
State Representation Approach for Atomistic Time-Dependent
Transport Calculations in Molecular Junctions
Tamar Zelovich,† Leeor Kronik,‡ and Oded Hod*,†

†Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv 69978, Israel
‡Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel

ABSTRACT: We propose a new method for simulating elec-
tron dynamics in open quantum systems out of equilibrium,
using a finite atomistic model. The proposed method is
motivated by the intuitive and practical nature of the driven
Liouville−von-Neumann equation approach of Sańchez et al.
[J. Chem. Phys. 2006, 124, 214708] and Subotnik et al. [J. Chem.
Phys. 2009, 130, 144105]. A key ingredient of our approach is a
transformation of the Hamiltonian matrix from an atomistic to a
state representation of the molecular junction. This allows us to
uniquely define the bias voltage across the system while maintaining a proper thermal electronic distribution within the finite lead
models. Furthermore, it allows us to investigate complex molecular junctions, including multilead configurations. A heuristic derivation of
our working equation leads to explicit expressions for the damping and driving terms, which serve as appropriate electron sources and
sinks that effectively “open” the finite model system. Although the method does not forbid it, in practice we find neither violation of
Pauli’s exclusion principles nor deviation from density matrix positivity throughout our numerical simulations of various tight-binding
model systems. We believe that the new approach offers a practical and physically sound route for performing atomistic time-dependent
transport calculations in realistic molecular junction models.

1. INTRODUCTION

The ability to exploit molecules as miniature electronic com-
ponents was first theoretically predicted in a seminal paper by
Aviram and Ratner.1 The invention of breakthrough technolo-
gies for the visualization and manipulation of systems at the
molecular level brought this prediction to realization. Currently,
the fabrication of molecular junctions for conductance measure-
ments is routine practice in many research laboratories (see, e.g.
refs 2−7). Apart from downscaling electronic devices and gaining
higher computational efficiency, the use of molecules as elec-
tronic components may give rise to novel functionalities based on
their quantum mechanical nature, thus redefining electronics.8−13

The miniature nature of molecular electronics assemblies
allows for a unique interplay between the availability of high
resolution experimental data and highly accurate theoretical
treatment of key transport phenomena. With this respect, a
major challenge for modeling electronic transport through
molecular junctions is the ability to provide an appropriate
atomistic out-of-equilibrium description of the entire lead-
molecule-lead system. This is often addressed by replacing the
full (infinite in principle) system by a finite system with open
boundaries. The finite system encompasses the molecular entity
and a finite section of the lead models and is often termed the
“extended molecule”. The challenge now appears in the need to
provide an appropriate description of the open boundary
conditions of the finite system. One of the most widely used
approaches to address this challenge is the simple (yet powerful)
steady-state picture of Landauer.14,15 Within this approach, the

conductance is related to the electron transmittance probability
through the molecular junction which, in turn, is often calculated
via nonequilibrium Green’s function (NEGF) methods.16,17 In
the latter, the open nature of the system is addressed by the
concept of the leads’ self-energies, which expresses the true
influence of the semi-infinite leads by means of an exact effective
interaction term acting on the finite system. Over the past two
decades, this approach has proven to be highly successful in
describing electronic transport through mesoscopic sys-
tems16,18,19 as well as molecular junctions.9,20,21

The original formulation of the Landauer approach refers to
steady-state transport and therefore cannot address issues of
electron dynamics, which are of crucial importance when
studying transient effects, external time-dependent fields, and
coupled electron-nuclei dynamics. However, it can be extended
to address dynamical effects by using sophisticated time-
dependent Green’s function approaches.22−28 These methods
have been applied successfully to relatively simple model systems
in order to gain insights regarding the important physical
phenomena governing the time-dependent propagation of
electrons through narrow molecular bridges.22,23,29 However,
such calculations rely on a proper description of the out-
of-equilibrium electronic structure of the model system and on a
sufficiently accurate calculation of the self-energies of the leads.
Both issues are very demanding computationally, thus restricting
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the practical applicability of these approaches. Alternative
numerically exact approaches, based on real-time path-integral
Monte Carlo30−32 and multilayer multiconfiguration time-
dependent Hartree simulations33,34 have been developed to treat
electron dynamics in open many-body systems. These innovative
methods can provide important insights when applied to
phenomenological models of molecular electronic junctions.
However, they are computationally demanding and can therefore
be of limited applicability in realistic molecular junction models.
In light of the difficulties encountered by these formally exact

methods, a hierarchy of approaches that aim to mimic the out-of-
equilibrium open system bymeans of a closed one have emerged,
offering different points of compromise between accuracy and
computational burden. These approaches are often of general
nature and can, in principle, be applied with various Hamiltonian
representations of the system, ranging from simple tight-binding
descriptions to advanced first-principles methods.
For steady state currents, several such approaches that

circumvent the explicit treatment of the semi-infinite lead have
been suggested. One example is the Lagrange multiplier method
where a constant current is enforced on the system.35−38 The
method of source-sink potentials is a second example where the
Hamiltonian of the finite system is augmented by source and sink
terms that serve to inject and absorb electrons near the physical
boundaries of the finite system.39−43

One of the earliest time-dependent approaches developed
along these lines suggested that the explicit calculation of
lead self-energies can be avoided by approximating them with
complex absorbing potentials.44−46 Here, the time-dependent
response of the finite system to an external electric field perturba-
tion44,45 or local edge potentials46 is simulated and the excited
electrons are absorbed near the boundaries, thus dissipating the
excess energy that they carry and avoiding backscattering into the
system. This method was successfully used to analyze the effects
of geometrical constriction on the transport properties of the
nanoscale junction. However, it is suitable for short simulation
periods, during which no significant depletion of the electron
density due to the absorbing boundary conditions occurs.
Several other methods that avoid the explicit treatment of the

semi-infinite electronic reservoirs have been developed. One
such approach is the momentum space method,47 where the
time-dependent Kohn−Sham equation, augmented by local
edge potentials, is Fourier-transformed to momentum space
where the boundary conditions on the wave functions can be
readily applied. Another example is the stochastic time-dependent
current density functional theorymethod,48−53 where the effects of
the electronic reservoirs are modeled by an effective bath induced
fluctuation term and a compensating dissipation term added to the
Hamiltonian of the finite system.A relatedmethod is the stochastic
surrogate Hamiltonian approach where bath modes are randomly
swapped with secondary thermal reservoir modes.54

An alternative approach, developed by Car, Burke, and
Gebauer, does not attempt to model the semi-infinite leads,
but rather replaces them with a single lead setup subject to ring
boundary conditions.55−59 Here, electrons that exit the
simulation box on one side of the model junction re-enter at
the other side. Due to the periodic nature of the method, the
electrons, which are accelerated by an external field, have to be
decelerated to avoid unrealistic velocity buildup. This is done via
the introduction of an electron−phonon coupling term in the
density matrix quantum master equation formulation of the
problem. Unfortunately, computational demands dictate the
use of relatively small lead models and thus the temperature of

the phonon bath and the coupling strength have to be tuned to
unphysically large values to obtain reasonable transport results.60

