebrates. Monterey: Sea Challengers.<br />

Gotelli, N.J., Gilchrist, S.L. & Abele, L.G. 1985. Population biology of Trapezia spp. and other<br />

coral-associated decapods. Mar. Ecol. Prog. Sen 21: 89-98.<br />

Gray, G,W. & Powell, G.C. 1966. Sex ratios and distribution of spawning king crabs in Alitak Bay,<br />

Kodiak Island, Alaska (<strong>Decapod</strong>a Anomura, Lithodidae). <strong>Crustacean</strong>a 10: 303-309.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 169<br />

Gray, I.E. 1961. Changes in abundance of the commensal crabs of Chaetopterus. Biol. Bull. 120:<br />

353-359.<br />

Grove, M.W. & Woodin, S.A. 1996. Conspecific recognition and host choice in a pea crab, Pinnixa<br />

chaetopterana (Brachyura: Pinnotheridae). Biol. Bull. 190: 359-366.<br />

Grove, M.W., Finelli. CM., Wethey, D.S. & Woodin, S.A. 2000. The effects of symbiotic crabs on<br />

the pumping activity and growth rates of Chaetopterus variopedatus. J. Exp. Mar Biol. Ecol.<br />

246:31-52.<br />

Guest, W.C. 1979. Laboratory life history of the palaemonid shrimp Macrobrachium amazonicum<br />

(Heller) (<strong>Decapod</strong>a, Palaemonidae). <strong>Crustacean</strong>a 37: 141-152.<br />

Guinot, D. 1978. Principes d'une classification evolutive des crustaces decapodes brachyoures. Bull.<br />

Biol. France Belgique 112: 209-292.<br />

Haefner, P.A., Jr. 1976. Distribution, reproduction and moulting of the rock crab, Cancer irroratus<br />

Say, 1917, in the mid-Atlantic Bight. J. Nat. Hist. 10: 377-397.<br />

Haig, J. & Abbot, D.P. 1980. Macrura and Anomura: the ghost shrimps, hermit crabs, and allies.<br />

In: Morris, R.H., Abbott, D.P. & Haderlie, E.C. (eds.), Intertidal Invertebrates of California:<br />

577-593. Stanford: Stanford Univ. Press.<br />

Hamel, J.F., Ng, P.K.L. & Mercier, A. 1999. A life cycle of the pea crab Pinnotheres halingi sp.<br />

nov., an obligate symbiont of the sea cucumber Holothuria scabra Jaeger. Ophelia 50: 149-175.<br />

Hart, J.F.L, 1982. Crabs and Their Relatives of British Columbia. Victoria: British Columbia.<br />

Hartnoll, R.G. 1965a. The biology of spider crabs: a comparison of British and Jamaican species.<br />

<strong>Crustacean</strong>a 9: 1-16.<br />

Hartnoll, R.G. 1965b. Notes on the marine grapsid crabs of Jamaica. Proc. Linn. Soc. London 176:<br />

113-147.<br />

Hartnoll, R.G. 1968. Reproduction in the burrowing crab, Corystes cassivelaunus (Pennant, 1777)<br />

(<strong>Decapod</strong>a, Brachyura). <strong>Crustacean</strong>a 15: 165-170.<br />

Hartnoll, R.G. 1969. Mating in the Brachyura. <strong>Crustacean</strong>a 16: 161-181.<br />

Hartnoll, R.G. 1972. Swimming in the hard stage of the pea crab, Pinnotheres pisum. J. Nat. Hist.<br />

: 6:475-480.<br />

Havinga, B. 1930. Der Granat (Crangon vulgaris Fabr.) in den hollandischen Gewassern. J. Cons.<br />

Int. Explor. Mer. 5: 57-87.<br />

Hay, W.P.1905. The life history of the blue crab (Callinectes sapidus). Rep. U.S. Bur. Fish. 1904:<br />

395-413.<br />

Hayashi, K.-I.& Ogawa, Y. 1987. Spongicola levigata sp. nov., a new shrimp associated with hexactinellid<br />

sponge from the East China Sea (<strong>Decapod</strong>a, Stenopodidae). Zool. Sci. 4: 367-373.<br />

Hayashi, K.-I. 2002. A new species of the genus Athanas (<strong>Decapod</strong>a, Caridea, Alpheidae) living in<br />

the burrows of a mantis shrimp. <strong>Crustacean</strong>a 75: 395-403.<br />

Hayashi, Kl.-L, Sakaue, J. & Toyota, K. 2003. Latreutes anoplonyx Kemp associated with Nemopilema<br />

nomurai at Sea of Japan and the Pacific coast of northern Japan. Cancer 13: 9-15.<br />

Hayes, F.E., Joseph, V.L., Gurley, H.S. & Wong, B.Y.Y. 1998. Selection by two decapod crabs (Percnon<br />

gibbesi and Stenorhynchus seticornis) associating with an urchin (Diadema antillarum) at<br />

Tobago, West Indies. Bull. Mar. Sci. 63: 241-247.<br />

Hazlett, B.A. 1966. Social behavior of the Paguridae and Doigenidae of Curacao. Stud. Fauna Curacao<br />

23: 1-143.<br />

Hazlett, B,A. 1968. The phyletically irregular social behavior of Diogenes pugilator (Anomura,<br />

Paguridae). <strong>Crustacean</strong>a 15: 31-34.<br />

Hazlett, B.A. 1972. Shell fighting and sexual behaviour in the hermit crab genera Paguristes md<br />

Calcinus with comments on Pagurus. Bull. Mar. Sci. 22: 806-823.<br />

Hazlett, B.A. 1975. Etiological analysis of reproductive behavior in marine Crustacea. Pubbl Staz.<br />

Zool. Mapoli 39: 677-695.


170 Asakura<br />

Hazlett, B.A. 1989. Mating success of male hermit crabs in shell generalist and shell specialist<br />

species. Behav. Ecol. Sociobiol. 25: 119-128.<br />

Heldt, J.H. 1931. Observations sur la ponte, la fecondation et les premiers stades du developpement<br />

de l'oeuf chez Penaeus caramote Risso. CRAcad. ScL, Sen Ill-vie 193: 1039-1041.<br />

Helfman, G.S. 1977. Copulatory behavior of the coconut or robber crab Birgus latio (L.) (<strong>Decapod</strong>a,<br />

Anomura, Paguridae, Coenobitidae). <strong>Crustacean</strong>a 33: 198-202.<br />

Henning, H.G. 1975. Aggressive, reproductive and molting behavior, growth and maturation of<br />

Cardisoma guanhumi Latrelle (Crustacea, Brachyura). Forma Fund, 8: 463-510.<br />

Herrick, F.H. 1909. <strong>Natural</strong> history of the American lobster. Bull U.S. Bur. Com. Fish. 29: 149-<br />

408.<br />

Heydon, A.E.F. 1969. Notes on the biology of Panulirus homarus and on length/weight relationship.<br />

Invest. Rep. Div. Sea. Fish. S. Afr. 69: 1-19.<br />

Hiatt, R.W. 1948. The biology of the lined shore crab Pachygrapsus crassipes Randall. Pac. Sci. 2:<br />

135-213.<br />

Hicks, J.W. 1985. The breeding behaviour and migrations of the terrestrial crab Gecarcoidea natalis<br />

(<strong>Decapod</strong>a: Brachyura). Aust. J. Zool. 33: 127-142.<br />

Hill, B.J. 1975. Abundance, breeding and growth of the crab Scylla serrata in two South African<br />

estuaries. Mar. Biol. 32: 119-126.<br />

Hinojosa, I. & Thiel, M. 2003. Somatic and gametic resources in male rock shrimp, Rhynchocinetes<br />

typus: effect of mating potential and ontogenetic male stage. Anim. Behav. 65: 449-458.<br />

Hinsch, G.W. 1968. Reproductive behavior in the spider crab Libinia emarginata (L.). Biol. Bull.<br />

135: 273-278.<br />

Hinsch, G.W. 1988. Morphology of the reproductive tract and seasonality of reproduction in the<br />

golden crab Geryon fenneri from the eastern Gulf of Mexico. /. Crust. Biol. 8: 254-261.<br />

Hipeau-Jacquotte, R. 1971. Notes de faunistique et de biologie marines de Madagascar, 5. Platypontonia<br />

hyotis no v. sp. (<strong>Decapod</strong>a Natantia, Pontoniinae). <strong>Crustacean</strong>a 20: 125-140.<br />

Hipeau-Jacquotte, R. 1973. Manifestation d'un comportement territorial chez les crevettes Pontoniinae<br />

associates aux mollusques Pinnidae. J. Mar. Exp. Biol. Ecol. 13: 63-71.<br />

Hobday, A.J. & Rumsey, S.M. 1999. Population dynamics of the sheep crab Loxorhynchus grandis<br />

