Basis independent vector operations: $-\vec{b} \quad 5 \vec{b} \quad \vec{a}+\vec{b} \quad \angle(\vec{a}, \vec{b}) \quad \vec{a} \cdot \vec{b} \quad \vec{a} \times \vec{b}$
Show work - except for \& fill-in-blanks (print .pdf from www.MotionGenesis.com \Rightarrow Textbooks \Rightarrow Resources).

1.1 \& Solving problems - what physicists and engineers do.

Understanding dynamics results from doing problems. Many problems herein guide you to help you synthesize processes (imitation). Please do these problems by yourself or with colleagues/instructors and use the textbook and other resources.

Confucius 500 B.C.
"I hear and I forget.
I see and I remember.
I \qquad and I understand."
"By three methods we may learn wisdom:
$1^{\text {st }}$ by reflection, which is noblest;
$2^{\text {nd }}$ by imitation, which is easiest;
$3^{\text {rd }}$ by experience, which is the bitterest."

1.2 \& What is a vector (as defined by Gibbs circa 1897)? (Section 2.2)

Two properties (attributes) of a vector are \qquad and (fill in the blanks).

1.3 \& What is a zero vector? (Section 2.3)

A zero vector $\overrightarrow{\mathbf{0}}$ has a magnitude of $0(|\overrightarrow{\mathbf{0}}|=0)$. True/False (circle true or false).
A zero vector $\overrightarrow{0}$ has a direction.
any \vec{V} ector $+\overrightarrow{0}=$ any \vec{V} ector True/False

A zero vector $\overrightarrow{\mathbf{0}}$ is parallel to any vector $\overrightarrow{\mathbf{v}}$.
True/False
A zero vector $\overrightarrow{\mathbf{0}}$ is perpendicular to any vector $\overrightarrow{\mathbf{v}}$. True/False

1.4 \& Unit vectors. (Section 2.4)

All unit vectors have a magnitude of 1 (e.g., $\backslash \hat{\mathbf{i}}\|=1,\|\widehat{\mathbf{j}}\|=1,\|\widehat{\mathbf{k}}\|=1$).	True/False
Typically, a unit vector is denoted with a hat, e.g., as $\widehat{\mathbf{k}}$ rather than $\overrightarrow{\mathbf{k}}$.	True/False
All unit vectors are equal.	True/False
A unit vector $\widehat{\mathbf{u}}$ in the direction of the non-zero vector $\overrightarrow{\mathbf{v}}$ is $\widehat{\mathbf{u}}=\frac{\overrightarrow{\vec{v}}}{\mid \overrightarrow{\mathbf{v}}}$.	True/False
The set of unit vectors $\widehat{\text { East, } \widehat{\text { North }} \text {, } \widehat{\text { U }} \text { p span 3D space (the world in which we live). }}$	True/False
In general, unit vectors have units (e.g., degrees or meters or $\frac{m}{s}$ or \ldots).	True/False

1.5 \& Negating a vector. (Section 2.8)

Draw the vector $-\overrightarrow{\mathbf{b}}$. Negating the vector $\overrightarrow{\mathbf{b}}$ results in a vector with different: magnitude direction orientation sense (circle all that apply)
Historical note: Negative numbers (e.g., -3) were not widely accepted until 1800 A.D.

1.6 \& Vector magnitude and direction (orientation and sense). (Section 2.2) The figure to the right shows a vector $\overrightarrow{\mathbf{v}}$. Draw the vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{d}}, \overrightarrow{\mathbf{e}}$.
$\overrightarrow{\mathrm{a}}$ Same magnitude and direction as $\overrightarrow{\mathbf{v}} \quad(\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{v}})$.
$\overrightarrow{\mathbf{b}}$ Same magnitude as $\overrightarrow{\mathbf{v}}$, with $\overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{v}}$ (antiparallel, $\overrightarrow{\mathrm{b}}$ has a different sense than $\overrightarrow{\mathbf{v}}$).
$\overrightarrow{\mathbf{c}}$ Same magnitude as $\overrightarrow{\mathbf{v}}$, but different direction with $\overrightarrow{\mathbf{c}} \neq-\overrightarrow{\mathbf{v}}$ (different orientation).
$\overrightarrow{\mathbf{d}}$ Smaller magnitude than $\overrightarrow{\mathbf{v}}$, but same direction as $\overrightarrow{\mathbf{v}}$.
$\overrightarrow{\mathrm{e}}$ Different magnitude and different direction than $\overrightarrow{\mathbf{v}}$.

1.7 \& Vector magnitude and direction. (Section 2.2)

Knowing x is a real number (e.g., -3 or 0 or 7.8) and $\widehat{\mathbf{u}}$ is a horizontal unit vector \longrightarrow, complete magnitude with \leq or \geq and complete direction with $+\widehat{\mathbf{u}}$ or $-\widehat{\mathbf{u}}$.

Vector	with	Magnitude			Direction
$x \widehat{\mathbf{u}}$	$x \geq 0$	$x \widehat{\mathbf{u}}$	\geq	0	$+\widehat{\mathbf{u}}$
$x \widehat{\mathbf{u}}$	$x \leq 0$	$x \widehat{\mathbf{u}}$		0	
$-x \widehat{\mathbf{u}}$	$x \geq 0$	$\mid-x \widehat{\mathbf{u}}$		0	
$-x \widehat{\mathbf{u}}$	$x \leq 0$	$\|-x \widehat{\mathbf{u}}\|$		0	

1.8 \& Optional: Multiplying a vector by a scalar. (Section 2.7)

The following statements involve a unit vector $\widehat{\mathbf{u}}$ and a real scalar $s(s \neq 0)$. If a statement is true, provide any numerical value for s that supports your answer, and if true also draw a corresponding vector, i.e., $\overrightarrow{\mathbf{a}}$ or $\overrightarrow{\mathbf{b}}$ or $\overrightarrow{\mathbf{c}}$. $s \widehat{\mathbf{u}}$ can have a different magnitude than $\widehat{\mathbf{u}} . \quad$ If true $s=\square$, draw $\overrightarrow{\mathbf{a}}$.
$s \widehat{\mathbf{u}}$ can have a different direction than $\widehat{\mathbf{u}}$. If true $s=\square$, draw $\overrightarrow{\mathbf{b}}$.
$s \widehat{\mathbf{u}}$ can have different magnitude and direction than $\widehat{\mathbf{u}}$. If true $s=$

1.9 \& Graphical vector addition/subtraction. (Sections 2.6, 2.8)

$1.11 \&$ Angle $\angle(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}})$ between vectors. (Section 2.9)
For the figure shown right, determine the numerical value for the angle between vector $\overrightarrow{\mathbf{a}}$ and vector $\overrightarrow{\mathbf{b}}$.
Result:

$$
\angle(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}})=\square
$$

1.12 Visual representation of a vector dot-product. (Section 2.9)

Write the definition of the dot-product of a vector $\overrightarrow{\mathbf{a}}$ with a vector $\overrightarrow{\mathbf{b}}$. Include a sketch with each symbol in your definition clearly labeled.

Result:

$$
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}} \triangleq
$$

Knowing $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are arbitrary vectors, complete the blanks with $\leq,=$, or \geq.

| When the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is | 0° | $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ | 0 | (parallel) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| When the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is | 90° | $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ | 0 | (perpendicular) |
| When the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is 180° | $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ | 0 | (antiparallel) | |
| For arbitrary vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, | | $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ | $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}$ | |

1.13 Visual representation of a vector cross-product. (Section 2.10)

Write the definition of the cross-product of a vector $\overrightarrow{\mathbf{a}}$ with a vector $\overrightarrow{\mathbf{b}}$. Include a sketch with each symbol in your definition clearly labeled.