Despite this, the intuitive nature of such density matrix based
approaches, as well as their relative simplicity in terms of practical
implementation, have triggered many studies in recent years
aiming to harness their advantages toward advanced modeling of
molecular electronics scenarios.28,61−68,70a−d

Going through the hierarchy of approximate methods,
probably the conceptually simplest approach completely avoids
the challenge of mimicking the semi-infinite leads by explicitly
considering a closed finite system. A straightforward application
of this idea is the microcanonical approach of Di Ventra and
Todorov,69 in which the discharge dynamics of two finite
electron reservoirs contacted through a nanoscale/molecular
bridge is investigated.71 When the reservoirs are taken to be
sufficiently large, a quasi-steady state can develop, thus allowing
the study of both transient effects and the formation of the quasi-
steady state current.72 We note that a related method, based on
constrained-DFT formalism, was suggested by Van Voorhis and
co-workers.73−75 A major advantage of these methods is that
they are formally exact for closed systems, while enabling the
simulation of relatively large molecular junction models.
However, they are only suitable for relatively short simulation
times when no backscattered electrons from the boundaries of
the finite system enter the active region. Furthermore, Ercan
et al.76 have recently generalized the microcanonical approach to
treat degenerate systems and examined its limitations using
simple tight-binding (TB) models. It was concluded that the size,
symmetry, and dimensionality of the system should be carefully
taken into account when applying this methodology.
The absence of a true steady-state in the microcanonical

picture was addressed by Sańchez et al.77 They augmented the
equations of motion with a driving term, acting near the edges of
the finite electrode models so as to maintain a charge imbalance
between the two finite reservoirs. This method successfully
produces a stable steady-state that resembles in nature the quasi-
steady-state developing in microcanonical simulations. Further-
more, it is conceptually simple and requires merely a
straightforward extension of standard electron-dynamics simu-
lation techniques in closed-systems scenarios, thus enabling the
treatment of relatively large junction models. Nevertheless, in the
original formulation, some important limitations remain. These
include (i) a nonunique definition of the bias voltage imposed on
the junction; (ii) a nonthermal distribution within the finite elec-
tronic reservoir models; (iii) complications in treating nonlinear
junctionmodels includingmultilead configurations; and (iv) deviation
of the densitymatrix from theN-representability condition.78Wenote
that all but the latter limitation were, in principle, resolved in a related
method that was developed for phenomenological models of
molecular electronic junctions by Subotnik et al.79 Nevertheless, this
model addresses general phenomena of electronic conductance and
does not take into account the detailed atomistic description of
specific molecular junctions.
In the present study, we develop a new approach for time-

domain simulations of electronic transport in molecular
junctions with open boundary conditions. The new method is
based on the driven Liouville−von-Neumann equation sug-
gested by Sańchez et al.77 and Subotnik et al.,79 with some
important modifications to the working equation that provide an
appropriate description of the system-bath damping. Using a
unique transformation of the Hamiltonian from a real-space
(site) representation to an energy (state) representation of the
various sections of the system, we are able to mitigate the
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limitations discussed above while maintaining a fully atomistic
description of the model junction. This bridges directly between
atomistic and phenomenological models of molecular electronics
junctions and thus allows harnessing the advantages of both
representations of the system.
The article is organized as follows: In section 2, we present

a detailed account of our methodology. Section 3 is devoted
to evaluating the performance of the suggested method for
several model systems, including a linear tight-binding chain and
an asymmetric three-terminal setup. Here, the ability to simulate
bias-voltage and thermo-voltage effects is demonstrated by
comparison of the obtained steady-state currents to the cor-
responding results calculated using the Landauer formalism. In
section 4, we summarize and provide an outlook.

2. METHODOLOGY
a. Working Equation. Our starting point is the driven

Liouville−von-Neumann equation, developed by Sańchez et al.
for electronic transport calculations.77 As discussed above, within
this method the molecular junction is represented by a finite system
consisting of two sufficiently large lead models bridged byan active
(extended-)molecule. The open boundary conditions are enforced
by continuously driving the densitymatrix at the far edges of the lead
models toward a charge polarized state, with charge accumulation
on one side of the molecular junction and charge depletion on the
other side. This is done via a driving term added to the Liouville−
von-Neumann equation in the followingmanner (unlessmentioned
otherwise atomic units are used throughout the paper):

ρ ρ ρ ρ̂ = − ̂ ̂ − Γ ̂ − ̂t i Hd /d [ , ] ( )0
(1)

where Ĥ is the matrix representation of the Hamiltonian of the
system, ρ̂ is the one-electron reduced density matrix, Γ is a real
number, which serves as a driving rate, and ρ̂0 is a target density
matrix, defined in terms of its matrix elements in some real-space or
atomic centered basis set representation. In the original formulation
of the theory, the target density matrix was defined as follows:

ρ
ρ

ρ
̂ =

̂ ∈

̂

⎧
⎨⎪
⎩⎪

t i j C

t

( ) ,

( ) otherwiseij

ij

ij

0
0

(2)

Here, C represents a group of indices of either real space grid
points or atomic centered orbitals belonging to a predefined region
in space in the vicinity of the far edges of the lead models, in which
charge polarization is enforced. ρ̂(t0) represents a density matrix
encoding a physical state of charge polarization at the edges of the
system. For a two-lead setup, C represents the left and right finite
lead models and the equation, in matrix form, translates to
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(3)

where the Hamiltonian and density matrices are formally divided
into the left (L), extended molecule (EM), and right (R) blocks
(see Figure 1), the direct coupling between the leads is assumed to

be negligibly small, and ρ̂L
0, and ρ̂R

0 are the density matrices of the
isolated charged left and right lead models of the system,
respectively. A similar equation was also used in ref 79 to study
steady-state solutions of the time-dependent equation.
In this equation, the diagonal driving terms Γρ̂L/R0 may be

viewed as source terms injecting electrons into the extended
molecule region, the diagonal −Γρ̂L/R terms serve as absorbing
sinks for electrons within the finite lead models and as damping
terms for intralead coherences, and the corresponding off-
diagonal terms −Γρ̂L,R/R,L damp the interlead coherences. Here,
both the EM block and the EM-lead coherences blocks of the
density matrix remain undamped. We recall, however, that a
microscopic derivation of the quantummaster equation indicates
that if the population in state i is damped with a rate γi and that
of state j is damped with a rate γj then the contribution of this
population relaxation to the relaxation of their mutual coherence
is given by the so-called t1 expression: 1/2(γi + γj).

