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In 1936 the family fled the troubles developing in Poland and moved to Paris. But 
the same troubles followed, and in 1939 the family left Paris for the town of Tulle, in 
a region Benoit later referred to as the Appalachia of France. In fact, Benoit credited 
the generosity of the people of Tulle for saving his life. Still, in 1943 Tulle became too 
dangerous and the family split up; Benoit and his brother Léon went to Lyon, where 
they survived many close calls. At the Lycée du Parc, Benoit discovered his gift for refor-
mulating and solving algebra problems by geometry. Even at this early stage, Benoit’s 
thinking was predominantly visual: shapes moved fluidly and effortlessly in his mind.

Benoit Mandelbrot was born in Warsaw, Poland, in 1924. 
His father was in the clothing trade but was also a well-
read and scholarly man, an admirer of Dutch philosopher 
Baruch Spinoza and German-American mathematician 
and electrical engineer Charles Steinmetz. Benoit’s mother 
graduated first in her class from the Imperial University of 
Warsaw Medical School, where she chose dentistry as a 
specialty because it was more compatible with raising a 
family. The environment provided by Benoit’s parents and 
extended family encouraged scholarship. Young Benoit 
was especially fond of maps and chess.

Benoit lived the first 12 years of his life at the culturally rich 
Warsaw street address of 14 Ulica Muranowska. A good 
indicator of the atmosphere there was the company at a 
dinner one night in June of 1930. Standing in the photo 
are Benoit’s Aunt Helena Loterman, her husband (who was Benoit’s tutor), and Benoit’s 
Uncle Leon, editor of a Warsaw newspaper. Seated, left to right, are Benoit’s Uncle Szolem 
Mandelbrojt, Benoit’s father, Arnaud Denjoy, Jacques Hadamard, Benoit’s Grandfather 
Szlomo, and Paul Montel. Mandelbrojt, Denjoy, Hadamard, and Montel were among the 
leaders of French mathematics in the early 20th century. Little wonder that the environ-
ment that this dinner typified would draw Benoit into a life of science.
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In 1944, the family reunited and returned to Paris. The only student in all of France that 
year to solve every problem on the university entrance exam, Benoit was admitted both 
to the École Normale Supérieure (ENS) and to the École Polytechnique. Following uncle 
Szolem’s advice, Benoit enrolled in the ENS, but after a day realized the influence of the 
mathematics collective Bourbaki1 was too strong there and the culture too foreign to his 
visual thinking, so he resigned his position and entered the Polytechnique. There Benoit’s 

teachers included Gaston Julia 
and Paul Lévy, both of whom 
introduced him to ideas that 
would be central to his later 
work.

On the advice of applied 
mathematician Roger Brard 
at the Polytechnique, Benoit 
went to Caltech in 1947 to 
study aerodynamics, and 
Richard Tolman’s statistical 
mechanics course there proved 
especially useful for Benoit’s 

later work. While at Caltech, Benoit met Carlton Gajdusek and Max Delbrück, both 
of whom later won Nobel Prizes in Physiology and Medicine. Gajdusek became and 
remained a close friend; he was one of the principal speakers at Benoit’s 70th birthday 
conference. When Benoit was at Caltech, Delbrück was developing molecular biology 
there, in part by gathering people to work in the field. Later, Benoit’s approach to 
creating fractal geometry was different: he had a crystalclear image of the broad strokes 
of fractals, and he did much of the early work alone. Had fractal geometry grown in the 
way Delbrück grew molecular biology, involving many people from the start, likely the 
field would be much different today. But better? Maybe not. Benoit’s early solitary work 
has left a strong imprint that still contributes greatly to the energy of the field. 

Benoit earned his Ph.D. in mathematical sciences from the University of Paris in 1952. 
His dissertation, Games of communication,2 was a study of Zipf ’s law of word frequencies 
and of statistical thermodynamics. Benoit’s work on word frequencies had begun by 
chance. A visit to his Uncle Szolem in 1951 ended as usual with Benoit’s request for 
something to read on the long Metro ride home. From his wastebasket, Szolem retrieved 
Joseph Walsh’s Scientific American review of George Zipf ’s book Human behavior and 

Figure 1: Interesting Dinner Guests.
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the principle of least effort. The review mentioned Zipf ’s law of word frequencies: For any 
sufficiently long text, denoted by ρ the rank of how often a word occurs in the text, and 
by P the probability of that word in the text. Then P ∝ 1/ρ, independently of language or 
the literary skills of the author. On the Metro ride, Benoit realized that as stated, Zipf ’s 
law could not be correct. His improvement was

P = F (ρ + V )-1/D

Here D is a dimension, the scaling exponent of the language’s lexicographic tree, and V 
is a model parameter. Because Zipf ’s law is independent of grammar, Benoit linked it to 
information theory and to statistical thermodynamics. This led him to interpret D as the 
temperature of discourse, a variable that may distinguish between the literary complexity 
of text or author.

