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What are discrete Painlevé Equations?

The common consensus (not a strict definition!) is that they are second order
(first degree) non-autonomous ordinary difference equations which are “integrable”
in some specific sense.

“difference” can have several meanings:

• finite-difference, in the sense of a recurrence relation, or as a dynamical map of
iterates, or as a birational transformation of algerbraic varieties;

• analytic difference, in the sense of a delay-type equation for functions of con-
tinuous variable, or even as a functional relation.

“Integrable” can also have several meanings:

• an algorithmic property that is believed to be the discrete analogue of the
Painlevé property, such as singularity confinement, limited growth criteria, cri-
teria in terms of algebraic entropy or Nevanlinna order, etc. ;

• structural properties, such as the existence of an isomonodromic deformation
problem (Lax pair), existence of Bäcklund-Schlesinger transformations;

• the existence of an exact solution scheme, such as inverse problem associ-
ated with the isomonodromic deformation scheme, or Riemann-Hilbert scheme,
and/or the connection with the resolution problem of singularities of the spaces
of initial values.



Origins of dPs:

Discrete Painlevé eqations; origins:

dPs have emerged from various approaches:

] semiclassical orthogonal polynomials (J A Shohat, 1936, G Freud, 1976);
] simplicial gravity and random matrix models (Bessis et al. , 1980, Fokas, Its&
Kitaev, 1991);
] similarity reduction on the lattice (FWN, V Papageorgiou, 1991);
] Bäcklund-Schlesinger transformations of continuous P eqs (Grammaticos, Ramani
& Fokas, 1991);
] Singularity confinement (V Papageorgiou et al.; Ramani, Grammaticos & Hietar-
inta, 1991);
] Affine Weyl groups (Noumi & Yamada, 1998);
] Algebraic geometry of rational surfaces (Sakai, 1999).

Most of the pre-1990 papers dealt with dPI, the first “new” example (dPII) came
independently from the similarity reduction (FWN, Papageorgiou), approach and
unitary matrix models (Perival & Shevitz).

Recently the Garnier systems revived in interest (K. Okamoto since the 1980s, B.
Dubrovin and M. Mazzocco more recently). The first discrete version of a higher
Garnier system, through similarity reduction, was presented on Islay (A. Walker &
FWN, 1999). Very recently H. Sakai constructed a q-deformation of the Garnier
system.



Some of the discrete Painlevé eqs. (dP’s):

dPI : xn+1 + xn + xn−1 =
ζn

xn
+ a

dPII : xn+1 + xn−1 =
ζnxn + a

1− x2
n

qPIII : xn+1xn−1 =
(xn + a)(xn + b)

(cqnxn + 1)(dqnxn + 1)

dPIV : (xn+1 + xn)(xn + xn−1) =
(x2

n − a2)(xn − b2)
(xn + ζn)2 − c2

qPV : (xn+1xn − 1)(xnxn−1 − 1) = ηnθn
(xn + a)(xn + a−1)(xn + b)(xn + b−1)

(xn + ηn)(xn + θn)

qPVI :
(xn+1xn − ηnηn+1)(xnxn−1 − ηnηn−1)

(xn+1xn − 1)(xnxn−1 − 1)
=

(xn − ηna)(xn − ηn/a)(xn − ηnb)(xn − ηn/b
(xn − c)(xn − 1/c)(xn − d)(xn − 1/d)

(where ζn = αn+ β, ηn = γqn, θn = δqn , α,β,γ,δ,a,b and c being constants).

[1] Shohat (1936); [2] Bessis (1979); [3] FWN & V. Papageorgiou, (1990); [4] Peri-
wal & Shevitz, (1990); [5] Ramani, Grammaticos & Hietarinta, (1991); [6] Gram-
maticos & Ramani, (1999).

Similar coalescence pattern as for continuous Painlevé eqs:

dPV I → dPV
↗ dPIII ↘

↘ dPIV ↗
dPII → dPI



”Asymmetric” discrete Painlevé equations:

asym− dPII :


xn+1 + xn = (an+ b)yn + c

1− y2
n

,

yn + yn−1 = (an+ b)xn + c
1− x2

n
,

asym− dPIII :


xn+1xn = (yn − qna)(yn − qnb)

(yn − c)(yn − d)
,

ynyn−1 = (xn − qnα)(xn − qnβ)
(xn − γ)(xn − δ)

,

with
αβ

γδ
= q

ab

cd
,

Alternative versions of dP’s:

alt− dPI :
n+ 1

xn+1 + xn
+

n

xn + xn−1
= n+ a+ bx2

n

alt− dPII :
n+ 1

xn+1xn + 1
+

n

xnxn−1 + 1
= n+ a+ b

(
xn −

1

xn

)
[6] Jimbo & Miwa (1982); [7] Fokas, Grammaticos, Ramani (1991); [8] Jimbo &
Sakai (1996).



Sakai’s Classification

H. Sakai (1999) achieved a classification of discrete as well as continuous Painlevé
equations based on the theory of rational surfaces, associating the singularity struc-
ture of the spaces of initial conditions with affine Weyl groups.

Key idea: singularity confinement can be recognised as the mechanism of blowing-
up/blowing-down of singularities.