80,81 Hence, if
the lead states are damped with a rate Γ then the lead−lead
coherences should be damped with the same rate, as done in eq 3,
but the lead-EM coherences should be damped, as well, with a
rate of Γ/2. Therefore, the resulting driven Liouville−von-
Neumann equation should read
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Equation 4 serves as our working equation throughout
this article. A detailed heuristic derivation of it can be found in
Appendix A. Importantly, although both eq 3 and eq 4 do not
forbid it,78 in practice, we find neither violations of Pauli’s exclu-
sion principle82 nor deviations from density matrix positivity
throughout all tight-binding based simulations presented below,
using eq 4. However, both problems are observed in the same
calculations if eq 3 is used instead. Furthermore, use of eq 4

Figure 1. Schematic representation of the molecular junction divided
into its three parts: (i) left lead (L); (ii) right lead (R); and (iii) extended
molecule (EM) marked in red, which consists of the molecule (M) and
its adjacent lead sections.
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results in much less noise in the time-dependent current and
a considerably smoother and faster convergence of the cur-
rent toward steady-state, than the equivalent results obtained
using eq 3.
b. Target Density Matrix. In the original formulation of

Sańchez et al., the target density matrix, ρ̂0, was obtained from
ground state calculation of the same system under the presence
of an external electric field, parallel to the axial direction of the
junction.77 The application of the field causes charge separation
and accumulation at the two edges of the system, thus aiming to
mimic the case of charge imbalance due to the application of an
external bias under nonequilibrium conditions. Once ρ̂(t0) is
obtained the field is switched off and the density matrix, which no
longer represents a stationary state, is allowed to evolve
according to eq 3, that is, subject to the (soft) constraint that
its value at the edge regions (i, j ∈ C) should approach the value
of ρ̂(t0). In this way, in the extendedmolecule region, far from the
edges of the lead models (i, j ∉ C), the damping term on the
right-hand side of eq 3 vanishes and the density matrix evolves
according to the standard Liouville−von-Neumann equation.
Near the boundaries (i, j ∈ C) of the lead models, the damping
term constantly drives the density matrix toward the reference
value, ρ̂ij(t0) thus enforcing charge polarization close to the
edges. The driving rate Γ could, in principle, be derived from the
properties of the metallic leads. However, practically, it served as
a free parameter arbitrarily chosen within reasonable physical
bounds to produce a stable steady state. If the damping factor is
chosen to be identically zero throughout space (Γ = 0) then the
microcanonical picture is restored.
In the above approach, the initial conditions and target

densities are enforced via an external electric field that induces a
charge imbalance, which resembles a scenario where a capacitor
is discharged through the molecular junction. This, however,
does not provide a unique definition of the chemical potentials of
the leads and hence the bias voltage, as well as the thermal
distribution of the electronic occupations. Furthermore, since the
charge separation is induced by an external uniform electric
field, the finite lead models have to be aligned along the field axis,
resulting in a geometry that inhibits the addition of further
electrodes to the model system. The latter problem can, in
principle, be solved by building target densities based on more
complex electric fields or constrained DFT.73 However, these
considerably complicate the procedure and do not provide a
solution to the other important issues raised above.
Importantly, when formulating the problem in the basis of the

states of the separate leads and extendedmolecule subsystems, all
the above-mentioned problems are absent and a clear and unique
definition of both the bias voltage and the electronic temperature
exists.79 Thus, if one desires to maintain the detailed atomistic
information on the junction while avoiding the problems
associated with the appropriate definition of the boundary
conditions, it is required to find a transformation from the
atomistic representation of the system used by Sańchez et al.77 to
the state representation considered by Subotnik et al.79

To this end, we use the same formal division presented in eqs 3
and 4 of the molecular junction into three sections: (i) the left
lead (L); (ii) the right lead (R); and (iii) the extended molecule
(EM; see Figure 1). As mentioned above, the latter is the
molecule, augmented by some portion of the leads such that near
the far edges the effect of the interface with the molecule on the
electronic structure of the lead sections becomes marginal. With
this somewhat arbitrary division, the localized basis set or real-
space matrix representation of the Hamiltonian operator (Ĥ)

obtains the following form (referred to below as the “atomistic-”
or “site-representation”):
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Here, Ĥi is the Hamiltonian matrix block of the ith section of the
system and V̂ij represents the interactions between section i and
section j of the system where i,j = (L, EM, R). If the interactions
are short ranged V̂ij becomes a sparse matrix and, as mentioned
above, we can safely assume that there exist no direct coupling
between the two leads V̂L,R = V̂R,L = 0.
We now define the transformation of this Hamiltonian matrix

representation to the basis of eigenfunctions of the individual
isolated system sections (L, EM, and R). Denoting by Ûi the
unitary transformation matrix that diagonalizes the Ĥi block such
that Ûi

†ĤiÛi = ̃Ĥ i, where ̃Ĥ i is a diagonal square matrix with the
eigenenergies of the isolated ith section on its diagonal, we can
write the following global unitary transformation matrix:
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which transforms the full Hamiltonian matrix of eq 5 in the
following manner:
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Here, we have defined the matrix that couples between the
eigenstates of the ith section and those of the jth section as ̃ ̂V ij ≡
Ûi

†V̂ijÛj. This representation, which shall be referred to as the
“state representation”, represents three separate sets of quantum
states (of the left lead, extendedmolecule, and the right lead) that
are coupled according to the coupling scheme presented in
Figure 2. Note that the fact that we have neglected the direct
coupling between the leads in the site representation is reflected
in the state representation as well.
Similarly, the reduced density matrix transforms as follows:

ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

̃ ̂ = ̂ ̂ ̂ =

̃ ̂ ̃ ̂ ̃ ̂

̃ ̂ ̃ ̂ ̃ ̂

̃ ̂ ̃ ̂ ̃ ̂

†

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
U U

L L,EM L,R

EM,L EM EM,R

R,L R,EM R (8)

with ρ ̃î,j = Ûi
†ρ̂i,jÛj. Hence, in the state-representation eq 4

assumes the following form (see Appendix A):
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where the diagonal terms represent the eigenstate occupations
of the three isolated sections of the system. Thus, we may now
choose as our target density matrix blocks, ρ ̃L̂/R0 , diagonal
submatrices that represent the equilibrium state of the isolated
left and right leads in energy space and are populated according
to the equilibrium Fermi−Dirac distribution of the respective
lead, f L/R(En

L/R) = 1/[e(En
L/R −μL/R)/(kBTL/R) + 1], where En

L/R are the
eigenenergies of the finite left and right lead model, TL/R are
the electronic temperatures of the left and right leads, kB are
Boltzmann’s constant, and μL/R are the chemical potentials of the
left and right leads set by the bias voltage, V, such that μL/R =
EF
L/R ± 0.5V, and EF

L/R are the Fermi energies of the left and right
leads, respectively. Assuming that, within the energy bandwidth
of the finite lead models, the lead densities of states are
sufficiently dense, this new definition of the target density
provides a physically sound representation of the boundary
conditions, which has no ambiguity with respect to the definition
of the bias voltage (given by the difference in chemical potentials
of the leads) and can take into account electronic thermal effects.
Furthermore, this procedure is not limited to two lead setups and
can be readily applied to the case of multiple lead junctions.
Within this scheme, the actual calculation is performed

according to the following steps: (i) geometry definition:
definition of the geometry of the molecular junction including
two (or more) finite, and sufficiently large, lead models and a
bridging (extended-)molecule; (ii) transformation to the state
representation: diagonalization of the Hamiltonian blocks of the
separate system sections, construction of the global trans-
formation matrix, and transformation of the full Hamiltonian
matrix from the atomistic to the state representation; (iii) target
density matrix formation: formation of the target density matrix
via the population of the lead states according to their respective
chemical potential (bias voltage) and temperature; (iv) initial
state: construction of the initial state where the lead sections are

populated at their target density values and the extended
molecule is populated up to the Fermi energy. This represents a
separated system in which the couplings are turned on at time
zero. Naturally, other initial states can be considered; (v)
propagation: propagation of the density matrix according to
eq 4 or 9 with a given damping factor. The time dependent
current density is then monitored during the simulation.