After receiving his doctorate, Benoit worked at Philips Electronics, where his task was 
to provide theoretical background for engineers developing color television. In so doing, 
he applied spectral analysis techniques learned from Uncle Szolem and from turbulence 
studies at Caltech.

In 1953 Benoit took a postdoctoral position at MIT’s Research Laboratory in Electronics, 
an energetic environment he enjoyed, in part because of Noam Chomsky’s early work in 
linguistics. During 1953–54, Benoit worked at the Institute for Advanced Study as John 
von Neumann’s last postdoc. Benoit’s time there included an unusual, and instructive, 
evening. Invited by J. Robert Oppenheimer to give the first lecture in a series of general 
interest talks, Benoit panicked as luminaries from math and physics (but not, thank 
goodness, Albert Einstein) filled the room. Quickly discarding his planned presentation 
as far too simple for that audience, Benoit tried to construct a more technical lecture in 
real time, and failed rather miserably. After his talk, and a few polite questions by friends, 
Benoit was petrified when Otto Neugebauer announced that this was the worst lecture 
he had ever heard—that it made absolutely no sense at all. But then Oppenheimer gave a 
brief crystal-clear summary of Benoit’s main points and von Neumann added some more 
detail. Benoit and I discussed this event several times. I believe it was the beginning of his 
appreciation of pedagogical style.

Benoit returned to Paris in 1954 and assumed the rank of junior research professor at the 
Centre National de la Recherche Scientifique. There he deepened his understanding of 
probability theory by attending Paul Lévy’s minicourses, where he learned techniques 
that helped lay the foundations of some of his work on finance.
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In 1955, Benoit married Aliette Kagan. In addition to being the mother of their two sons, 
Laurent and Didier, Aliette was Benoit’s constant helper. She proofread his papers, spent 
many hours in Yale’s libraries tracking down often obscure references (some so old that 
they could not withstand the stress of being photocopied) for the scrupulously careful 
Benoit, accompanied him on travels, served as his sounding board on thorny issues of 
scientific politics, and was his constant source of encouragement during the many years  

he worked in isolation.  
In the memorial for Benoit 
at Yale, Ralph Gomory, 
Benoit’s director at IBM, 
characterized Benoit’s life as 
courageous; virtually ignored 
for many years, he dreamed 
of starting a Keplerian revo-
lution in science, of finding 
a new way to describe much 
of the world. Aliette’s unwav-
ering support contributed 
significantly to Benoit’s 
persistence and eventual  
realization of his dream.

After a postdoc at the University of Geneva, which included working with Jean Piaget 
for a short time, in 1957 Benoit began teaching as an assistant professor of mathematics 
at the University of Lille. This position turned out to be a less than perfect match. In 
his memoir The Fractalist,3 Benoit wrote: “Teaching—even in a university—is a hard 
profession. One had better start practicing much earlier than I did.”

So in 1958, Benoit left France for a summer job at the IBM Thomas J. Watson Research 
Center in Yorktown Heights, New York. This “summer job” continued for 35 years, 
though the path from 1958 to 1993 was far from direct and included many detours.

Before continuing, I must mention that although Benoit did not teach often, he had an 
immense interest in education. For one thing, with retired high-school math teacher  
Nial Neger and math and music teacher Harlan Brothers, Benoit and I ran a series of 
NSF funded summer workshops at Yale for high school and college teachers.

Figure 2: Benoit and some students after a lecture at MIT.
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But more telling are the picture above and this quotation, both from The Fractalist:4

Words from a charming young lady seemingly representing a group of 

college students who had packed a lecture I had just given: ‘We can’t 

believe that we could actually hear you discuss how part of our school-

work had first come to your mind. To shake your hand would be a strange 

experience…a big event.’ Of course, I was glad to shake that young lady’s 

hand. Uncanny forms of flattery! Each lifted me to seventh heaven! Truly 

and deeply, each marked a very sweet day! Let me put it more strongly: 

occasions like that make my life.

Early in his IBM career, Benoit worked with Jay Berger on the distribution of errors in 
telephone lines—an effort that was important to IBM for getting computers to talk with 
one another. Standard noise statistics did not fit the data, but Benoit’s ideas about scaling 
were effective and saved IBM from investing in an approach that could not succeed. 

But Benoit’s intellectual curiosity was free to cover a wide range of subjects. For example, 
with the programming skill of his IBM colleague Richard Voss, Benoit constructed 
artificial images of islands and coastlines. The components of fractal geometry were 
beginning to assemble themselves in Benoit’s mind. And a trip to Harvard to lecture on 
Pareto’s law of income distribution led to a surprise discovery that Benoit’s Pareto graph 
was very similar to the cotton-price graphs of his host, Hendrik Houthakker. This was 
the beginning of Benoit’s work on price variations.