(Majidae) Stimpson, 1857, at La Jolla California. Scripps Inst. Oceanogr. Tech. Rep. 29: 1-32.<br />

Hoestlandt, H. 1948. Recherches sur la biologie de YEriocheir sinensis en France (Crustace Brachyoure).<br />

Ann. Inst. Oceanogr., Monaco 24: 1-116.<br />

Hoffman, D.L. 1973. Observed acts of copulation in the protandric shrirmp Pandalus platyceros<br />

Bandt (<strong>Decapod</strong>a, Pandaliae). <strong>Crustacean</strong>a 24: 242-244.<br />

Hoglund, H. 1943. On the biology and larval development of Leander squilla (L.) forma typica de<br />

Man. Svenska hydrogr.-biol. Kommn. Skr. 2: 1-44.<br />

Holdich, D. & Black, J. 2007. The spiny-cheek crayfish, Orconectes limosus (Rafinesque, 1817)<br />

[Crustacea: <strong>Decapod</strong>a: Cambaridae], digs into the UK. Aquat. Invasion 2: 1-16.<br />

Hsueh, P.-W. 2001a. Intertidal distribution, symbiotic association and reproduction of Pinnotheres<br />

bidentatus (Brachyura: Pinnotheridae) from Taiwan. J. Nat. Hist. 35: 1681-1692.<br />

Hsueh, P.-W. 2001b. Population dynamics of free-swimming stage Pinnotheres bidentatus (Brachyura:<br />

Pinnotheridae) in tidal waters off the west coast of central Taiwan. J. Crust. Biol.: 973-981.<br />

Hsueh, P.-W. 2003. Responses of the pea crab Pinnotheres taichungae to the life history patterns of<br />

its primary bivalve host Laternula marilina. J. Nat. Hist. 37: 1453-1462.<br />

Hsueh, P.-W. & Huang, J.F. 1998. Poly onyx bella, new species (<strong>Decapod</strong>a: Anomura: Porcellanidae),<br />

from Taiwan, with notes on its reproduction and swimming behaviour. J. Crust. Biol. 18:<br />

332-336.<br />

Huber, M.E. 1985. Non-random mating with respect to mate size in the crab Trapezia (Brachyura,<br />

Xanthidae). Mar. Behav. Physiol. 12: 19-32.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 111<br />

Huber, M.E. 1987. Aggressive behavior of Trapezia intermedia Miers and T. digitalis Latreille<br />

(Brachyura: Xanthidae). J. Crust Biol. 7: 238-248.<br />

Huber, M.E. & Coles, S.L. 1986. Resource utilization and competition among the five Hawaiian<br />

species of Trapezia (Crustacea, Brachyura). Mar. Ecol. Prog. Ser. 30: 21-3.1.<br />

Hudinaga, M. 1942. Reproduction, development and rearing of Penaeus japonicus Bate. Jap. J.<br />

Zool. 10: 305-393.<br />

Hughes, J.T. & Matthiessen, G.C. 1962. Observation on the biology of the American lobster, Homarus<br />

americanus. Limnol. Oceanogr.l: 414-421.<br />

Imafuku, M. 1986. Sexual discrimination in the hermit crab Pagurus geminus. J. Ethol. 4: 39-47.<br />

Imazu, M. & Asakura, A. 2006. Descriptions of agonistic, aggressive and sexual behaviors of five<br />

species of hermit crabs from Japan (<strong>Decapod</strong>a: Anomura: Paguridae and Diogenidae). Crust.<br />

Res., Spec. No. 6: 95-107.<br />

Ingle, R.W. & Thoriias, W. 1974. Mating and spawning of the crayfish Austropotamobius pallipes<br />

(Crustacea: Astacidae). J. Zool. 173: 525-538.<br />

Jefferies, D.J. 1968. The breeding characters of Palaemonetes varians (Leach) (<strong>Decapod</strong>a, Palaemonidae).<br />

<strong>Crustacean</strong>a 14: 259-270.<br />

Jeng, M.S. 1994. Effect of antennular and antennal ablation on pairing behavior of snapping shrimp<br />

Alpheus edwardsii (Audouin). J. Exp. Mar. Biol. Ecol. 179: 171-178.<br />

Jensen, G.C. 1995. Pacific Coast Crabs and Shrimps: 87 pp. Monterey, CA: Sea Challengers.<br />

Jensen, K. 1972. On the agonistic behaviour in Carcinus maenas (L.)(<strong>Decapod</strong>a). Ophelia 10:<br />

57-61.<br />

Jivoff, P. 1997. The relative roles of predation and sperm competition on the duration of the postcopulatory<br />

association between the sexes in the blue crab, Callinectes sapidus. Behav. Ecol.<br />

Sociobwl. 40: 175-185.<br />

Jivoff, P. & Hines, A.H. 1998. Female behaviour, sexual competition and mate guarding in the blue<br />

crab, Callinectesrsapidus. Anim. Behav. 55: 589-603.<br />

Johnson, RUT. & Oito, S.V. 1981. Histology of a bilateral gynandromorph of the blue crab, Callinecteswapidus<br />

Rathbun (<strong>Decapod</strong>a: Portunidae). Biol. Bull. 161: 236-245.<br />

Johnson, V.R., Jr. 1969. Behavior associated with pair formation in the banded shrimp Stenopus<br />

hispidus (Olivier). Pac. Set. 23: 40-50.<br />

Johnson, V.R., Jr. 1977. Individual recognition in the banded shrimp Stenopus hispidus. Anim. Behav.<br />

25: 418-428.<br />

Kaestner, A. 1970. Invertebrate Zoology (translated by H. W. Levi & L. R. Levi). New York: Wiley<br />

Inter science.<br />

Kamezaki, N. & Kamezaki, Y. 1986. On the ecology of alpheid shrimp Aretopsis amabilis de Man.<br />

Nankiseibutu, Nanki Biol. Soc. 28: 11-15 (in Japanese).<br />

Kamio, M„ Matsunaga, S. & Fusetani, N. 2000. Studies on sex pheromones of the helmet crab,<br />

Telmessus cheiragonus: I. An assay based on precopulatory mate-guarding. Zool. Sci. 17: 731-<br />

733.<br />

Kamio, M., Matsunaga, S. & Fusetani, N. 2002. Copulation pheromone in the crab, Telmessus<br />

cheiragonus (Brachyura: <strong>Decapod</strong>a). Mar. Ecol. Prog. Ser. 234: 183-190.<br />

Kamio, M., Matsunaga, S. & Fusetani, N. 2003. Observation on the mating behaviour of the helmet<br />

crab Telmessus cheiragonus (Brachyura: Cheiragonidae). J. Mar. Biol. Ass. U.K. 83: 1007-<br />

1013.<br />

Karplus, I. 1979. The tactile communication between Cryptocentrus steinitzi (Pisces, Gobiidae) and<br />

Alpheus purpurilenticularis (Crustacea, Alpheidae). Z. Tierpsychol. 49: 173-196.<br />

Kawai, T. & Saito, K. 2Q01. Observations on the mating behavior and season, with no form alternation,<br />

of the Japanese crayfish, Cambaroides japonicus (<strong>Decapod</strong>a, Cambaridae), in Lake<br />

Komadome, Japan. J. Crust. Biol. 21: 885-890.