3. RESULTS AND DISCUSSION
We start by applying the suggested methodology to a model
two-lead molecular junction, where the leads are represented
by two semi-infinite atomic chains and the extended molecule
is represented by a finite atomic chain coupled, locally, to both
lead models (see Figure 3).83 For the time propagation of the
density matrix, we use the fourth order Runge−Kutta scheme
throughout this study.84 To represent the electronic structure of
the system we choose a tight-binding model. We believe that this
model is simple enough to provide a clear picture of the per-
formance of the suggested approach, while avoiding complica-
tions arising from more involved molecular junction models
and more complex electronic structure methods. It should be
emphasized, however, that our time-dependent transport
methodology is not limited to one-dimensional tight-binding
representations and it can be applied to higher-dimensional
systems with more advanced electronic structure methods.
First, we study the effects of the choice of driving rate (Γ) on

the time-dependent current, I(t), calculated in the atomistic/site-
representation as the bond current at the center of the molecular
bridge model using the relation In,n+1(t) = (2βe/ℏ)Im[ρn,n+1] (see
Appendix B). Here, e is the electron charge, ℏ is the reduced
Planck constant, β is the hopping matrix element between site
n and site n + 1, and [ρn,n+1] is the off-diagonal element of the
density matrix representing the relevant site coherences.85 As can
be seen in Figure 4 for a uniform tight-binding chain, in the
microcanonical case (Γ = 0, black curve) we obtain the expected
behavior, where the initial transient current oscillations gradually
develop into a quasi-steady-state (QSS) that matches well the
steady-state current value predicted by the Landauer approach and
persists until the propagating electronic wavepacket reaches the
boundaries of the finite model system (∼1060 fs in our model). At
this time, thewavepacket is reflected back toward the bridge, causing
the current to reverse its sign. Because no damping is introduced,
this process is repeated in a quasi-periodic manner.
When a finite, but too small, driving rate is chosen (Γ =

0.001 fs−1, red curve in Figure 4), backscattering due to edge reflec-
tions is somewhat suppressed. Similar to themicrocanonical case,
an initial QSS develops with a current that matches the Landauer

Figure 3. Schematic representation of the tight-binding two-lead model. Yellow, maroon, and orange spheres represent the left lead, molecule, and right
lead, respectively. The extendedmolecule region is marked explicitly. αL, αM, αR, βL, βM, and βR mark the onsite energies (α) and hopping integrals (β) of
the left lead (L), molecule (M), and right lead (R) subsystems, respectively. βLM and βMR are the coupling matrix elements between the left lead and the
molecule and between the molecule and the right lead, respectively.NL,NM, andNR are the number of sites used to represent the left lead, molecule, and
right lead models, respectively. NML and NMR are the number of extended molecule atoms belonging to the left and right leads, respectively.

Figure 2. Scheme of the transformation to the state representation
where the manifold of eigenstates of the extended molecule couples
separately to the manifolds of eigenstates of the left and right leads.
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value. When the wavepacket reaches the boundaries, this QSS is
destroyed and the current reduces due to the remaining back-
scattering. Nevertheless, unlike the case of the microcanonical
simulation, a complete current reversal is not observed and,
following some further back and forward scattering from the
finite model edges, a stable steady-state develops. Importantly,
the obtained steady-state current is smaller than the initial QSS
and the Landauer steady-state values, indicating that indeed the
driving rate is too small. On the other hand, when the damping
term is taken to be too large the initial dynamics deviate from the
microcanonical behavior and the obtained steady-state is either
larger (Γ = 0.1 fs−1, blue curve) or smaller (Γ = 1.0 fs−1, purple
curve) than the Landauer value.
The behavior described above for extreme driving rate values,

which has been previously rationalized in ref 77, suggests that by
fine-tuning of the damping rate a stable steady state should be
obtainable. Indeed, when choosing a rate of Γ = 0.01 fs−1 (green
curve in Figure 4) a stable steady-state occurs, which matches
well the Landauer value.86 The value of this steady-state current
is slightly larger than the initial QSS current of the micro-
canonical simulation. This can be rationalized by the fact that
when the microcanonical QSS is achieved, the chemical potential
difference between the finite lead models reduces with respect
to the initial state due to the discharge dynamics. In the case of
the driven equation, the leads are kept close to their desired
equilibrium distribution throughout the simulation, including at
steady-state.
An important observationmade in Figure 4 is that the obtained

steady-state current is quite stable with respect to the choice of
driving rate. Here, changing Γ by 3 orders of magnitude results in
a steady-state that varies between 0.011 and 0.025 mA with our

model parameters. Some physical insights regarding the optimal
value of the driving rate were given in the original paper of
Sańchez et al. in terms of the tight-binding hopping integral and
surface local density of states.77 We note that the damping of the
backscattering should occur at a rate that is of the order of the
time scale that it takes the wavepacket to be reflected from the
boundaries of the simulation box. Evaluating this time-scale as
the current switching time obtained in the microcanonical
simulation (Δt ∼ 100 fs for our choice of parameters), we obtain
an estimated driving rate of Γ∼ 1/Δt∼ 0.01 fs−1, which is indeed
the value used above to produce a steady-state current that
matches well both the Landauer value and the QSS of the
microcanonical simulation.
In order to better understand the nature of the steady state

obtained from our finite model system and its relation to the
Landauer picture, we plot in the inset of Figure 4 the steady-state
eigenstate occupations of the molecule and the left and right
lead models for two lead sizes and compare them to the
corresponding Fermi−Dirac lead equilibrium distributions used
in the Landauer formalism. As can be seen, the steady-state
occupations in the left and right leads (black lines) somewhat
deviate from the target occupation function (blue curves) within
the Fermi bias transport window of ±0.15 eV. This results from
the fact that with the given finite number of electrons it is
impossible to simultaneously fix the electronic distributions in
the finite lead models at their equilibrium form with appropriate
chemical potential and electronic temperature and obtain steady-
state dynamics in the molecular section.79 This, however, can be
improved by increasing the size of the lead models and thus also
the number of electrons in the system. Indeed, the red curves in
the inset of Figure 4, which were obtained by doubling the lead
model sizes from 300 to 600 sites, show much smaller deviations
from the target occupations at the lead models. Importantly, the
effect of these deviations on the steady-state occupation of the
molecular states (black circles and red × marks) that, owing to
the bias voltage, is different from their equilibrium distribu-
tion,80,87−89 as well as on the calculated current (∼0.16%), is
marginal.
We now turn to discuss how bias- and thermovoltage effects

