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Outline:

I Integrability of Lattice Equations and Continuous counterparts: Special Solutions
(work with J. Atkinson, J. Hietarinta);

II Similarity Reduction to Discrete Painlevé Equations and Garnier Systems
(work with A. Tongas, A. Walker).



Some History:

Recent:

• M. Ablowitz & F. Ladik (1976): integrable difference scheme (motivated by
numerics)

• R. Hirota (1977): bilinear approach

• FWN, R. Quispel, H. Capel (1982): direct linearisation and connection with
Bäcklund transfs. and Bianchi permutability conditions.

• Since 1990: lots of activity, in particular:
SIDE (Symmetries and Integrability of Difference Equations), (1994-present)

Pre-history:

Padé approximants and convergence acceleration algorithms:
Wynn (1956,1966), Cordellier (1979)
Frobenius (1881), Padé (1892)

Differential Geometry: Bianchi (1899)



Motivation:
The theory of integrable nonlinear evolutions equations (soliton theory) has a perfect
parallel in the realm of discete systems and difference equations.

The resulting systems (P∆Es, O∆Es, dynamical mappings) not only share many of
the key integrability properties with the continuous systems, but they seem actually
much richer and reveal the true nature of integrable systems.

The Painlevé equations have emerged from the study of soliton systems as special
(similarity) solutions (M. Ablowitz & H. Segur, 1976; H. Flaschka and A. Newell,
1979; many others), and this connection has proved extremely fruitful in the devel-
opment of solution methods for those equations.

Thus, it seems natural to pursue similar connections in the case of difference ana-
logues of the Painlevé equations, and indeed one of the first sources of discrete
Painlevé equations has been the application of similarity reduction of integrable lat-
tice equations (FWN & V. Papageorgiou, 1991).

These lectures will be a review to this particular approach to find, and study, discrete
Painlevé equations, and in order to do this we need to apprehend first the key
integrability features of the integrable lattice equations.



Key integrability features of P∆E’s on the 2D lattice

The class of quadrilateral P∆Es has the following canonical form:

f(u, ũ, û, ̂̃u; p, q) = 0

where we adopt the canonical notation of verices along an elementary plaquette on
a rectangular lattice:

u := un,m , ũ = un+1,m

û := un,m+1 , ̂̃u = un+1,m+1

Schematically:
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û
̂̃u

ũu
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Here a, b are lattice parameters

u
p→ ũ

lattice shifts:
u

q→ û

Where f is linear in each of the 4 vertices.

Here p, q are parameters of the equation, related to the lattice spacing. The lattice
parameters allow us to take continuum limits.



Questions to be addressed:

1. What initial value problems (IVPs) on the lattice can be imposed?

2. What are the key aspects of integrability?

Clearly, if the equation f = 0 can be solved uniquely at each vertex of the plaquette
we can define initial value problems on configurations like:
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If the value of the dependent variable can be solved uniquely at each vertex of
the plaquette, we have the analogue of a hyperbolic PDE: only the initial values
contribute to a given vertex that are in the corresponding ”lightcone”

• It turns out that already the class of equations which are linear in each vertex is
considerably rich. The general form, linear in each vertex, and having D4 symmetry:

k0uûũ̂̃u− k1

(
uûũ + uû̂̃u + uũ̂̃u + ûũ̂̃u)+ k2

(
ûũ + û̃u)− k3

(
uũ + û̂̃u)

−k4

(
uû + ũ̂̃u)+ k5

(
u + ũ + û + ̂̃u)+ k6 = 0 .

Many integrable cases of this general form were studied in the past two decades, but
an integrable example of the generic case was only found by V.Adler in 1997.



Special Examples:

Lattice Korteweg-de Vries (KdV) equation:

(p− q + û− ũ)(p + q + u− ̂̃u) = p2 − q2

Lattice Modified KdV (MKdV) equation:

p(vv̂ − ṽ̂̃v) = q(vṽ − v̂̂̃v)
Lattice Schwarzian KdV (SKdV) equation:

(z − ẑ)(z̃ − ̂̃z)
(z − z̃)(ẑ − ̂̃z) =

p2

q2

The lattice parameters p, q allow us to take continuum limits.