172 Asakura<br />

Klassen, F. 1975. Ecological and ethological studies on the reproductive biology of Gecarcinus<br />

lateralis (<strong>Decapod</strong>a, Brachyura). Forma Funct. 8: 101-174.<br />

Kleeman, K. 1984. Lebensspuren von Upogebia operculata (Crustacea, <strong>Decapod</strong>a) in karibischen<br />

Steinkorallen (Madreporaria: Anthozoa). Beitr. Palaeont. Osterreich. 11: 35-57.<br />

Knowlton, N. 1980. Sexual selection and dimorphism in two demes of a symbiotic, pair-bonding<br />

snapping shrimp. Evolution 34: 161-173.<br />

Knowlton, N. & Keller, B.D. 1982. Symmetric fights as a measure of escalation potential in a symbiotic,<br />

territorial snapping shrimp. Behav. Ecol. Sociobiol. 10: 289-292.<br />

Knowlton, N. & Keller, B.D. 1983. A new, sibling species of snapping shrimp associated with the<br />

Caribbean Sea anemone Bartholomea annulata. Bull. Mar. Sci. 33: 353-362.<br />

Knowlton, N. & Keller, B.D. 1985. Two more sibling species of alpheid shrimps localized recruitment<br />

in an alpheid shrimp with extended larval development. Bull. Mar. Sci. 39: 213-223.<br />

Knudsen, J.W. 1960. Reproduction, life history and larval ecology of the California Xanthidae, the<br />

pebble crabs. Pac. Sci. 14: 3-17.<br />

Knudsen, J.W. 1964. Observation of the reproductive cycles and ecology of the common Brachyura<br />

and crablike Anomura of Puget Sound, Washington. Pac. Sci. 18: 3-33.<br />

Kobayashi, S. & Matsuura, S. 1994. Variation in the duration of copulation of the Japanese mitten<br />

crab Eriocheir japonicus. J. Ethol. 12: 73-76.<br />

Koksal, G. 1988. Astacus leptodactylus in Europe. In: Holdich, D.M. & Lowery, R.S. (eds.), Freshwater<br />

Crayfish: Biology, Management and Exploitation: 365-400. London: Chapman & Hall.<br />

Komai, T. & Saito, H. 2006. A new. genus and two new species of Spongicolidae (Crustacea,<br />

<strong>Decapod</strong>a, Stenopodidea) from the South-West Pacific. In: De Forges, R.B. & Justine, J.L. (eds.),<br />

Tropical Deep-Sea Benthos, 24. Mem. Mus. Natl. Hist. Nat. 193. 265-284.<br />

Kramer, P. 1967. The behavior of the rock crab G. grapsus on Galapagos. Noticias Galapagos 7/8:<br />

18-20.<br />

Kraul, S. & Nelson, A. 1986. The life cycle of the harlequin shrimp. Freshwt. Mar. Aqua. 9: 28-31.<br />

Kropp, R.K. 1987. Descriptions of some endolithic habitats for snapping shrimp (Alpheidae) in<br />

Micronesia. Bull. Mar. Sci. 41: 204-213.<br />

Kudenov, J.D. & Haig, J. 1974. A range extension of Polyonyx quadriungulatus Glassell, 1935,<br />

new record into the Gulf of California (<strong>Decapod</strong>a, Anomura, Porcellanidae). <strong>Crustacean</strong>a 26:<br />

105-106.<br />

Kuris, A. M., Ra'anan, Z., Sagi, A. & Cohen, D. 1987. Morphotypic differentiation of male Malaysian<br />

giant prawns, Macrobrachium rosenbergii. J. Crust. Biol. 7: 219-237.<br />

Laughlin, R.A. 1982. Some observations on the occurrence, reproduction and mating of the coral<br />

crab Carpilius corallinus (Herbst, 1783) (<strong>Decapod</strong>a, Xanthidae) in the Archipielago Los Roques,<br />

Venezuela. <strong>Crustacean</strong>a 43: 219-221.<br />

Laurent, P.J. 1988. Austropotamobius pallipes and A. torrentium with observations on their interaction<br />

with other species in Europe. In: Holdich, D.M. & Lowery, R.S. (eds.). Freshwater Crayfish:<br />

Biology, Management and Exploitation: 341-364. London: Croom Helm.<br />

Le Sueur, R.F. 1954. Note on the behaviour of the common spider crab. Bull. Soc. Jersiaise 16:<br />

37-38.<br />

Lee, C. L. & Felder, D.R. 1983. Agonistic behaviour and the development of dominance hierarchies<br />

in the freshwater prawn, Macrobrachium australiense Holthuis, 1950 (Crustacea: Palaemonidae).<br />

Behaviour 83: 1-16.<br />

Lipcius, R.N. & Herrnkind, W.F. 1987. Control and coordination of reproduction and molting in the<br />

spiny lobster Panulirus argus. Mar. Biol. 96: 207-214.<br />

Lipcius, R.N., Edwards, M.L., Herrnkind, W.F. & Waterman, S.A. 1983. In situ mating behavior of<br />

the spiny lobster Panulirus argus. J. Crust. Biol. 3: 217-222.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 173<br />

Lloyd, A.J. & Young, CM. 1947. A study of Crangon vulgaris in the British Channel and Severn<br />

Estuary. J. Mar. Biol Assn. U.K. 26: 626- 661.<br />

Lovrich, G.A. & Vinuesa, J.H. 1999. Reproductive potential of the lithodids Lithodes santolla and<br />

Paralomis granulosa (Anomura, <strong>Decapod</strong>a) in the Beagle Channel, Argentina. Sci. Mar. 63<br />

Suppl. 1:355-360.<br />

Lowery, R.S. & Holdich, D.M. 1988. Pacifastacus leniusculus in North America and Europe, with<br />

details of the distribution of introduced and native crayfish species in Europe. In: Holdich, D.M.<br />

& Lowery, R.S. (eds.), Freshwater Crayfish: Biology, Management and Exploitation: 283-308.<br />

London: Chapman & Hall.<br />

Macdonald, K.S. Ill, Rios, R. & Duffy, J.E. 2006. Biodiversity, host specificity, and dominance by<br />

eusocial species among sponge-dwelling alpheid shrimp on the Belize Barrier Reef. Div. Dist.<br />

12: 165-178.<br />

MacGinitie, G.E. 1935. Ecological aspects of a California marine estuary. Am. Midi. Nat. 16:<br />

629-765.<br />

MacGinitie, G.E. 1937. Notes on the natural history of several marine Crustacea. Am. Midi. Nat. 18:<br />

1031-1037.<br />

MacGinitie, G.E. 1938. Movements and mating habits of the sand crab (Emerita analoga). Am.<br />

Midi. Nat. 19:471-481.<br />

Macnae, W. & Kalk, M. 1962. The fauna and flora of sand flats at Inhaca Island, Mozambique.<br />

J.Anim.Ecol 31:93-128.<br />

Martin,T.N. 2007. Notes on taxonomy and biology of the symbiotic shrimp Vir euphyllius Martin &<br />

Anker, 2005 (<strong>Decapod</strong>a, Palaemonidae, Pontoniinae), associated with hammer corals Euphyllia<br />

spp. (Cnidaria, Caryophyllidae). Inv. Zool. 4: 15-23.<br />

Marukawa, H. 1933. Taraba-gani chosa [Biological and fishery research on the Japanese king crab<br />

Paralithodes camtschatica (Tilesius)]. J. Imp. Fish. Exp. Stn., Tokyo 4: 1-152.<br />

MasMko, K. 1981. Sexual dimorphism of the cheliped in the prawn Macrobrachium nipponense<br />

(ie Haan) and its significance in reproductive behavior. Zool. Mag., Tokyo 90: 333-337.<br />

Mason, J.C. 1970a. Copulatory behavior of the crayfish, Pacifastacus trowbridgii (Stimpson). Canada.<br />

J: Zool. 48:969-976,<br />

Mason, J.C. 1970b. Egg-laying in the western north American crayfish, Pacifastacus trowbridgii<br />

(Stimpson) (<strong>Decapod</strong>a, Astacidae). <strong>Crustacean</strong>a 19: 37-44.<br />

Mathews, L.M. 2002a. Territorial cooperation and social monogamy: factors affecting intersexual<br />

interactions in pair-living snapping shrimp. Anim. Behav. 63:161-111.<br />

Mathews, L.M. 2002b. Tests of the mate-guarding hypothesis for social monogamy: does population<br />

density, sex ratio, or female synchrony affect behavior of male snapping shrimp {Alpheus<br />

angulatusYi y Behav. Ecol Sociobiol. 51: 426-432.<br />

Mathews, L.M. 2003. Tests of the mate-guarding hypothesis for social monogamy: male snapping<br />

shrimp prefer to associate with high-value females. Behav. Ecol. 14: 63-67.<br />

Mathews, L.M. 2006. Cryptic biodiversity and phylogeographical patterns in a snapping shrimp<br />

species complex. Mol Ecol. 15: 4049-4063.<br />

Mathews, L.M. 2007. Evidence for restricted gene flow over small spatial scales in a marine snapping<br />

shrimp Alpheus angulosus. Mar. Biol. 152: 645-655.<br />

Mathews, L.M., Schubart, CD., Neigel, J.E. & Felder, D.L. 2002. Genetic, ecological, and behavioural<br />

divergence between two sibling snapping shrimp species (Crustacea: <strong>Decapod</strong>a:<br />

Alpheus). Mol. Ecol 11: 1427-1437.<br />

Matsuo, M. 1998. Life history of Tritodynamia horvathi Nobili (Brachyura, Pinnotheridae). I.<br />

Cancer 7: 1-8<br />

Matsuo, M. 1999. Life history of Tritodynamia horvathi Nobili (Brachyura, Pinnotheridae). II.<br />

Cancer 8: 3-11.