In the most generic case he found an elliptic discrete Painlevé equation (with W (E(1)
8 )-

symmetry). In projective coordinates this equation reads:

[X : Y : Z] 7→ [X̃ : Ỹ : Z̃] = P457 ◦ P789 ◦ P456 ◦ P123([X : Y : Z])

in which thee Pijk are quadratic maps involving an elliptic dependence on parameters
θi,θj,θk from a collection of 9 parameters θ1,. . . ,θ9, and where the action on the
parameters is according to shifts induced by the Weyl group element:

w3 ◦ w2 ◦ w4 ◦ w3 ◦ w1 ◦ w2 ◦ w5 ◦ w4 ◦ w3 ◦ w6 ◦ w5 ◦ w4 ◦ w8 ◦ w3 ◦ w2 ◦ w1 ◦ w7 ◦ w6 ◦ w5

◦w4 ◦ w3 ◦ w2 ◦ w0 ◦ w7 ◦ w6 ◦ w5 ◦ w4 ◦ w3 ◦ w8 ◦ w3 ◦ w4 ◦ w5 ◦ w6 ◦ w7 ◦ w0 ◦ w2 ◦ w3 ◦ w4

◦w5 ◦ w6 ◦ w7 ◦ w1 ◦ w2 ◦ w3 ◦ w8 ◦ w4 ◦ w5 ◦ w6 ◦ w3 ◦ w4 ◦ w5 ◦ w2 ◦ w1 ◦ w3 ◦ w4 ◦ w2 ◦ w3 ◦ w8

The construction results from the blowing-up/blowing-down of 9 points in general
position on a general cubic.

It was shown that most of the known discrete (and continuous) Painlevé equations
arise as degeneracies/coalescences of this equation.

A description of the ell-dP was given by M. Noumi and his group, in terms of a
complicated system of bilinear equations, and special solutions have been found by
K. Kajiwara et al. in terms of modular hypergeometric functions.



Singularity Confinement of O∆E’s

Consider discrete PI:

xn+1 + xn + xn−1 =
an

xn
+ bn

and try to specify an, bn s.t. singularities do not persist.

Consider initial data, s.t. xn = 0. Then a singularities will occur according to the
following pattern:

d d d d d d��XX ��XX ��XX ��XX ��XX

xn−1 xn xn+1 xn+2 xn+3 xn+4

f 0 ∞ ∞ 0 ?

Iteration scheme taking xn−1 = f , xn = ε as initial data:

xn+1 =
an

ε
+ bn − f − ε

xn+2 = −
an

ε
+ bn+1 − bn + f +

an+1

an
ε+ O(ε2)

xn+3 = bn+2 − bn+1 +

(
1−

an+1

an
−
an+2

an

)
ε+ O(ε2)

xn+4 =
an+3

xn+3
+
an

ε
+ bn+3 − bn+2 + bn − f + O(ε)

The only way to cancel the singular term (as ε→∞) is by imposing:

bn+2 = bn+1 , an+3−an+2−an+1+an = 0 ⇒ bn = β = const., an = αn+γ(−1)n .



The singularity confinement criterium has been proven very powerful in finding
new non-autonomous ”integrable” O∆E’s (i.e. discrete Painlevé equations), by
de-autonomising known integrable autonomous mappings (in the QRT family).
(B. Grammaticos, A. Ramani and J. Hietarinta, 1991).

A starting point has been the QRT(R. Quispel, J. Roberts, C. Thompson) family of
mappings of plane:

x̃ =
f1(y)− f2(y)x
f2(y)− f3(y)x

, ỹ =
g1(x̃)− g2(x̃)y
g2(x̃)− g3(x̃)y

in which f1, f2, f3, g1, g2, g3 fourth-order polynomials.

The QRT mapping leaves invariant a parameter-family of biquadratic curves (in
general position) foliating the plane:

(α0 +Kα1)x
2y2 + (β0 +Kβ1)x

2y+ (γ0 +Kγ1)x
2 + (δ0 +Kδ1)xy

2 + (ε0 +Kε1)xy
+(ζ0 +Kζ1)x+ (κ0 +Kκ1)y

2 + (λ0 +Kλ1)y+ (µ0 +Kµ1) = 0

Furthermore, this mapping is measure-preserving

In particular in the case of a symmetric biquadratic:

x̃ =
f1(x)− x˜ f2(x)
f2(x)− x˜ f3(x) ,



What are Garnier systems?

We could consider them as higher order analogues of the Painlevé VI equation.

Painlevé VI

R. Fuchs (1905): isomonodromic deformation of the linear differential equation:

d2y

dx2
= p(x)y , p(x) =

a

x2
+

b

(x− 1)2
+

c

(x− t)2
+
α

x
+

β

x− 1
+

γ

x− t
+

3

4(x− λ)2
+

ε

x− λ
with regular singularities at 0,1, t,∞ and apparent singularity at λ, (α+β+γ+ε = 0).
t is assumed a moving singularity.

Fuchs investigated the conditions on λ = λ(t) such that the monodromy of the
differential eqn. is preserved ⇒ yt = Ay+Byx ,

coefficients A, B follow from the consistency of the overdetermined linear system
(Lax pair).

This leads to the following nonlinear ODE for λ (Painlevé VI):

d2λ

dt2
=

1

2

(
1

λ
+

1

λ− 1
+

1

λ− t

)(
dλ

dt

)2

−
(

1

t
+

1

t− 1
+

1

λ− t

)
dλ

dt

+2
λ(λ− 1)(λ− t)

t2(t− 1)2

[
κ− (a+

1

4
)
t

λ2
+ (b+

1

4
)

t− 1

(λ− 1)2
− c

t(t− 1)

(λ− t)2

]
Remark: One year later (1906) this equation was incorporated by M. Gambier in
the famous list of the six Painlevé transcendental equations. The equation possesses
the celebrated Painlevé property, i.e. the general solution is meromorphic (solution
single-valued around all “moving” singularities, as a consequence of initial values).