Example # 1: Consider zn,m = zn(ξ0 + m/q) and expand in Taylor series around
ξ = ξ0 + m/q as follows:

ẑ = zn,m+1 = zn(ξ) +
1

q
z′n(ξ) + · · · , ̂̃z = zn+1,m+1 = zn+1(ξ) +

1

q
z′n+1(ξ) + · · ·

(where z′ = dz/dξ) we obtain the differential-difference equation:

z′nz′n+1 = p2(zn − zn+1)
2



Example # 2: A more subtle limit is obtained by first doing a change of variables on
the lattice:

zn,m = zn+m(τ0 + (p− q)m) = zN(τ)

keeping N = n + m fixed. The lattice SKdV quation is then rewritten as

(p− δ)2(zN(τ)− zN+1(τ + δ))(zN+1(τ)− zN+2)(τ + δ)

(zN(τ)− zN+1(τ))(zN+1(τ + δ)− zN+2(τ + δ))
= p2

where expanding in the variable δ = p− q as follows:

zN(τ + δ) = zN(τ) + δżN(τ) + · · ·
(where ż = dz/dτ) leads to the following differential-difference equation in leading
order:

żN =
2

p

(zN+1 − zN)(zN − zN−1)

zN+1 − zN−1

Next, we can perform a second continuum limit on the remaining discrete variable
(associated witht he remaing parameter p). This is even more subtle and requires
higher-order expansions in the variable 1/p. Omitting details we mention this gives
us eventually a PDE of the form:

zt = zxxx −
3

2

z2
xx

zx
= zx {z, x}

which is the ”Schwarzian KdV equation”. Invariance under Möbius transformations:

z 7→ Z =
αz + β

γz + δ



Similar continuum limits on the lattice KdV and lattice MKdV yield the following:

KdV :

∂ξ(un+1 + un) = p2 − (p + un − un+1)2

∂τuN = 2p
2p+uN−1−uN+1

− 1

ut = uxxx + 3u2
x

MKdV :

∂ξ(vn+1vn) = p(v2
n+1 − v2

n)

p∂τ log vN = vN+1−vN−1

vN+1+vN−1

vt = vxxx − 3vxvxx

v

”Miura” relations between the lattice equations:

p(z − z̃) = vṽ , q(z − ẑ) = vv̂

p− q + û− ũ =
pṽ − qv̂

v

p + q + u− ̂̃u =
pv + q̂̃v

ṽ



Higher order lattice systems: Boussinesq family
[ FWN, V Papageorgiou, H W Capel & G R W Quispel, 1992]

Lattice Schwarzian BSQ:

(
̂̃̃̂
z − ̂̂̃z)(̂̂z − ̂̃z)(ẑ − z)

(
̂̃̃̂
z − ̂̃̃z)(˜̃z − ̂̃z)(z̃ − z)

=
p3(
̂̂̃
z − ̂̂z)(̂̃z − ẑ)− q3(

̂̂̃
z − ̂̃z)(̂̂z − ẑ)

q3(
̂̃̃
z − ˜̃z)(̂̃z − z̃)− p3(

̂̃̃
z − ̂̃z)(˜̃z − z̃)

Lattice Modified BSQ:(
p2̂̃v − q2̂̂v
p̂̂v − q̂̃v

) ̂̂̃
v

v̂
−

(
p2˜̃v − q2̂̃v
p̂̃v − q˜̃v

) ̂̃̃
v

ṽ
= p

v

ṽ
−
̂̂̃
v̂̃̃̂
v

− q

v

v̂
−
̂̃̃
v̂̃̃̂
v


Lattice BSQ:

p3 − q3

p− q + ̂̃u− ˜̃u − p3 − q3

p− q + ̂̂u− ̂̃u = (p− q +
̂̂̃
u− ̂̃̃u)(2p + q + û−

̂̃̃̂
u)

−(p− q + û− ũ)(2p + q + u− ̂̃̃u)



Configuration of the lattice equations: 9-point stencil

f(u, û, ũ, ˜̃u, ̂̃u, ̂̂u,
̂̃̃
u,
̂̂̃
u,
̂̃̃̂
u; p, q) = 0

}̂̂u

}û

}u

}̂̂̃u

}̂̃u

}̃u

}̂̂˜̃u

}̂̃ũ

}̃ũ

So far, no classification result for such equations exist.



Key Integrability features of P∆Es # 1: Singularity Confinement

V. Papageorgiou, B. Grammaticos and A. Ramani, (1991): Observation that in
integrable cases singularities induced by initial data do not propagate.

Example: Lattice KdV equation

wn+1,m+1 − wn,m =
1

wn+1,m

−
1

wn,m+1

i.e. rational map under initial value problems on the lattice.

Question: How do initial data progress, when one hits a singularity?
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Calculating the various iteration precisely, starting from: 01 = ε (small) we find:

∞1 = b +
1

ε
−

1

a
, s = a +

1

∞1
−

1

f

∞2 = c−
1

ε
+

1

d
, t = d−

1

∞1
+

1

g

02 = ε +
1

∞2
−

1

∞1
= −ε +

(
b− c−

1

a
−

1

d

)
ε2 + . . .