In the 1950s and ’60s, the standard finance models were based on Louis Bachelier’s 1900 
thesis that sketched some of the mathematical foundations of Brownian motion, later 
rediscovered and elaborated by Einstein and Wiener. But without ad hoc fixes, financial 
data did not support two central properties of Brownian motion increments: statistical 
independence and normal distribution. Benoit’s first paper to present his alternate 
theory was “On the variation of certain speculative prices” (1963). Though he had not 
yet developed the language of fractals, Benoit already saw the main point: by erasing the 
time and price scales, the daily, monthly, and annual records look the same. Yet most of 
the financial world did not embrace Benoit’s work. Based on Lévy stability, it was too 
complicated; and besides, with enough epicycles, Brownian motion could be made to 
dance to any tune5. There was no perceived need for a model that included large jumps, 
a so-called long-tailed distribution, when with enough tinkering any large jump could be 
explained after the fact. It is telling that none of Benoit’s critics could predict large jumps 
before they happened. In Benoit’s view, some of these large jumps did not have external 
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causes one could identify: they were a consequence of the scaling distribution of the 
jumps. Mostly, the inertia of orthodoxy won out against Benoit’s models.

One of Benoit’s economics lectures reminded an audience member of the variability of 
river discharges. This led Benoit to Harold Hurst’s studies of the flooding of the Nile. 
Elaborating on Hurst’s work, Benoit, together with John Van Ness and James Wallis, 
developed a version of Brownian motion that included memory. This version was called 
fractional Brownian motion (fBm), not fractal Brownian motion, because the notion of 
fractal had not yet settled into place in his thinking. Fractional Brownian motion of 
index α, 0 < α < 1, is a random process X(t), continuous with probability 1, and having 
increments X (t + h) − X(t) normally distributed with mean 0 and variance h2α. From 
this, the expected value of the product of two increments

𝔼(X(t) − X(0))(X(t + h) − X(t)) = ((t + h)2α − t2α − h2α)/2

Then α = 1/2 recovers standard Brownian motion with independent increments. For  
α > 1/2, products of increments tend to have the same signs. The graph is smoother 
and this is persistent fBm. For α < 1/2, products of increments tend to have opposite 
signs. The graph is rougher and this is antipersistent fBm. Like Brownian motion, fBm is 
scaling, but independent increments are replaced by dependent increments.

After spending 1963–64 in the Harvard economics department, in 1964–65 Benoit 
moved to applied sciences at Harvard. His course, Topics in Applied Mathematics, 
covered Benoit’s work on hydrology and his collaboration with Berger on clustering of 
errors in telephone circuits.

Around this time, Benoit began developing a multifractal theory of turbulence. He saw 
Robert Stewart’s research on submarine data and turbulence as related to his work with 
Berger on error clustering. Back at IBM, he realized that Hausdorff dimension was not 
only the measure he sought of volatility in financial records but also of roughness in 
turbulence. The intermittence of turbulence led to multifractals, which Benoit used later 
in his theory of prices and in many other fields.

A well-received 1973 lecture at the Collége de France in Paris contributed to Benoit’s 
being made an IBM Fellow in 1974. The additional autonomy of this position gave 
Benoit time to work on his 1975 French book, Les objets fractals: Forme, hazard, et 
dimension, and the more extensive 1977 English version, Fractals: Form, chance, and 
dimension.
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In 1979–80 Benoit was back at Harvard, this time in 
the mathematics department. In the spring semester of 
1980 he taught his first—the first—fractal geometry 
course, which included the initial images of what we 
now call the Mandelbrot set. The first publication 
of the Mandelbrot set appeared in the proceedings 
of a 1979 New York Academy of Sciences conference 
on nonlinear dynamics. When Benoit repeated his 
New York Academy lecture at Harvard, the audience 
included David Mumford, who asked if these 

methods could be adapted to produce pictures of limit sets of Kleinian group actions. In 
fact, Benoit already had developed this algorithm, in some special cases. Mumford, S. J. 
Patterson, and David Wright began computer experiments on Kleinian limit sets. One 
of Mumford’s first illustrations is plate 178 of Benoit’s 1982 book The fractal geometry of 
nature. With Caroline Series, Mumford and Wright wrote a beautiful book, Indra’s Pearls: 
The vision of Felix Klein, on Kleinian limit sets.

