
Homework 1. Chapter 2.
Basis independent vector operations: -�b 5�b �a +�b ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) �a ············· �b �a × �b

Show work – except for ♣ fill-in-blanks (print .pdf from www.MotionGenesis.com ⇒ Textbooks ⇒ Resources).

1.1 ♣ Solving problems – what physicists and engineers do.
Understanding dynamics results from doing problems. Many problems herein guide
you to help you synthesize processes (imitation). Please do these problems by yourself
or with colleagues/instructors and use the textbook and other resources.

Confucius 500 B.C. “By three methods we may learn wisdom:
“I hear and I forget. 1st by reflection, which is noblest;
I see and I remember. 2nd by imitation, which is easiest;
I and I understand.” 3rd by experience, which is the bitterest.”

1.2 ♣ What is a vector (as defined by Gibbs circa 1897)? (Section 2.2)

Two properties (attributes) of a vector are and (fill in the blanks).

1.3 ♣ What is a zero vector? (Section 2.3)

A zero vector �0 has a magnitude of 0 (
���0�� = 0). True/False (circle true or false).

A zero vector �0 has a direction. True/False
any�Vector + �0 = any�Vector True/False
A zero vector �0 is parallel to any vector �v. True/False .

A zero vector �0 is perpendicular to any vector �v. True/False .

1.4 ♣ Unit vectors. (Section 2.4)

All unit vectors have a magnitude of 1 (e.g.,
∣∣̂i∣∣ = 1,

∣∣̂j∣∣ = 1,
∣∣k̂∣∣ = 1). True/False

Typically, a unit vector is denoted with a hat, e.g., as k̂ rather than �k. True/False

All unit vectors are equal. True/False

A unit vector û in the direction of the non-zero vector �v is û = �v∣∣�v∣∣ . True/False

The set of unit vectors Êast, N̂orth, Ûp span 3D space (the world in which we live). True/False

In general, unit vectors have units (e.g., degrees or meters or m
s

or . . . ). True/False

1.5 ♣ Negating a vector. (Section 2.8)

Draw the vector -�b. Negating the vector �b results in a vector with different:
magnitude direction orientation sense (circle all that apply)

Historical note: Negative numbers (e.g., -3) were not widely accepted until 1800 A.D.

b

1.6 ♣ Vector magnitude and direction (orientation and sense). (Section 2.2)

The figure to the right shows a vector �v. Draw the vectors �a, �b, �c, �d, �e.
�a Same magnitude and direction as �v (�a = �v).
�b Same magnitude as �v, with �b = -�v (antiparallel, �b has a different sense than �v).
�c Same magnitude as �v, but different direction with �c �= -�v (different orientation).
�d Smaller magnitude than �v, but same direction as �v.
�e Different magnitude and different direction than �v.

v

1.7 ♣ Vector magnitude and direction. (Section 2.2)

Knowing x is a real number (e.g., -3 or 0 or 7.8) and û is
a horizontal unit vector , complete magnitude with
≤≤≤≤≤≤≤≤≤≤≤≤≤ or ≥≥≥≥≥≥≥≥≥≥≥≥≥ and complete direction with +û or -û.

Vector with Magnitude Direction
x û x ≥ 0

∣∣x û
∣∣ ≥≥≥≥≥≥≥≥≥≥≥≥≥ 0 +û

x û x ≤ 0
∣∣x û

∣∣ 0
-x û x ≥ 0

∣∣ -x û
∣∣ 0

-x û x ≤ 0
∣∣ -x û

∣∣ 0

Copyright c© 1992-2022 Paul Mitiguy. All rights reserved. 293 Homework 1: Vectors – basis independent



1.8 ♣ Optional: Multiplying a vector by a scalar. (Section 2.7)

The following statements involve a unit vector û and a real scalar s (s �= 0).
If a statement is true, provide any numerical value for s that supports your
answer, and if true also draw a corresponding vector, i.e., �a or �b or �c.
s û can have a different magnitude than û. If true s = , draw �a.
s û can have a different direction than û. If true s = , draw �b.
s û can have different magnitude and direction than û. If true s = , draw �c.

u

1.9 ♣ Graphical vector addition/subtraction. (Sections 2.6, 2.8)