Then in the next step we find finite values:

?1 = ∞1 +
1

02
−

1

s
= c +

1

d
−

1

a− 1/f
+ O(ε)

?2 = ∞2 −
1

02
+

1

t
= b−

1

a
+

1

d + 1/g
+ O(ε)

Remark: Note that if the lattice equation is deformed, e.g. by taking:

wn+1,m+1 − wn,m =
1

wn+1,m

−
λ

wn,m+1

wit λ 6= 1, this fine cancellation no longer happens, and singularities will again occur
at ?1 and ?2, and will persist throughout! In that case the singularities are no longer
confined to a finite number of iteration steps, and we conclude that the corresponding
map is not integrable any more.



Key integrability features # 2: Multidimensional consistency

Take the example of the lattice MKdV equation:

p(vv̂ − ṽ̂̃v) = q(vṽ − v̂̂̃v)
or written out in the long way:

p
(
vn,mvn,m+1 − vn+1,mvn+1,m+1

)
= q

(
vn,mvn+1,m − vn,m+1vn+1,m+1

)
Let us reconsider the role of the parameters p, q (the ”lattice parameter”). Normally,
they are considered to be fixed when solving the equation on the lattice. However,
there is more to it:

Statement: the P∆E represents a compatible parameter-family of partial difference
equations which can be embedded consistently in a multidimensional lattice on which
the evolution is well-posed.
[FWN, AJ Walker, Glasgow Math J 43A (2001) 109]

Meaning: to each value of the lattice parameters p, q we can associate a discrete
variable corresponding to a direction in a multidimensional lattice, s.t. the solution
u can be considered as a function on this multidimensional lattice;

v = vn,m,h,... = v(n, m, h, . . . ; p, q, r, . . . )

with

ṽ := vn+1,m,h , v̂ := vn,m+1,h , v := vn,m,h+1



Embedding the lattice SKdV equation in a three-dimensional lattice:

p(vv̂ − ṽ̂̃v) = q(vṽ − v̂̂̃v)
q(vv − v̂v̂) = r(vv̂ − vv̂)

r(vṽ − vṽ) = p(vv − ṽṽ)

These equations are consistent if the evaluations along the cube are independent of
the way of calculating the final point.

Given : v , ṽ , v̂ , v ⇒ ̂̃v , v̂ , ṽ ⇒ ̂̃v

zv

zv z ṽ

z ̂̃v
zv̂

jṽ
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In fact: ̂̃v =
(p2 − q2)rṽv̂ + (q2 − r2)pv̂v + (r2 − p2)qvṽ

(p2 − q2)rv + (q2 − r2)pṽ + (r2 − p2)qv̂



Lax pair for lattice MKdV

Lax pair: overdetermined linear system, the consistency condition of wich yields the
nonlinear equation under consideration.

Derivation of the Lax pair. Idea: exploit the consistency of the lattice equation on
the multidimensional lattice.

• Fix a ”virtual” direction on the 3D lattice, e.g. the direction associated with lattice
shift v → v and lattice parameter k. This leads to the equations:

p(vv − ṽṽ) = k(vṽ − vṽ)

q(vv − v̂v̂) = k(vv̂ − vv̂)

• Consider the shifted object v := V to be a new dependent variable of the two main
lattice variables n, m, and solve for the dynamics:

Ṽ =
(kṽ − pV )v

kV − pṽ
, V̂ =

(kv̂ − qV )v

kV − qv̂

in which ṽ and v̂ represent the ”physical” shifts on the lattice.

• Linearise these two fractional linear equations by the substitution V = f/g and
separate into linear system of eqs. for f and g:(

f̃
g̃

)
=

(
−p kṽ
k/v −pṽ/v

)(
f
g

)
,

(
f̂
ĝ

)
=

(
−q kv̂
k/v −qv̂/v

)(
f
g

)



where in each an arbitrary ”splitting” factor is chosen such that the determinants of
the 2×2 matrices are of the form ã/a, respectively â/a (up to a constant).

Thus, taking ϕ ≡ (f, g)T we obtain an overdetermined linear system (Lax pair) of
the form:

φ̃ = Lφ , φ̂ = Mφ ,

the compatibility of which arising from

(φ̃)̂ = (φ̂)̃ ⇒ L̂M = M̃L

leads back to the lattice MKdV in terms of the lattice directions given by the shifts
v 7→ ṽ , v 7→ v̂.

t t

t t

φ φ̃

φ̂
̂̃
φ

L

M̃M

L̂

Remark: The lattice parameter k plays the role of a spectral parameter. Note that
it is not present in the nonlinear system!