(Isomonodromic) Garnier systems

R. Garnier (1912) generalised the derivation by R. Fuchs by extending the number
of singularities. Thus, he investigated the isomonodromic deformation of the linear
differential equation:

d2y

dx2
= p(x)y ,

p(x) =
n∑
l=1

[
cl

(x− tl)2
+

αl

x(x− 1)(x− tl)

]
+
cn+1

x2
+

cn+2

(x− 1)2
+

cn+3

x(x− 1)

+
n∑

j=1

[
3

4(x− λj)2
+

βj

x(x− 1)(x− λj)

]
.

There are n+3 regular singularities, namely at 0,1,∞ and ti, (i = 1, . . . , n), and there
are “apparent” singularities at the λj, (j = 1, . . . , n). Considering the ti as moving
singularities by supplementing with a set of deformation equation:

∂y

∂ti
= Aiy+Bi

∂y

∂x
, (i = 1, . . . , n) ,

Garnier derives the following overdetermined system of differential equations:



Garnier system:

ϕ′(ti)(ti − λj)
ψ(ti)

∂λj

∂ti
−
ϕ′(tk)(tk − λj)

ψ(tk)

∂λj

∂tk
=

ti − tk
(λj − ti)(λj − tk)

ϕ(λj)

ψ′(λj)
,

∂2λj

∂t2i
=

1

2

(
ϕ′(λj)

ϕ(λj)
−
ψ′′(λj)

2ψ′(λj)

)(
∂λj

∂ti

)2

−
(
ϕ′′(ti)

2ϕ′(ti)
−
ψ′(ti)

ψ(ti)

)
∂λj

∂ti

+
1

2

n∑
l=1

l 6=j

ϕ(λj)ψ′(λl)(λl − ti)2

ϕ(λl)ψ′(λj)(λj − ti)2(λj − λl)

(
∂λl

∂ti

)2

−
n∑
l=1

l 6=j

λj − ti
(λl − ti)(λl − λj)

∂λj

∂ti

∂λl

∂ti
+ 2

ψ2(ti)

ϕ′2(ti)(λj − ti)2

ϕ(λj)

ψ′(λj)

×

n+3∑
k=1

(
ck +

3

4

)
− 2 +

n+2∑
k=1

k 6=i

ϕ′(tk)

ψ(tk)

ck + 1
4

λj − tk
+
ϕ′(ti)

ψ(ti)

ci

λj − ti

 ,

in which

ϕ(x) ≡ x(x− 1)
n∏
l=1

(x− tl) , ψ(x) ≡
n∏

j=1

(x− λj) .



Lagrange structure

The system of Garnier ODEs for any chosen independent variable ti (fixing i) has a
natural Lagrange structure:

Li =
1

2

n∑
j=1

(λj − ti)
ϕ′(ti)ψ′(λj)

ϕ(λj)ψ(ti)

(
∂λj

∂ti

)2

+

+2

(n+3∑
l=1

(
cl +

3

4

)
− 2

)
ψ(ti)

ϕ′(ti)
−

n∑
j=1

n+2∑
l=1

l 6=i

(
cl +

1

4

)
ϕ′(tl)ψ(ti)

ψ(tl)ϕ′(ti)(λj − ti)
−

n∑
j=1

ci

λj − ti

 ,

where we set tn+1 = 0, tn+2 = 1, tn+3 =∞, with the Euler Lagrange equations

δLi

δλj
= 0 with Li = Li(λ1, . . . , λn; λ̇1, . . . , λ̇n; ti) , with λ̇j = ∂λj/∂ti .

In the case n = 1, setting λ1 = λ, t1 = t, we have the Lagrangian

L(λ, λ̇, t) =
1

2

t(t− 1)

λ(λ− 1)(t− λ)
λ̇2 + 2

[
α

t− λ
t(t− 1)

−
β

(t− 1)λ
+

γ

t(λ− 1)
−

δ

λ− t

]
with the identifications: α = c1 + c2 + c3 + c4 +1, β = c2 +1/4, γ = c3 +1/4, δ = c1.
The PDE aspect of the Garnier system: the Lagrangian L obey the following closure
relation

∂Li

∂tj
=
∂Lj

∂ti
, ∀i, j = 1, . . . , n .

The Garnier system and its Hamiltonian structures were investigated by K. Okamoto(and
collaborators) in the 1980s.



Similarity reduction

M.J. Ablowitz and H. Segur discovered in 1976 that Painlevé transcendents arise from
symmetry reductions of integrable nonlinear evolution equations (soliton equations).

Example MKdV equation:

v̄t = v̄xxx − 6v̄2v̄x

MKdV is invariant under scaling:

x 7→ ρx , t 7→ ρ3t , v̄ 7→ ρ−1v̄

and scaling-invariant solutions can be ontained by setting

v̄(x, t) = t−1/3V (ξ) , ξ =
x

t1/3
(similarity variable).

Inserting this form for v̄ into the MKdV we obtain an ODE (Painlevé II):

V ′′+
1

3
ξV − 2V 3 = µ̄ , µ̄ integration constant.

Alternatively, we can consider the “potential” MKdV eq.:

vt = vxxx − 3
vxvxx

v
where v̄ = ∂x ln v , and impose on the equation a compatible constraint:

µv = xvx + 3tvt ⇒ v̄+ xv̄x + 3tv̄t = 0

which we call similarity constraint, and obtain PII in the form:

v̄xx = 2v̄3 −
x

3t
v̄+

µ

3t
,

without having to integrate.



Main examples of quadrilateral lattices to be considered here:

1. Lattice Modified Korteweg-de Vries (MKdV) equation:

p(vv̂ − ṽ̂̃v) = q(vṽ − v̂̂̃v)
where v is scalar;

2. Lattice Modified Boussinesq (MBSQ) system:

pv̂ − qṽ̂̃v =
pw̃ − qŵ

w
=
pṽŵ − qv̂w̃

v ̂̃w
which is a 2-component system in v, w.