Result:

$$
\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}} \triangleq
$$

$(\theta) \widehat{\mathbf{u}}$
where $\widehat{\mathbf{u}}$ is

$$
\text { and } \theta \text { is }
$$

Knowing $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are non-zero vectors, complete the blanks with $=$ or \neq.

| When the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is | 0° | $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ | $\overrightarrow{\mathbf{0}}$ | (parallel) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| When the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is | 90° | $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ | $\overrightarrow{\mathbf{0}}$ | (perpendicular) |
| When the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is 180° | $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ | $\overrightarrow{\mathbf{0}}$ | (antiparallel) | |
| For arbitrary vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, | | $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ | $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$ | |

Sketch should include $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}},|\overrightarrow{\mathbf{a}}|,|\overrightarrow{\mathbf{b}}|, \theta, \widehat{\mathbf{u}}$.
1.14 Properties of vector dot/cross-products Draw/show work. $\vec{a} \neq \overrightarrow{\mathbf{0}}, \vec{b} \neq \overrightarrow{\mathbf{0}}$. (Sections 2.9.1, 2.10)

When $\overrightarrow{\mathbf{a}}$ is parallel to $\overrightarrow{\mathbf{b}}$,	$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$	True/False	$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{0}$	True/False
When $\overrightarrow{\mathbf{a}}$ is perpendicular to $\overrightarrow{\mathbf{b}}$,	$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$	True/False	$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$	True/False
For arbitrary vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$,	$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathrm{a}}$	True/False	$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$	True/False

1.15 Dot-products and cross-products via definitions. Show work. (Sections 2.9, 2.10)

- Draw a unit vector $\widehat{\mathbf{k}}$ outward-normal to the plane of the paper (perpendicular to $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$).

- Knowing $|\overrightarrow{\mathbf{a}}|=2$ and $|\overrightarrow{\mathbf{b}}|=4$, calculate each expressions below (2^{+}significant digits) using only the definitions of dot-product and cross-product.

$$
\angle(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}})=\square
$$

$\angle(\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}})=$ \square

$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=
$$

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=-8 \widehat{\mathbf{k}}
$$

$\angle(\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}})=$
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=$
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=$

$$
\begin{aligned}
\angle(\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{~b}}) & = \\
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}} & = \\
\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}} & =
\end{aligned}
$$

1.16 Visual estimation of vector dot/cross-products. Show work. (Sections 2.9, 2.10)

Estimate the magnitude of the vector $\overrightarrow{\mathbf{q}}$ shown below, the angle between $\overrightarrow{\mathbf{p}}$ and $\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{q}}$, and the magnitude of $\overrightarrow{\mathbf{p}} \times \overrightarrow{\mathbf{q}}$. Show work and redraw to clarify the angle between $\overrightarrow{\mathbf{p}}$ and $\overrightarrow{\mathbf{q}}$.
Result: (Provide numerical results with 1 or more significant digits).

1.17 \% Vector operations and units. (Chapter 2)

Each vector operation below involves a position vector $\overrightarrow{\mathbf{r}}$ (with units of m) and/or a velocity vector $\overrightarrow{\mathbf{v}}$ (with units of $\frac{\mathrm{m}}{\mathrm{s}}$). Determine whether the operation produces a well-defined scalar or vector or is undefined. If well-defined, determine the associated units.

Operation:	$-\overrightarrow{\mathbf{r}}$	$5 \overrightarrow{\mathbf{v}}$	$5 \frac{\mathrm{~m}}{\mathrm{~s}}+\overrightarrow{\mathbf{v}}$	$\overrightarrow{\mathbf{r}}+2 \overrightarrow{\mathbf{r}}$	$\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{v}}$	$5 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \overrightarrow{\mathbf{v}}$	$\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{v}}$	$\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{v}}$
Produces:	vector							
Units:	meters							

1.18% Vector exponentiation: $\overrightarrow{\mathbf{v}}^{2}=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{v}}^{3}$. (Section 2.9)
The following is a reasonable proof that $\overrightarrow{\mathbf{v}}^{2}=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}$. True/False (if False, provide a proof).

$$
\overrightarrow{\mathbf{v}}^{2} \triangleq|\overrightarrow{\mathbf{v}}|^{2} \quad \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}} \underset{(2.2)}{\triangleq}|\overrightarrow{\mathbf{v}}||\overrightarrow{\mathbf{v}}| \cos \left(0^{\circ}\right)=|\overrightarrow{\mathbf{v}}|^{2} \quad \overrightarrow{\mathbf{v}}^{2}=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}
$$

Complete the proof that relates $\overrightarrow{\mathbf{v}}^{3}$ to $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}$ raised to a real number.
Result: $|\overrightarrow{\mathbf{v}}| \underset{(2.4)}{=} \sqrt{\square \cdot \square} \quad \overrightarrow{\mathbf{v}}^{3} \triangleq|\overrightarrow{\mathbf{v}}|=(\sqrt{\square \cdot \square})=(\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}})^{\frac{3}{2}}$
$1.19 \quad\left|c \widehat{\mathbf{a}}_{\mathrm{x}}\right| \quad$ Calculate vector magnitude with dot products. (Section 2.9 and Hw 1.18)
Show how the vector dot-product can be used to show that the magnitude of the vector $c \widehat{\mathbf{a}}_{\mathrm{x}}(c$ is a positive or negative number and $\widehat{\mathbf{a}}_{\mathrm{x}}$ is a unit vector) can be written solely in terms of c (without $\widehat{\mathbf{a}}_{\mathrm{x}}$).
Result:

$$
\left|c \widehat{\mathbf{a}}_{\mathrm{x}}\right|=+\sqrt{\square \cdot \square}=+\sqrt{c^{2} * \square \cdot \square}=+\sqrt{c^{2}}=\operatorname{abs}(c)
$$

$1.20 \dagger$ (Challenge) Magnitude of the vector $\overrightarrow{\mathbf{v}}$. Show work. (Section 2.9)
Knowing the angle between a unit vector $\widehat{\mathbf{i}}$ and unit vector $\widehat{\mathbf{j}}$ is 120°, calculate a numerical value for the magnitude of $\overrightarrow{\mathbf{v}}=3 \widehat{\mathbf{i}}+4 \widehat{\mathbf{j}}$.
Result: $\quad|\overrightarrow{\mathbf{v}}|=\sqrt{\boxed{13}} \quad$ Note: The answer is not $\sqrt{25}=5$.

1.21 Property of scalar triple product. (Section 2.11)

For arbitrary non-zero vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}: \quad \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{c}} \quad$ Never/Sometimes/Always A property of the scalar triple product is $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}=0$. True/False.
1.22 \& Property of vector triple cross-product. (Sections 2.10, 2.11)

Complete the following equation: $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{b}}(\square)-\overrightarrow{\mathbf{c}}(\square)$
For arbitrary vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}: \quad \overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}) \quad$ True/False (show work).
1.23 Optional: Proof of magnitude of vector cross product property. (Sections 2.9, 2.10)

Letting $\hat{\boldsymbol{\lambda}}$ be a unit vector and $\overrightarrow{\mathbf{v}}$ be any vector, prove ${ }^{1}|\overrightarrow{\mathbf{v}} \times \hat{\boldsymbol{\lambda}}|^{2}=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}-(\overrightarrow{\mathbf{v}} \cdot \hat{\boldsymbol{\lambda}})^{2}$.
1.24 \& Form the unit vector $\widehat{\mathbf{u}}$ having the same direction as $c \widehat{\mathbf{a}}_{\mathrm{x}}$. (Section 2.4)

Result: $\widehat{\mathbf{u}}=\square \widehat{\mathbf{a}}_{\mathrm{x}} \quad$ Note: $\widehat{\mathbf{a}}_{\mathrm{x}}$ is a unit vector and c is a non-zero real number, e.g., 3 or -3 .
1.25 Coefficient of $\widehat{\mathbf{u}}$ in cross products - definitions and trig functions. (Section 2.10)

The cross product of vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ can be written in terms of a real scalar s as $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=s \widehat{\mathbf{u}}$ where $\widehat{\mathbf{u}}$ is a unit vector perpendicular to both $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ in a direction defined by the right-hand rule. The coefficient s of the unit vector $\widehat{\mathbf{u}}$ is inherently non-negative. True/False.
1.26 Distance between a point and a line via cross-products. Show work. (Section 2.10.1)

Draw a horizontally-right unit vector $\widehat{\mathbf{a}}_{\mathrm{x}}$ and vertically-upward unit vector $\widehat{\mathbf{a}}_{\mathrm{y}}$.
Draw a point P and a line L through P that is parallel to $\widehat{\mathbf{u}}=\frac{3}{5} \widehat{\mathbf{a}}_{\mathrm{x}}+\frac{4}{5} \widehat{\mathbf{a}}_{\mathrm{y}}$.
Draw a point Q whose position vector from point P is $\overrightarrow{\mathbf{r}}=5 \widehat{\mathbf{a}}_{\mathrm{x}}$ (also draw $\overrightarrow{\mathbf{r}}$).
Draw the distance d between Q and L.
Calculate d with the cross-product formula in eqn (3.3).