Lax pair ⇒ isospectral deformation problem

This can be used effectively to solve the IVPs for the nonlinear lattice equation under
appropriate boundary conditions.



Classification Result

V Adler, A Bobenko and Yu Suris (2002) considered recently the classification prob-
lem of quadrilateral lattices integrable in the sense of ”consistency around the cube”.

General form:

Q(u, ũ, û, ̂̃u;α, β) = 0

such that Q is linear in each vertex-variable u,ũ, û,̂̃u.

x

x x
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û ̂̃u

ũu

α

α

β β

Further restrictions:

Linearity: Q multilinear in each vertex.

Symmetry: Invariance of Q under the group D4 of symmetries of the square:

Q(u, ũ, û, ̂̃u;α, β) = 0 ⇔ Q(u, û, ũ, ̂̃u;β, α) = 0 ⇔ Q(ũ, u, ̂̃u, û;α, β) = 0

Tetrahedron Condition: Impose that the evaluation of the point on the 3-dim.

cube given by ̂̃u is actually independent of u.



Results:
The (exhaustive) list contains three classes of equations:

List Q:

1.

α(u− û)(ũ− ̂̃u)− β(u− ũ)(û− ̂̃u) = δ2αβ(β − α)

2.

α(u− û)(ũ− ̂̃u)− β(u− ũ)(û− ̂̃u)

+αβ(α− β)(u + ũ + û + ̂̃u) = αβ(α2 − αβ + β2)

3.

β(α2 − 1)(uũ + û̂̃u)− α(β2 − 1)(uû + ũ̂̃u)

−(α2 − β2)(ûũ + û̃u) = δ2(α2 − β2)(α2 − 1)(β2 − 1)/(4α/β)

4. Adler system:

A[(u− b)(û− b)− (a− b)(c− b)] [(ũ− b)(̂̃u− b)− (a− b)(c− b)] +

+B[(u− a)(û− a)− (b− a)(c− a)] [(û− a)(̂̃u− a)− (b− a)(c− a)] = ABC(a− b)

with lattice parameters (a, A) = (℘(α), ℘′(α)), (b, B) = (℘(β), ℘′(β)), (c, C) =
(℘(β − α), ℘′(β − α)) , on the Weierstrass elliptic curve

Γ = {(x, X)|X2 = 4x3 − g2x− g2 }



Other cases:

List H:

1.

(ũ− û)(u− ̂̃u) = α− β

2.

(ũ− û)(u− ̂̃u)− (α− β)(u + ũ + û + ̂̃u) = α2 − β2

3.

α(uũ + û̂̃u)− β(uû + ũ̂̃u) = δ(α2 − β2)

List A:

1.

α(u + û)(ũ + ̂̃u)− β(u + ũ)(û + ̂̃u) = δ2αβ(α− β)

2.

(α2 − β2)(uũû̂̃u + 1) = α(β2 − 1)(uû + ũ̂̃u)− β(α2 − 1)(uũ + û̂̃u)



Further Developments:

- Yang-Baxter mappings from quadrilateral lattice equations (V. Papageorgiou, A.
Tongas, A. Veselov, 2005): derivation of quadrirational maps of the type

R : (u, v) 7→ (x, y)

by special choices of variables on the lattice (YB Variables) such that the set-
theoretic YB equation holds:

R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12

This is intimately related to the CAC property of the quadrilateral lattices.

- Reductions to finite-dimensional mappings via initial value problems on the lattice
(V. Papageorgiou, FWN, R. Quispel, H. Capel, V. Enolskii);

- Symmetries and conservation laws (P. Hydon, D. Levi and P. Winternitz, R. Quis-
pel)

- Higher-dimensional lattices: lattice Kadomtsev-Petviashvili (KP): (E. Date, T.
Miwa & M. Jimbo, FWN et al. in 1980s; J. Nimmo & W. Schief, B. Konopelchenko,
and many others in 1990s);

- Difference geometry: discrete surface theory (A. Bobenko and U. Pinkall, A. Doliwa
and P. Santini et al. , W. Schief and B. Konopelchenko).

Similarity reduction on the lattice will be discussed in Lecture II.



Seed & Soliton Solutions (work with J. Atkinson & J. Hietarinta)

• In some of the cases of lattices of KdV and BSQ type an inverse scheme is known
leading in particular to soliton type solutions on the lattice. However, for many of
the new cases in the ABS list no solutions were so far constructed.