Recall the notation:

v := vn,m , ṽ = vn+1,m

v̂ := vn,m+1 , ̂̃v = vn+1,m+1

Schematically:

x

x x

x- -

?

?

- -

?

?

v̂
̂̃v

ṽv

p

p

q q

Here p, q are lattice parameters

v
p→ ṽ

lattice shifts:
v

q→ v̂

Both systems obey the multidimensional consistency property explained in Part I.



Integrability of the lattice BSQ system

The MBSQ system can be rewritten as a coupled system:

pv̂ − qṽ̂̃v =
pw̃ − qŵ

w
=
pṽŵ − qv̂w̃

v ̂̃w ⇔
pṽw+ qv ̂̃ŵ̃vw̃ =

qv̂w+ pv ̂̃ŵ̃vŵ =
p2ṽ − q2v̂
pv̂ − qṽ

In terms of this system the compatibility is easily checked imposing on each vertex
initial data for both v and w.

xv, w

xv, w x ṽ, w̃

xv̂, ŵ

�
�

�
�

�

̂̃v = v
p2qvw̃+ q2rṽŵ+ r2pv̂w − q2pvŵ − r2qṽw − p2rv̂w̃
p2qṽŵ+ q2rv̂w+ r2pvw̃ − q2pv̂w̃ − r2qvŵ − p2rṽw

̂̃w = w
p2qv̂w+ q2rvw̃+ r2pṽŵ − q2pṽw − r2qv̂w̃ − p2rvŵ
p2qṽŵ+ q2rv̂w+ r2pvw̃ − q2pv̂w̃ − r2qvŵ − p2rṽw

which is independent of the way in which it was calculated.



Lax pair for the lattice MBSQ system

Derived in the same way as before (i.e. by exploiting the consistency of the system
on the multi-dimensional lattice), but now in terms of two variables. By writing the
equations in terms of a third ”virtual” direction

pv − kṽ
ṽ

=
pw̃ − kw

w
=
pṽw − kvw̃

vw̃

solving for ṽ and w̃ and setting:

v =
f

h
, w =

g

h

we obtain the Lax form:

φ̃ = Lφ =

 p 0 −kṽ
−kw̃/v pṽ/v 0

0 −k/w pw̃/w

φ

with φ = (f, g, h)T . Changing p→ q , ·̃ → ·̂ we get obviously the other part M of the
Lax pair.

Easy to verify that the compatibility

L̂M = M̃L ⇒ lattice MBSQ



Interplay Discrete ←→ Continuous

The lattice systems we consider here admit a role reversal:
lattice parameters p, q, . . . ↔ lattice variables n,m, . . .

D∆E: Differential-difference MKdV equation

−p
∂

∂p
ln v = n

ṽ − v˜
ṽ+ v˜ := na , −q

∂

∂q
ln v = m

v̂ − v̂
v̂+ v̂ := mb

Here shifts v → v˜ and v → v̂ are the reverse to the shifts v → ṽ and v → v̂ respectively.

The D∆Es can be simultaneously imposed on the same function:

v = vn,m,h,...(p, q, r, . . . )

i.e. it also obeys the lattice MKdV:

P∆E: Partial difference MKdV equation

p
(
vv̂ − ṽ̂̃v) = q

(
vṽ − v̂̂̃v)

Furthermore, we have in terms of the lattice parameters only a system of PDEs
given by:



PDE: ”Generating” PDE for the MKdV system:

∂s∂t ln v =
nm

4st(s− t)

[
t(1− a)(1 + b)Y − s(1 + a)(1− b)

1

Y

]
,

2st∂s∂t lnY = ns∂s

[
(1− Y )

2tY + (s− tY )(1 + a)

(t− s)Y

]
−mt∂t

[
(1− Y )

2s− (s− tY )(1 + b)

(t− s)Y

]
.

where t = p2, s = q2. This coupled system, constructed in [FWN, A. Hone & N.
Joshi,2000], constitutes a fourth order second degree PDE which encodes the entire
hierarchy of MKdV equations.

Thus, we have fully consistent system of equations comprising three types of equa-
tions, all compatible discrete as well as continuous.

P∆E ↔ D∆E ↔ PDE

The consistency not only among itself but also compatible with the lattice MKdV
equation:

∂

∂p

(
∂v

∂q

)
=

∂

∂q

(
∂v

∂p

)
,

˜(∂v
∂q

)
=
∂ṽ

∂q
,

˜(∂v
∂p

)
=
∂ṽ

∂p
, . . .



Continuous Lax system MKdV

Consistency-around-the-cube allows one to obtain the discrete Lax pair from the
lattice equation itself. From the D∆E in terms of lattice parameter we can achieve
the same for the continuous part: D∆E:

−p
∂

∂p
ln v = n

ṽ − v˜
ṽ+ v˜ ⇒ −p

∂

∂p
ln v = n

ṽ − v˜
ṽ+ v˜

by applying an auxiliary lattice shift v → v (associated with lattice parameter k) to
the equation. From the lattice equation (in terms of ˜ and ) we can solve:

ṽ = v
pv − kṽ
pṽ − kv

, v˜ = v
kv˜+ pv

pv˜+ kv

and inserting this into the above differential equation for v we get:

−p
∂

∂p
ln v = n

2pk(v2 − ṽv˜)− (p2 + k2)(ṽ − v˜)v(p2 − k2)(ṽ+ v˜)vwhich is a Riccati equation for v. Thus, inserting again v = f/g and splitting the
result into two linear equations we obtain:

p
∂

∂p

(
f
g

)
=

n

(p2 − k2)(ṽ+ v˜)
(

(p2 + k2)ṽ+ (p2 − k2)v˜ , 2pkṽv˜2pk , 2p2v˜
) (

f
g

)
If we write this relation as p∂pφ = Nφ , the D∆E follows from the consistency
condition

p
∂

∂p
L = ÑL− LN



Continuous Lax system MBSQ

For the MBSQ system we have the following system of compatible D∆Es:

p
∂

∂p
ln v = n

(
1−

3ṽw

Γ

)
, −p

∂

∂p
lnw = n

(
1−

3vw˜Γ
)
,

where Γ ≡ ṽw+ vw˜ + v˜w̃ , and similar for derivatives w.r.t q. Shifting in an auxiliary
direction (associated with spectral parameter k ) and using the relation:

Γ = (p3 − k3)
v ww

(pw̃ − kw)(k2vw+ p2vw˜ + kpv˜w)
Γ ,

we obtain two coupled Riccati equations for p∂pv and p∂pw which can then be
linearised substituting v = f/h , w = g/h . This leads to the following linear
equation:

p
∂

∂p

 f
g
h

 =

 p∂p ln v 0 0
0 p∂p lnw 0
0 0 0

+

+
3np

(p3 − k3)Γ

 p2ṽw k2ṽv˜ pkṽvw˜pkw̃w p2w̃v˜ k2w̃vw˜k2w pkv˜ p2vw˜
 f

g
h

 ,

A similar linear relation holds interchanging n and m and p and q and interchanging
the reverse lattice shifts.

The continuous part of the linear system allows one to derive the relevant monodromy
problems for the similarity reductions on the lattice.



Continuum limits on the lattice MKdV and lattice MBSQ:

MKdV :

∂ξ(vn+1vn) = p(v2
n+1 − v2

n)

p∂τ ln vN =
vN+1 − vN−1
vN+1 + vN−1

Vt = Vxxx − 2V 3
x

where V = ln v .

MBSQ :{
∂ξ(vn+1wn) = p(vn+1wn+1 − vnwn)
vn∂ξ(wnwn+1)− wnwn+1∂ξvn = p(vnw2

n+1 − w2
nvn+1) p∂τ ln vn =

vn−1wn+1 + vnwn−1 − 2vn+1wn
vn−1wn+1 + vnwn−1 + vn+1wn

p∂τ lnwn =
2wn−1vn − wnvn+1 − wn+1vn−1
vn−1wn+1 + vnwn−1 + vn+1wn{

Vyy + 1
3
Vxxxx − 2VxxVy − 2V 2

x Vxx = 0
Wyy + 1

3
Wxxxx + 2WxxWy − 2W 2

xWxx = 0

where V = ln v, W = lnw .



Lattice Modified BSQ:(
p2̂̃v − q2̂̂v
p̂̂v − q̂̃v

) ̂̂̃
v

v̂
−

(
p2˜̃v − q2̂̃v
p̂̃v − q˜̃v

) ̂̃̃
v

ṽ
= p

v
ṽ
−
̂̂̃
v̂̃̃̂
v

− q
v
v̂
−
̂̃̃
v̂̃̃̂
v


[FWN,H.W. Capel, V. Papageorgiou & G.R.W. Quispel,1992], which involves a con-
figuration on a 9-point stencil

f(v, v̂, ṽ, ˜̃v, ̂̃v, ̂̂v, ̂̃̃v, ̂̂̃v, ̂̃̃̂v; p, q) = 0

}̂̂v

}v̂

}v

}̂̂̃v

}̂̃v

}̃v

}̂̂˜̃v

}̂̃̃v

}̃̃v

So far, no classification result for such equations exist.



Continuum limits of the lattice MBSQ equation:

∂2
ξ ln(vn+1vnvn−1) =

=

(
v′2n+1

v2
n+1

−
v′2n−1

v2
n−1

+
v′n+1

vn+1

v′n
vn
−
v′n
vn

v′n−1

vn−1

)
+ 3p

(
v′n+1vn

v2
n+1

−
v′n−1

vn

)

+ p2

(
vn

vn−1
−
v2
n−1

v2
n

+
v2
n

v2
n+1

−
vn+1

vn

)
where v′n = ∂ξvn

∂τ

(
vn+1

vn−1

(p2v̇n − 2pvn)

(pv̇n + vn)

)
=
vn+1

vn+2

(
p
v̇n+1

vn+1
+ 1

)
−
vn−2

vn−1

(
p
v̇n−1

vn−1
+ 1

)
Potential MBSQ equation:

qtt +
1

3
qxxxx + 2qtqxx − 2q2xqxx = 0 .



Similarity reduction

As in the continuous case we would like to find the natural symmetries of the lattice
system and use them to obtain reductions on the solutions. This can be obtained
by finding the appropriate similarity constraints.

Definition [FWN,1996]: A symmetry of a given P∆E is a pair consisting of the
original lattice equation and an additional linear or nonlinear P∆E (called the symme-
try constraint) such that there exist localized configurations of lattice points carrying
initial data that allow a global solution of the system consisting of this pair of P∆E’s.