Images of the Mandelbrot set are among the most familiar from 20th century mathe-
matics, and they are some of the very few mathematical images that made the jump to 
popular culture. This transition has not been without a few rough spots. For example, 
some programmers who did not understand the necessity of starting the quadratic iter-
ation with the critical point of ƒ(z)= z2 + c simply modified their programs to begin the 
iterations at some other points. The resulting shapes lacked the pleasing symmetry of 
the Mandelbrot set, leading Benoit to call them “Mandelbrot roadkill.” Despite these 
hiccups, the complex and surprising images of the Mandelbrot set, produced as they are 
by a short formula or a few lines of computer code, reinvigorated complex dynamics and 
brought mathematics into the homes of many high-school students and their families. 
The importance of this occurrence cannot be overstated.

Underneath these beautiful pictures lie very deep, and equally beautiful, mathematics. 
From work of Gaston Julia and Pierre Fatou, Benoit knew that quadratic Julia sets are 
either connected or totally disconnected. Parts of the Mandelbrot set looked like parts 
of Julia sets, so Benoit asked if the Mandelbrot set is connected. The answer, “Yes,” 
was proved by Adrien Douady and John Hubbard.6 The more closely one examines 
the Mandelbrot set boundary, the more filled in it appears. This observation and some 
calculations led Benoit to conjecture that the Mandelbrot set boundary has Hausdorff 
dimension 2, later proved by Mitsuhiro Shishikura.7 The central remaining conjecture, 

Images of the Mandelbrot 
set are among the most 
familiar from 20th century 
mathematics, and they are 
some of the very few math-
ematical images that made 
the jump to popular culture.
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posed by Douady and Hubbard, is that the Mandelbrot set is locally connected. Many 
other open questions, including the hyperbolicity conjecture and the topological equiv-
alence of the Mandelbrot set with the abstract Mandelbrot set of the Lavaurs algorithm, 
would be answered by a positive resolution of the local connectivity conjecture. Fields 
Medalists Jean-Christoph Yoccoz and Curtis McMullen have established local connec-
tivity at many points of the Mandelbrot set, but the full conjecture remains open. 

The first book on fractals, Benoit’s Fractals: Form, chance, and dimension—translated 
from the French Les objets fractals—was expanded in 1982 to The fractal geometry of 
nature (FGN). This book has had a tremendous influence on many, including the author 
of this biographical memoir. No standard mathematics or science text, or really any kind 
of text at all, this book is a meditation, frustrating to some expecting traditional expo-
sition but inspiring to those who approach it as a source of fascinating questions.

On page 243 of FGN we find Benoit’s conjecture about the dimension of the boundary 
of a planar “Brownian cluster”—constructed from a Brownian walk by arranging that 
it end at its starting point. Filling the region bounded by the cluster gave a shape that 
reminded Benoit of islands natural and artificial. Hard calculations and numerical exper-
iments on this boundary gave a dimension very close to 4/3; Benoit conjectured that the 
dimension of a Brownian cluster boundary is exactly 4/3. The 4/3 conjecture was proved 
by Gregory Lawler, Oded Schramm, and Wendelin Werner in 2000. For this work, 
Werner, the youngest of the three, was awarded the Fields Medal.

In 1982, Dann Passoja, a metallurgist, began discussions with Benoit about using 
fractal dimension to measure roughness. Other sensations already had their methods 
of quantification: heat and cold by temperature, loudness by sound amplitude, pitch 
by sound frequency, heaviness by weight, color by light frequency, brightness by light 
intensity, sour or sweet by pH. But roughness was not quantified. Root mean square 
deviation above the average height of a metal fracture was not reproducible. Experiments 
confirmed that dimension varies directly with perceived roughness—the rougher the 
surface, the higher its dimension—and dimension was reproducible under repetition  
of experiments. Published in Nature in 1984, the paper of Mandelbrot, Passoja, and 
Alvin Paullay8 introduced the idea of fractal dimension as a measure of roughness, a 
theme Benoit continued to develop throughout his career. Indeed, much of his earlier 
work had involved just this notion, though it was not emphasized then. In his memoir  
The Fractalist,9 Benoit wrote, “I realized that something I had long been stating in  
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footnotes should be put on the marquee. I had engaged myself, without realizing it,  
in undertaking a theory of roughness.”

Because it figures so centrally in much of Benoit’s work, here we take a moment 
to explore the notion of dimension. At first glance, the variety of concepts called 
“dimension” can be quite bewildering. Topological dimension, boxcounting dimension, 
Hausdorff dimension, packing dimension, not to mention familiar spatial dimension, 
and more. Good references for careful definitions and relations among these dimen-
sions can be found in the books of Kenneth 
Falconer.10 The simplest definition of 
dimension is that of a self-similar set  
A = A1 ∪· · · ∪ AN , where each Ai = Ti(A) for 
some similarity transformation Ti. If all these 
transformations have the same scaling factor r, 
and provided the Ti(A) and Tj (A) don’t overlap 
too much,11 the Hausdorff dimension d of the 
fractal A is