1.27 \& Ranges of angles from dot-product and cross-product calculations. (Sections 2.9, 2.10)

Note: The range of θ_{s} is smaller than the range for θ. Hence, s and θ_{s} are insufficient to correctly calculate θ. What this means: Use the dot-product • to calculate an angle θ from two given/known vectors $\widehat{\mathbf{a}}$ and $\widehat{\mathbf{b}}$.

[^0] product property $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{b}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}})-\overrightarrow{\mathbf{c}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$ from Section 2.10. Alternatively, it is helpful to write $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}_{\perp} \widehat{\boldsymbol{\lambda}}_{\perp}+\overrightarrow{\mathbf{v}}_{\|} \widehat{\boldsymbol{\lambda}}^{\boldsymbol{\lambda}}$ where $\overrightarrow{\mathbf{v}}_{\perp} \widehat{\boldsymbol{\lambda}}_{\perp}$ is the component of $\overrightarrow{\mathbf{v}}$ that is perpendicular to $\widehat{\boldsymbol{\lambda}}$ and $\overrightarrow{\mathbf{v}}_{\| \mid} \widehat{\boldsymbol{\lambda}}$ is the component of $\overrightarrow{\mathrm{v}}$ that is parallel to $\widehat{\boldsymbol{\lambda}}$.
1.28 Biomechanics: Gravity moment for curling $\overrightarrow{\mathbf{M}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$ Show work. (Section 2.10)

The figures to the right show an athlete curling a dumbbell (modeled as a particle Q of mass m). The forearm connects to the upper arm at the elbow (point E). Orthogonal unit vectors $\widehat{\mathbf{n}}_{\mathrm{x}}, \widehat{\mathbf{n}}_{\mathrm{y}}, \widehat{\mathbf{n}}_{\mathrm{z}}$ are directed with $\widehat{\mathbf{n}}_{\mathrm{y}}$ vertically upward and $\widehat{\mathbf{n}}_{\mathrm{x}}$ from E to Q.

Description	Symbol	Type
Earth's gravitational constant	g	$g \approx 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Mass of dumbbell Q	m	Positive constant
Distance between elbow E and Q	L	Positive constant

The moment of gravity forces on Q about E is $\overrightarrow{\mathbf{M}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$ where $\overrightarrow{\mathbf{F}}=-\mathrm{m} g \widehat{\mathbf{n}}_{\mathrm{y}}$. Express $\overrightarrow{\mathbf{M}}$ in terms of $\mathrm{m}, g, L, \widehat{\mathbf{n}}_{\mathrm{z}}$.

Now consider the forearm making an angle θ with downward vertical. Form $\overrightarrow{\mathbf{M}}$ and its magnitude $|\overrightarrow{\mathbf{M}}|$. Determine the values of $\theta\left(0 \leq \theta \leq 135^{\circ}\right)$ that produce maximum and minimum $|\overrightarrow{\mathbf{M}}|$. To simplify $|\overrightarrow{\mathbf{M}}|$, note m, g, L are positive and for $0 \leq \theta \leq 135^{\circ}, \sin (\theta) \geq 0$. Result: (in terms of $\mathrm{m}, g, L, \theta, \widehat{\mathbf{n}}_{z}$).

$$
\overrightarrow{\mathbf{M}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}=\square \quad|\overrightarrow{\mathbf{M}}|=
$$

Optional: Modeling the elbow as a revolute joint, draw a free-body diagram (FBD) of the system consisting of the forearm and dumbbell.

Result:

$$
\overrightarrow{\mathbf{M}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}=
$$

$$
\begin{array}{rll}
\operatorname{Max}|\overrightarrow{\mathbf{M}}|=\square & \text { at } \theta=\square^{\circ} \\
\operatorname{Min}|\overrightarrow{\mathbf{M}}|=\square & \text { at } \theta=\square^{\circ}
\end{array}
$$

1.29 Biomechanics: Gravity force and moment for tennis $\overrightarrow{\mathbf{M}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$ Show work. (Section 2.10)

Shown right is an athlete whose arm A swings a tennis racquet B. Point S (shoulder), A_{cm} (A 's center of mass), and B_{cm} (B 's center of mass) lie along a line parallel to a unit vector $\widehat{\mathbf{a}}$. The unit vector $\widehat{\mathbf{d}}$ is vertically-downward \downarrow.

Description
Earth's gravitational constant
Mass of A, mass of B
Distances between S and A_{cm} and S and B_{cm}
Angle between $\widehat{\mathbf{a}}$ and $\widehat{\mathbf{d}}$

Symbol	Type
g	$g \approx 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$\mathrm{~m}_{A}, \mathrm{~m}_{B}$	Positive constants
L_{A}, L_{B}	Positive constants
θ	$0 \leq \theta \leq 180^{\circ}$

- Form $\overrightarrow{\mathbf{F}}_{\text {gravity }}$ (the net force on A and B due to Earth's gravity).
- Form $|\overrightarrow{\mathbf{M}}|$ (the magnitude of the moment of those gravity forces about S). Note: $\overrightarrow{\mathbf{M}}={ }^{S} \overrightarrow{\mathbf{r}}^{A_{\mathrm{cm}}} \times \mathrm{m}_{A} g \widehat{\mathbf{d}}+{ }^{S} \overrightarrow{\mathbf{r}}^{B_{\mathrm{cm}}} \times \mathrm{m}_{B} g \widehat{\mathbf{d}}$.
Result:

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{\text {gravity }} & =(\square) \widehat{\mathbf{d}} \\
|\overrightarrow{\mathbf{M}}| & =\square
\end{aligned}
$$

Optional: Modeling the athlete grip of the racquet as a weld, draw a free-body diagram ($F B D$) of the racquet. Next, choose a model for the shoulder joint and draw a $\boldsymbol{F B} \boldsymbol{D}$ of the system consisting of the arm and racquet.

$1.30{ }^{\dagger}$ Optional: Draw the free-body diagram (FBD) for each object below.

$1.31 \&$ Using vector identities to simplify expressions (refer to Homework 1.14)

One reason to treat vectors as basis-independent quantities is to simplify vector expressions without resolving the vectors into orthogonal " $\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{y}}, \overrightarrow{\mathbf{z}}$ " or " $\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}}$ " components. Simplify the following vector expressions using mathematical properties of dot-products and cross-products.

Express results in terms of dot-products • and crossproducts \times of the arbitrary vectors $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$.
$\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$ are not necessarily orthogonal or co-planar.

Vector expression	Simplified vector expression
$(3 \overrightarrow{\mathbf{u}}-2 \overrightarrow{\mathbf{v}}) \times(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})$	$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$
$(3 \overrightarrow{\mathbf{u}}-2 \overrightarrow{\mathbf{v}}) \cdot(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})$	$\overrightarrow{\mathbf{u}}^{2}-\square \overrightarrow{\mathbf{v}}^{2}+\square \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$
$(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}) \cdot(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})$	-
$(3 \overrightarrow{\mathbf{u}}-2 \overrightarrow{\mathbf{v}}) \times(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}) \cdot(2 \overrightarrow{\mathbf{u}}-7 \overrightarrow{\mathbf{v}})$	
$(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}) \times(\overrightarrow{\mathbf{v}}+2 \overrightarrow{\mathbf{w}}) \cdot(\overrightarrow{\mathbf{w}}+2 \overrightarrow{\mathbf{u}})$	$\square \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}$

1.32 Vector concepts: Solving a vector equation? (Section 2.9.3)

Shown right is a vector equation and a questionable process that solves for v_{x} ($\widehat{\mathbf{a}}_{\mathrm{x}}$ is a unit vector and $v_{x}, \dot{\theta}, R$ are scalars).
This is a valid process to solve for v_{x}. True/False.

$$
\begin{aligned}
v_{x} \widehat{\mathbf{a}}_{\mathrm{x}} & =\dot{\theta} R \widehat{\mathbf{a}}_{\mathrm{x}} \\
v_{x} & =\dot{\theta} R \frac{\widehat{\mathbf{a}}_{\mathrm{x}}}{\widehat{\mathbf{a}}_{\mathrm{x}}}=\dot{\theta} R
\end{aligned}
$$

Explain:

1.33 Change a vector equation to scalar equations. Show work. (Section 2.9.3) Draw three mutually orthogonal unit vectors $\widehat{\mathbf{p}}, \widehat{\mathbf{q}}, \widehat{\mathbf{r}}$.
Use a vector operation (e.g., $+, *, \cdot, \times$) to change the vector equation $(2 x-4) \widehat{\mathbf{p}}=\overrightarrow{\mathbf{0}}$ into one scalar equation and subsequently solve the scalar equation for x.
Result:

$$
(2 x-4) \widehat{\mathbf{p}}=\overrightarrow{\mathbf{0}} \quad \stackrel{? ?}{\Rightarrow} \quad(2 x-4)=0 \quad \Rightarrow \quad x=2
$$

Show every vector operation (e.g., $+, *, \cdot, \times$) that changes the following vector equation into three scalar equations and subsequently solve the scalar equations for x, y, z.

$$
\begin{array}{rrrr}
& (2 x-4) \hat{\mathbf{p}}+(3 y-9) \widehat{\mathbf{q}}+(4 z-16) \widehat{\mathbf{r}}=\overrightarrow{\mathbf{0}} \\
\text { Result: } & (2 x-4)=0 & (3 y-9)=0 & (\square)=0 \\
& x=2 & y=3 & z=4
\end{array}
$$

\dagger The figure to the right shows three non-orthogonal, non-coplanar vectors $\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}}$. Show every vector operation that changes the following vector equation into three uncoupled scalar equations and subsequently solve those scalar equations for x, y, z.

$$
(2 x-4) \overrightarrow{\mathbf{i}}+(3 y-9) \overrightarrow{\mathbf{j}}+(4 z-16) \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{0}}
$$

Result: $\quad(2 x-4)=0 \quad(3 y-9)=0 \quad(\square)=0 \quad$ Hint: think $\times \cdot$,

$$
x=2 \quad y=3 \quad z=4 \quad \text { not matrix algebra. }
$$

1.34 Number of independent scalar equations from 1 vector equation. (Section 2.9.3)

The vector equation shown right is useful for static analyses of a system S.
$\overrightarrow{\mathbf{F}}^{S}=\overrightarrow{\mathbf{0}}$
In the table to the right, box all integers that could be equal to the number of independent scalar equations produced by the previous vector equation. Hint: Hw 1.33. Related Hw 17.15.

System type	Integer (s)				
1D (line)	0	1	2	3	4^{+}
2D (planar)	0	1	2	3	4^{+}
3D (spatial)	0	1	2	3	4^{+}

Note: 1D/linear means $\overrightarrow{\mathbf{F}}^{S}$ can be expressed in terms of one vector $\widehat{\mathbf{i}}$.
2D/planar means $\overrightarrow{\mathbf{F}}^{S}$ can be expressed in terms of two non-parallel unit vectors $\widehat{\mathbf{i}}$ and $\widehat{\mathbf{j}}$.
$3 \mathrm{D} /$ spatial means $\overrightarrow{\mathbf{F}}^{S}$ can be expressed in terms of three non-coplanar unit vectors $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}, \widehat{\mathbf{k}}$.
1.35 Vector concepts: Solving a vector equation (just circle true or false and fill-in the blank).

Consider the following vector equation written in terms of the scalars x, y, z and three unique non-orthogonal coplanar unit vectors $\widehat{\mathbf{a}}_{1}, \widehat{\mathbf{a}}_{2}, \widehat{\mathbf{a}}_{3}$.

$$
(2 x-4) \widehat{\mathbf{a}}_{1}+(3 y-9) \widehat{\mathbf{a}}_{2}+(4 z-16) \widehat{\mathbf{a}}_{3}=\overrightarrow{\mathbf{0}}
$$

The unique solution to this vector equation is $x=2, y=3, z=4$. True/False.

Explain: $\widehat{\mathbf{a}}_{2}$ can be expressed in terms of $\widehat{\mathbf{a}}_{1}$ and $\widehat{\mathbf{a}}_{3}$ (i.e., $\widehat{\mathbf{a}}_{2}$ is a linear combination of $\widehat{\mathbf{a}}_{1}$ and $\widehat{\mathbf{a}}_{3}$). Hence the vector equation produces \quad linearly independent scalar equations.
1.36 Gibbs ($\approx 1900 \mathrm{AD}$) vectors revolutionizes Euclidean geometry (300 BC). (Sections 2.9.2, 2.10.1, 2.11.1) For each geometrical quantity shown right, circle the vector operation(s) (dot-product, cross-product, or both) that is most useful for their calculation.

Length:	\cdot	\times	Angle:	•	\times
Area:	\cdot	\times	Volume:	•	\times

1.37% Order of operations with vector dot products (•) and cross products (\times). (Chapter 2) Create a valid expression by adding parentheses to each expression or cross-out the expression if it is inherently invalid.
Example: $3 * \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \Rightarrow(3 * \overrightarrow{\mathbf{a}})+\overrightarrow{\mathbf{b}}$.

$\vec{a} \cdot \vec{b}+\vec{c}$	$\vec{a} \cdot \vec{b} \times \vec{c}$	$\vec{a}+5 \times \vec{c}$
$\vec{a} \times \vec{b}+\vec{c}$	$\vec{a} \times \vec{b} \cdot \vec{c}$	$\vec{a} \cdot \vec{b} \cdot \vec{c}$

$1.38 \dagger$ Microphone cable lengths (non-orthogonal walls) "It's just geometry". Show work.

A microphone Q is attached to three pegs A, B, C by three cables. Knowing the peg locations, microphone location, and the angle θ between the vertical walls, express L_{A}, L_{B}, L_{C} solely in terms of numbers and θ. Next, complete the table by calculating L_{B} when $\theta=120^{\circ}$.

Hint: To do this efficiently, use one set of non-orthogonal unit vectors (do not use an orthogonal set of unit vectors).
Hint: Use the distributive property of the vector dot-product as shown in Section 2.9.1 and Homework 2.4.
Note: Synthesis problems are difficult. Think, talk, draw, sleep, walk, get help, ... (if necessary, read Section 3.4).

Distance between A and B	20 m
Distance between B and C	15 m
Distance between N_{o} and B	8 m
Distance along back wall (see picture)	7 m
Q 's height above N_{o}	5 m
Distance along side wall (see picture)	8 m
$L_{A}:$ Length of cable joining A and Q	16.9 m
$L_{B}:$ Length of cable joining B and Q	8.1 m
$L_{C}:$ Length of cable joining C and Q	14.2 m

Result: $L_{A}=\sqrt{202-\square \cos (\theta)} \quad L_{B}=\sqrt{122+112 \cos (\theta)} \quad L_{C}=\sqrt{\square-128}$
Vocabulary: In this inverse kinematics analysis, the position of "end-effector" Q is known and you determine the cable lengths.

- Knowing β is defined as the angle between lines $\overline{B N_{\mathrm{o}}}$ and $\overline{B Q}$, show $\beta \approx 68.33^{\circ}$.

Homework 2. Chapters 1, 2, 3, 4.
Vector addition, dot products, and cross products: $+\quad \times$ Show work - except for fill-in-blanks (print .pdf from www.MotionGenesis.com \Rightarrow Textbooks \Rightarrow Resources).
2.1 \& Right-handed, orthogonal, unit vectors. (Section 4.1)

Draw a set of right-handed orthogonal (mutually perpendicular) unit vectors consisting of $\widehat{\mathbf{n}}_{\mathrm{x}}, \widehat{\mathbf{n}}_{\mathrm{y}}, \widehat{\mathbf{n}}_{\mathrm{z}}$. In other words, draw $\widehat{\mathbf{n}}_{\mathrm{x}}, \widehat{\mathbf{n}}_{\mathrm{y}}, \widehat{\mathbf{n}}_{\mathrm{z}}$ so that $\widehat{\mathbf{n}}_{\mathrm{y}}$ is perpendicular (orthogonal) to $\widehat{\mathbf{n}}_{\mathrm{x}}$ and $\widehat{\mathbf{n}}_{\mathrm{z}}=\widehat{\mathbf{n}}_{\mathrm{x}} \times \widehat{\mathbf{n}}_{\mathrm{y}}$.