174 Asakura<br />

Matthews, D.C. 1956. The probable method of fertilization in terrestrial hermit crabs based on a<br />

comparative study of spermatophores. Pac. Sci. 10: 303-309.<br />

Matsuura, S. & Takeshita, K. 1976. Molting and growth of the laboratory-reared king crab, Paralithodes<br />

camtschatica (Tilesius). Rep. Fish. Res. Lab., Kyushu Univ. 3: 1-14.<br />

McDermott, J.J. 2005. Biology of the brachyuran crab Pinnixa chaetopterana Stimpson (<strong>Decapod</strong>a:<br />

Pinnotheridae) symbiotic with tubicolous polychaetes along the Atlantic coast of the United<br />

States, with additional notes on other polychaete associations. Proc. Biol. Soc. Wash. .118:<br />

742-764.<br />

McKoy, J.L. 1979. Mating behaviour and egg laying in captive rock lobster, Jasus edwardsii (Crustacea:<br />

<strong>Decapod</strong>a: Palinuridae). New Zealand J. Mar. Freshwt. Res. 13: 407-413.<br />

McLeese, D.W. 1970. Detection of dissolved substances by the American lobster (Homarus americanus)<br />

and olfactory attraction between lobsters. J. Fish. Res. Bd. Canada 27: 1371-1378.<br />

McLeese, D.W. 1973. Chemical communication among lobster {Homarus americanus). J. Fish. Res.<br />

Bd. Canada 3.0: 775-778.<br />

McMullen, J.C. 1969. Effects of delayed mating on the reproduction of king crab, Paralithodes<br />

camtschatica. J. Fish. Res Bd. Canada 26: 2737-2740.<br />

McNeill, F.A. & Ward, M. 1930. Carcinological notes. No. 1. Rec. Aust. Mus. 17: 357-383.<br />

Meinkoth, N.A. 1981. National Audubon Society Field Guide to North American Seashore Creatures.<br />

NewYork: Alfred A. Knopf.<br />

Menon, M.K. 1933. The life-histories of decapod Crustacea from Madras. Bull. Madras Govt. Mus.,<br />

New Sen, Nat. Hist. Sect. 3: 1-45.<br />

Millar, R.H. 1971. The biology of ascidians. Adv. Mar. Biol. 9: 1-100.<br />

Minouchi, S. & Goshima, S. 1998. Effect of male/female size ratio on mating behavior of the hermit<br />

crab Pagurus filholi (Anomura: Paguridae) under experimental conditions. J. Crust. Biol. 18:<br />

710-716.<br />

Minouchi, S. & Goshima, S. 2000. The effect of male size and sex ratio on the duration of precopulatory<br />

mate guarding in the hermit crab Pagurus filholi. Benthos Res. 55: 37-41.<br />

Misamore, M.J. & Browdy, C.L. 1996. Mating behavior in the white shrimps Penaeus setiferus and<br />

P. vannamei: a generalized model for mating in Penaeus. J. Crust. Biol. 16: 61-70.<br />

Miya, Y. & Miyake, S. 1969. Description of Alpheus bellulus, sp. nov., associated with gobies from<br />

Japan (Crustacea, <strong>Decapod</strong>a, Alpheidae). Publ. Seto Mar. Biol. Lab. 16: 307-314.<br />

Miyake, S. 1982. Japanese <strong>Crustacean</strong> <strong>Decapod</strong>s and Stomatopods in Color; Vol. I. Macrura,<br />

Anomura and Stomatopoda. Osaka: Hoikusha Publ.<br />

Miyake, S. 1983. Japanese <strong>Crustacean</strong> <strong>Decapod</strong>s and Stomatopods in Colour; Vol. II. Brachyura<br />

(Crabs). Osaka: Hoikusha Publ.<br />

Monniot, C. 1965. Etude systematique et evolutive de la famille des Pyuridae (Ascidiacea). Mem.<br />

Mus. Nat. d'Hist. Nat., Paris, Ser. A, 36: 1-203.<br />

Morrison, C.L., Rios, R. & Duffy, J.E. 2004. Phylogenetic evidence for an ancient rapid radiation of<br />

Caribbean sponge-dwelling snapping shrimps (Synalpheus). Mol. Phylogenet. Evoi 30: 563-58.<br />

Naidu, R.B. 1954. A note on the courtship in the sand crab (Philyra scabriuscula (Fabricius)).<br />

J. Bombay Nat. Hist. Soc. 52: 640-641.<br />

Nakasone, Y. & Miyake, S. 1972. Four unrecorded porcellanid crabs (Anomura: Porcellanidae) from<br />

Japan. Bull. Sci. Eng. Div. Univ. Ryukyu (Nath. Nat. Sci) 15: 136-147.<br />

Needier, A.B. 1931. Mating and oviposition in Pandalus danae. Canad. Fid. Nat. 45: 107-108.<br />

Ng, P.K.L. & Goh, N.K.C. 1996. Notes on the taxonomy and ecology of Aliaporcellana telestophila<br />

(Johnson, 1958) (<strong>Decapod</strong>a, Anomura, Porcellanidae), a crab commensal on the gorgonian<br />

Solenocaulon. <strong>Crustacean</strong>a 69: 652-661.<br />

Ng, P.K.L. & Sasekumar, A. 1993. A new species of Poly onyx Stimpson, 1858, of the P. sinensis<br />

group (Crustacea: <strong>Decapod</strong>a: Anomura: Porcellanidae) commensal with a chaetopterid worm<br />

from Peninsular Malaysia. Zool. Meded. 67: 467^4-72.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 175<br />

Ng, P.K.L. & Manning, R.B. 2003. On two new genera of pea crabs parasitic in holothurians (Crustacea:<br />

<strong>Decapod</strong>a: Braehyura: Pinnotheridae) from the Indo-West Pacific, with notes on allied<br />

genera. Proc. Biol Soc. Wash. 116: 901-919.<br />

Nizinski, M.S. 1989. Ecological distribution, demography, and behavioral observations on Periclimenes<br />

anthophilus, an atypical symbiotic cleaner shrimp. Bull Mar. Sci. 45: 174-188.<br />

Nolan, B.A. & Salmon, M. 1970. The behavior and ecology of snapping shrimp (Crustacea: Alpheus<br />

heterochaelis md Alpheus noraonni). Forma Funct. 2: 289-335.<br />

Nomura, K. 2003. A preliminary revision of alpheid shrimps associated with gobiid fishes from the<br />

Japanese waters. Bull. Biogeogr. Soc. Jap. 58: 49-70.<br />

Nomura, K. & Asakura, A. 1998. The alpheid shrimps (<strong>Decapod</strong>a: Alpheidae) collected from Kushimoto<br />

on the Pacific coast of central Japan, and their spatial distributions, zoogeographical affinities,<br />

social structures, and life styles. Nanki Seibutsu 40: 25-34.<br />

Norman, C.P. & Jones, M.B. 1993. Reproductive ecology of the velvet swimming crab, Necora<br />

puber (Braehyura: Portunidae), at Plymouth. J. Mar. Biol. Ass. U.K. 73: 379-389.<br />

Nouvel, H. & Nouvel, L. 1937. Recherches sur l'accouplement et la ponte chez les crustaces<br />

decapodes Natantia. Bull. Soc. Zool. France 62: 208-221.<br />

Nouvel, L. 1939. Observations de l'accouplement chez une espece de Crevette: Crangon crangon.<br />

Comp. Rend. Hebdomadaires Sea. VAcad. Sci. Paris. 209: 639-641.<br />

Nye, P. A. 1977. Reproduction, growth and distribution of the grapsid crab Helice crass a (Dana,<br />

1851) in the southern part of New Zealand. <strong>Crustacean</strong>a 33: 75-89.<br />

Obermeier, M. & Schmitz, B. 2003a. Recognition of dominance in the big-clawed snapping shrimp<br />

{Alpheus heterochaelis Say 1818). Part I. Individual or group recognition? Mar. Freshw. Behav.<br />

Physiol. 36: 1-16.<br />

Obermeier, M. & Schmitz, B. 2003b. Recognition of dominance in the big-clawed snapping shrimp<br />

(Alpheus heterochaelis Say 1818). Part II. Analysis of signal modality. Mar. Freshw. Behav.<br />

Physiol. 36: 17-29.<br />

Ogawa, Y, Kakuda, S. & Hayashi, K.-I. 1981. On the mating and spawning behaviour of Macrobrachium<br />

nipponense (De Haan). J. Fac. Appl. Biol. Sci. Hiroshima Univ. 20: 65-69.<br />

Oh, S. J. & Hankin, D.G. 2004. The sperm plug is a reliable indicator of mating success in female<br />

dungeness crabs, Cancer magister. J. Crust. Biol. 24: 314-326.<br />

Omori, K., Yanagisawa, Y. & Hori, N. 1994. Life history of the caridean shrimp Periclimenes ornatus<br />