If different scaling factors ri occur for the simi-
larity transformations Ti, and again the overlap 
is not too severe, then the Hausdorff dimension 
is the solution of the Moran equation,12

The Moran equation can be extended to many other kinds of fractals, including those for 
which only some compositions of the Ti are allowed,13 or the scaling factors are chosen 
randomly,14 or with nonlinear transformations, provided the derivatives of the transfor-
mations are bounded above and below.15

One direction in which it appears that the Moran equation cannot be generalized is self-
affine fractals,16 where different scalings occur in different directions. Some special cases 

Figure 3. Benoit Lecturing at Harvard.

d =
log N( )
log 1/ r( )

r1
d +!rN

d =1
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are known: Cartesian products of Cantor sets 
of different dimensions; the path of Brownian 
motion; and cases worked out by McMullen, 
Falconer, Gatzouras, and Lalley,17 among 
others.

Fractal dimension is not the whole story. Both 
Sierpinski carpets of Figure 4 are composed of 
N = 40 copies scaled by r = 1/7, so both have 
dimension log(40)/ log(7). However, their 
pieces are differently arranged; the gaps, or 

lacunae, are placed more uniformly on the left, more clumped on the right. To quantify 
this difference, Benoit introduced lacunarity,18 based on the approach of Minkowski and 
Bouligand for computing box-counting dimension d. For a set A ⊂ ℝn, Aε is the ε-thick-
ening of A and vol(Aε) the n-dimensional volume of Aε. Minkowski and Bolligand 
showed that as ε ¦ 0, vol(Aε) scales as Λ(ε)εn−d. The lacunarity is related to the recip-
rocal of the prefactor Λ(ε), though not in a simple way, for as ε ¦ 0, the limsup and 
liminf of 1/Λ(ε) differ for both carpets. One approach is logarithmic averaging, which 
gives the left fractal the lower lacunarity, as expected. Others19 have explored this notion, 
but more work remains to be done.

Many, including Benoit, viewed the main strength of fractals to be their applicability to 
the natural sciences. Because Hausdorff dimension is constructed from a measure, calcu-
lating it for experimental data is not straightforward. In these situations, the shape whose 
dimension we wish to compute is covered with boxes of side length ε1>ε2 >. . .> εN . For 
each i we count N (εi), the minimum number of these boxes needed to cover the shape. 
The scaling hypothesis is that N (εi) ∝ (1/εi)

d. We test the scaling hypothesis by plotting 
the points log(1/ε i), log(N (ε i)). If the points lie close to a straight line, this occurrence 
not only supports the scaling hypothesis but also, with some care, the slope of the line 
estimates a dimension, called the box-counting dimension. This is the measure of the 
roughness of coastlines and surfaces; our pulmonary, circulatory, and nervous systems; 
and clouds, lightning, and all of messy nature that is about equally rough no matter 
where we look. Also, the dimension d in the Minkowski-Bouligand approach is the 
box-counting dimension.

If the roughness of a fractal varies with position, a single dimension does not suffice. For 
this situation, Benoit introduced multifractals.20 Multifractals characterize not a shape 

Figure 4. Sierpinski carpets of the same 
dimension, different lacunarities.
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but a measure, μ, supported on the shape. The coarse Hölder exponent of a side length ε 
box intersecting the support of the measure is α = log(μ(box))/log(ε). For given α and ε,

 
where Nε (α) is the number of side length ε boxes having coarse Hölder exponent α. As 
ε ¦ 0, we obtain the f (α) curve, a plot of how the dimension of the iso-α strata of the 
measure varies with α. Computing the f (α) curve from experimental data is challenging, 
but several efficient schemes, including a promising approach using wavelets,21 have 
been developed. Multifractals contribute to our understanding of fluid turbulence, the 
distribution of natural resources and of data traffic on the web, the intervals between our 
heartbeats, and so much more.22 For the study of nonhomogeneous roughness, multi-
fractals are a more nuanced tool than dimension.

Another application of multifractals, of great interest to Benoit but still at an early stage 
of development to this day, is the notion of negative dimension.23 The basic idea is 
simple, a consequence of the formula for the dimension of intersections of sets. For sets 
A and B lying in ℝn , typical placements of A and B have d(A ∩ B) = d(A) + d(B) − n, 
with the usual understanding that a negative result signals disjointness of A and B. Intu-
ition can suggest that a more negative result indicates more room for the sets to miss one 
another. Some experiments24 on one-dimensional sections through turbulent fluid flow 
have given negative dimensions. This project was much on Benoit’s mind at the end of 
his career; he hoped someone would take it up.