Draw �a +�b Draw �a + -�b Draw �b−�a Draw -�a −�b

b

a

1.10 ♣ Insights into orthogonal vectors via drawing. (Section 2.10)

Draw unit vectors b̂ and ĉ such that:
• b̂ is perpendicular to â (�a is vertically-upward as shown right).
• ĉ is perpendicular to b̂ but ĉ is neither parallel or perpendicular to â.

a

1.11 ♣ Angle ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) between vectors. (Section 2.9)

For the figure shown right, determine the numerical value
for the angle between vector �a and vector �b.
Result: ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) = ◦

b

a

30o

30o

1.12 ♣ Visual representation of a vector dot-product. (Section 2.9)

Write the definition of the dot-product of a vector �a with a vector �b.
Include a sketch with each symbol in your definition clearly labeled.
Result: �a ············· �b �

Knowing �a and �b are arbitrary vectors, complete the blanks with ≤ , = , or ≥ .

When the angle between �a and �b is 0◦ �a ············· �b 0 (parallel)

When the angle between �a and �b is 90◦ �a ············· �b 0 (perpendicular)

When the angle between �a and �b is 180◦ �a ············· �b 0 (antiparallel)

For arbitrary vectors �a and �b, �a ············· �b �b ············· �a
Sketch should include

�a, �b,
���a��, ���b��, θ.

1.13 ♣ Visual representation of a vector cross-product. (Section 2.10)

Write the definition of the cross-product of a vector �a with a vector �b.
Include a sketch with each symbol in your definition clearly labeled.
Result: �a × �b � (θ) û

where û is

and θ is

Knowing �a and �b are non-zero vectors, complete the blanks with = or �= .

When the angle between �a and �b is 0◦ �a × �b �0 (parallel)

When the angle between �a and �b is 90◦ �a × �b �0 (perpendicular)

When the angle between �a and �b is 180◦ �a × �b �0 (antiparallel)

For arbitrary vectors �a and �b, �a × �b �b × �a

Sketch should include
�a, �b,

���a��, ���b��, θ, �u.
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1.14 Properties of vector dot/cross-products Draw/show work. �a �= �0, �b �= �0. (Sections 2.9.1, 2.10)

When �a is parallel to �b, �a ············· �b = 0 True/False �a ×�b = �0 True/False

When �a is perpendicular to �b, �a ············· �b = 0 True/False �a ×�b = �0 True/False

For arbitrary vectors �a and �b, �a ············· �b = �b ············· �a True/False �a ×�b = �b ×�a True/False

1.15 Dot-products and cross-products via definitions. Show work. (Sections 2.9, 2.10)

• Draw a unit vector k̂ outward-normal to the plane of the paper (perpendicular to �a and �b).
• Redraw each figure to clarify ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b), the angle between �a and �b (useful for dot and cross-product).
• Knowing

∣∣�a∣∣ = 2 and
∣∣�b∣∣ = 4, calculate each expressions below (2+ significant digits) using only

the definitions of dot-product and cross-product.

a

b

∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) = ◦

�a ············· �b =

�a × �b = -8 k̂

a

b

∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) = ◦

�a ············· �b =

�a × �b =

a

b

60o

∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) = ◦

�a ············· �b =

�a × �b =

a

b

60o

∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) = ◦

�a ············· �b =

�a × �b =

1.16 Visual estimation of vector dot/cross-products. Show work. (Sections 2.9, 2.10)

Estimate the magnitude of the vector �q shown below, the angle between �p and �q, �p ············· �q, and the
magnitude of �p × �q. Show work and redraw to clarify the angle between �p and �q.
Result: (Provide numerical results with 1 or more significant digits).∣∣�p∣∣ ≈ 4.0 cm

∣∣�q∣∣ ≈ cm ∠∠∠∠∠∠∠∠∠∠∠∠∠(�p, �q) ≈ ◦

�p ············· �q ≈ cm2
∣∣�p × �q

∣∣ ≈ cm2

q
pNote: 1 inch = 2.54 cm

1.17 ♣ Vector operations and units. (Chapter 2)

Each vector operation below involves a position vector �r (with units of m) and/or a velocity vector
�v (with units of m

s
). Determine whether the operation produces a well-defined scalar or vector or is

undefined. If well-defined, determine the associated units.