The cubic consistency of a given quadrilateral equation means that given one solu-
tion, u,

Qp,q(u, ũ, û, ˆ̃u) = 0 ,

the pair of ordinary difference equations for v

Qp,l(u, ũ, v, ṽ) = 0, Qq,l(u, û, v, v̂) = 0,

are compatible. Moreover, if v satisfies this system it is also a solution of the original
equation: We say that this forms an auto Bäcklund transformation (auto-BT). The
new solution v may depend not only on u but also on the Bäcklund parameter l and
on one integration constant.

Diagrammatically:

tv

tv̂ t ̂̃v = ˜̂v

t ũ

tû

tṽ

tu

t ̂̃u
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Main Example: Adler’s equation (Q4) in Jacobi form (Hietarinta, 2004)

Qp,q(u, ũ, û, ̂̃u) = p(uũ + û̂̃u)− q(uû + ũ̂̃u)− r(ũû + û̃u) + pqr(1 + uũû̂̃u)

parametrised in terms of Jacobi elliptic functions

p =
√

k sn(α; k) , q =
√

k sn(β; k) , r =
√

k sn(α− β; k) ,

P = sn′(α; k) , Q = sn′(β; k) , R = sn′(α− β; k) ,

i.e. p = (p, P ), q = (q, Q) and r = (r, R) lie on the Jacobi type elliptic curve:

Γ : X2 = x4 + 1−
(

k +
1

k

)
x2 ,

with modulus k. Note that in this case parameters are related through the group law
on the Jacobi type curve r = p ∗ q defined by:

r =
Qp− Pq

1− p2q2
=

p2 − q2

Qp + Pq
,

R =
p2 + q2 − r2(1 + p2q2)

2pq
=

[PQ + (k + k−1)pq](1 + p2q2)− 2pq(p2 + q2)

(1− p2q2)2
.

For Adler’s equation in Jacobi form we can identify the elementary solution

u =
√

k sn(ξ0 + nα + mβ; k),

where ξ0 is an arbitrary constant. This can be verified directly using standard Jacobi
elliptic function identities.

However, this solution does not generate a nontrivial BT chain. Thus, there is a
problem of finding appropriate seed solutions for the BTs!!



applying the auto-BT we obtain: two solutions which we label u and u, given by

u =
√

k sn(ξ0 + nα + mβ + λ; k), u =
√

k sn(ξ0 + nα + mβ − λ; k),

where λ is the uniformising variable associated with l, i.e. l = (l, L) = (
√

k sn(λ; k), sn′(λ; k))
which is a trivial extension of the original solution.

We call such a seed a non-germinating seed.

To obtain a germinating seed we proceed as follows: we search for stationary solu-
tions of the auto-BT obtained by solving the defining equations of the seed solution:

Qp,t(u, ũ, u, ũ) = 0, Qq,t(u, û, u, û) = 0

A solution of this system is a fixed point of the auto-BT, i.e. it is constant in the
lattice direction associated with the Bäcklund parameter which we label t = (t, T ) =
(
√

k sn(θ; k), sn′(θ; k)) .

Note: It is not obvious that the above system of eqs. is compatible, i.e. that such
fixed-points exist. The observation here is that for Adler’s equation such a solution
does indeed exist (for each given point t on the parameter curve, and provides us
with a germinating seed for the BT.

Remark: In fact this solution coincides with the non-germinating at the special value
of the parameter t = (0,1) which is unit of the Abelian group of the curve.



To find such solutions let us analyse the solution of the first equation: It turns out
that the resulting biquadratic is of the form

Qp,t(u, ũ, u, ũ) = tpr(u2ũ2 + 1)− t(u2 + ũ2) + 2(p− r)uũ = t Hpθ
(u, ũ) ,

by making the identifications

r =
pT − tP

1− p2t2
, pθ = (pθ, Pθ) , p2

θ = pr , Pθ =
p− r

t
.

with Hp defined by:

QQ
û̂̃u − Q

û
Q

ũ
= trHp with Hp(u, ũ) = p2(1 + u2ũ2)− (u2 + ũ2) + 2Puũ .

The remarkable obervation here is that the discriminant of the biquadratic Hpθ
fac-

torises as follows:

∆ = 4[(p− r)2u2 − t2(pru2 − 1)(pr − u2)] = 4t2pr

(
u4 + 1− 2

1− T

t2
u2

)
,

using the relation:

2prT = p2 + r2 − t2(1− p2r2) .