Bruce associated with a sea anemone in southwest Japan. /. Crust. Biol. 14: 132-145.<br />

Osawa, M. 2001. Heteropolyonyx biforma, new genus and new species, from Japan, with a redescription<br />

of Poly onyx utinomii (<strong>Decapod</strong>a: Porcellanidae). 7. Crust. Biol. 21: 506-520.<br />

Osawa, M. & Fujita, Y. 2001. A new species of the genus Neopetrolisthes Miyake, 1937 (Crustacea:<br />

<strong>Decapod</strong>a: Porcellanidae) from the Ryukyu Islands, southwestern Japan. Proc. Biol. Soc. Wash.<br />

114: 162-171.<br />

Oshima, S. 1938. Biological and fishery research in Japanese blue crab (Portunus trituberculatus)<br />

(Miers). Suisan Shikenjyo Hokoku g: 141-212.<br />

Page, H.M. & Willason, S.W. 1982. Distribution patterns of terrestrial hermit crabs at Enewetak<br />

Atoll, Marshall Islands. Pac. Sci. 36: 107-117.<br />

Palacios, E., Racotta, I.S. & Villalejo, M. 2003. Assessment of ovarian development and its relation<br />

to mating in wild and pond-reared Litopenaeus vannamei shrimp in a commercial hatchery.<br />

/. World Aquacult. Soc. 34: 466-477.<br />

Parente, M.A. & Hendrickx, M.E. 2000. Pisidia magdalenensis (Crustacea: Porcellanidae) commensal<br />

of the diogenid hermit crab Petrochirus californiensis (<strong>Decapod</strong>a: Diogenidae). Rev.<br />

Biol. Trop. 48: 265-266.<br />

Patton, W.K. 1966. <strong>Decapod</strong> Crustacea commensal with Queensland branching corals. <strong>Crustacean</strong>a<br />

10:271-295.


176 Asakura<br />

Patton, W.K., Patton, R.J . & Barnes, A. 1985. On the biology of Gnathophylloides mineri, a shrimp<br />

inhabiting the sea urchin Tripneustes ventricosus. J. Crust. Biol. 5: 616-626.<br />

Paul, A.J. 1984. Mating frequency and viability of stored sperm in the Tanner crab Chionoecetes<br />

bairdi (<strong>Decapod</strong>a, Majidae)./. Crust. Biol. 4: 375-381.<br />

Payne, J.F. 1972. The life history of Procambarus hayi. Am. Midi. Nat. 87: 25-35.<br />

Pearce, J.B. 1962. Adaptation in symbiotic crabs of the family Pinnotheridae. Biologist 45: 11-15.<br />

Pearce, J.B. 1964. On reproduction in Pinnotheres maculatus (<strong>Decapod</strong>a: Pinnotheridae). Biol. Bull.<br />

127:384.<br />

Pearce, J.B. 1965. On the distribution of Tresus nuttulli and Tresus capax (Pelecypoda: Mactridae)<br />

in the waters of Puget Sound and the San Juan Archipelago. Veliger 7: 166-170.<br />

Pearce, J.B. 1966a. On Pinnixa fubu and Pinnixa littoralis (<strong>Decapod</strong>a: Pinnotheridae) symbiotic<br />

with the clam, Tresus cupux (Pelecypoda: Mactridae). In: Barnes, H. (ed.), Some Contemporary<br />

Studies in Marine Science: 565-589. London: Allen & Unwin.<br />

Pearce, J.B. 1966b. The biology of the mussel crab, Fabia subquadrata, from the waters of the San<br />

Juan archipelago, Washington. Pac. Sci. 20: 3-35.<br />

Pearse, A.S. 1909. Observations on copulation among crayfishes. Am. Nat. 43: 746-753.<br />

Peters, N., Panning, A. & Schnakenbeck, W. 1933. Die chinesische Wollhandkrabbe (Eriocheir<br />

sinensis H.Milne-Edwards) in Deutschland. Zool. Anz. 101: 267-271.<br />

Pike, R.B. & Williamson, D.I. 1959. Observations on the distribution and breeding of British hermit<br />

crabs and the stone crab (Crustacea: Diogenidae, Paguridae and Lithodidae). Proc. Zool. Soc.<br />

London 132: 551-567.<br />

Pippett, M.R. 1977. Mating behavior of the crayfish Orconectes nais (Faxon 1885). <strong>Crustacean</strong>a<br />

32:265-271.<br />

Porter, W.J. 1960. Zoeal stages of the stone crab, Menippe mercenaria Say. Chesapeake Sci. 1:<br />

168-177.<br />

Potts, F.A. 1915. Hapalocarcinus, the gall-forming crab with some notes on the related genus Cryptochirus.<br />

Pap. Dep. Mar. Biol. Carnegie Inst. Wash. 8: 33-69.<br />

Powell, G.C. & Nickerson, R.B. 1965a. Reproduction of king crabs (Paralithodes camtschatica)<br />

(Tilesius). /. Fish. Res. Bd. Canada 22: 101-111.<br />

Powell, G.C. & Nickerson, R.B. 1965b. Aggregations among juvenile king crabs (Paralithodes<br />

camtschatica Tilesius), Kodiac, Alaska. Anim. Behav. 13: 374-380.<br />

Powell, G.C, Shafford, B. & Jones, M. 1973. Reproductive biology of young adult king crabs<br />

Paralithodes camtschatica (Tilesius) at Kodiak, Alaska. Proc. Natl. Shellfish Assoc. 63: 78-87.<br />

Preston, E.M. 1973. A computer simulation of competition among five sympatric congeneric species<br />

of xanthid crabs. Ecology 54: 469-483.<br />

Primavera, J.H. 1979. Notes on the courtship and mating behavior in Penaeus monodon Fabricius<br />

(<strong>Decapod</strong>a, Natantia). <strong>Crustacean</strong>a 37: 287-292.<br />

Ra'anan, Z. & Sagi, A. 1985. Alternative mating strategies in male morphotypes of the freshwater<br />

prawn Macrobrachium rosenbergii (de Man). Biol. Bull. 169: 592-601.<br />

Rahman, N., Dunham, D.W. & Govind, C.K. 2001. Mate recognition and pairing in the big-clawed<br />

snapping shrimp, Alpheus herterochelis. Mar. Fresh. Behav. Physiol. 34: 213-226.<br />

Rahman, N., Dunham, D.W. & Govind, C.K. 2002. Size-assortative pairing in the big-clawed snapping<br />

shrimp, Alpheus heterochelis. Behaviour 139: 1443-1468.<br />

Rahman, N., David, W., Dunham, D.W. & Govind, C.K. 2003. Social monogamy in the big-clawed<br />

snapping shrimp, Alpheus heterochelis. Ethology 109: 457-473.<br />

Rahman, N., David, W, Dunham, D.W. & Govind, C.K. 2005. Mate choice in the big-clawed snapping<br />

shrimp, Alpheus heterochaelis Say, 1818. <strong>Crustacean</strong>a 11: 95-111.<br />

Rao, A.V.P. 1967. Some observations on the biology of Penaeus indicus H. Milne-Edwards and<br />

Penaeus monodon Fabricius from the Chilka Lake. Indian J. Fish. 14: 251-270.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 111<br />

Richardson, C.A., Kennedy, H., Duarte, CM. & Proud, S.V. 1997. The occurrence of Pontonia<br />

pinnophylax (<strong>Decapod</strong>a: Natantia: Pontoniinae) in Pinna nobilis (Mollusca: Bivalvia: Pinnidae)<br />

from the Mediterranean. J. Mar. Biol. Ass. U.K. 11: 1227-1230.<br />

Rickner, J. A. 1975. New records of the porcellanid crab, Poly onyx gibbesi Haig, from the Texas<br />

coast (<strong>Decapod</strong>a, Anomura). <strong>Crustacean</strong>a 2 : 313-314.<br />

Rios, R. & Duffy, J.E. 2007. A review of the sponge-dwelling snapping shrimp from Carrie Bow<br />

Cay, Belize, with description of Zuzalpheus, new genus, and six new species (Crustacea: <strong>Decapod</strong>a:<br />

Alpheidae). Zootaxa 1602: 1—89.<br />

Rubenstein, D.I. & Hazlett, B.A. 1974. Examination of the agonistic behaviour of the crayfish Orconectes<br />

virilis by character analysis. Behaviour 50: 193-216.<br />

Rubolini, D., Galeotti, P., Ferrari, G., Spairani, M., Bernini, F. & Fasola, M. 2006. Sperm allocation<br />

in relation to male traits, female size, and copulation behaviour in freshwater crayfish species.<br />