Operation: -�r 5�v 5 m
s

+ �v �r + 2�r �r + �v 5 m
s
············· �v �r ············· �v �r × �v

Produces: vector

Units: meters

1.18 ♣ Vector exponentiation: �v2 = �v ············· �v and �v3. (Section 2.9)

The following is a reasonable proof that �v2 = �v ············· �v. True/False (if False, provide a proof).

�v2 �
∣∣�v∣∣2 �v ············· �v �

(2.2)

∣∣�v∣∣ ∣∣�v∣∣ cos(0◦) =
∣∣�v∣∣2 �v2 = �v ············· �v

Complete the proof that relates �v3 to �v ············· �v raised to a real number.
Result: ∣∣�v∣∣ =

(2.4)

√
············· �v3 �

∣∣�v∣∣ =
( √

············· )
= (�v ············· �v)

3
2

1.19 ♣
∣∣c âx

∣∣ Calculate vector magnitude with dot products. (Section 2.9 and Hw 1.18)

Show how the vector dot-product can be used to show that the magnitude of the vector c âx (c is a
positive or negative number and âx is a unit vector) can be written solely in terms of c (without âx).
Result: ∣∣c âx

∣∣ = +
√

············· = +
√

c2 ∗ ············· = +
√

c2 = abs(c)
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1.20 †††††††††††††(Challenge) Magnitude of the vector �v. Show work. (Section 2.9)

Knowing the angle between a unit vector î and unit vector ĵ is 120◦,
calculate a numerical value for the magnitude of �v = 3 î + 4 ĵ.
Result: ∣∣�v∣∣ =

√
13 Note: The answer is not

√
25 = 5.

i

j

1.21 ♣ Property of scalar triple product. (Section 2.11)

For arbitrary non-zero vectors �a, �b, �c: �a ············· (�b ×�c) = (�a × �b) ·············�c Never/Sometimes/Always
A property of the scalar triple product is �a ············· �b ×�a = 0. True/False .

1.22 ♣ Property of vector triple cross-product. (Sections 2.10, 2.11)

Complete the following equation: �a × (
�b ×�c

)
= �b

( ) − �c
( )

For arbitrary vectors �a, �b, �c: �a × (�b×�c) = (�a×�b)× �c + �b × (�a×�c) True/False (show work).

1.23 ♣ Optional: Proof of magnitude of vector cross product property. (Sections 2.9, 2.10)

Letting λ̂̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ be a unit vector and �v be any vector, prove1
∣∣�v × λ̂̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ

∣∣2 = �v ············· �v − (�v ············· λ̂̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ)2.

1.24 ♣ Form the unit vector û having the same direction as c âx. (Section 2.4)

Result: û = âx Note: �ax is a unit vector and c is a non-zero real number, e.g., 3 or -3.

1.25 ♣ Coefficient of û in cross products – definitions and trig functions. (Section 2.10)

The cross product of vectors �a and �b can be written in terms of a real scalar s as �a×�b = s û
where û is a unit vector perpendicular to both �a and �b in a direction defined by the right-hand
rule. The coefficient s of the unit vector û is inherently non-negative. True/False .

1.26 Distance between a point and a line via cross-products. Show work. (Section 2.10.1)

Draw a horizontally-right unit vector âx and vertically-upward unit vector ây.
Draw a point P and a line L through P that is parallel to û = 3

5 âx + 4
5 ây.

Draw a point Q whose position vector from point P is �r = 5 âx (also draw �r).
Draw the distance d between Q and L.
Calculate d with the cross-product formula in eqn (3.3).
Result:d =

(3.3)
= 4 d =

(3.3)
= 4

1.27 ♣ Ranges of angles from dot-product and cross-product calculations. (Sections 2.9, 2.10)

Quantity Numerical range of values
c = â ············· b̂ (assume �a and �b are known so a numerical value for �a ············· �b can be calculated). ≤ c ≤
s =

∣∣â × b̂
∣∣ (assume �a and �b are known so a numerical value for

���a × �b
�� can be calculated). ≤ s ≤

Angle θc between â and b̂ that can be uniquely determined solely from c.
◦ ≤ θc ≤ ◦

Angle θs between â and b̂ that can be uniquely determined solely from s.
◦ ≤ θs ≤ ◦

Angle θ between â and b̂, i.e., θ = ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b)
◦ ≤ θ ≤ ◦

Note: The range of θs is smaller than the range for θ. Hence, s and θs are insufficient to correctly calculate θ.
What this means: Use the dot-product ············· to calculate an angle θ from two given/known vectors �a and �b.