In 1987 Benoit began his long association with Yale, half-time because of his continuing 
ties to IBM, first as Abraham Robinson Adjunct Professor of Mathematical Sciences 
and then, from 1999, as Sterling Professor of Mathematical Sciences, Yale’s highest 
academic rank. In 2004 he became Sterling Professor Emeritus. Throughout his time at 
Yale, Benoit maintained his association with IBM, so he and Aliette continued to live in 
Scarsdale, NY. Usually they were at Yale two days a week—days filled by meetings with 
visitors, other Yale faculty, and students. Often, early in the fall semester as freshmen 
walked down the hall past my office, I’d hear a gasp when they passed Benoit’s door, 
followed by some variation of, “What? Mandelbrot works here?” Benoit’s public lectures 
were packed. Once a semester he gave guest lectures in my fractal geometry class, 
doubling the class enrollment for that one day. 

f ε(α)=
log(N ε(α))
log(1/ ε)
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One of our long-term projects at Yale was the teacher-training summer workshop 
program, originally intended as a vehicle for providing teachers with resources for 
designing their own courses, or course modules, on fractal geometry. These workshops 
evolved into curriculum-development sessions in which we found ways to use parts of 
fractal geometry to motivate topics already in the curriculum. The geometry of plane 
transformations excites few students, but finding the transformations to construct a given 
fractal is an addictive game. Why do we need logarithms? Fractal dimension. Complex 
numbers? The Mandelbrot set.

Benoit spent a day of each workshop with the teachers. When he entered, the room fell 
silent. Maybe they hadn’t really believed Nial Neger and me when we said Mandelbrot 
himself would be there that day. From the teachers’ perspective, here was the world’s 
most famous living mathematician in the room with them. Talking with them. Yet 
Benoit preferred discussions to lectures, even though some of his answers to questions 
took a path through many nested footnotes. So to put the teachers at ease, Benoit began 
with a humorous comment. “Sometimes mathematicians ask me what is the hardest 
theorem I’ve proved. Please don’t ask me that. I prove only simple theorems.” Pause…
did he really say that? “But I reserve the right to ask very hard questions.” Laughter and 
energetic discussions followed. These were wonderful experiences for all, and especially 
for me, watching how easily, how naturally, Benoit interacted with the teachers.

For a long time, Benoit was interested in financial data patterns. His contributions 
included fat tails,25 scaling,26 long-term dependence,27 the existence of financial bubbles,28 
the notion of trading time,29 and applications of multifractals30 to economics. For 
example, his Trading Time Theorem—that every multifractal cartoon is fractional 
Brownian motion in multifractal time—has as its basic step a clever application of the 
Moran equation. In the 1990s he began emphasizing multifractal finance cartoons.31 
Always careful to point out that these cartoons were not an attempt to represent the 
dynamics underlying the market, Benoit did seek a simple way to reproduce market 
statistics. In this he succeeded, as shown by the number of seasoned traders who were 
unable to distinguish real data from fake data generated by Benoit’s cartoons. The main 
lesson of these cartoons, unheeded by many, and at a cost felt by us all, is that market 
risk scales with time: over longer periods, expect wider swings. At Benoit’s memorial at 
Yale, both Martin Shubik and Nassim Taleb commented that the 2008 crash could have 
been avoided if financiers had taken to heart Benoit’s advice about risk.
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Benoit’s life was quite busy. His other positions included: from 1997, membership in 
Yale’s Cowles Foundation for Research in Economics; in 1999, appointment as a G. C. 
Steward Visiting Fellow at Gonville and Caius Colleges, Cambridge, UK; and from 2005 
to 2007, Battelle Fellow of the Pacific Northwest National Laboratory.

In addition to about 20 honorary doctorates, Benoit accumulated many other honors 
and awards. Among them were: election as a fellow of the American Academy of Arts 
and Sciences (1982); the Barnhard Medal (1985); the Franklin Medal (1986); election 
as a foreign associate of the U.S. National Academy of Sciences (1987); in 1988, the 
Steinmetz Medal, the Science for Art Prize, the Caltech Alumni Distinguished Service 
Award, the Humboldt Preis, and election as an honorary member of the United Mine 
Workers Union;32 in 1989, the Harvey Prize and election as a chevalier of the National 
Legion of Honor, Paris; the Nevada Prize (1991); the Wolf Prize in Physics (1993); the 
Honda Prize (1994); Medaille de Vermeil de la Ville de Paris (1996); in 1999, the John 
Scott Award and a Sterling Professorship of Mathematical Sciences at Yale; the Lewis Fry 
Richardson Award (2000); in 2002, the Sven Berggren Priset and the William Proctor 
Prize; the Japan Prize (2003); election as a member of the American Philosophical 
Society (2004); in 2005, the Sierpinski Prize and the Casimir Frank National Science 
Award; in 2006, the Einstein Public Lecture of the American Mathematical Society and 
election as an officer in the National Legion of Honor, Paris. Mandelbrot became a U. S. 
citizen in 2000 and became a member of the National Academy of Sciences at that point.