Behav. Ecol. Sociobiol. 60: 212-219.<br />

Rubolini, D., Galeotti, P., Pupin, E, Sacchi, R., Nardi, P.A. & Fasola, M. 2007. Repeated matings<br />

and sperm depletion in the freshwater crayfish Austropotamobius italicus. Freshw. Biol 52:<br />

1898-1906.<br />

Ruello, N.V., Moffitt, P.F. & Phillips, S.G. 1973. Reproductive behaviour in captive freshwater<br />

shrimp Macrobrachium australiense Holthuis. Aust. J. Mar. Freshw. Res. 24: 197-202.<br />

Rufino, M.M. & Jones, DA.. 2001. Binary individual recognition in Lysmata debelius (<strong>Decapod</strong>a:<br />

Hippolytidae) under laboratory conditions. J. Crust. Biol. 21: 388-392.<br />

Ryan, E.P. 1966. Pheromone: evidence in a decapod crustacean. Science 151: 340-341.<br />

Ryan, E.P. 1967a. Structure and function of the reproductive system of the cvabPortunus sanguinolentus<br />

(Herbst) (Brachyura Portunidae). I. The male system. Symp. Ser. Mar. Biol. Ass. India!:<br />

506-521.<br />

Ryan, E.P. 1967b. Structure and function of the reproductive system of the crab Portunus sanguinolentus<br />

(Herbst) (Brachyura: Portunidae). II. The female system. Proc. Symp. Crust. Mar. Biol.<br />

Ass., India: 522-544.<br />

Saito, T., Uchida, I. & Takeda, M. 2001. Pair formation in Spongicolajaponica (Crustacea: Stenopodidea:<br />

Spongicolidae), a shrimp associated with deep-sea hexactinellid sponges. J. Mar. Biol.<br />

Ass. U.K. 81: 789^797.<br />

Saito, T., Tsuchida, Sv & Yamamoto, T. 2006. Spongicoloides iheyaensis, a new species of deepsea<br />

spongi-associated shrimp from the Iheya Ridge, Ryukyu Islands, southern Japan (<strong>Decapod</strong>a:<br />

Stenopodidea: Spongicolidae). /. Crust. Biol, 26: 224-233.<br />

Sakai, T. 1969. Two new genera and twenty-two new species of crabs from Japan. Proc. Biol. Soc.<br />

Wash. 82: 243-280.<br />

Sampedro, M.-P. & Gonzalez-Gurriaran, E. 2004. Aggregating behaviour of the spider crab Maja<br />

squinado in shallow waters. J. Crust. Biol. 24: 168-177.<br />

Sasaki, J. 8c Ueda, Y. 1992. Pairing size of the hair crab, Erimacrus isenbeckii (Brandt). Res. Crust.<br />

21: 147-152.<br />

Sato, T., Ashidate, M. & Goshima, S. 2005a. Negative effects of delayed mating on the reproductive<br />

success of female spiny king crab, Paralithodes brevipes. J. Crust. Biol. 25: 105-109.<br />

Sato, T., Ashidate, M., Wada, S. & Goshima, S. 2005b. Effects of male mating frequency and male<br />

size on ejaculate size and reproductive success of female spiny king crab Paralithodes brevipes.<br />

Mar. Ecol. Prog. Ser. 296: 251-262.<br />

Savage, T. 1971. Mating of the stone crab, Menippe mercenaria (Say) (<strong>Decapod</strong>a, Brachyura). <strong>Crustacean</strong>a<br />

20: 315-316.<br />

Schein, H. 1975. Aspects of the aggressive and sexual behaviour of Alpheus heterochaelis Say. Mar.<br />

Behav. Physiol. 3: 83-96.<br />

Schembri, P.J. 1983. Courtship and mating behaviour in Ebalia tuberosa (Pennant) (<strong>Decapod</strong>a,<br />

Brachyura, Leucosiidae. <strong>Crustacean</strong>a 45: 77-81.


178 Asakura<br />

Schmitz, B. & Herberholz, J. 1998. Snapping behaviour in intraspecific agonistic encounters in the<br />

snapping shrimp (Alpheus heterochaelis). J. Biosci. 23: 623-632.<br />

Schone, H. 1968. Agonistic and sexual display in aquatic and semiterrestrial brachyuran crabs. Am.<br />

Zool. 8: 641-654.<br />

Schone, H. & Schone, Y. 1963. Balz und andere Verhaltensweisen der Mangrovenkrabbe Goniopsis<br />

cruentata Latr. und das Winkverhalten der eulitoralen Brachyuren. Z. Tierpsychol. 20: 642-656.<br />

Schoppe, S. 1991. Echinometra lucunter (Linnaeus) (Echinoidea, Echinometridae) as host of a complex<br />

association in the Caribbean Sea. Helgoland. Meeresunter. 45: 373-379.<br />

Seibt, U. 1973a. Sense of smell and pair-bond in Hymenocery picta. Micronesia 9: 231-236.<br />

Seibt, U. 1973b. Die beruhigende Wirkung der Partner-Nahe bei der monogamen Garnele Hymenocera<br />

picta. Z. Tierpsychol. 33: 424-427.<br />

Seibt, U. 1974. Mechanismen und Sinnesleistungen fur den Paarzusammenhalt bei der Garnele<br />

Hymenocera picta Dana. Z. Tierpsychol. 35: 337-351.<br />

Seibt, U. 1980. Individuen-Erkennen und Partnerbevorzugung bei der Garnele Hymenocera picta<br />

Dana. Z Tierpsychol. 52: 321-330.<br />

Seibt, U. & Wickler, W. 1971. New records of the porcellanid crab, Poly onyx gibbesi Haig, from the<br />

Texas coast (<strong>Decapod</strong>a, Anomura). Encycl. Cinematogr. E. 1723: 1-10.<br />

Seibt, U. & Wickler, W. 1972. Individuen-Erkennen und Partnerbevorzugung bei der Garnele Hymenocera<br />

picta Dana. Naturwiss. 59: 40-41.<br />

Seibt, U. & Wickler, W. 1979. The biological significance of the pair-bond in the shrimp Hymenocera<br />

picta. Z. Tierpsychol. 50: 166-179.<br />

Seibt, U. & Wickler, W. 1981. Paarbildung und Paarbindung bei Krebsen. Biol. Uns. Zeit 11: 161-<br />

168.<br />

Seiple, W. & Salmon, M. 1982. Comparative social behavior of two grapsid crabs, Sesarma reticulatum<br />

(Say) and S. cinereum (Bosc). J. Exp. Mar. Biol. Ecol. 62: 1-24.<br />

Sheard, K. 1949. The marine crayfishes (spiny lobsters), family Palinuridue of Western Australia<br />

with particular reference to the fishery on the Western Australian crayfish (Panulirus longipes).<br />

CSIRO Aust. Div. Fish. Oceanogr. Bull. 247: 1-45.<br />

Shokita, S. 1966. Studies on ecology and metamorphosis of the fresh-water shrimp Macrobrachium<br />

longipes (De Haan). Biol. Mag., Okinawa 3: 13-21.<br />

Shih, H.-T. & Mok, H.-K. 1996. Quadrella maculosa Alcock, 1898, a genus and species of shallowwater<br />

xanthid crab (Brachyura: Xanthoidea: Trapeziidae) new to Taiwan. Zool. Stud. 35: 146-<br />

148.<br />

Silberbauer, B.I. 1971. The biology of the South African rock lobster, Jasus lalandli (H. Milne<br />

Edwards) 2. The reproductive organs, mating and fertilization. S. Afr. Div. Sea Fish. Invest. Rep.<br />

93: 1-46.<br />

Simon, J.L. & Moore, P.A. 2007. Male-female communication in the crayfish Orconectes rusticus:<br />

the use of urinary signals in reproductive and non-reproductive pairings. Ethology 113: 740-754.<br />

Sin, T. 1999. Distribution and host specialization in Tetralia crabs. (Crustacea: Brachyura) symbiotic<br />

with corals in the Great Barrier Reef, Australia. Bull. Mar. Sci. 65: 839-850.<br />

Smith, E.W. 1953. The life history of the crawfish Orconectes clypeatus. Tulane Stud. Zool. 1:<br />

79-96.<br />

Snedden, W.A. 1990. Determinants of male mating success in the temperate crayfish Orconectes<br />

rusticus: chela size and sperm competition. Behaviour 115: 100-113.<br />

Snow, CD. & Nielsen, J.R. 1966. Premating and mating behaviour of the Dungeness crab. (Cancer<br />

magisterial). J. Fish. Res. Bd. Canada 23: 1319-1323.<br />

Spalding, J.F. 1942. The nature and formation of the spermatophore and sperm plug in Carcinus<br />

maenas. Quart. J. Microscop. Sci. 82/83: 399-422.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 179<br />