can be readily investigated using the proposed method. As
mentioned above, via the target edge density matrices, which
encode the required electronic occupation functions of the leads,
our new approach provides an unambiguous definition of the
electronic temperature and bias voltage applied on the junction
and assures that they remain constant (if desired) throughout the
simulation. To demonstrate this, we present, in the left panel of
Figure 5, the time-dependent current through a 706 atom chain
(see Figure 3) for various bias voltages. As may be expected for
the system investigated, the steady-state current increases with
increasing bias voltage. Furthermore, the current−voltage
characteristics obtained by extracting the steady-state currents
from the dynamical simulation and those calculated via the
Landauer formalism are in excellent agreement, both predicting
an Ohmic behavior within the bandwidth of the lead models (see
inset of the left panel).
In the right panel of Figure 5, we consider the case of

thermovoltage, where electrical currents are induced via an
electronic temperature gradient held constant between the
leads.90,91 To this end, we consider the case of low coupling,
where the lead-molecule hopping matrix elements are taken to
be 20% of the hopping integrals within the leads and molecule
chain models. The system is gated in order to shift one of the
transmission resonances to an asymmetric position around the

Figure 4. Effect of the driving rate (Γ) on the time-dependent current
calculated for a tight-binding atomic chain model (see Figure 3) under a
bias voltage ofVb = 0.3 V and electronic lead temperatures ofTL =TR = 0K.
In these calculations, the model dimensions are chosen to be NL = NR =
300,NML = NMR = 50, and NM = 6, the on-site energies are taken as αL =
αM = αR = 0 eV, and the hopping integrals used are βL = βM = βR = βLM =
βMR = −0.2 eV. The black curve was obtained using the microcanonical
approach (Γ = 0) in the state representation. The red, green, blue, and
purple curves were obtained using the methodology suggested here with
Γ = 0.001, 0.01, 0.1, and 1.0 fs−1, respectively. The brown X marks
represent the steady-state current obtained via the Landauer approach
(see Appendix C). A time step of 1 fs was used throughout the
simulations. Inset: left lead (full lines), right lead (dashed lines), and
molecule (symbols) steady-state occupations obtained using lead
models of NL = NR = 300 (black) and NL = NR = 600 (red) compared
to the corresponding target lead-equilibrium step-function distributions
(blue).
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Fermi energy, such that the positive (electronic conduction) part of
the Fermi transport window encompasses it (see inset of Figure 5b),
resulting in a finite electronic current that flows through the system
from the warmer to the colder lead. In the dynamical simulations,
depicted in the main panel, after an initial period of relatively strong
oscillations, the time-dependent current (black curve) relaxes
toward a steady-state that is in good agreement with the Landauer
value (black x mark). We note that the relative difference between
the steady-state currents obtained using the two methods in the
present case (∼6%) is somewhat larger than that shown so far.
However, since the overall currents obtained here are quite small, in
terms of the absolute values (∼0.017 μA) this is a minor deviation.
For comparison, we present the time-dependent current in the

absence of temperature gradient and bias voltage (red curve) where,
as may be expected, the steady-state current vanishes. The short-
time oscillations obtained in this case are a result of the initial
conditions where the three subsystems are disconnected and set to
their own equilibrium distribution. The increased noise appearing in
both curves at ∼2 ps results from residual backscattering occurring
due to the relatively small driving rate used in these simulations.
Similar recurrences occur at longer simulation times. However, their
amplitude decreases rapidly to provide a stable steady-state.
Finally, we demonstrate how our method can be readily

applied to more complex molecular junctions such as multilead
configurations. Such junctions are very appealing in the realm of
molecular electronics as they enable the design of molecular

Figure 5. Bias- and thermovoltage simulations carried out for the system depicted in Figure 3. (a) Time-dependent current calculated at various bias
voltages, using the same system parameters given in the caption of Figure 4 with a driving rate of Γ = 0.01 fs−1. Colored × marks designate the
corresponding steady-state currents calculated via the Landauer formalism. Inset: current vs bias curve calculated from the steady-state currents obtained
at a simulation time of 3 ps (red circles) and the Landauer formalism (black X marks). (b) Time-dependent currents calculated for lead temperature
differences ofΔT = 290 K (black curve) and 0 K (red curve) at zero bias voltage. Themodel dimensions areNL =NR = 600,NML =NMR = 50, andNM = 6,
the on-site energies are taken as αL = αR = 0 eV and αM = −0.075 eV, and the hopping integrals used are βL = βM = βR = −0.2 eV and βLM = βMR =
−0.04 eV. The driving rate is fine-tuned to a value of Γ = 0.0025 fs−1, which yields stable steady state currents in good agreement with the Landauer
values (X marks). Inset: Transmittance probability (black), left (green) and right (blue) lead Fermi distribution functions, and the Fermi transport
window (red) of the Landauer formalism. A time step of 1 fs is used throughout the simulations.

Figure 6. Time-dependent current for a three-lead tight-binding T-junction under a bias voltage of Vb = 0.3 V with a higher chemical potential of
μU =EF + 1/2eVb at the upper lead and equal lower chemical potentials of μL = μR =EF− 1/2eVb at the left and right leads, and an electronic temperature of 0 K
for all leads. A driving rate ofΓ= 0.01 fs−1 and a time step of 1 fs are used. The junction parameters (see right panel) are as follows:NML=NMR=NMU= 6,NLL =
NRL =NUL = 300,NMLL =NMRL =NMUL = 50, αML = αMR = αMU = αLL = αRL = αUL = 0 eV, βML = βMR = βMU = βLL = βRL = βUL = βLLML = βRLMR = βULMU =
βMUML = −0.2 eV, βMUMR = −0.1 eV, βMLMR = 0 eV. The bond currents are calculated at the center of the left (black curve), right (red curve), and upper
(green curve) molecular arms. Black and red × marks represent the Landauer currents in the left and right arms, respectively.
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electronics components presenting novel functionalities that take
advantage of coherent transport effects.65,92−95 As shown below, a
suitable choice of the target density matrices allows for modeling
several source/sink reservoirs that couple to the molecular bridge. To
demonstrate this capability, we choose the three-lead junction
depicted in the right panel of Figure 6, where the upper lead (UL)
serves as a source and the left (LL) and right (RL) leads serve as sinks.
As in the two-lead setup discussed above, the three semi-infinite leads
are represented by finite atomic chains (marked by green, yellow, and
orange spheres in the right panel) that couple locally to the three arms
of the molecule model. A buffer region of the first 50 lead sites,
adjacent to each arm of themoleculemodel, constructs the extended-
molecule beyond which the driving terms act. The left and right arms
of the molecule model do not couple directly and the coupling of the
upper arm to the right arm is taken to be half the coupling to the left
arm, thus forming an asymmetrically coupled T-junction.
The formalism described above can be readily extended to

treat such a multilead setup. Here, the Hamiltonian matrix in the
atomistic/site representation is given by