This suggests the introduction of a deformed curve, the seed curve, given by

Γθ : X2 = Rθ(x) ≡ x4 + 1− 2
1− T

t2
x2

where the label θ refers to the uniformising variable associated with the point t on
the original curve.

Furthermore, the deformed lattice parameter pθ lies on the deformed curve: pθ =
(pθ, Pθ) ∈ Γθ .



In fact, using the relation above, the new curve Γθ depends only on the chosen
point t on the curve, and not on the lattice parameter p associated with the shift
u 7→ ũ .

Thus, precisely a similar analysis holds for the solution of the companion equation
Qq,t(u, û, u, û) = 0 and it leads to the same deformed curve with deformed lattice
parameter qθ = (qθ, Qθ) defined by

q2
θ = qr′ , r′ =

qT − tQ

1− q2t2
and Qθ =

q − r′

t
.

In terms of Jacobi elliptic functions on the original curve with modulus k we have:

p = (p, P ) = (
√

k sn(α; k), sn′(α; k)) , q = (q, Q) = (
√

k sn(α; k), sn′(α; k)) ,

the θ-deformed curve carries a different modulus kθ as given by

kθ +
1

kθ

= 2
1− sn′(θ; k)

k sn2(θ; k)

where θ is the parameter of the point t = (
√

k sn(θ; k), sn′(θ; k)) . Thus, the deformed
lattice parameters pθ and qθ are parametrised by

pθ = (
√

kθ sn(αθ; kθ), sn
′(αθ; kθ)) , qθ = (

√
kθ sn(βθ; kθ), sn

′(βθ; kθ))

where αθ and βθ are to solved from:

kθ sn2(αθ; kθ) = k sn(α− θ; k)sn(α; k) ,

sn′(αθ; kθ) =
sn(α; k)− sn(α− θ; k)

sn(θ; k)
,

and similar equations for βθ, replacing α by β in the above formulae.



Now we turn to the actual solution of fixed point equations, leading to the germinat-
ing seed. In fact, By solving the biquadratic tHpθ

(u, ũ) = 0 , which leads to a simple
quadratic equation in terms of ũ, the solution of which will be denoted by uθ, since
the discriminant ∆ = 4t2p2

θRθ(uθ) leads naturally to define a point uθ = (uθ, Uθ) on
the deformed curve Γθ.

Thus, we obtain the seed map uθ 7→ ũθ (associated with the shift u 7→ ũ) which
leaves the curve Γθ invariant:

ũθ =
Pθuθ + pθUθ

1− p2
θu2

θ

, Ũθ =

(
PθUθ − (kθ + k−1

θ )pθuθ

)
(1 + p2

θu2
θ) + 2pθuθ(p2

θ + u2
θ)

(1− p2
θu2

θ)
2

,

Since this map is nothing but the (Abelian) group action on the deformed curve, it
is evident that a similar map uθûθ but now associated with the shift u 7→ û, with
lattice parameter q instead of p, commutes with the map above:

ûθ =
Qθuθ + qθUθ

1− q2
θ u2

θ

, Ûθ =

(
QθUθ − (kθ + k−1

θ )qθuθ

)
(1 + q2

θ u2
θ) + 2qθuθ(q2

θ + u2
θ)

(1− q2
θ u2

θ)
2

.

Since these map commute, they can be simultaneously solved and lead to the ger-
minating seed solution:

uθ =
√

kθ sn(ξθ; kθ) , with ξθ = ξθ,0 + nαθ + mβθ

in terms of the Jacobi sn function with modulus kθ,

The new solution can be used as starting point for application of Bäcklund transfor-
mations, will be used in section 3 to generate 1-soliton solutions for the Jacobi form
of Adler’s equation.



Group-theoretical Explanation:

The “Jacobi quadrilateral”

Qp,q,r(u, ũ, û, ̂̃u) = p(uũ + û̂̃u)− q(uû + ũ̂̃u)− r(ũû + û̃u) + pqr(1 + uũû̂̃u) .

in terms of which the Jacobi form of Adler’s system is defined, can also be consid-
ered as an object depending on three parameters (p, q, r) (so far unrelated), which
generates a canonical biquadratic through:

QQ
û̂̃u − Q

û
Q

ũ
= p2qr(1 + u2ũ2)− qr(u2 + ũ2) + (p2 − q2 − r2 + p2q2r2)uũ .