1One way to prove this is to write (�v×�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ)
2

= (�v×�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ) ············· (�v×�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ) =
(2.13)

�v ············· [�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ × (�v×�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ)] and then use the vector triple cross-

product property �a × (�b×�c) = �b(�a ·············�c) −�c(�a ·············�b) from Section 2.10. Alternatively, it is helpful to write �v = �v⊥ �λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ⊥ + �v|| �λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ
where �v⊥ �λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ⊥ is the component of �v that is perpendicular to �λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ and �v|| �λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ is the component of �v that is parallel to �λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ�λ.
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1.28 Biomechanics: Gravity moment for curling �M = �r × �F Show work. (Section 2.10)

The figures to the right show an athlete curling a dumbbell (mod-
eled as a particle Q of mass m). The forearm connects to the upper
arm at the elbow (point E). Orthogonal unit vectors n̂x, n̂y, n̂z

are directed with n̂y vertically upward and n̂x from E to Q.
Description Symbol Type
Earth’s gravitational constant g g ≈ 9.8 m

s2

Mass of dumbbell Q m Positive constant
Distance between elbow E and Q L Positive constant

The moment of gravity forces on Q about E is �M = �r × �F
where �F = -m g n̂y. Express �M in terms of m, g, L, n̂z.

Result:
�M = �r × �F =

Now consider the forearm making an angle θ with downward
vertical. Form �M and its magnitude

∣∣�M∣∣. Determine the values
of θ (0 ≤ θ ≤ 135◦) that produce maximum and minimum

∣∣�M∣∣.
To simplify

���M��, note m, g, L are positive and for 0 ≤ θ ≤ 135◦, sin(θ) ≥ 0.
Result: (in terms of m, g, L, θ, �nz).

�M = �r × �F =
∣∣�M∣∣ =

Optional: Modeling the elbow as a revolute joint, draw a free-body

diagram (FBD) of the system consisting of the forearm and dumbbell.
Max

∣∣�M∣∣ = at θ =
◦

Min
∣∣�M∣∣ = at θ =

◦

1.29 Biomechanics: Gravity force and moment for tennis �M = �r × �F Show work. (Section 2.10)

Shown right is an athlete whose arm A swings a tennis racquet B. Point S
(shoulder), Acm (A’s center of mass), and Bcm (B’s center of mass) lie along a line
parallel to a unit vector â. The unit vector d̂ is vertically-downward ↓↓↓↓↓↓↓↓↓↓↓↓↓.
Description Symbol Type
Earth’s gravitational constant g g ≈ 9.8 m

s2

Mass of A, mass of B mA, mB Positive constants
Distances between S and Acm and S and Bcm LA, LB Positive constants
Angle between â and d̂ θ 0 ≤ θ ≤ 180◦

• Form �Fgravity (the net force on A and B due to Earth’s gravity).
• Form

∣∣�M∣∣ (the magnitude of the moment of those gravity forces about S).
Note: �M = S�rAcm × mA g �d + S�rBcm × mB g �d.

Result: �Fgravity = ( ) d̂∣∣�M∣∣ =

Optional: Modeling the athlete grip of the racquet as a weld, draw a free-body diagram (FBD) of the racquet.

Next, choose a model for the shoulder joint and draw a FBD of the system consisting of the arm and racquet.

1.30 †††††††††††††Optional: Draw the free-body diagram (FBD) for each object below.

A

Q

Helicopter A Skidding vehicle Fidget spinner B Forearm B Left balloon Athlete
Hw 12.24 Hw 15.6 Hw 15.12, 15.13 Hw 15.19 Hw 16.11 Hw 17.20
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1.31 ♣ Using vector identities to simplify expressions (refer to Homework 1.14)

One reason to treat vectors as basis-independent quantities is to simplify vector expressions with-
out resolving the vectors into orthogonal “�x, �y, �z” or “�i,�j, �k” components. Simplify the following
vector expressions using mathematical properties of dot-products and cross-products.