In the case of quadrilateral lattices this can be achieved by considering the pair of
equations associated with a 4-point and 5-point schemes:

In this case the constraints may be taken of the elementary form:

i.e. an equation corresponding to a configuration of vertices forming a cross. Thus
we are led to a coupled system:

u

u

u

u

v̂

v ṽ

̂̃v
& u u u

u

u
v˜ ṽv

v̂

v̂

f(v, ṽ, v̂, ̂̃v) = 0 & g(v, ṽ, v˜, v̂, v̂) = 0



The iteration scheme leading to global solutions on the lattice start from initial data

on localised configurations of vertices, typically of the form:

q qq q
However, in general the iteration scheme is nontrivial as there is the possibility of
multivalued determinations: after some initial steps the vertices can be calculated
via different routes, leading to potential inconsistencies.

This is indicated in the following diagram:

e ×

e ×

e

×

×u

u

u

u ⊗

×: points that are calculated with the lattice equation
◦: points that are calculated with the similarity constraint
⊗: points at which the evaluation can be multi-valued



Similarity reduction for the lattice MKdV system

function f : pvv̂+ qv̂̂̃v = qvṽ+ pṽ̂̃v
function g : n

ṽ − v˜
ṽ+ v˜ +m

v̂ − v̂
v̂+ v̂ = µ− λ(−1)n+m

Statement: the above similarity constraints are compatible with the corresponding
lattice equations in the sense explained above.

How to implement the similarity constraint and obtain an explicit reduction: P∆E
→ O∆E ?

Write the constraint as:

na+mb = µ− ν , ν ≡ λ(−1)n+m with : a ≡
ṽ − v˜
ṽ+ v˜ , b ≡

v̂ − v̂
v̂+ v̂

Backshift MKdV:

pv̂v+ qvṽ = qv̂ṽ̂+ pṽ̂ṽ
Adding this to MKdV above and rearranging we get:

(px+ q)b̃+ px = (pX − q)b+ pX

in terms of reduced variables x = v/̂̃v , X = ṽ/v̂ which are fractionally linearly
related: X = (px+ q)/(qx+ p).



Observing that a = (X − x˜)/(X + x˜) , we can combine the different relations to
derive the following closed-form difference equation for x in terms of the ˜ shift
only:

(n+ 1)(r+ x)(1 + rx)
x̃− x+ r(1− xx̃)
x̃+ x+ r(1 + xx̃)

− n(1− r2)x
x− x˜+ r(1− xx˜)
x+ x˜+ r(1 + xx˜) =

= µr(1 + 2rx+ x2) + λ(−1)n+m(r+ 2x+ rx2)−mr(1− x2) ,

in which r = q/p, m, µ and λ are parameters of the equation. This is a 4-parameter
discrete Painlevé (dP) equation. [FWN, A. Ramani, B. Grammaticos, Y. Ohta,
2001]



Connection with PVI

Using the D∆Es:

−p
∂

∂p
ln v = na = n

ṽ − v˜
ṽ+ v˜ , −q

∂

∂q
ln v = mb = m

v̂ − v̂
v̂+ v̂

and the previous relations for the shift b̃:

(px+ q)b̃+ px = (pX − q)b+ pX

we can derive also:

n
∂a

∂q
= m

∂b

∂p
=

mnpq

p2 − q2

[
(1− a)(1 + b)X − (1 + a)(1− b)

1

X

]
In addition we have:

µ+ ν + p
∂

∂p
logX = nâ+mb̃

+
(pX − q)(qX − p)

(q2 − p2)X
(mb− na) +

pq

q2 − p2
(n+m)

(
X −

1

X

)
Using the simil. constr. we can eliminate b from the 1st order differential system



leading to:

p(p2 − q2)2X(qX − p)(pX − q)
∂2X

∂p2
=

=
1

2
p(p2 − q2)2

[
pq(3X2 + 1)− 2(p2 + q2)X

](∂X
∂p

)2

+

+ (q2 − p2)
[
2p2X(pX − q)(qX − p) + (q2 − p2)2X2

] ∂X
∂p

+
1

2
q
[
(αX2 − β)(pX − q)2(qX − p)2

+(p2 − q2)X2
(
(γ − 1)(qX − p)2 − (δ − 1)(pX − q)2

)]
with the identifications:

α = (µ− ν +m− n)2 , β = (µ− ν −m+ n)2 ,

γ = (µ+ ν −m− n− 1)2 , δ = (µ+ ν +m+ n+ 1)2 ,

Writing the equation for X in terms of t = p2 (taking w.l.o.g. q = 1) and identifying
w(t) = pX(p) we get:

d2w

dt2
=

1

2

(
1

w
+

1

w − 1
+

1

w − t

)(
dw

dt

)2

−
(

1

t
+

1

t− 1
+

1

w − t

)
dw

dt

+
w(w − 1)(w − t)

8t2(t− 1)2

(
α− β

t

w2
+ γ

t− 1

(w − 1)2
− (δ − 4)

t(t− 1)

(w − t)2

)
with the previous identification of the parameters α,β,γ,δ. This is the famous Painlevé
VI equation, [R. Fuchs, 1905].



Beyond PVI: multi-dimensional similarity reduction

Embed the 2D lattice equation into 3-dimensional lattice, using CAC

p(vv̂ − ṽ̂̃v) = q(vṽ − v̂̂̃v)
q(vv − v̂v̂) = r(vv̂ − vv̂)
r(vṽ − vṽ) = p(vv − ṽṽ)

u

u

u

u
u

u
u

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

ũu˜

û

û
ū

u
¯

similarity constraint: g(ũ, u˜, û, û, ū, u¯) = 0

function g:

n
ṽ − v˜
ṽ+ v˜︸ ︷︷ ︸
≡ a

+m
v̂ − v̂
v̂+ v̂︸ ︷︷ ︸
≡ b

+l
v̄ − v

¯
v̄+ v

¯︸ ︷︷ ︸
≡ c

= µ− λ(−1)n+m+l .