2.2 \& Adding and subtracting vectors. (Sections 2.6, 2.8)

Given: Vectors $\overrightarrow{\mathbf{p}}$ and $\overrightarrow{\mathbf{q}}$ expressed in terms of unit vectors $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}, \widehat{\mathbf{k}}$. Form the vector sums and differences below.

$$
\overrightarrow{\mathbf{p}}=a \widehat{\mathbf{i}}+b \widehat{\mathbf{j}}+c \widehat{\mathbf{k}}
$$

Result:

$$
\overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}=(a+x) \widehat{\mathbf{i}}+(\square) \widehat{\mathbf{j}}+(\square) \widehat{\mathbf{k}} \quad \overrightarrow{\mathbf{p}}-\overrightarrow{\mathbf{q}}=(a-x) \widehat{\mathbf{i}}+(\square) \widehat{\mathbf{j}}+(\square) \widehat{\mathbf{k}}
$$

2.3 \& Words: Physical vectors and column matrices. (Section 2.12, Hw 1.2)

True/False As defined by Gibbs and for $\overrightarrow{\mathbf{F}}=\mathrm{m} \overrightarrow{\mathbf{a}}$, physical vectors have magnitude and direction.
True/False In math (linear algebra), a column matrix is called a "vector".

True/False The physical vector $\widehat{\mathbf{a}}_{\mathrm{x}}+2 \widehat{\mathbf{a}}_{\mathrm{y}}+3 \widehat{\mathbf{a}}_{\mathbf{z}}$ is equal to the column matrix $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

- Complete the following statement with one equal sign \square and one not-equal sign \neq.

$$
\widehat{\mathbf{a}}_{\mathrm{x}}+2 \widehat{\mathbf{a}}_{\mathrm{y}}+3 \widehat{\mathbf{a}}_{\mathrm{z}} \square\left[\begin{array}{lll}
\widehat{\mathbf{a}}_{\mathrm{x}} & \widehat{\mathbf{a}}_{\mathrm{y}} & \widehat{\mathbf{a}}_{z}
\end{array}\right] *\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \square\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

For more on vector spaces and physical vectors vs. column matrices, see Malcolm Shuster's "Tutorial on Vectors and Attitude" in IEEE Control Systems Magazine, Volume 29 issue 2, April 2009. Historical note: Physical vectors were invented by Gibbs circa 1890 and he co-opted the word vector from part of Hamilton's quaternion invented in 1844. Matrix algebra was invented circa 1850. The word vector has multiple related meanings, which causes ongoing confusion. As Shuster noted, the "failure to recognize the difference between physical vectors and column vectors has led sometimes to errors in spacecraft mission support software."

2.4 \& Dot products with orthogonal unit vectors. (Sections 2.9, 2.9.4)

Given: Vectors $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ expressed in terms of right-handed orthogonal unit vectors $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}$, $\widehat{\mathbf{k}}$, with: $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}=\underbrace{(a \widehat{\mathbf{i}}+b \widehat{\mathbf{j}}+c \widehat{\mathbf{k}})}_{\overrightarrow{\mathbf{v}}} \cdot \underbrace{(x \widehat{\mathbf{i}}+y \widehat{\mathbf{j}}+z \widehat{\mathbf{k}})}_{\overrightarrow{\mathbf{w}}}$

- Use the distributive property for dot products to write $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathrm{w}}$ in terms of $\widehat{\mathbf{i}} \cdot \widehat{\mathbf{i}}, \widehat{\mathbf{i}} \cdot \widehat{\mathbf{j}}$, etc. Next, use the definition of the dot product to calculate $\widehat{\mathbf{i}} \cdot \widehat{\mathbf{i}}, \widehat{\mathbf{i}} \cdot \widehat{\mathbf{j}}$, etc. (below-right).
Result:

$$
\begin{aligned}
& \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}=a x \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}+a y \widehat{\mathrm{i}} \cdot \hat{\mathrm{j}}+\square \widehat{\mathrm{i}} \cdot \hat{\mathrm{k}} \quad \widehat{\mathrm{i}} \cdot \hat{\mathrm{i}}=1 \quad \hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=\square \quad \widehat{\mathrm{i}} \cdot \widehat{\mathrm{k}}= \\
& +b x \hat{\mathbf{j}} \cdot \widehat{\mathrm{i}}+b y \square+\square \square \quad \square \quad \widehat{\mathbf{j}} \cdot \widehat{\mathbf{i}}=0 \quad \widehat{\mathbf{j}} \cdot \widehat{\mathbf{j}}=\square \hat{\mathbf{j}} \cdot \widehat{\mathbf{k}}= \\
& +c x \widehat{\mathbf{k}} \cdot \widehat{\mathbf{i}}+c y \square+\square \square \quad \square \quad \widehat{\mathbf{k}} \cdot \widehat{\mathbf{i}}=0 \quad \widehat{\mathbf{k}} \cdot \widehat{\mathbf{j}}=\square \widehat{\mathbf{k}} \cdot \widehat{\mathbf{k}}=
\end{aligned}
$$

- Simplify $\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}$ and use its special dot-product formula for the calculations that follow.

Result: $\quad \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}=a x+b y+\square \quad$ Use this special dot-product formula to calculate $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}$ when $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}, \widehat{\mathbf{k}}$ are orthogonal unit vectors.

$$
\begin{aligned}
\overrightarrow{\mathbf{p}} & =2 \widehat{\mathbf{i} \mathbf{i}+3 \widehat{\mathbf{j}}}+4 \widehat{\mathbf{k}} \\
\overrightarrow{\mathbf{q}} & =x \widehat{\mathbf{i}}+y \widehat{\mathbf{j}}+z \widehat{\mathbf{k}} \\
\overrightarrow{\mathbf{r}} & =5 \widehat{\mathbf{i}}-6 \widehat{\mathbf{j}}+7 \widehat{\mathbf{k}}
\end{aligned}
$$

$\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{q}}=2 x+3 y+\square z$	$\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{p}}=29$	$\|\overrightarrow{\mathbf{p}}\|=\sqrt{29}$
$\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{r}}=\square$	$\overrightarrow{\mathbf{q}} \cdot \overrightarrow{\mathbf{q}}=x^{2}+\square+\square$	$\|\overrightarrow{\mathbf{q}}\|=\sqrt{\square}$
$\overrightarrow{\mathbf{q}} \cdot \overrightarrow{\mathbf{r}}=\square$	$\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{r}}=\square$	$\|\overrightarrow{\mathbf{r}}\|=\sqrt{110}$

2.5 Perpendicular vectors. (Note: $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}, \widehat{\mathbf{k}}$ are orthogonal unit vectors). (Section 2.9)

Draw two vectors $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ that are perpendicular. .
When $\overrightarrow{\mathbf{v}}=x \widehat{\mathbf{i}}+2 \widehat{\mathbf{j}}+3 \widehat{\mathbf{k}}$ is perpendicular to $\overrightarrow{\mathbf{w}}=4 \widehat{\mathbf{i}}+5 \widehat{\mathbf{j}}+6 \widehat{\mathbf{k}}, \quad x=\square$.

2.6 Dot products to calculate distance and angles. (Sections 2.9, 3.4)

The figure to the right shows a block with sides of length 2 m , $3 \mathrm{~m}, 4 \mathrm{~m}$ and points A, B, C located at corners. Right-handed orthogonal unit vectors $\widehat{\mathbf{n}}_{\mathrm{x}}, \widehat{\mathbf{n}}_{\mathrm{y}}, \widehat{\mathbf{n}}_{\mathrm{z}}$ are directed with $\widehat{\mathbf{n}}_{\mathrm{x}}$ from B to C and $\widehat{\mathbf{n}}_{\mathrm{y}}$ from B to A.

(a) Express $\overrightarrow{\mathbf{r}}$ (position from A to C) in terms of $\widehat{\mathbf{n}}_{\mathrm{x}}, \widehat{\mathbf{n}}_{\mathrm{y}}, \widehat{\mathbf{n}}_{\mathrm{z}}$ and find a numerical value for $|\overrightarrow{\mathbf{r}}|^{2}$. Next calculate the distance d between A to C (magnitude of $\overrightarrow{\mathbf{r}}$).
Result:

$$
\overrightarrow{\mathbf{r}}=\square \widehat{\mathbf{n}}_{\mathrm{x}}-\square \widehat{\mathbf{n}}_{\mathrm{y}}
$$

$$
|\overrightarrow{\mathbf{r}}|^{2} \underset{(2.4)}{=} \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{r}}=\square \mathrm{m}^{2}
$$

$$
\mathrm{d}=\sqrt{\square} \mathrm{m}
$$

(b) Calculate the unit vector $\widehat{\mathbf{u}}$ directed from A to C and the unit vector $\widehat{\mathbf{v}}$ directed from A to D.