Express results in terms of
dot-products ············· and cross-
products × of the arbitrary
vectors �u, �v, �w.
�u, �v, �w are not

necessarily orthogo-

nal or co-planar.

w

v
u

Vector expression Simplified vector expression

(3�u − 2�v) × (�u + �v) �u×�v

(3�u − 2�v) ············· (�u + �v) �u2 − �v2 + �u ············· �v

(�u − �v) ············· (�u + �v) −
(3�u − 2�v) × (�u + �v) ············· (2�u − 7�v)
(�u + �v) × (�v + 2 �w) ············· (�w + 2�u) �u ×�v ············· �w

1.32 ♣ Vector concepts: Solving a vector equation? (Section 2.9.3)

Shown right is a vector equation and a questionable process that solves
for vx (�ax is a unit vector and vx, θ̇, R are scalars).
This is a valid process to solve for vx. True/False .

vx âx = θ̇ R âx

vx = θ̇ R
âx

âx
= θ̇ R

Explain:

1.33 Change a vector equation to scalar equations. Show work. (Section 2.9.3)

Draw three mutually orthogonal unit vectors p̂, q̂, r̂.
Use a vector operation (e.g., +, ∗, ············· , × ) to change the vector equation (2x−4) p̂ = �0
into one scalar equation and subsequently solve the scalar equation for x.
Result: (2x − 4) p̂ = �0 ??⇒ (2x − 4) = 0 ⇒ x = 2

Show every vector operation (e.g., +, ∗, ············· , × ) that changes the following vector equation
into three scalar equations and subsequently solve the scalar equations for x, y, z.

(2x − 4) p̂ + (3 y − 9) q̂ + (4 z − 16) r̂ = �0
Result: (2x − 4) = 0 (3 y − 9) = 0 ( ) = 0

x = 2 y = 3 z = 4

††††††††††††† The figure to the right shows three non-orthogonal, non-coplanar vectors �i,�j, �k.
Show every vector operation that changes the following vector equation into three
uncoupled scalar equations and subsequently solve those scalar equations for x, y, z.

(2x − 4)�i + (3 y − 9)�j + (4 z − 16) �k = �0
Result: (2x − 4) = 0 (3 y − 9) = 0 ( ) = 0

x = 2 y = 3 z = 4
Hint: think × ············· ,
not matrix algebra. i

j

k

Copyright c© 1992-2022 Paul Mitiguy. All rights reserved. 298 Homework 1: Vectors – basis independent



1.34 ♣ Number of independent scalar equations from 1 vector equation. (Section 2.9.3)

The vector equation shown right is useful for static analyses of a system S. �F
S

= �0

In the table to the right, box all integers that could be equal to
the number of independent scalar equations produced by the
previous vector equation. Hint: Hw 1.33. Related Hw 17.15.

System type Integer(s)

1D (line) 0 1 2 3 4+

2D (planar) 0 1 2 3 4+

3D (spatial) 0 1 2 3 4+
Note: 1D/linear means �F

S
can be expressed in terms of one vector �i.

2D/planar means �F
S

can be expressed in terms of two non-parallel unit vectors �i and �j.
3D/spatial means �F

S
can be expressed in terms of three non-coplanar unit vectors �i, �j, �k.

1.35 ♣ Vector concepts: Solving a vector equation (just circle true or false and fill-in the blank).
Consider the following vector equation written in terms of the scalars x, y, z
and three unique non-orthogonal coplanar unit vectors â1, â2, â3.

(2x − 4) â1 + (3 y − 9) â2 + (4 z − 16) â3 = �0

The unique solution to this vector equation is x = 2, y = 3, z = 4. True/False .

a3 a2

a1

Explain: â2 can be expressed in terms of â1 and â3 (i.e., �a2 is a linear combination of �a1 and �a3).
Hence the vector equation produces linearly independent scalar equations.

1.36 ♣ Gibbs (≈1900AD) vectors revolutionizes Euclidean geometry (300 BC). (Sections 2.9.2, 2.10.1, 2.11.1)

For each geometrical quantity shown right, circle the
vector operation(s) (dot-product, cross-product, or both)

that is most useful for their calculation.