If p, q, r are related through the group law on the curve Γ (with modulus k) then as
a consequence of the identity

2qrP = p2(1 + q2r2)− q2 − r2 , ⇒ QQ
û̂ũ
− Q

û
Q

ũ
= qrHp

and can then be written as Hp(u, ũ) = γH(s, u, ũ) in terms of the canonical
triquadratic on the curve given by:

H(x, y, z) =
1√
k

(
1 + x2y2 + y2z2 + z2x2

)
−
√

k
(
x2 + y2 + z2 + x2y2z2

)
−2

(
k −

1

k

)
xyz ,

identifying

p2 =
1− ks2

k − s2
, P =

(k − 1/k)s

s2/
√

k −
√

k
, γ =

(√
k −

s2

√
k

)−1

,

which forms a rational realisation of the elliptic curve P 2 = R(p) in terms of a new
parameter s.



Note that for the triquadratic H we have the factorisation property:

H2
x − 2HHxx = 4R(y)R(z) , R(x) ≡ x4 + 1−

(
k +

1

k

)
x2 ,

whereas the condition Hp(u, ũ) = 0 implies that the map u 7→ ũ amounts to a shift
on this elliptic curve (Chasles correspondence). This translates into the condition
that H(p, q, r) = 0 is satisfied when p ∗ q ∗ r = s, with s = (1/

√
k,0) which is the map

of the unit of the curve in the realisation above.

The emergence of the seed solution and corresponding deformed parameters pθ, qθ

can be illustrated by the following commuting diagram:

��XX

CC��

��XX

CC��

QQ
ũ,̃v
− Q

ũ
Q

ṽQp,t(u, ũ, v, ṽ) = 0

projv 7→u

Hp(u, v) = 0

projv 7→u

Hpθ
(u, ũ) = 0

H2
ũ
− 2HH

ũ,̃u

Hp(u, u) = Rθ(u)

defining the correspondence between between the old parameters p, q and the de-
formed ones, which we indicate by the symbol δθ(p, pθ) .



One-Soliton Solution

We will illustrate that the canonical seed solution uθ germinates –by applying the
BT to it and thus obtaining the one-soliton solution of Adler’s equation.

We need to solve the set of simultaneous O∆Es in v:

Qp,l(uθ, ũθ, v, ṽ) = 0, Qq,l(uθ, ûθ, v, v̂) = 0,

which define the BT uθ 7→ v with Bäcklund parameter l, where

uθ(n, m) =
√

kθ sn(ξθ(n, m); kθ) , ξθ(n, m) = ξθ,0 + nαθ + mβθ .

This seed solution can be covariantly extended in the lattice direction associated
with the parameter l = (l, L) = (

√
k sn(λ; k), sn′(λ; k)) , by letting the initial value ξθ,0

depend on the lattice variable (with lattice shift denoted by ) as:

ξθ = ξθ + λθ ⇒ uθ =
√

kθ sn(ξθ + λθ; kθ) ,

and where λθ is the deformed BT parameter, related to l by the same correspondence
δθ(l, lθ) as before.

Thus, we have the following set of equations satisfied by these BT-shifted seed
solutions:

Qp,l(uθ, ũθ, uθ, ũθ) = 0 , Qq,l(uθ, ûθ, uθ, ûθ) = 0 ,

Qp,l(uθ, ũθ, uθ, ũθ) = 0 , Qq,l(uθ, ûθ, uθ, ûθ) = 0 ,

which are in fact discrete Riccati equations of the form:

vṽ + aṽ + bv + c = 0

in terms of the third and fourth arguments in these quadrilaterals.



Lemma: If v1 and v2 are two given independent solutions of a Riccati equation of
the form above, i.e. vṽ + aṽ + bv + c = 0 , then the linear combination

v =
v1 − ρv2

1− ρ

is a solution of the same equation, provided ρ obeys the following linear homogeneous
first order difference equation;

ρ̃ = −
v2ṽ1 + aṽ1 + bv2 + c

v1ṽ2 + aṽ2 + bv1 + c
ρ .

We will use for the Riccati equations coming from the quadrilaterals, which are of
the form above by identifying:

a = −
ru + lũ

p(1 + rluũ)
, b = −

rũ + lu

p(1 + rluũ)
, c =

rl + uũ

1 + rluũ
,

with r = (pL− lP )/(1− p2l2) , and u = uθ, taking v1 = uθ and v2 = uθ.

Because the auto-BT share their particular solutions, uθ and uθ, a similar substitution
holds for the equations in terms of the other lattice shift (associated with q), and
thus these substitutions reduce both equations simultaneously.