̂ =

̂ ̂ ̂ ̂

̂ ̂ ̂ ̂

̂ ̂ ̂ ̂

̂ ̂ ̂ ̂

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

H

H V V V

V H

V H

V H

0 0

0 0

0 0

EM EM,UL EM,LL EM,RL

UL,EM UL

LL,EM LL

RL,EM RL (10)

where Ĥi is the Hamiltonian matrix block of the ith section of the
system and V̂i,j represents the coupling between section i and
section j of the system where i, j = (EM, UL, LL, RL) and as
before we assume no interlead couplings. The corresponding
global transformation matrix to the state-representation is

̂ =

̂ ̂ ̂ ̂

̂ ̂ ̂ ̂

̂ ̂ ̂ ̂

̂ ̂ ̂ ̂
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0 0 0

EM
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LL

RL (11)

where ̃Ĥ i = Ûi
†ĤiÛi is a diagonal matrix holding on its diagonal the

eigenstates of the isolated ith section of the system. The
Hamiltonian of the full system in the state-representation is given by

̃ ̂ = ̂ ̂ ̂ =
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with ̃ ̂V i,j = Ûi
†V̂i,jÛj, and the driven Liouville−von-Neumann

equation in this representation is

ρ ρ
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Here, the state representation of the density matrix, ρ ̃,̂ is given
by

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ
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and its various blocks can be expressed in terms of the cor-
responding blocks in the site representation ρ̂ as ρ ̃î,j = Ûi

†ρ̂i,jÛj.
As in the case of the two-lead setup, the target densities ρ ̃ÛL/LL/RL0

are diagonal matrices representing the Fermi−Dirac equili-
brium electron occupation distributions of the respective
lead states encoding the appropriate chemical potential
(taking into account the bias voltage) and electronic
temperature.
The time-dependent bond currents in the three junction arms

are depicted in the left panel of Figure 6. Here, the incoming
current from the upper lead is distributed between the left and
right arms according to the respective couplings. Since the
coupling of the upper arm to the left arm is chosen to be stronger
than its coupling to the right arm, the bond current in the latter is
consistently smaller than in the former. Importantly, the sum of
the left and right (sink) arms steady-state bond currents equals
the corresponding upper (source) arm counterpart, thus fulfilling
Kirchhoff’s first law. The good agreement between the steady-
state bond currents, calculated at the sink leads, and the cor-
responding Landauer currents (× marks), calculated from the
left and right transmittance probabilities, further supports the
validity of our method.

4. SUMMARY AND CONCLUSIONS
We have presented a method for simulating electron dynamics in
open quantum systems out of equilibrium, based on a driven
Liouville−von-Neumann equation approach with appropriate
boundary conditions, applied to finite atomistic models. The
Liouvillian operator describing the dynamics of the closed system
is augmented with damping (sink) terms that serve to absorb
electrons entering the finite lead models and to dephase the
intralead, interlead, and lead-system coherences, and driving
(source) terms that inject electrons into the active region with
the appropriate lead equilibrium electronic distribution. This is
achieved by performing a transformation from the atomistic view
of the system to a state representation, where the coupling
scheme between the eigenstates of the various isolated sections
of the full system is obtained explicitly. Unlike the atomistic
representation, the state representation allows for an unambig-
uous definition of the bias voltage and lead electronic
temperature. To demonstrate this, we have considered three
tight-binding models: a homogeneous one-dimensional chain
under an external bias voltage, a thermally biased weakly coupled
chain, and a three-terminal junction. For all cases studied, while
not strictly guaranteed by our formalism, positivity of the
reduced density matrix was conserved throughout the simu-
lations with no apparent deviations from Pauli’s exclusion
principle. Furthermore, steady-state Landauer results presented
excellent agreement with the results of the dynamical model, thus
indicating the validity of the method. This opens the way for the
study of many dynamical phenomena in molecular junctions,
including the effects of alternating bias voltages and dynamical
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thermal effects, time-dependent electromagnetic fields, tempo-
rally separated light-pulse induced electron dynamics, charge
separation dynamics for photovoltaic applications, transient
currents, spin dynamics, and, with appropriate extensions, also
coupled electron-nuclei dynamics. We therefore believe that the
suggested method will contribute to the design of unique control
schemes for charge and spin transport in single molecule
junctions and will allow the discovery of novel structures that
may lead to the development of new electronic components with
diverse functionalities based on the promising concepts of
molecular electronics and spintronics.

■ APPENDIX A: HEURISTIC DERIVATION OF THE
DRIVEN LIOUVILLE−VON-NEUMANN EQUATION

The driven Liouville−von-Neumann equation, presented in eqs 4
and 9 of the main text, aims at modeling the full quantum system,
consisting of semi-infinite leads and a molecule, which serves as the
active device, using a closed (rather than an open) model system.
The main approximation in such a description involves the
replacement of the semi-infinite leads with finite lead models. In
the full system, the semi-infinite leads play several important roles
including (i) altering the electronic properties of the activemolecular
entity; (ii) serving as electron reservoirs that absorb any incoming
electron, destroy its phase, and prevent it from backscattering into
the active molecular region; and (iii) inject incoherent electrons into
the active molecular region with the appropriate Fermi−Dirac
energy distribution according to the relevant chemical potential and
electronic temperature. In order to provide a reliable description of
the full infinite system, finite lead models must assume these roles in
the closed system treatment. The first point mentioned above can be
quite readily handled in the closed systemdescription via the concept
of the extendedmolecule, where the activemolecule is augmented by
lead sections from its adjacent neighborhood. These lead sections are
chosen to be sufficiently large such that the electronic properties of
the resulting extended molecule are converged, to within the
required accuracy, with respect to their size. Hence, two main
challenges remain in the closed systemdescription: (i) how to absorb
and dephase electrons that are traveling toward the finite model
edges before they are reflected back into the extended molecule
region; and (ii) how to model the injection of incoherent electrons
with the appropriate energy distribution from the lead models into
the active molecular region. In the following, we discuss how both
challenges are addressed in the driven Liouville−von-Neumann
equation presented in the main text.