Spotte, S. 1996. Supply of regenerated nitrogen to sea anemones by their symbiotic shrimp. J. Exp.<br />

Mar. Biol Ecol 198: 27-36.<br />

Stanton, G. 1977. Habitat partitioning among associated decapods with Lebrunia danae at Grand<br />

Bahama. In: Taylor D.L. (ed.), Proceedings ofthe Third International Coral Reef Symposium, 2<br />

(Biology): 169-175. Miami: Univ. Miami Press.<br />

Stebbing, P.D., Bentley, M.G. & Watson, G.J. 2003, Mating behaviour and evidence for a female<br />

released courtship pheromone in the signal crayfish Pacifastacus leniusculus. J. Chem. Ecol. 29:<br />

465-475.<br />

Stevens, B.G. 2003. Timing of aggregation and larval release by Tanner crabs, Chionoecetes bairdi<br />

in relation to tidal current patterns. Fish. Res. 65: 201-216.<br />

Stevens, B.G., Donaldson, W.E. & Haaga, J.A. 1992. First observations of podding behavior for the<br />

Pacific lyre crab Hyas lyratus (<strong>Decapod</strong>a: Majidae). J. Crust. Biol. 12: 193-195.<br />

Stevens, B.G., Haaga, J.A. & Donaldson, W.E. 1994. Aggregative mating of Tanner crabs, Chionoectes<br />

bairdi. Canad. J. Fish. Aquat. Sci. 51: 1273-1280.<br />

Stone, C.E., O'Clair, C.E. & Shirley, T.C. 1993. Aggregating behavior of ovigerous female red<br />

king crab, Paralithodes camtschaticus, in Auke Bay, Alaska. Canada. J. Fish. Aquat. Sci. 50:<br />

750-758.<br />

Strack, H.L., 1993. Results of the Rumphius Biohistorical Expedition to Ambon (1990). Part. 1.<br />

General account and list of stations. Zool. Verhandl 289: 1-72.<br />

Subramoniam, T. 1979. Some aspects of reproductive ecology of a mole crab Emerita asiatica Milne<br />

Edwards. J. Exp. Mar. Biol Ecol. 36: 259-268.<br />

Subramoniam, T. 1981. Protandric hermaphroditism in a mole crab, Emerita asiatica (<strong>Decapod</strong>a:<br />

Anomura). Biol Bull. 160: 161-174.<br />

Subramoniam, T. & Gunamalai, V. 2003. Breeding biology of the intertidal sand crab, Emerita<br />

(<strong>Decapod</strong>a: Anomura). Adv. Mar. Biol. 46: 91-182.<br />

Sutcliffe, W.H., Jr. 1952. Some observations of the breeding and migration of the Bermuda spiny<br />

lobster,Panulirus argus.Proc. GulfCarib. Fish. Inst., 4th Ann. Sess.: 64-69.<br />

Sutcliffe, W.H..,Jr. 1953. Further observations on the breeding and migration of the Bermuda spiny<br />

lobster, Panulirus a?gus. J. Mar. Res. 12: 173-183.<br />

Suzuki, H. 1971. Taxonomic review of four alpheid shrimps belonging to the genus Athanas with<br />

reference to their sexual phenomena. Sci. Rep. Yokohama Natl Univ. Sect. II17: 1-37.<br />

Swartz, R.C. 1976a. Agonistic and sexual behavior of the xanthid crab, Neopanope sayi. Chesapeake<br />

Sci. 17:24-34.<br />

Swartz, R.C. 1976b. Sex ratio as a function of size in the xanthid crab, Neopanope sayi. Am. Nat.<br />

110:898-900.<br />

Tack, P.I. 1941. The life history and ecology of the crayfish Cambarus immunis Hagen. Am. Midi<br />

Nat. 25: 420-446.<br />

Takahashi, T., Otani, T. & Matsuura, S. 1999. Swimming behaviour of the pinnotherid crab, Tritodynamia<br />

horvathi observed during the low temperature season. J. Mar. Biol. Ass. U.K. 79:<br />

375-377.<br />

Takeshita, K. & Matsuura, S. 1989. Red king crab in north Pacific. I. Reproduction and growth.<br />

Saibai Giken Tech. Rep. Jpn Sea Branch Program 18: 35-43.<br />

Tazioli, S., Bo, M., Boyer, M., Rotinsulu, H. & Bavestrello, G. 2007. Ecological observations of<br />

some common antipatharian corals in the marine park of Bunaken (North Sulawesi, Indonesia).<br />

Zool Stud. 46: 227-241.<br />

Telford, M. 1978. Distribution of two species of Dissodactylus (Brachyura: Pinnotheridae) among<br />

their echinoid host populations in Barbados. Bull. Mar. Sci. 28: 651-658.<br />

Templeman, W. 1934. Mating in the American lobster. Cont. Canada. Biol. Fish., N. S. 8: 423^432.<br />

Templeman, W. 1936. Further contributions to mating in the American lobster. /. Biol. Bd. Canada


180 Asakura<br />

Teytaud, A.R. 1971. Laboratory studies of sex recognition in the blue crab Callinectes sapidus<br />

Rathbun. Univ. Miami Sea Grant Prog. 15: 1-63.<br />

Thiel, M. & Correa, C. 2004. Female rock shrimp Rhynchocinetes typus mate in rapid succession<br />

up a male dominance hierarchy. Behav. Ecol. Sociobiol. 57: 62-68.<br />

Thiel, M. & Hinojosa, I. 2003. Mating behavior of female rock shrimp Rhynchocinetes typus<br />

(<strong>Decapod</strong>a: caridea)—Indication for convenience polyandry and cryptic female choice. Behav.<br />

Ecol. Sociobiol. 55: 113-121.<br />

Tierney, A.J. & Dunham, D.W. 1982. Chemical communication in the reproductive isolation of the<br />

crayfish Orconectes propinquus and Orconectes virilis (<strong>Decapod</strong>a, Cambaridae). J. Crust. Biol.<br />

2:544-548.<br />

Tomikawa, N. & Watanabe, S. 1990. Occurrence of the sperm plugs of Eriphia smithii McLeay.<br />

Res. Crust. 18: 19-21.<br />

Tsuchiya, M. & Yonaha, C. 1992. Community organization of associates of the scleractinian coral<br />

Pocillopora damicornis: effects of colony size and interactions among the obligate symbionts.<br />

Galaxea 11: 29-56.<br />

Tsuchiya, M. & Taira, A. 1999. Population structure of six sympatric species of Trapezia associated<br />

with the hermatypic coral Pocillopora damicornis with a hypothesis of mechanisms promoting<br />

their coexistence. Galaxea 1: 9-18.<br />

Van den Spiegel, Eeckhaut, I. & Jangoux, M. 1998. Host selection by Synalpheus stimpsoni (de<br />

Man), an ectosymbiotic shrimp of comatulid crinoids, inferred by a field survey and laboratory<br />

experiments. J. Exp. Mar. Biol. Ecol. 225: 185-196.<br />

Vannini, M. 1985. A shrimp that speaks crab-ese. J. Crust. Biol. 5: 160-167.<br />

van Son, T.C. & Thiel, M. 2006. Mating behaviour of male rock shrimp, Rhynchocinetes typus<br />

(<strong>Decapod</strong>a: Caridea): effect of recent mating history and predation risk. Anim. Behav. 71: 61-<br />

70.<br />

Yeillet, A. 1945. Recherches sur le parasitisme des crabes et des galathees par les rhizocephales et<br />

les epicarides. Ann. Inst. Oceanogr. 22: 194-341.<br />

Vernet-Cornubert, G. 1958a. Biologie generate de Pisa tetraodon (Pennant). Bull. Inst. Oceanogr.,<br />

Monaco 1113: 1-52.<br />

Vernet-Cornubert, G. 1958b. Recherches sur la sexualite du crabe Pachygrapsus marmoratus (Fabricius).<br />

Arch. Zool. Exptl. Gen., Paris 96: 191-276.<br />

Verrel, P.A. 1985. Predation and the evolution of precopula in the isopod Asellus aquaticus. Behaviour^:<br />

198-202.<br />

Villanelli, F. & Gherardi, F. 1998. Breeding in the crayfish, Austropotamobius pallipes: mating<br />

patterns, mate choice and intermale competition. Freshw. Biol. 40: 305-315.<br />

Volz, P. 1938. Studien uber das, Knallen" der Alpheiden. Nach Untersuchungen anAlpheus dentipes<br />