Check of consistency between lattice equation and similarity constraint
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Explicit reduction to O∆E system

Introduce quantities:

x =
v̂̃v , y =

v˜̄v , X =
ṽ

v̂
, Y =

ṽ

v̄
.

Lattice MKdV ⇒:

X =
px+ q

qx+ p
, Y =

py+ r

ry+ p
,

and:

b̃ =
(pX − q)b+ p(X − x)

px+ q
, c̃ =

(pY − r)c+ p(Y − y)
py+ r

.

Furthermore, by the definitions:

a =
ṽ − v˜
ṽ+ v˜ =

X − x˜
X + x˜ =

Y − y˜Y + y˜ .

Using similarity constraint

na+mb+ lc = µ− ν , (n+ 1)ã+mb̃+ lc̃ = µ+ ν , ν = λ(−1)n+m+l ,

we obtain the system:(
(q2 − p2)X (pX − q)(qX − p)
m(r2 − p2)Y −m(pY − r)(rY − p)

)(
b̃
b

)
=

(
pq(X2 − 1)

∗

)
where ∗ = [µ+ ν − (n+ 1)ã]p(r − pY )− (µ− ν − na)(pY − r)(rY − p)− prl(Y 2 − 1) .



Eliminating b we get a fourth order system together with:

qXX˜ − p(X −X˜ )− q
qXX˜ + p(X −X˜ ) + q

=
rY Y˜ − p(Y − Y˜ )− r
rY Y˜ + p(Y − Y˜ ) + r

.

F (X,Y, X̃, Ỹ ) = 0 , G(X˜ , X, X̃, ˜̃X,Y, Ỹ ) = 0

with 6 parameters: m, l, q/p, r/p, µ, ν.

A corresponding differential system in terms of the lattice parameters (as independent
variables) was given in [FWN,A Walker, 2001].



The other route: similarity reduction of the lattice MBSQ

Similarity constraints:(
p
∂

∂p
+ q

∂

∂q

)
ln v = α1 + α2 + β1ω

−(n+m) + β2ω
−2(n+m)

−
(
p
∂

∂p
+ q

∂

∂q

)
lnw = α1ω

−1 + α2ω
−2 + β1ω

−(n+m+1) + β2ω
−2(n+m+1)

(where ω = exp(2πi/3)), in which we have to substitute:

p
∂

∂p
ln v = n

(
1−

3ṽw

ṽw+ vw˜ + v˜w̃
)

, −p
∂

∂p
lnw = n

(
1−

3vw˜
ṽw+ vw˜ + v˜w̃

)
q
∂

∂q
ln v = m

(
1−

3v̂w

v̂w+ vŵ + v̂ŵ
)

, −q
∂

∂q
lnw = m

(
1−

3vŵ
v̂w+ vŵ + v̂ŵ

)
The similarity constraints are slight generalisations of constraints found several years
ago [FWN,1996].

Statement: These similarity constraints are consistent with the lattice MBSQ sys-
tem in the sense explained earlier.

The aim now is to derive an explicit reduction to an O∆E in terms of one discrete
variable, say n, where the other discrete variable m becomes just a parameter.

Introduce the quantities:

X =
v̂

ṽ
, Y =

ŵ

w̃
, Ξ =

3v̂w

v̂w+ vŵ + v̂ŵ , Υ =
3vŵ

v̂w+ vŵ + v̂ŵ .



We can express

ξ ≡
3ṽw

ṽw+ vw˜ + v˜w̃ , η ≡
3vw˜

ṽw+ vw˜ + v˜w̃entirely in terms of X and Y , namely:

ξ = 3/

[
1 +

X

Y

(
rY˜ −X˜rX˜ − 1

)
+X

(
r − Y˜rX˜ − 1

)]
η = 3/

[
1 +

1

X

(
rX˜ − 1

r − Y˜
)

+
1

Y

(
rY˜ −X˜r − Y˜

)]
where r = p/q. Furthermore, it can be shown that the quantities Ξ and Υ obey the
shift relations:

Ξ =
X(r2Y − 1)Ξ̃

(rX − 1) (rY −X)
+
X(Υ̃− 3)

rY −X
, Υ =

Ξ̃

1− rX
+

rΥ̃

r − Y
.

Introducing from the similarity constraints the explicit n-dependent quantities:

ζ1 = n+m− α1 − α2 − β1ω
−(n+m) − β2ω

−2(n+m)

ζ2 = n+m− α1ω
−1 − α2ω

−2 − β1ω
−(n+m+1) − β2ω

−2(n+m+1) ,

we can use the similarity constraints:

nξ+mΞ = ζ1 , nη+mΥ = ζ2 ,

to derive a coupled system of two second order non-autonomous O∆Es for the
variables X and Y , namely ....



Discrete Garnier system:

ζ1 − nξ =
X(r2Y − 1)

(
ζ̃1 − (n+ 1)ξ̃

)
(rX − 1)(rY −X)

+
X
(
ζ̃2 − (n+ 1)η̃ − 3m

)
rY −X

ζ2 − nη =
ζ̃1 − (n+ 1)ξ̃

1− rX
+
r
(
ζ̃2 − (n+ 1)η̃

)
r − Y

Inserting the expressions for ξ and η we obtain a coupled system of two second order
O∆Es for X, Y with six free parameters: α1, α2, β1, β2, r, m.

Properties of the discrete Garnier system:

• The discrete Garnier system derives from a 3×3 matrix isomonodromic deformation
problem of the Schlesinger type, which can be recovered from the Lax representations
of both the continuous as discrete MBSQ systems.

