5.1 Jointly Distributed Random Variables

One random variable X: a function from the sample space S into the set of real numbers R.
Two random variables defined on the same sample space (X, Y) : a function from the sample space S into the plane R^{2}

If the set of possible values of (X, Y) is countable (in particular if each X and Y are discrete), then the joint distribution of (X, Y) is called discrete.

If the set of possible values of (X, Y) is R^{2} or a region in R^{2} and (X, Y) have a joint probability density function, then the joint distribution of (X, Y) is called continuous.

Two Discrete Random Variables

DEFINITION Let X and Y be two discrete rv's defined on the sample space \mathcal{S} of an experiment. The joint probability mass function $p(x, y)$ is defined for each pair of numbers (x, y) by

$$
p(x, y)=P(X=x \text { and } Y=y)
$$

It must be the case that $p(x, y) \geq 0$ and $\sum_{x} \sum_{y} p(x, y)=1$.
Now let A be any set consisting of pairs of (x, y) values (e.g., $A=\{(x, y)$: $x+y=5\}$ or $\{(x, y)$: $\max (x, y) \leq 3\}$). Then the probability $P[(X, Y) \in A]$ is obtained by summing the joint pmf over pairs in A :

$$
P[(X, Y) \in A]=\sum_{(x, y) \in A} \sum_{A} p(x, y)
$$

Example 1. Joint probability table

		y		
$p(x, y)$		0	100	200
x	100	.20	.10	.20
	250	.05	.15	.30

Here $\mathrm{P}(\mathrm{X}=100$ and $\mathrm{Y}=100)=0.10$ and $\mathrm{P}(\mathrm{X}+\mathrm{Y} \geq 300)=\mathrm{P}((\mathrm{X}, \mathrm{Y}) \in A)=0.65$.

The marginal probability mass functions of X and of Y, denoted by $p_{X}(x)$ and $p_{\gamma}(y)$, respectively, are given by

$$
p_{X}(x)=\sum_{y} p(x, y) \quad p_{Y}(y)=\sum_{x} p(x, y)
$$

$p_{X}(x)=P(X=x)$ is the pmf of $X, p_{Y}(y)=P(Y=y)$ is the pmf of Y.
Example 1 cont. Marginal distributions: Find the distribution of Y

$p(x, y)$		0	$\begin{gathered} y \\ 100 \end{gathered}$	200	$p_{X}(x)$
x	100	. 20	. 10	. 20	0.50
	250	. 05	. 15	. 30	0.50
	$p_{\gamma}(y)$. 25	. 25	. 50	

Conditional distributions are defined as

$$
\begin{aligned}
& p_{Y \mid X}(y \mid x)=P(Y=y \mid X=x)=\frac{P(Y=y \text { and } X=x)}{P(X=x)} \\
& p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{P(X=x \text { and } Y=y)}{P(Y=y)} .
\end{aligned}
$$

Example 1 cont. Find the conditional distribution of Y, given that $X=250$, and compute $E(Y \mid X=250)$

y	0	100	200	$E(Y \mid X=250)=0 \times 0.1+100 \times 0.3+200 \times 0.6=150$
$\mathrm{P}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid 250)$	0.1	0.3	0.6	

Two Continuous Random Variables

Let X and Y be continuous rv's. A joint probability density function $f(x, y)$ for these two variables is a function satisfying $f(x, y) \geq 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$. Then for any two-dimensional set A

$$
P[(X, Y) \in A]=\iint_{A} f(x, y) d x d y
$$

In particular, if A is the two-dimensional rectangle $\{(x, y): a \leq x \leq b, c \leq y \leq d\}$, then

$$
P[(X, Y) \in A]=P(a \leq X \leq b, c \leq Y \leq d)=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

We can think of $f(x, y)$ as specifying a surface at height $f(x, y)$ above the point (x, y) in a three-dimensional coordinate system. Then $P[(X, Y) \in A]$ is the volume underneath this surface and above the region A, analogous to the area under a curve in the one-dimensional case. This is illustrated in Figure 5.1.

Figure 5.1 $P[(X, Y) \in A=$ volume under density surface above A

Properties of joint pdf:

1. $f(x, y)$ is defined for every real x, y
2. $f(x, y) \geq 0$
3. The set $D=\left\{(x, y) \in R^{2}: f(x, y)>0\right\}$ is the set of all possible values of (X, Y)
4. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$

DEFINITION The marginal probability density functions of X and Y, denoted by $f_{X}(x)$ and $f_{Y}(y)$, respectively, are given by

$$
\begin{array}{ll}
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y & \text { for }-\infty<x<\infty \\
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x & \text { for }-\infty<y<\infty
\end{array}
$$

$f_{X}(x)$ is the pdf of $X, f_{Y}(y)$ is the pdf of Y.

DEFINITION Let X and Y be two continuous rv's with joint pdf $f(x, y)$ and marginal X pdf $f_{X}(x)$. Then for any X value x for which $f_{X}(x)>0$, the conditional probability density function of \boldsymbol{Y} given that $X=x$ is

$$
\left.f_{Y}\right|_{X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \quad-\infty<y<\infty
$$

If X and Y are discrete, replacing pdf's by pmf's in this definition gives the conditional probability mass function of Y when $X=x$.