Result:

$$
\widehat{\mathbf{u}}=\frac{3 \widehat{\mathbf{n}}_{\mathrm{x}}-\widehat{\mathbf{n}}_{\mathrm{y}}}{\sqrt{\square}} \quad \widehat{\mathbf{v}}=\frac{\widehat{\mathbf{n}}_{\mathrm{x}}-\widehat{\mathbf{n}}_{\mathrm{y}}-\widehat{\mathbf{n}}_{\mathrm{z}}}{\sqrt{\square}}
$$

(c) Calculate $\angle B A C$ (angle between line $\overline{A B}$ and line $\overline{A C}$) and $\angle C A D$ (angle between line $\overline{A C}$ and line $\overline{A D}$). Result:

$$
\angle B A C=\square \quad \circ \quad \angle C A D=47.97^{\circ}
$$

2.7 Construct a unit vector $\widehat{\mathbf{u}}$ in the direction of each vector given below. (Section 2.9.2)

Vector	Unit vector $\widehat{\mathbf{u}}$
$3 \widehat{\mathbf{i}}$	$\widehat{\mathbf{i}}$
$-3 \widehat{\mathbf{i}}$	
$3 \widehat{\mathbf{i}}-4 \widehat{\mathbf{j}}$	-
$3 \widehat{\mathbf{i}}-4 \widehat{\mathbf{j}}+12 \widehat{\mathbf{k}}$	
$c \widehat{\mathbf{i}}$	$c \widehat{\mathbf{i}}$ or $\operatorname{sign}(c) \widehat{\mathbf{i}}$
c is a real non-zero number	

Note: $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}, \widehat{\mathbf{k}}$ are orthogonal unit vectors.

Ensure your last answer agrees with your first two answers, e.g., if $c=3$ or $c=-3$.
2.8% Vector components: Sine and cosine. (Section 1.4)

- Replace each ? in the figure to the right with $\sin (\theta)$ or $\cos (\theta)$.
- Use vector addition to express $\widehat{\mathbf{a}}$ and $\widehat{\mathbf{b}}$ in terms of $\sin (\theta), \cos (\theta), \widehat{\mathbf{i}}, \widehat{\mathbf{j}}$.
Result:
Reminder:
SohCahToa

$$
\begin{array}{ll}
\widehat{\mathbf{a}}= & \widehat{\mathbf{i}}+\quad \widehat{\mathbf{j}} \\
\widehat{\mathbf{b}}=\square & \widehat{\mathbf{i}}+\cos (\theta) \widehat{\mathbf{j}}
\end{array}
$$

2.9 \& Vector components for a crane-boom. (Section 1.4)

Shown right is a crane whose cab A supports a boom B that swings a wrecking ball C_{o}.
Right-handed orthogonal unit vectors $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}, \widehat{\mathbf{k}}$ are directed with $\widehat{\mathbf{i}}$ horizontally-right, $\widehat{\mathbf{j}}$ verticallyupward, and $\widehat{\mathbf{k}}$ outward-normal to the plane containing points $N_{\mathrm{o}}, A_{B}, B_{C}, C_{\mathrm{o}}$.
Draw each position vector listed below and then use your knowledge of sine/cosine to resolve these vectors into $\widehat{\mathbf{i}}$ and $\widehat{\mathbf{j}}$ components.
Position from N_{o} to $A_{B} \quad{ }^{N_{\mathrm{o}}} \overrightarrow{\mathbf{r}}^{A_{B}}=$
Position from A_{B} to $B_{C} \quad{ }^{A_{B}} \overrightarrow{\mathbf{r}}^{B_{C}}=$
Position from B_{C} to $C_{0} \quad{ }^{B_{C}} \overrightarrow{\mathbf{r}}^{C_{o}}=$
Position from N_{o} to $B_{C} \quad\left[\begin{array}{l}N_{\mathrm{o}} \overrightarrow{\mathbf{r}}^{B_{C}}\end{array}=\quad[+\right.$
Position from N_{o} to C_{0}

2.10 Dot products and distance calculations. Show work. (Section 2.9)

Shown right is a crane whose cab A supports a boom B that swings a wrecking ball C_{0}. To prevent the wrecking ball from hitting a car, the distance between N_{o} and point B_{C} (the tip of the boom) must be controlled.

To start this problem, express $\overrightarrow{\mathbf{r}}$ (the position vector from N_{o} to $\left.B_{C}\right)$ in terms of $x, L_{B}, \widehat{\mathbf{n}}_{\mathrm{x}}, \widehat{\mathbf{b}}_{\mathbf{x}}$.

Result:

- Without resolving $\overrightarrow{\mathbf{r}}$ into $\widehat{\mathbf{n}}_{\mathrm{x}}$ and $\widehat{\mathbf{n}}_{\mathrm{y}}$ components, use $|\overrightarrow{\mathbf{r}}|=\sqrt{\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{r}}}$ [from equation (3.1)] and the distributive property to calculate the distance between N_{o} and B_{C} in terms of $x, L_{B}, \theta_{\mathrm{B}}$.
Result: (if stumped, hint below). ${ }^{1}$ Optional: Calculate $|\overrightarrow{\mathbf{r}}|$ when $x=20 \mathrm{~m}, L_{B}=10 \mathrm{~m}, \theta_{\mathrm{B}}=30^{\circ}$.

$$
\text { Distance between } N_{\mathrm{o}} \text { and } B_{C}: \quad|\overrightarrow{\mathbf{r}}|=\sqrt{\square^{2}+\square^{2}+2 x L_{B} \cos \left(\theta_{\mathrm{B}}\right)} \approx 29.1 \mathrm{~m}
$$

- Homework 2.9 showed $\overrightarrow{\mathbf{r}}$ can be expressed as $\overrightarrow{\mathbf{r}}=\left[x+L_{B} \cos \left(\theta_{\mathrm{B}}\right)\right] \widehat{\mathbf{n}}_{\mathrm{x}}+L_{B} \sin \left(\theta_{\mathrm{B}}\right) \widehat{\mathbf{n}}_{\mathrm{y}}$. Use this expression to verify your previous result for $|\overrightarrow{\mathbf{r}}|=\sqrt{\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{r}}}$.
Result: $\quad|\overrightarrow{\mathbf{r}}|$ simplifies to the previous result but uses an inefficient process and $\sin ^{2}\left(\theta_{\mathrm{B}}\right)+\cos ^{2}\left(\theta_{\mathrm{B}}\right)=1$.
- Optional: Calculate the distance between N_{o} and C_{o} in terms of $x, L_{B}, L_{C}, \theta_{\mathrm{B}}$, and θ_{C}.

Result: $\left|{ }^{N_{o}} \overrightarrow{\mathbf{r}}^{C_{o}}\right|=\sqrt{x^{2}+L_{B}^{2}+L_{C}^{2}+2 x L_{B} \cos \left(\theta_{\mathrm{B}}\right)+2 x L_{C} \sin \left(\theta_{\mathrm{C}}\right)-2 L_{B} L_{C} \sin \left(\theta_{\mathrm{B}}-\theta_{\mathrm{C}}\right)}$

2.11 \& Cross products with right-handed orthogonal unit vectors. (Section 2.10)

Given: Vectors $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ expressed in terms of right-handed orthogonal unit vectors $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}$, $\widehat{\mathbf{k}}$, with: $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}=\underbrace{(a \widehat{\mathbf{i}}+b \widehat{\mathbf{j}}+c \widehat{\mathbf{k}})}_{\overrightarrow{\mathbf{v}}} \times \underbrace{(x \widehat{\mathbf{i}}+y \widehat{\mathbf{j}}+z \widehat{\mathbf{k}})}_{\overrightarrow{\mathbf{w}}}$

[^1]- Use the distributive property for cross products to write $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$ in terms of $\widehat{\mathbf{i}} \times \widehat{\mathbf{i}}, \widehat{\mathbf{i}} \times \widehat{\mathbf{j}}$, etc. Next, use the definition of the cross product to calculate $\widehat{\mathbf{i}} \times \widehat{\mathbf{i}}, \widehat{\mathbf{i}} \times \widehat{\mathbf{j}}$, etc. (below-right).
Result:

- Combine your previous results to calculate $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$ in terms of a, b, c, x, y, z.