• It is conjectured that this discrete system constitutes the superposition formulae for
the Bäcklund-Schlesinger transformations of some continuous Garnier/Schlesinger
system. In other words: it is expected to form a system of nonlinear contiguous
relations for that continuous Garnier system.

• There is a connected system of two coupled ODEs associated with the continuous
flows (either in terms of p or in q). We believe that these have a direct relation with
the first higher order Garnier system, and we interpret it as the next member in a
PVI hierarchy.



Generating PDE for the BSQ system

This is a coupled system [A. Tongas & FWN, 2005] :

(Û − Ũ)ts =

[
UsWts −WsUts

∆
(Û − Ũ)

]
t

−
[
UtWts −WtUts

∆
(Û − Ũ)

]
s

,

(V̂ − Ṽ )ts =

[
UsWts −WsUts

∆
(V̂ − Ṽ )

]
t

−
[
UtWts −WtUts

∆
(V̂ − Ṽ )

]
s

,

in which ∆ = WsUt −WtUs , and where we have to substitute the relations:

Û − Ũ =
nUs +mUt

∆
+
s− t
∆2

[2UsUtWts − (UsWt + UtWs)Uts] ,

V̂ − Ṽ =
nWs +mWt

∆
−
s− t
∆2

[2WsWtUts − (UsWt + UtWs)Wts] .

The resulting system can be derived as the Euler-Lagrange equations for the 2-field
system in terms of U = U(t, s), W = W (t, s) :

L[U,W ] =
t− s
∆2

(WsUts − UsWts)(WtUts − UtWts)

+
n

∆
(WsUts − UsWts) +

m

∆
(WtUts − UtWts) ,

in which ∆ = WsUt −WtUs , and where n = n(t),m = m(s) are functions of one of
the independent variables s, t only.



Remarks:

• L is invariant under SL(3,C) acting projectively on (U,W )

U 7−→
α1U + α2W + α3

γ1U + γ2W + γ3

W 7−→
β1U + β2W + β3

γ1U + γ2W + γ3

• The system of PDEs, for n = n(t). m = m(s) reduces to the Ernst-Maxwell-Weyl
(EMW) system of equations from General Relativity.

• The underlying compatible discrete system (lattice BSQ) gives rise to both an
auto- as well as hetero-BT for the EMW equations.

• Symmetry reduction, leading to solutions invariant along the orbits of the vector
field X = t∂t + s∂s + 2α1U∂U + 2α2W∂W leading to

U(t, s) = (ts)α1F1(τ) , W (t, s) = (ts)α2F2(τ) , τ = t/s ,

leads to the similarity solution giving rise, after two integrations, to the following
couples 2nd order system of ODEs, involving 6 free parameters (n,m,α1, α2, s1, s2):



α1 α2

α1 − α2
(G1 − G2)(Q1Q

′
2 −Q′1Q2) +

(
(τ − 1)G1 − (τ + 1)

)
Q′1

−
α1

2

τ

(
(τ − 1)(G1 − 1)2 − 4G1 +

τ

α1
(G1 − 1) +

2τ

α1

(n+m)

(τ − 1)

)
Q1

−
α1 α2

τ

(
(G2 − 1)2 −

4G2

τ − 1
−
α1(G1 − G2)2

α1 − α2

)
Q1Q2

= s1 −
α1

2

τ

(
(G1 − 1)2 −

4G1

τ − 1

)
Q1

2

(together with same equation with 1↔ 2), introducing new dependent variables:

Gi(τ) =
τ

αi

F ′i(τ)

Fi(τ)
, i = 1,2 ,

and making the substitutions:

Q1 =
m+ nτ

2α1(G1 − G2)
+

(m− nτ)G2

2α1(G1 − G2)
+

(τ − 1)α2G1G2(1− G2
2)

2α1(G1 − G2)2
−

(τ − 1)(α1 − α2)(G2
2 − 1)

2α1(G1 − G2)2
+

(τ − 1)G1
2(G2

2 − 1)

2(G1 − G2)2

+
τ(τ − 1)(G2

2 − 1)G′1
2α1(G1 − G2)2

−
τ(τ − 1)(G1G2 − 1)G′2

2α1(G1 − G2)2
,

(Q2 follows from Q1 by interchange 1↔ 2).



Conclusions:

[ The approach to obtain discrete Painlevé and Garnier type systems from reduc-
tion on the 2D lattice is useful to obtain the necessary information (isomonodromic
deformation problems).

The Painlevé reduction arises by staying within the 2D lattice, whereas the higher-
order systems arise from two different scenarios:
• Either start from a quadrilateral scalar equation (e.g. MKdV) and embed the
system in a higher-dimensional lattice, coupling the lattice equations through the
similarity constraint;
• Or start from higher-order/multicomponent system (e.g. ) and stay in the two-
dimensional lattice.

[ Both scenarios have given rise to coupled second order systems of O∆Es with 6
free parameters, believed to be higher-oredr versions of discrete PVI.

] It seems that various hierarchies exist of (discrete) PVI exist, which may coincide
at the N = 1 and N = 2 level, but that bifurcate for N > 2.

[ Multidimensional consistency of the original lattice equations is a key ingredient in
these constructions.

] It remains to be shown that proper continuum limits of these systems give rise to
the corresponding well-known Garnier systems, but in any event the reduction of the
corresponding generating PDEs lead similarly to coupled second-order systems with
6 free parameters, generalising PVI.



Other approaches to similarity reduction:

• reductions of q-KP, leading to q-Painlevé equations (M. Noumi et al., 2001);

• periodic reductions from non-autonomous versions of the lattice equations (B.
Grammaticos et al., 2004);

• construction of a q-deformation of the Garnier system by H. Sakai (2005).
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