Length: ············· × Angle: ············· ×
Area: ············· × Volume: ············· ×

1.37 ♣ Order of operations with vector dot products (·········································································································································································) and cross products (×××××××××××××). (Chapter 2)

Create a valid expression by adding parentheses to each expres-
sion or ������������cross-out the expression if it is inherently invalid.
Example: 3 ∗�a + �b ⇒ (((((((((((((3 ∗�a))))))))))))) + �b.

�a ············· �b +�c �a ············· �b ×�c �a + 5 ×�c

�a ×�b +�c �a × �b ·············�c �a ············· �b ············· �c

1.38 ††††††††††††† Microphone cable lengths (non-orthogonal walls) “It’s just geometry”. Show work.

A microphone Q is attached to three pegs A, B, C by three cables. Knowing the peg locations,
microphone location, and the angle θ between the vertical walls, express LA, LB , LC solely in terms
of numbers and θ. Next, complete the table by calculating LB when θ = 120◦.
Hint: To do this efficiently, use one set of non-orthogonal unit vectors (do not use an orthogonal set of unit vectors).
Hint: Use the distributive property of the vector dot-product as shown in Section 2.9.1 and Homework 2.4.

Note: Synthesis problems are difficult. Think, talk, draw, sleep, walk, get help, . . . (if necessary, read Section 3.4).

A C

Q

No

1520

5

7

8

Note: The floor is horizontal, the walls are vertical. 

B

8

θ

LA
LB LC

Distance between A and B 20 m
Distance between B and C 15 m
Distance between No and B 8 m
Distance along back wall (see picture) 7 m
Q’s height above No 5 m
Distance along side wall (see picture) 8 m
LA: Length of cable joining A and Q 16.9 m
LB: Length of cable joining B and Q 8.1 m
LC : Length of cable joining C and Q 14.2 m

Result: LA =
√

202 − cos(θ) LB =
√

122 + 112 cos(θ) LC =
√

− 128
Vocabulary: In this inverse kinematics analysis, the position of “end-effector” Q is known and you determine the cable lengths.

• Knowing β is defined as the angle between lines B No and B Q, show β ≈ 68.33◦ .
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Homework 2. Chapters 1, 2, 3, 4.
Vector addition, dot products, and cross products: + ············· ×

Show work – except for ♣ fill-in-blanks (print .pdf from www.MotionGenesis.com ⇒ Textbooks ⇒ Resources).

2.1 ♣ Right-handed, orthogonal, unit vectors. (Section 4.1)

Draw a set of right-handed orthogonal (mutually perpendicular) unit vectors
consisting of n̂x, n̂y, n̂z. In other words, draw n̂x, n̂y, n̂z so that n̂y is
perpendicular (orthogonal) to n̂x and n̂z = n̂x × n̂y.

2.2 ♣ Adding and subtracting vectors. (Sections 2.6, 2.8)

Given: Vectors �p and �q expressed in terms of unit vectors
î, ĵ, k̂. Form the vector sums and differences below.
Result:

�p = a î + b ĵ + c k̂
�q = x î + y ĵ + z k̂

�p + �q = (a + x) î + ( ) ĵ + ( ) k̂ �p − �q = (a − x) î + ( ) ĵ + ( ) k̂

2.3 ♣ Words: Physical vectors and column matrices. (Section 2.12, Hw 1.2)

True/False As defined by Gibbs and for �F = m�a, physical vectors have magnitude and direction.
True/False In math (linear algebra), a column matrix is called a “vector”.
True/False The physical vector âx + 2 ây + 3 âz can be written

[
âx ây âz

]∗

1

2
3


.

Note: �ax, �ay, �az are the orthogonal unit vectors shown below.

True/False The physical vector âx + 2 ây + 3 âz is equal to the column matrix


1

2
3


.

True/False âx + 2 ây + 3 âz + 4 b̂x + 5 b̂y + 6 b̂z =


1

2
3


+


4

5
6


=


5

7
9




(�ax, �ay, �az and �bx, �by, �bz are shown right). ax

ay

az

bx

bz

by

• Complete the following statement with one equal sign = and one not-equal sign �= .

âx + 2 ây + 3 âz
[
âx ây âz

]∗

1

2
3





1

2
3




For more on vector spaces and physical vectors vs. column matrices, see Malcolm Shuster’s “Tutorial on Vectors and Attitude” in

IEEE Control Systems Magazine, Volume 29 issue 2, April 2009. Historical note: Physical vectors were invented by Gibbs circa

1890 and he co-opted the word vector from part of Hamilton’s quaternion invented in 1844. Matrix algebra was invented circa 1850.