Guerin und Synalpheus laevimanus (Heller). Zoomorph. 34: 272-316.<br />

von Bonde, C. 1936. The reproduction, embryology and metamorphosis of the Cape crawfish (Jasus<br />

lalandii) (H. Milne Edwards). S. Afr. Mar. Biol. Surv. Div. Oceanogr. Invest. Rep. 6: 1-25.<br />

von Hagen, H.0.1967. Nachweis einer kinasthetischen Orientierung bei Uca rapax. Z. MorpholOkol.<br />

7/^58:301-320.<br />

Vytopil, E. & Willis, B. 2001. Epifaunal community structure in Acropora spp. (Scleractinia) on the<br />

Great Barrier Reef: implications of coral morphology and habitat complexity. Coral Reefs 20:<br />

281-288.<br />

Wada, S., Sonoda, T. & Goshima, S. 1996. Temporal size covariation of mating pairs of the hermit<br />

crab Pagurus middendorffii (<strong>Decapod</strong>a: Anomura: Paguridae) during a single breeding season.<br />

Crust. Res. 25: 158-164.<br />

Wada, S., Tanaka, T. & Goshima, S. 1999. Precopulatory mate guarding in the hermit crab, Pagurus<br />

middendorffii (<strong>Decapod</strong>a: Paguridae): effects of population parameters on male guarding<br />

duration. /. Exp. Mar. Biol. Ecol. 239: 289-298.


The Evolution of Mating Systems in <strong>Decapod</strong> <strong>Crustacean</strong>s 181<br />

Wada, S., Ashidate, M., Yoshino, K., Sato, T. & Goshima, S. 2000. Effects of sex ratio on spawning<br />

frequency and mating behavior of the spiny king crab, Paralithodes brevipes. J. Crust. Biol. 20:<br />

479-482.<br />

Wada, S., Ashidate, M. & Goshima, S. 1997. Observations on the reproductive behavior of the spiny<br />

king crab Paralithodes brevipes (Anomura: Lithodidae). Crust. Res. 26:56-61.<br />

Wada, S., Ito, A. & Mima, A. 2007. Evolutionary significance of prenuptial molting in female<br />

Pagurus hermit crabs. Mar. Biol. 152: 1263-1270.<br />

Waddy, S.L. & Aiken, D.E. 1981. <strong>Natural</strong> reproductive cycles of female American lobsters (Homarus<br />

americanus).In: Clark, W.H., Jr. & Adams, T.S. (eds.), Developments in Endocrinology. Vol. 11:<br />

353. New York: Elsevier/North Holland.<br />

Wallace, M., Pertuit, C.J. & Hvatus, A.R. 1949. Contribution to the biology of the king crab Paralithodes<br />

camtschatica (Tilesius). U. S. Fish Wildl. Serv. Fish. Leafl. 340: 1-49.<br />

Warner, G.F. 1967. The life history of the mangrove tree crab, Aratus pisoni. J. Zool, London 153:<br />

321-335.<br />

Warner, G.F. 1970. Behavior of two species of grapsid crab during intraspecific encounters.<br />

Behaviour 36: 9-19.<br />

Wasserthal, L.T. & Seibt, U. 1976. Feinstruktur, Funktion und Reinigung der antennalen Sinneshaare<br />

der Garnele Hymenocera picta. Z. Tierpsychol. 42: 186-199.<br />

Watson, J. 1972. Mating behavior in the spider crab, Chionoecetes opilio. J. Fish. Res. Bd. Canada<br />

29:447-449.<br />

Wells, W.W. 1928. Pinnotheridae of Puget Sound. Publ. Puget Sound Biol Stat, Univ. Wash. 6:<br />

283-314.<br />

Wenner, E.L. 1989. Incidence of insemination in female blue crabs, Callinectes sapidus. J. Crust.<br />

Biol. 9: 587-594.<br />

Werding, B. 1983. Kommensalische Porzellaniden aus der Karibik (<strong>Decapod</strong>a, Anomura). <strong>Crustacean</strong>a<br />

45: 1-14.<br />

Werding, B. 1990. Alpheus schmitti Chace, 1972, a coral rock boring snapping-shrimp of the tropical<br />

westernvAtlantic (<strong>Decapod</strong>a, Caridea). <strong>Crustacean</strong>a 58: 88-96.<br />

Wickler, W. 1973. Biology of Hymenocera picta Dana. Micronesia 9: 225-230.<br />

Wickler, W. & Seibt, U. 1970. Das Verhalten von Hymenocera picta Dana, einer Seesterne fressenden<br />

Garnele (<strong>Decapod</strong>a, Natantia, Gnathophyllidae). Z. Tierpsychol. 27: 352-368.<br />

Wickler, W. & Seibt, U. 1972. Fiir den Zusammenhang des Paarsitzens mit anderen Verhaltensweisen<br />

bei Hymenocera picta Dana. Z. Tierpsychol. 31: 163-170.<br />

Wickler, W. & Seibt, U. 1981. Monogamy in Crustacea and man. Z. Tierpsychol. 57: 215-234.<br />

Wilber, D.H. 1989. The influence of sexual selection and predation on the mating and postcopulatory<br />

guarding behavior of stone crabs (Xanthidae, Menippe). Behav. Ecol. Sociobiol. 24: 445-451.<br />

Williams, A.B. 1984. Shrimps, Lobsters and Crabs of the Atlantic Coast of the Eastern United<br />

States, Maine to Florida. Washington, D.C.: Smith. Inst. Press.<br />

Williams, A.B. 1987. Upogebia synagelas, new species, a commensal mud shrimp from sponges in<br />

the western central Atlantic (<strong>Decapod</strong>a: Upogebiidae). Proc. Biol. Soc. Wash. 100: 590-595.<br />

Williams, A.B. & Ngoc-Ho, N. 1990. Pomatogebia, a new genus of thalassinidean shrimps from<br />

western hemisphere tropics (Crustacea: Upogebiidae). Proc. Biol. Soc. Wash. 103: 614-616.<br />

Williams, A.B. & Scott, P.J.B. 1989. Upogebia corallifora, a new species of coral-boring shrimp<br />

from the West Indies (<strong>Decapod</strong>a: Upogebiidae). Proc. Biol. Soc. Wash. 102: 405-410.<br />

Williams, J.D. & McDermott, J.J. 2004. Hermit crab biocoenoses: a worldwide review of the diversity<br />

and natural history of hermit crab associates. J. Exp. Mar. Biol. Ecol 305: 1-128.<br />

Williamson, H.C. 1903. On the larval and early young stages and rate of growth of the shore-crab<br />

(Carcinus maenas). Rep. Fish. Bd. Scotl, Sci. Invest. 21: 136-179.


182 Asakura<br />

Wittenberger, J.F. & Tilson, R.L. 1980. The evolution of monogamy: hypotheses and evidence. Ann.<br />

Rev. Ecol. SystA 1: 197-232.<br />

Wirtz, P. 1997. <strong>Crustacean</strong> symbionts of the sea anemone Telmatactis cricoides at Madeira and the<br />

Canary Islands. J. Zool. 242: 799-811.<br />

Yaldwyn, J.C. 1964. Pair association in the banded coral shrimp. Aust. Nat. Hist. 14: 286.<br />

Yaldwyn, J.C. 1966a. Notes on the behaviour in captivity of a pair of banded coral shrimps, Stenopus<br />

hispidus (Olivier). Aust. Zool. 8: 377-389.<br />

Yaldwyn, J.C. 1966b. Protandrous hermaphroditism in decapod prawns of the families Hippolytidae<br />

and Campylonotidae. Nature 209: 1366.<br />

Yano, I., Kanna, R.A., Oyarna, R.N. & Wyban, J.A. 1988. Mating behavior in the penaeid shrimp<br />

Penaeus vannamei. Mar. Biol. 97: 171-175.<br />

Zhang, D., Rhyne, A.L. & Lin, J. 1998. Density-dependent effect on reproductive behaviour of<br />

Lysmata amboinensis and L. boggessi (<strong>Decapod</strong>a: Caridea: Hippolytidae). J. Mar. Biol. Ass.<br />

U.K. 87: 517-522.<br />

Zhou, S. & Shirley, T.C. 1997. Distribution of red king crabs and Tanner crabs in the summer by<br />

habitat and depth in an Alaskan fjord. Invest. Man, Valparaiso 25: 59-67.<br />

Zmarzly, D.L. 1992. Taxonomic review of pea crabs in the genus Pinnixa (<strong>Decapod</strong>a: Brachyura:<br />

Pinnotheridae) occurring on the California Shelf, with descriptions of two new species. J. Crust.<br />

Biol. 12: 677-713.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!