Two random variables X and Y are said to be independent if for every pair of x and y values,

$$
p(x, y)=p_{X}(x) \cdot p_{Y}(y) \quad \text { when } X \text { and } Y \text { are discrete }
$$

or

$$
\begin{equation*}
f(x, y)=f_{X}(x) \cdot f_{Y}(y) \quad \text { when } X \text { and } Y \text { are continuous } \tag{5.1}
\end{equation*}
$$

If (5.1) is not satisfied for all (x, y), then X and Y are said to be dependent.

Example (example 5.5, p. 197) .
Let $\quad f(x, y)=\left\{\begin{array}{cl}24 x y & 0 \leq x \leq 1,0 \leq y \leq 1, x+y \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$

Figure 5.2 Region of positive density for Example 5.5

Figure 5.3 Computing $P[(X, Y) \in A]$ for Example 5.5

1. Find the probability $P(X+Y \leq 0.5)=P((X, Y) \in A)$

$$
\mathrm{P}(\mathrm{X}+\mathrm{Y} \leq 0.5)=P((X, Y) \in A)=\int_{A} \int f(x, y) d x d y=\int_{0}^{.5} \int_{0}^{.5-x} 24 x y d y d x=.0625
$$

2. Find the pdf of X

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\left\{\begin{array}{cc}
\int_{0}^{1-x} 24 x y d y=12 x(1-x)^{2} & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

3. Find the pdf of $Y f_{Y}(y)=12 y(1-y)^{2}, \quad 0 \leq y \leq 1$
4. Are X and Y independent? No, $f(x, y) \neq f_{X}(x) f_{Y}(y)$
5. Compute $\mathrm{P}(\mathrm{Y}>0.5 \mid \mathrm{X}=0.25)$.

$$
f_{Y \mid X}(y \mid 0.25)=\frac{f(0.25, y)}{f_{X}(0.25)}= \begin{cases}\frac{32}{9} y & \text { if } \\ 0 \leq y \leq .75 \\ 0 & \text { otherwise }\end{cases}
$$

Hence

$$
P(Y>0.5 \mid X=0.25)=\int_{0.5}^{\infty} f_{Y \mid X}(y \mid 0.25) d y=\int_{0.5}^{0.75} \frac{32}{9} y d y=\frac{5}{9}
$$

6. Compute $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=0.25)$

$$
E(Y \mid X=0.25)=\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid 0.25) d y=\int_{0}^{0.75} \frac{32}{9} y^{2} d y=\frac{1}{2}
$$

5.1 EXERCISES

A restaurant serves three fixed-price dinners costing \$12, $\$ 15$, and $\$ 20$. For a randomly selected couple dining at this restaurant, let $X=$ the cost of the man's dinner and $Y=$ the cost of the woman's dinner. The joint pmf of X and Y is given in the following table:

$p(x, y)$			y		
	12	15	20		
x	12	.05	.05	.10	
	15	.05	.10	.35	
	20	0	.20	.10	

a. Compute the marginal pmf's of X and Y.
b. What is the probability that the man's and the woman's dinner cost at most $\$ 15$ each?
c. Are X and Y independent? Justify your answer.
d. What is the expected total cost of the dinner for the two people?
12. Two components of a minicomputer have the following joint pdf for their useful lifetimes X and Y :

$$
f(x, y)=\left\{\begin{array}{cl}
x e^{-x(1+y)} & x \geq 0 \text { and } y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

a. What is the probability that the lifetime X of the first component exceeds 3 ?
b. What are the marginal pdf's of X and Y ? Are the two lifetimes independent? Explain.
c. What is the probability that the lifetime of at least one component exceeds 3 ?
e. Compute $P(X \geq 15 \mid Y=20)$
f. Determine the conditional pmf of Y, given that $X=15$.
g. Compute $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=15)$

ANSWERS:

a. Compute row and column sums on margins of the table
b. 0.25 , c.NO, d. 36.05 , e. $9 / 11$, f. ,1, .2, . 7

ANSWERS:

a. $f_{x}(x)=e^{-x}, x>0 ; f_{y}(y)=1 /(1+y)^{2}, y>0 ;$
b.NO
c. 0.2998

More than Two Random variables

DEFINITION
If $X_{1}, X_{2}, \ldots, X_{n}$ are all discrete random variables, the joint pmf of the variables is the function

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

If the variables are continuous, the joint pdf of X_{1}, \ldots, X_{n} is the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that for any n intervals $\left[a_{1}, b_{1}\right], \ldots,\left[a_{n}, b_{n}\right]$,

$$
P\left(a_{1} \leq X_{1} \leq b_{1}, \ldots, a_{n} \leq X_{n} \leq b_{n}\right)=\int_{a_{1}}^{b_{1}} \ldots \int_{a_{n}}^{b_{n}} f\left(x_{1}, \ldots, x_{n}\right) d x_{n} \ldots d x_{1}
$$

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be independent if for every subset $X_{i}, X_{i}, \ldots, X_{i}$ of the variables (each pair, each triple, and so on), the joint pmf or pdf of the subset is equal to the product of the marginal pmf's or pdf's.