From very early, Benoit wanted to start his own Keplerian revolution by describing a new 
way of looking at a significant portion of the world. In this he succeeded. Fractals have 
been the subject of dozens of scientific conferences, hundreds of books, thousands of 
papers, and millions (yes, millions) of web pages. And Benoit influenced not just science 
and finance, but also the music of György Ligeti and Charles Wuorinen and much 
contemporary art33 and literature.34 A substantial portion of how we view the world has 
been changed by Benoit’s extensive work in developing fractal geometry.

Years ago, one of his visitors at Yale remarked that he’d read Benoit’s papers in mathe-
matics, physics, finance, hydrology, and linguistics, and he wondered to what field Benoit 
thought he belonged. How did he see himself ? Without hesitation, Benoit replied that 
he was a storyteller. It’s true that Benoit loved to tell stories, but thinking over his answer, 
I realized there is another way to understand it. A fractal description of an object is a 
story about how it grows. The delicate arms of a snowflake are a story of the temperature, 
pressure, and humidity the snowflake encountered on its dance through the cloud.
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A coastline is a story of rocks, waves, and tides. Often Benoit remarked that fractals 
emphasized the importance to science of looking at pictures. Certainly, this is true. But 
fractals also remind us that science has a narrative component—and that its stories are 
critical to our lives, though often taken for granted.

I’ll end with these pictures, illustrations of the story that was Benoit’s complicated life. 
The very best times I had with Benoit were when he would take a question in a new 
direction, and we’d be off and running. Hours passed as we explored a multitude of 
ideas, each branching from those earlier. During our very first conversation of this kind, 
a vivid image came into my mind. Benoit and I were two little kids, running around in a 
big field under the bright sky, exploring everything we found, each anxious to share with 
the other. This image has stayed with me for over 20 years, and has given me some small 
comfort since Benoit died. Look at these pictures. Do you see that the curious child still 
was present in the man?

Figure 5. Benoit throughout life.
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NOTES

1. Benoit’s Uncle Szolem was a founding member of Bourbaki.

2. Benoit dedicated his dissertation to John von Neumann and Norbert Wiener. 
The dissertation title references the game theory of von Neumann and the telephone 
switching circuits of Wiener.

3. Mandelbrot, B. B. The fractalist: Memoir of a scientific maverick. pp. 195. New York: 
Pantheon Books.

4. The fractalist, 289–290.

5. Evidently, the world of finance had not taken up the lessons of Copernicus and Kepler about 
improvements on Ptolemy’s cosmology.

6. Douady, A., and Hubbard, J. 1982. Itération des polynômes quadratiques complexes, C. R. 
Acad. Sci. Paris 294:123–126.

7. Shishikura, M. 1998. The Hausdorff dimension of the boundary of the Mandelbrot set and 
Julia sets. Ann. of Math. 147:225–267.

8. Mandelbrot, B. B., D. Passoja, and A. Paullay. 1984. Fractal character of fracture surfaces of 
metals. Nature 308:721–722.

9. The fractalist, 285.

10. Falconer, K. 1985. The geometry of fractal sets. Cambridge,UK: Cambridge University Press; 
1997. Techniques in fractal geometry. New York: Wiley; 2003. Fractal geometry. Mathematical 
foundations and applications, 2nd edition.  New York: Wiley.

11. The precise condition for “not too much overlap” is the open set condition. See Hutchinson, 
J. 1981. Fractals and self-similarity. Indiana Univ. Math. J. 30:713–747.

12. Mandelbrot, B. B. 1982. The fractal geometry of nature. San Francisco: W. H. Freeman, 57.

13. If only some compositions of the Ti are allowed, the Hausdorff dimension is the solution of 
ρ[r d i  mij] = 1,, where mij = 0 or 1 according as Ti ∘ Tj is forbidden or allowed, and ρ[M] is the 
spectral radius, the maximum of the magnitudes of the eigenvalues, of M. This was proved in 
1988 by R. Mauldin and S. Williams in “Hausdorff dimension in graph-directed construc-
tions.” Trans. Amer. Math. Soc. 309:811–829.

14. If each of the scaling factors is chosen randomly in some range, restricted so that the open 
set condition still is satisfied, then the dimension is the solution of 𝔼(r d i   + · · · + r dN  ) = 1.



18

B E N O I T  M A N D E L B R O T

15. See Section 5.2 of Falconer’s Techniques in Fractal Geometry.

16. Some of Mandelbrot’s papers on self-affine fractals are collected in Gaussian self-affinity and 
fractals, Springer-Verlag, New York, 2002.