Electron Absorption
To describe electron absorption in the finite lead model systems,
we invoke the concept of complex absorbing potentials
(CAPs).44,45,96−99,102a−b Here, the Hamiltonian of the finite
lead models is augmented with an imaginary potential that, when
traversed by an electron, induces a decay of the wavefunction. In
the presence of such CAPs the Hamiltonian blocks of the lead
models in the state representation (see main text) are
represented by complex diagonal matrices. Here, the real part
of each diagonal element is an eigen-energy of the finite lead
model Hamiltonian and its imaginary counterpart corresponds
to the electron absorption/damping rate (or inverse lifetime) at
this energy, which mimics the imaginary part of the self-energy of
the semi-infinite lead.100 When considering a two-lead junction,
the Hamiltonian matrix in the state representation of the finite
model system with CAPs reads

̃ ̂ =

̃ ̂ − Γ̂̃ ̃ ̂ ̂

̃ ̂ ̃ ̂ ̃ ̂
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EM,L EM EM,R
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where ̃ĤL/R are the diagonal matrices representing the discrete
eigen-spectrum of the finite left/right lead models, ̃ĤEM is a
diagonal matrix representing the eigenvalues of the extended
molecule, ̃ ̂V L/R,EM are the corresponding coupling matrices
between the energy manifolds of the left/right leads and the
extended molecule, ̃ ̂V EM,L/R = [ ̃ ̂V L/R,EM]

†, Γ̂̃L/R, are the absorbing
potential diagonal matrix representations, and we assume that
there is no direct coupling between the two leads. Note that as in
the main text, the tilde signs are used to designate matrices
presented in the state-representation. In the wide-band limit one
assumes that the electron absorption rate is independent of
energy such that the Γ̂̃ matrices are given by

γΓ̂̃ = ̂IL/R L/R L/R (A2)

with γL/R being the constant damping rate of the left/right leads
and IL̂/R are unit matrices with the dimensions of the
corresponding left/right blocks.
The Hamiltonian of the full closed system can be now divided

into its real and imaginary parts as follows:
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Before studying the dynamics of the reduced density matrix
under this Hamiltonian structure we must rewrite the Liouville−
von-Neumann equation for complex Hamiltonian matrix
representations. To this end, we recall that the density operator
is defined as

ρ ̂ = Ψ ⟩⟨Ψt t t( ) ( ) ( ) (A4)

and hence its time derivative is given by

ρ ̂
= Ψ ⟩ ⟨Ψ + Ψ ⟩ ⟨Ψt

t
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t
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t
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d
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The dynamics of the wave-function is dictated by the time-
dependent Schrodinger equation, which for the ket state reads

Ψ ⟩ = −
ℏ

̂ Ψ ⟩t
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i
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d
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and for the corresponding bra state is given by
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Using eqs A6 and A7, we can rewrite eq A5 as
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Because the real part of the Hamiltonian matrix is Hermitian
and, in the state representation, the imaginary part is diagonal
we obtain that ̃Ĥ† = ̃ĤRe + i ̃Ĥ Im. Hence, the time evolution of the
density operator in this representation is given by
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where [ ]− stands for the commutator and [ ]+ is the anti-
commutator. The first term in the right hand side of eq A9
represents the standard Liouville dynamics for the closed system,
whereas the second term induces electron absorption at the finite
lead models. Using the structure of ̃Ĥ Im presented in eq A3 we
can now evaluate the anti-commutator as follows:
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If we now choose γL = γR = γ = Γ/2, where Γ = γL + γR, we
obtain from eq A10
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Electron Injection
In the above derivation we have considered the absorption of
electrons by the finite lead models. These act as the real (semi-)-
infinite lead electronic reservoirs by preventing electrons that
enter the lead region from backscattering into the extended
molecule. As mentioned earlier, the lead models must also inject
electrons into the extended molecule region with the appropriate
equilibrium Fermi−Dirac energy distribution of the real semi-
infinite lead reservoirs, encoding their respective chemical
potentials and electronic temperatures.
In the real system, electrons are transferred from the leads to the

molecule without affecting the equilibrium state deep inside the
former. If one formally divides the full system into the semi-infinite
leads regions and the extendedmolecule, this transfer process may be

viewed as electron absorption at the lead surface interfacing the
extended molecule and electron injection at the corresponding
surface of the extended molecule region. Since the absorption and
injection rates at the two sides of this imaginary interface are of equal
magnitude and opposite signs we may describe the injection of
electrons into the extended molecule region by considering the
absorption of electrons traveling from deep inside the lead towards
the extended molecule region at the semi-infinite lead surface.
Following eq A9, electron absorption in the finite lead models is
described by the anti-commutator −1/ℏ[ ̃Ĥ Im,ρ ̃L̂/R0 ]+, where the
time-dependent density matrix appearing in eq A9 is replaced by
the equilibrium density matrix of the relevant lead model,
reflecting the fact that the leads remain at equilibrium despite
exchanging electrons with the extended molecule. For the iso-
lated semi-infinite leads within the wide band approximation,
this anti-commutator reads
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where we must take the electron injection rates (γL and γR) to be
identical to those used above for the electron absorption term in
order to maintain electron balance at the system−lead interface.
Hence, adding this term, with opposite sign, to eq A9 introduces
electron emission with the appropriate Fermi−Dirac distribu-
tion at the imaginary boundaries of the extended molecule.
Form of the Driven Liouville−von-Neumann Equation
From eqs A9, A11, and A12 we obtain the following equation for
the two-lead setup:
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which is our working equation in the state representation, namely
eq 9 of the main text. This equation can be readily transformed
to the atomistic/site-representation using the global unitary
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transformation matrix of eq 6. Following the definition ρ ̃ ̂ =
Û†ρ̂Û, appearing in eq 8 of the main text, and the fact that Û†Û =
ÛÛ† = I,̂ we may write Ûρ ̃Û̂† = ÛÛ†ρ̂ÛÛ† = ρ̂. Hence,
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where we have used the fact that the transformationmatrix, Û, is
time-independent, and that the individual blocks of the density
matrix transform as ρ ̃î,j = Ûi

†ρ̂i,jÛj such that Ûiρ ̃î,jÛj
† =

ÛiÛi
†ρ̂i,jÛjÛj

† = ρ̂i,j. Equation A14 is, in fact, eq 4 of the main text.
We note that in the present derivation we used the concept of

complex absorbing potentials and worked within the wide band
approximation in order to obtain a simple form of our working
equation, involving a single driving rate. Nevertheless, given the
exact form of the lead self-energies, one can avoid the
approximations involved with the choice of CAPs and repeat
the derivation with the explicit energy dependent absorbing
terms going beyond the wide band limit and obtaining a more
general equation. Here, however, one will have to explicitly

calculate the energy dependent lead self-energies for each choice
of lead model.