ρ̃ =

(
pθl − lθp

pθl + lθp

)(
1− lθpθuθũθ

1 + lθpθuθũθ

)
ρ, ρ̂ =

(
qθl − lθq

qθl + lθq

)(
1− lθqθuθûθ

1 + lθqθuθûθ

)
ρ,

We take the above linear equations as the defining equations for the plane-wave
factor ρ (i.e. a discrete elliptic analogue of the exponential function).



where we mildly abuse notation by introducing the modified parameters

pθ =
√

kθ sn(αθ + λθ; kθ), pθ =
√

kθ sn(αθ − λθ; kθ),

qθ =
√

kθ sn(βθ + λθ; kθ), qθ =
√

kθ sn(βθ − λθ; kθ)

(evn though pθ and qθ do not depend on lattice shifts).

The compatibility of the system for ρ can be verified directly, i.e. specifically ˜̂ρ = ̂̃ρ ,
and arises as a consequence of the following remarkable identity for the Jacobi sn
function: (

1−k2sn(λ)sn(α+λ)sn(ξ)sn(ξ+α)
1+k2sn(λ)sn(α−λ)sn(ξ)sn(ξ+α)

)(
1−k2sn(λ)sn(β+λ)sn(ξ+α)sn(ξ+α+β)
1+k2sn(λ)sn(β−λ)sn(ξ+α)sn(ξ+α+β)

)
=

=
(

1−k2sn(λ)sn(β+λ)sn(ξ)sn(ξ+β)
1+k2sn(λ)sn(β−λ)sn(ξ)sn(ξ+β)

)(
1−k2sn(λ)sn(α+λ)sn(ξ+β)sn(ξ+α+β)
1+k2sn(λ)sn(α−λ)sn(ξ+β)sn(ξ+α+β)

)
.

The one-soliton for the Jacobi form of Adler’s equation, which we denote v1, is thus
given by

v1 =
√

kθ

1−ρ
(sn(ξθ − λθ; kθ)− ρ sn(ξθ + λθ; kθ)) , ξθ = ξθ,0 + nαθ + mβθ

with ρ defined in terms of the earlier equations.

Once we have a seed and the 1-soliton solution, we can next use the permutability
condition of BTs (which is once again a version of the original quadrilateral lattice
equation) to obtain 2-soliton solutions, etc.



Compatible Continuous Systems

The Adler system allows in a similar way as before to take continuum limits.

Straight continuum limits: Limit that q → (0,1) , implying β → 0 Setting sn(β) =
ε → 0, we have q =

√
kε, û → u +

√
εux + . . . , we obtain

puxũx =
√

k Hp(u, ũ)

which is in the form of the Bäcklund transformation of Krichever-Novikov (KN)
equation in the form

ut = uxxx −
3

2ux

(
u2

xx − u4 − 1 +

(
k +

1

k

)
u2

)
Eliminating the derivative of the BT by composing it with a similar form with pa-
rameter q, quxûx =

√
k Hq(u, û) gives us an equation of the form

q2Hp(u, ũ)Hp(û, ̂̃u)− p2Hq(u, û)Hq(ũ, ̂̃u) = 0

which factors in the form Qp,q(u, ũ, û, ̂̃u)Qp,−q(u, ũ, û, ̂̃u) .

Skew continuum limit: Limit that q → p , implying that β → α. Setting β = α+ ε,
we have q ∼ p + ε

√
kP , Q ∼ P + ε

√
k p(p2 − k − 1/k), and r ∼ −ε

√
k. Taking the skew

limit

u → ũ + εũτ + . . .



we obtain:

puτ =
√

k

Pu(ũ + u˜) + p2 − u2 − ũ u˜(1− p2u2)

ũ− u˜
Full continuum limit: This is more involved and produces the KN equation in
leading order.

Note that the seed and soliton solutions can be easily extended to the continuum
limits, and this yields the first nontrivial explicit solutions of the KN equation!

Furthermore, the τ differential-difference flow is related to an equation given by R.
Yamilovseveral years ago. It provides a compatible flow with the original lattice
equation, which diagrammatically follows the following computation:

x x

x x

x x

xx

u ũ

û ̂̃u

˜̃u

̂̃u

u˜

û˜



Conclusions

We have shown that there is a rich class of lattice equations coming from fairly
simple assumptions (multilinearity, covariance, D4 symmetry, etc.) having as a key
integrability criterium the multidimensional consistency (CAC) property, which can
be algorithmically verified.

A full list (modulo some assumptions), resembling somewhat the Painlev́list of second
order transcendental ODEs, was obtained by Adler et al.including as top equation
Adler’s elliptic lattice. All aother equations in the list can be obtained by degeneration
(coalescence).

The CAC property not only leads to (isospectral) Lax pairs of these equations, but
also to an effective solution method as we have demonstrated
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