17. McMullen, C. 1984. The Hausdorff dimension of general Sierpinski carpets. Nagoya Math. J. 
96:1–9; Falconer, K. 1988 and 1992. The Hausdorff dimension of self-affine fractals,  
I and II. Math. Proc. Camb. Phil. Soc. 103:330–350, and 111:169–179; Gatzouras, D., 
and S. Lalley. 1994. Statistically self-affine sets: Hausdorff and box dimensions. J. Theoret. 
Prob. 7:437–468.

18. Mandelbrot, B. B. 1993. A fractal’s lacunarity and how it can be tuned and measured. In 
Fractals in biology and medicine. Edited by T. Nonnenmacher, G. Losa, and E. Weibel.  
pp. 8-21. Basel: Birkhauser.

19. Gatzouras, D. 2000. Lacunarity of self-similar and stochastically self-similar sets. Trans. 
Amer. Math. Soc. 352:1953–1983; Frantz, M. 2004. Lacunarity, Minkowski content, and 
self-similar sets in ℝ. In Proc. Symp. Pure Math., Vol. 72, edited by M. Lapidus and M. van 
Frankenhuijsen. Providence: Amer. Math. Soc.

20. Mandelbrot, B. B. 1974. Intermittent turbulence in self-similar cascades: Divergence of high 
moments and dimension of the carrier. J. Fluid Mech. 62:331–358

21. Arneodo, A., E. Bacry, and J.-F. Muzy. 1995. The thermodynamics of fractals revisited with 
wavelets. Physica A 213:232–275.

22. Harte, D. 2001. Multifractals: Theory and applications. Boca Raton: Chapman & Hall; 
Bissonette, J. (ed.). 1997. Wildlife and landscape ecology. New York: Springer-Verlag; Park, 
K., and W. Willinger (eds.). 2000. Self-similar network and performance evaluation. New 
York: Wiley; Plamen, C., et. al. 1999. Multifractality in human heartbeat dynamics. Nature 
399:461–465.

23. Mandelbrot, B. B. 1991. Random multifractals: Negative dimensions and the resulting 
limitations of the thermodynamic formalism. Proc. Roy. Soc. London A 434:79–88; 
Mandelbrot, B. B. 2003. Multifractal power law distributions: Negative and critical  
dimensions and other “anomalies,” explained by a simple example. J. Stat. Phys. 
110:739–777.

24. Chhabra, A., and K. Sreenivasan. 1991. Negative dimensions: Theory, computation, and 
experiment. Phys. Rev. A 43:1114–1117.
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25. Mandelbrot, B. B. 1962. Sur certains prix spéculatifs: Faits empiriques et modèle basé 
sur les processus stables additives de Paul Lévy. Comptes Rendus (Paris) 254:3968–3970; 
Mandelbrot, B. B. 1963. On the variation of certain speculative prices. J. Business Univ. 
Chicago 36:394–419.

26. Mandelbrot, B. B. 1963. New methods in statistical economics. J. Politica Economics 
71:421–440.

27. Mandelbrot, B. B. 1965. Une classe de processus stochastiques homothétiques à sui:  
Application à la loi climatologique de H. E. Hurst. Comptes Rendus (Paris) 260:3274–7; 
Mandelbrot, B. B., and J. Van Ness. 1968. Fractional Brownian motion, fractional noises, 
and applications. SIAM Review 10:422–437.

28. Mandelbrot, B. B. 1966. Forecasts of future prices, unbiased markets, and “martingale 
models.” J. Business 39:242–255.

29. Mandelbrot, B. B., and H. M. Taylor. 1967. On the distribution of stock price differences. 
Operations Research 15:1057–1062.

30. Mandelbrot, B. B. 1972. Possible refinements of the lognormal hypothesis concerning the 
distribution of energy dissipation in intermittent turbulence. In Statistical models and turbu-
lence, edited by M. Rosenblatt and C. Van Atta. New York: Springer-Verlag, 333–351.

31. Malbrot, B. B. 1999. A fractal walk down Wall Street. Scientific American February:70–73; 
Mandelbrot, B. B., and R. L. Hudson. 2004.The (mis) behavior of markets: A fractal view of 
risk, ruin, and reward. New York: Basic Books.

32. Fractal dimension helped quantify the risk to miners’ lungs that is posed by coal dust.

33. Though one of the best examples, Salvador Dali’s 1940 The Visage of War was painted before 
the concept of fractal was developed. Independently, Dali discovered the power of scaling 
symmetry to suggest infinite depth. Much earlier, as seen on the back cover of Fractal Forms, 
edited by E. Guyon and H. Stanley and published by Elsevier (Amsterdam) in 1991, the 
Sierpinski gasket has been an artistic motif for at least 900 years.

34. Tom Stoppard’s Arcadia, Peter Høeg’s Smilla’s sense of snow, Richard Powers’ The goldbug  
variations and Plowing the dark, and John Updike’s Roger’s version, among many others.
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