■ APPENDIX B: CALCULATING BOND CURRENTS IN
TIGHT-BINDING MODELS

In the main text, we have used the off-diagonal elements of the
density matrix to calculate the bond currents in the various model
systems considered.85 The relevant formula can be derived from
the fact that in a tight-binding model the molecular orbitals (ψi)
are represented as a linear combination of atomic orbitals (φn) in
the following manner:

∑ψ φ⟩ = ⟩t C t( ) ( )i
n

nni
(B1)

Because we are considering noninteracting electron models,
the overall current is obtained from the sum of the contribution
of the individual electrons or the individual occupied molecular
orbitals. The time dependence of each orbital is given by the
single electron time-dependent Schrödinger equation:

ψ
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Inserting the basis set expansion, we obtain:

∑ ∑φ φ⟩ = −
ℏ

̂ ⟩
C t

t
i

C t H
d ( )

d
( )

n

ni
n

n
ni n

(B3)

Now, operating with ⟨φm∣ from the left one obtains:
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In the tight-binding model the basis is orthonormal and the
Hamiltonian matrix is tridiagonal, that is,

φ φ δ⟨ ⟩ =m n m n, (B5)

and

φ φ δ δ δ⟨ ̂ ⟩ = + +− − + +H H H Hm n n n m n n n m n n n m n, , 1, , 1 1, , 1

(B6)

We therefore obtain
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By conjugating this equation one gets
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The population dynamics on each site can now be readily
calculated. At a given time, t, the contribution of a given orbital
ψi(t) to the occupation of site n in the tight-binding chain is given
by ∣Cni(t)∣2. From the continuity equation the time derivative of
this occupation is the difference between the incoming and
outgoing currents. We therefore calculate the time derivative of
the single orbital contribution as

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500135e | J. Chem. Theory Comput. 2014, 10, 2927−29412937



=
*

= * +
*

C t
t

C t C t
t

C t
C t

t
C t

C t
t

d ( )
d

d[ ( ) ( )]
d

( )
d[ ( )]

d
( )

d[ ( )]
d

ni ni ni

ni
ni

ni
ni

2

(B9)

Using eqs B7 and B8 in B9, we arrive at
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Assuming that all nonzero off-diagonal terms are real and
identical, and with a value of β, we get
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In analogy to the continuity equation (dρ/dt = −∇⃗·j)⃗ we can
now identify ((2β)/(ℏ))Im[Cni(t)Cn+1,i* (t)] as the particle
current going from site n to site n+1 or the n,n+1 bond particle
current and ((2β)/(ℏ))Im[Cn−1,i(t)Cni*(t)] as the particle current
going from site n−1 to site n or the n−1,n bond particle current.
Multiplying by the electron charge |e| to obtain the electrical
current from the particle current, summing over the contribution
of all occupied molecular orbitals, and using the density matrix
notation we obtain the following expression for the bond current:
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where we have assumed a closed shell system and the factor of 2
before the summation stands for the contribution of 2 electrons
occupying each occupied spatial molecular orbital.

■ APPENDIX C: DESCRIPTION OF THE LANDAUER
TRANSPORT CALCULATIONS

To perform the steady-state reference calculations we followed
the standard Landauer formalism combined with nonequilibrium
Green’s functions theory to calculate the corresponding
transmittance probabilities, with some modifications in the
construction of the leads’ Green’s functions, as detailed below.
Here, the current (I) flowing between the left (L) and the right
(R) leads at a given bias voltage (V) is calculated via the
probability (T) of an electron with a given energy (E) to traverse
the system:

∫ μ μ= −
−∞

∞
I V

e
h

E f E V f E V T E( )
2

d [ ( , ( )) ( , ( ))] ( )L L R R

(C1)

Here, e is the electron charge, h is Planck’s constant, f L/R are
the Fermi−Dirac distribution functions representing the elec-
tron occupations in the left/right leads given by f L/R(E,μL/R(V)) =
[1 + eβL/R(E−μL/R(V))]−1, βL/R = 1/(kBTL/R), kB is Boltzmann’s
constant, TL/R is the electronic temperature in the left/right
leads, and the bias voltage is assumed to drop symmetrically at
the lead-molecule junctions such that the leads’ chemical
potentials μL/R are chosen as μL/R = EF

L/R ± 0.5V, with EF
L/R

being the Fermi energy of the left/right lead. The transmission
probability is calculated via the following trace formula, which
can be derived using nonequilibrium Green’s functions
techniques:16,17,101

= Γ̂ ̂ Γ̂ ̂T E E G E E G E( ) Tr[ ( ) ( ) ( ) ( )]L EM
r

R EM
a

(C2)

Here, ĜEM
r (E) = [EI ̂− ĤEM−∑L

r (E)−∑R
r (E)]−1 is the retarded

Green’s function of the extended molecule, where ĤEM is the
Hamiltonian matrix representation of the extended molecule, I ̂ is
a unit matrix of the same dimensions, and the lead’s self-energy
functions ∑L/R

r (E) are given by

Σ̂ = ̂ − ̂ ̂ ̂ − ̂E EI V G E EI V( ) ( ) ( )( )L/R
r

EM,L/R L/R
r

L/R,EM (C3)

V̂EM,L/R is the Hamiltonian matrix block representing the
coupling between the extended molecule and the left/right
lead, V̂L/R,EM = [V̂EM,L/R]

†, and ĜL/R
r (E) is the retarded surface

Green’s function of the bare semi-infinite lead. The advanced
Green’s function matrix representation of the extended molecule
is given by ĜEM

a (E) = [ĜEM
r (E)]† and the broadening functions,

Γ̂L/R(E), are given by

Γ̂ = Σ̂ − Σ̂E i E E( ) [ ( ) ( )]L/R L/R
r

L/R
a

(C4)

with ∑̂L/R
a (E) = [∑̂L/R

r (E)]†.
The retarded surface Green’s function of the bare semi-infinite

lead, ĜL/R
r (E), can be solved for by using efficient iterative

methods.103−108Here, in the spirit of the finitemodel system,we cal-
culate it by complex matrix inversion of ĜL/R

r (E) = [EI ̂ − ĤL/R
+ iη]−1, where ĤL/R is the Hamiltonian matrix representation of
the finite left/right lead model and iη is a small imaginary
broadening factor introduced to eliminate the singularities and
serves to broaden the discrete spectra of the finite lead models
into a quasi-continuous one. To this end, η is chosen as twice
the maximum eigenenergy spacing within the corresponding
lead model. The obtained Landauer current is then converged
with respect to the size of the lead models to the required
accuracy.
In a multilead setup the current flowing between any two leads

can be calculated in the same manner presented above for the
two-lead setup, where the retarded Green’s function of the
extended molecule has to include the self-energy contributions of
all the leads:

∑̂ = ̂ − ̂ − Σ
=

−G E EI H E( ) [ ( )]
i

N

iEM
r

EM
1

r 1
leads

(C5)

We note that, owing to the tight-binding nature of our model,
the Landauer calculations we perform are not self-consistent in
terms of the influence of the bias voltage on the eigenstates of the
system. This is consistent with the fact that in the dynamical
calculations the Hamiltonian is taken to be time-independent as
well. Naturally, if one uses more complex sdoneuch as time-
dependent density functional theory, to perform the dynamics,
the corresponding steady-state Landauer calculations must be
performed self-consistently.
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