Result:

$$
\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}=(b z-\square) \widehat{\mathbf{i}}+(\square-a z) \widehat{\mathbf{j}}+(\square) \widehat{\mathbf{k}}
$$

2.12 \& Cross products and determinants (orthogonal unit vectors). (Section 2.10.2)

Shown right are arbitrary vectors $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ expressed in terms of right-handed orthogonal unit vectors $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}, \widehat{\mathbf{k}}$. Show that calculating $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$ with the distributive property of the cross product (seen in Hw 2.11) happens to be equal to the determinant of the matrix shown to the right.

$$
\overrightarrow{\mathbf{v}}=a \widehat{\mathbf{i}}+b \widehat{\mathbf{j}}+c \widehat{\mathbf{k}}
$$

$$
\overrightarrow{\mathbf{w}}=x \widehat{\mathbf{i}}+y \widehat{\mathbf{j}}+z \widehat{\mathbf{k}}
$$

$\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}=\operatorname{det}\left[\begin{array}{ccc}\widehat{\mathbf{i}} & \widehat{\mathbf{j}} & \widehat{\mathbf{k}} \\ a & b & c \\ x & y & z\end{array}\right]$
Result: $\quad \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}=(b z-\square) \widehat{\mathbf{i}}+(\square-a z) \widehat{\mathbf{j}}+(\square) \widehat{\mathbf{k}}$

2.13 \& Cross product as skew-symmetric matrix multiplication. (Section 2.10.3)

Shown right, calculate the 3×3 skew symmetric matrix multiplied by the 3×1 column matrix. In view of $\operatorname{Hw} 2.11$, the $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}, \widehat{\mathbf{k}}$ coefficients of $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$ happen to be equal to the elements that result from skew symmetric matrix multiplication.

$$
\left[\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
b z-\square \\
\square-a z \\
\square
\end{array}\right]
$$

Skew symmetric matrix multiplication is an inefficient way to calculate a cross product True/False .
Note: The number of mathematical operations required to multiply the 3×3 matrix by the 3×1 matrix (including multiplication by 0) is 9 multiplications and 6 additions/subtractions whereas the number of operations to calculate the elements of the simplified answer is 6 multiplications and 3 subtractions.
Note: Using skew symmetric matrix multiplication for a cross product is useful in theory/proofs, e.g., Section 9.5.2.

2.14 \& Scalar triple product with bases. (Section 2.11)

The figure shows right-handed orthogonal unit vectors $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}, \widehat{\mathbf{k}}$. Given
$\overrightarrow{\mathbf{u}}=2 \widehat{\mathbf{i}}+3 \widehat{\mathbf{j}}+4 \widehat{\mathbf{k}}$

Calculate

$\overrightarrow{\mathbf{v}}=x \widehat{\mathbf{i}}+y \widehat{\mathbf{j}}+z \widehat{\mathbf{k}}$
$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}=$
$\overrightarrow{\mathbf{w}}=5 \widehat{\mathbf{i}}-6 \widehat{\mathbf{j}}+7 \widehat{\mathbf{k}}$
$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}=\square z-\square x-6 y$

Note: Although the order of operations in $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$ is unambiguous, parentheses may clarify your work. $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$ and it is OK to switch \cdot and \times in scalar triple products. True/False.
2.15 O Optional: Scalar triple products and determinants. (Section 2.11)

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}=a_{x} \widehat{\mathbf{n}}_{\mathrm{x}}+a_{y} \widehat{\mathbf{n}}_{\mathrm{y}}+a_{z} \widehat{\mathbf{n}}_{\mathrm{z}} \\
& \overrightarrow{\mathbf{b}}=b_{x} \widehat{\mathbf{n}}_{\mathrm{x}}+b_{y} \widehat{\mathbf{n}}_{\mathrm{y}}+b_{z} \widehat{\mathbf{n}}_{\mathrm{z}} \\
& \overrightarrow{\mathbf{c}}=c_{x} \widehat{\mathbf{n}}_{\mathrm{x}}+c_{y} \widehat{\mathbf{n}}_{\mathrm{y}}+c_{z} \widehat{\mathbf{n}}_{\mathrm{z}} \\
& \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|
\end{aligned}
$$

Given arbitrary vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ expressed in terms of righthanded orthogonal unit vectors $\widehat{\mathbf{n}}_{\mathrm{x}}, \widehat{\mathbf{n}}_{\mathrm{y}}, \widehat{\mathbf{n}}_{\mathrm{z}}$ as shown right, show that calculating $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ happens to be equal to the determinant of the matrix shown to the right.
$2.16 \dagger$ Optional: Form $\overrightarrow{\mathbf{v}}$ from $\overrightarrow{\mathbf{v}} \cdot \widehat{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}} \times \widehat{\mathbf{u}}$. Show work. (Table in Section 2.10)
Given: $\overrightarrow{\mathbf{v}} \cdot \widehat{\mathbf{a}}_{\mathrm{x}}=15 \quad \overrightarrow{\mathbf{v}} \times \widehat{\mathbf{a}}_{\mathrm{x}}=5 \widehat{\mathbf{a}}_{\mathrm{z}}$
Form: Vector $\overrightarrow{\mathbf{v}}$ in terms of right-handed orthogonal unit vectors $\widehat{\mathbf{a}}_{\mathrm{x}}, \widehat{\mathbf{a}}_{\mathrm{y}}, \widehat{\mathbf{a}}_{\mathrm{z}}$.
Result: $\overrightarrow{\mathbf{v}}=\square \widehat{\mathbf{a}}_{\mathrm{x}}-\square \widehat{\mathbf{a}}_{\mathrm{y}}$
Given: Unit vector $\widehat{\mathbf{u}}=0.6 \widehat{\mathbf{a}}_{\mathrm{x}}+0.8 \widehat{\mathbf{a}}_{\mathrm{y}} \quad \overrightarrow{\mathbf{v}} \cdot \widehat{\mathbf{u}}=15 \quad \overrightarrow{\mathbf{v}} \times \widehat{\mathbf{u}}=4 \widehat{\mathbf{a}}_{\mathrm{x}}-3 \widehat{\mathbf{a}}_{\mathrm{y}}+5 \widehat{\mathbf{a}}_{z}$. Form: Vector $\overrightarrow{\mathbf{v}}$ in terms of right-handed orthogonal unit vectors $\widehat{\mathbf{a}}_{\mathrm{x}}, \widehat{\mathbf{a}}_{\mathrm{y}}, \widehat{\mathbf{a}}_{\mathrm{z}}$.
Result: $\overrightarrow{\mathbf{v}}=\quad \widehat{\mathbf{a}}_{\mathrm{x}}+\square \widehat{\mathbf{a}}_{\mathrm{y}}-\widehat{\mathbf{a}}_{\mathrm{z}} \quad$ Note: $\overrightarrow{\mathbf{v}} \times \widehat{\mathbf{u}}$ is not arbitrary. It is perpendicular to $\widehat{\mathbf{u}}$.
Given: $\overrightarrow{\mathbf{s}}=0.6 \widehat{\mathbf{a}}_{1}+0.8 \widehat{\mathbf{a}}_{2} \quad \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{s}}=15 \quad \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{s}} \approx 2.07846 \widehat{\mathbf{a}}_{1}-3 \widehat{\mathbf{a}}_{2}+5 \widehat{\mathbf{a}}_{3}$.
Form: Vector $\overrightarrow{\mathbf{v}}$ in terms of right-handed non-orthogonal unit vectors $\widehat{\mathbf{a}}_{1}, \widehat{\mathbf{a}}_{2}, \widehat{\mathbf{a}}_{3}$.
Result: $\quad \overrightarrow{\mathbf{v}} \approx 12.476 \widehat{\mathbf{a}}_{1}+3.643 \widehat{\mathbf{a}}_{2}-\square \widehat{\mathbf{a}}_{3} \quad$ (Hint: $\overrightarrow{\mathbf{s}}$ is $\underline{\text { not a unit vector). }}$

2.17 \& Cross products: Commercial area calculation algorithm (surveying). (Sections 2.10.1, 3.3) Complex planar objects such as the polygon B below can be decomposed into triangles for important planar measurements (e.g., farming acreage, building costs, and mass and area properties of 2D objects).

- Number the vertices sequentially in counter-clockwise fashion.
- Label a vertex B_{0} and number the remaining vertices sequentially in counte
- Form ${ }^{B_{0}} \overrightarrow{\mathbf{r}}^{B_{i}}$, the position from B_{0} to $B_{i}(i=1,2, \ldots)$
- Calculate $\overrightarrow{\mathbf{A}}_{2}$ and $\overrightarrow{\mathbf{A}}_{4}$, the vector-areas of triangles $B_{0} B_{2} B_{3}$ and $B_{0} B_{4} B_{5}$.

- Account for overlapped areas with positive and negative vector areas.

Result: [Just fill in the calculations for $\overrightarrow{\mathbf{A}}_{2}, \overrightarrow{\mathbf{A}}_{4}$, and \mathbf{A} using eqn (3.4)].

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}_{1}={ }^{B_{0} \overrightarrow{\mathbf{r}}^{B_{1}}}=2.0 \widehat{\mathbf{b}}_{\mathrm{x}}+2.0 \widehat{\mathbf{b}}_{\mathrm{y}} \\
& \overrightarrow{\mathbf{r}}_{2}={ }^{B_{0} \overrightarrow{\mathbf{r}}^{B_{2}}}=0.5 \widehat{\mathbf{b}}_{\mathrm{x}}+2.5 \widehat{\mathbf{b}}_{\mathrm{y}} \\
& \overrightarrow{\mathbf{r}}_{3}={ }^{B_{0} \overrightarrow{\mathbf{r}}^{B_{3}}}=3.0 \widehat{\mathbf{b}}_{\mathrm{x}}+4.0 \widehat{\mathbf{b}}_{\mathrm{y}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}_{5}={ }^{B_{0} \overrightarrow{\mathbf{r}}^{B_{5}}}=-1.0 \widehat{\mathbf{b}}_{\mathrm{x}}+5.0 \widehat{\mathbf{b}}_{\mathrm{y}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}_{8}={ }^{B_{0} \stackrel{\mathbf{r}}{ }^{B_{8}}}=-2.0 \widehat{\mathbf{b}}_{\mathrm{x}}+0.0 \widehat{\mathbf{b}}_{\mathrm{y}}
\end{aligned}
$$

$\overrightarrow{\mathbf{A}}_{1}=\frac{1}{2}\left(\overrightarrow{\mathbf{r}}_{1} \times \overrightarrow{\mathbf{r}}_{2}\right)$	$=2 \widehat{\mathbf{b}}_{z}$
$\overrightarrow{\mathbf{A}}_{2}=\frac{1}{2}\left(\overrightarrow{\mathbf{r}}_{2} \times \overrightarrow{\mathbf{r}}_{3}\right)$	$=\square .75 \widehat{\mathbf{b}}_{z}$
$\overrightarrow{\mathbf{A}}_{3}=\quad \ldots$	$=11.5 \widehat{\mathbf{b}}_{z}$
$\overrightarrow{\mathbf{A}}_{4}=\quad \ldots$	$=\square .25 \widehat{\mathbf{b}}_{z}$
$\overrightarrow{\mathbf{A}}_{5}=\quad \ldots$	$=4.5 \widehat{\mathbf{b}}_{z}$
$\overrightarrow{\mathbf{A}}_{6}=\frac{1}{2}\left(\overrightarrow{\mathbf{r}}_{6} \times \overrightarrow{\mathbf{r}}_{7}\right)$	$=6 \widehat{\mathbf{b}}_{z}$
$\overrightarrow{\mathbf{A}}=\sum_{i=1}^{6} \overrightarrow{\mathbf{A}}_{i}$	$=$
Area $=\|\overrightarrow{\mathbf{A}}\|$	$=23.5$

Planar objects, courtesy of Working Model and Design-Simulation Technologies.
2.18 Locating a microphone (2D). Show work. (Section 1.4)

A microphone Q is attached to two pegs B and C by two cables. Knowing the peg locations, cable lengths, and points B, C, Q, N_{o} all lie in the same plane, determine the distance between Q and N_{o}. Do the problem with Euclidean geometry (e.g., law of cosines), then try vectors (see Hw 1.38).

Distance between B to C		15 m
Distance between N_{o} to B	h	8 m
Length of cable joining B and Q	L_{B}	9 m
Length of cable joining C and Q	L_{C}	8 m
Distance between N_{o} and Q		9.01 m

Note: Although there are two mathematical answers to this problem, one is above the ceiling by $\approx 12 \mathrm{~m}$ and requires the cables to be in compression.

$2.19 \dagger$ Locating a microphone (3D).

A microphone Q is attached to three pegs A, B, and C by three cables. Knowing the peg locations and cable lengths, determine the distance between Q and point N_{o}. Show work. ${ }^{2}$

Distance between A to B		20 m
Distance between B to C		15 m
Distance between N_{o} to B	h	8 m
Length of cable joining A and Q	L_{A}	15 m
Length of cable joining B and Q	L_{B}	13 m
Length of cable joining C and Q	L_{C}	11 m
Distance between N_{o} and Q		13.3 m
If Q is above ceiling, distance $\approx 17 \mathrm{~m}$		

Note: This is part of the process of a camera targeting a football/baseball in a stadium or laser targeting cancer or ...
Vocabulary: In this forward kinematics analysis, the cable lengths are known and you determine the position of "end-effector" Q.
$2.20 \dagger$ Cable length to keep a window-washer's beam stationary and horizontal. Show work. A beam B is attached to the roof of a building N by two relatively light (massless) cables A and C. Cable A attaches to the roof at point N_{o} of N and to the beam at point B_{o} of B.
Cable C attaches to the roof at point N_{C} of N and to the beam at point B_{C} of B.
$N_{\mathrm{o}}, B_{\mathrm{o}}, B_{\mathrm{cm}}, B_{C}, N_{C}$ are all in the same vertical plane. $\quad B_{\mathrm{cm}}$ (center of mass of beam/workers) is $\frac{L_{B}}{4}$ from B_{o}.

Description	Symbol	Type	Value
Distance between N_{o} and N_{C}	L_{N}	Constant	15 m
Distance between B_{o} and B_{C}	L_{B}	Constant	7 m
Length of cable A	L_{A}	Constant	7 m
Length of cable C	L_{C}	Constant	$? ? \mathrm{~m}$

Determine L_{C} so the beam stays horizontal.
Result: $L_{C}=9 \mathrm{~m}$

If $L_{B}=L_{N}$, intuition/analysis predicts $L_{C}=L_{A}$ (vertical cables), independent of B_{cm} 's location between B_{o} and B_{C}.

2.21 Optional: Draw the free-body diagram (FBD) for each object below.

[^2]
[^0]: ${ }^{1}$ One way to prove this is to write $(\overrightarrow{\mathbf{v}} \times \widehat{\boldsymbol{\lambda}})^{2}=(\overrightarrow{\mathbf{v}} \times \widehat{\boldsymbol{\lambda}}) \cdot(\overrightarrow{\mathbf{v}} \times \widehat{\boldsymbol{\lambda}})_{(2.13)}^{=} \overrightarrow{\mathrm{v}} \cdot[\widehat{\boldsymbol{\lambda}} \times(\overrightarrow{\mathbf{v}} \times \widehat{\boldsymbol{\lambda}})]$ and then use the vector triple cross-

[^1]: ${ }^{1}$ Hint: The distributive property for vector dot-multiplication is $(\vec{a}+\vec{b}) \cdot(\vec{c}+\vec{d})=\vec{a} \cdot \vec{c}+\vec{a} \cdot \vec{d}+\vec{b} \cdot \vec{c}+\vec{b} \cdot \vec{d}$. Use the distributive property to express $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{r}}$ in terms of x, L_{B}, and $\widehat{\mathbf{n}}_{\mathrm{x}} \cdot \widehat{\mathbf{b}}_{\mathbf{x}}$. Thereafter, use the dot-product definition of $\left(\widehat{\mathbf{n}}_{\mathbf{x}} \cdot \widehat{\mathbf{b}}_{\mathbf{x}}\right)$ to form $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{r}}=\square^{2}+\square^{2}+2 x L_{B}\left(\widehat{\mathbf{n}}_{\mathbf{x}} \cdot \widehat{\mathbf{b}}_{\mathbf{x}}\right) \underset{(2.2)}{\overline{=}} \square^{2}+\square^{2}+2 x L_{B} \cos (\square)$.

[^2]: ${ }^{2}$ Hint: See Homework 1.38 or Section 3.4. Introduce whatever identifiers facilitate your work. Although nonlinear algebraic equations are usually solved with a computer, these can also be solved "by-hand".
 Solution at www.MotionGenesis.com \Rightarrow Get Started $\Rightarrow 2 D / 3 D$ geometry. Alternatively, go to www.WolframAlpha.com and type Solve $\quad x^{\wedge} 2+(-20+z)^{\wedge} 2+(-8+y)^{\wedge} 2=225, \quad x^{\wedge} 2+z^{\wedge} 2+(-8+y)^{\wedge} 2=169, \quad z^{\wedge} 2+(-15+x)^{\wedge} 2+(-8+y)^{\wedge} 2=121$