The word vector has multiple related meanings, which causes ongoing confusion. As Shuster noted, the “failure to recognize the

difference between physical vectors and column vectors has led sometimes to errors in spacecraft mission support software.”

2.4 ♣ Dot products with orthogonal unit vectors. (Sections 2.9, 2.9.4)

Given: Vectors �v and �w expressed in terms of right-handed orthogonal unit
vectors î, ĵ, k̂, with: �v ············· �w = (a î + b ĵ + c k̂)︸ ︷︷ ︸

�v

············· (x î + y ĵ + z k̂)︸ ︷︷ ︸
�w

i

j

k

• Use the distributive property for dot products to write �v ············· �w in terms of î ············· î, î ············· ĵ, etc.
Next, use the definition of the dot product to calculate î ············· î, î ············· ĵ, etc. (below-right).
Result:

�v ············· �w = a x î ············· î + a y î ············· ĵ + î ············· k̂
+ b x ĵ ············· î + b y ············· + ·············
+ c x k̂ ············· î + c y ············· + ·············

î ············· î = 1 î ············· ĵ = î ············· k̂ =

ĵ ············· î = 0 ĵ ············· ĵ = ĵ ············· k̂ =

k̂ ············· î = 0 k̂ ············· ĵ = k̂ ············· k̂ =

• Simplify �v ············· �w and use its special dot-product formula for the calculations that follow.
Result:

�v ············· �w = ax + b y + Use this special dot-product formula to calculate �v ············· �w
when î, ĵ, k̂ are orthogonal unit vectors.
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Given

�p = 2 î + 3 ĵ + 4 k̂
�q = x î + y ĵ + z k̂
�r = 5 î − 6 ĵ + 7 k̂

Calculate

�p ············· �q = 2 x + 3 y + z �p ············· �p = 29
∣∣�p∣∣ =

√
29

�p ·············�r = �q ············· �q = x2 + +
∣∣�q∣∣ =

√
�q ·············�r = �r ·············�r =

∣∣�r∣∣ =
√

110

2.5 ♣ Perpendicular vectors. (Note: �i, �j, �k are orthogonal unit vectors). (Section 2.9)

Draw two vectors �v and �w that are perpendicular. .
When �v = x î + 2 ĵ + 3 k̂ is perpendicular to �w = 4 î + 5 ĵ + 6 k̂, x = .

2.6 Dot products to calculate distance and angles. (Sections 2.9, 3.4)

The figure to the right shows a block with sides of length 2 m,
3 m, 4 m and points A, B, C located at corners. Right-handed
orthogonal unit vectors n̂x, n̂y, n̂z are directed with n̂x from B to
C and n̂y from B to A.

ny
nx

nz

(a) Express �r (position from A to C) in terms of n̂x, n̂y, n̂z and find a numerical value for |�r| 2.
Next calculate the distance d between A to C (magnitude of �r).
Result: �r = n̂x − n̂y |�r|2 =

(2.4)
�r ············· �r = m2 d =

√
m

(b) Calculate the unit vector û directed from A to C and the unit vector v̂ directed from A to D.
Result:

û = 3 �nx − �ny� v̂ = �nx − �ny − �nz�

(c) Calculate ∠BAC (angle between line AB and line AC) and ∠CAD (angle between line AC and line AD).
Result: ∠BAC = ◦ ∠CAD = 47.97◦

2.7 ♣ Construct a unit vector û in the direction of each vector given below. (Section 2.9.2)

Vector Unit vector û

3 î î

-3 î

3 î − 4 ĵ
−

3 î − 4 ĵ + 12 k̂

c î c î or sign(c) î
c is a real non-zero number

Note: �i, �j, �k are orthogonal unit vectors.

i

j

k
Ensure your last answer agrees with your
first two answers, e.g., if c = 3 or c = -3.

2.8 ♣ Vector components: Sine and cosine. (Section 1.4)

• Replace each ????????????? in the figure to the right with sin(θ) or cos(θ).
• Use vector addition to express â and b̂ in terms of sin(θ), cos(θ), î, ĵ.
Result:
Reminder:
SohCahToa

â = î + ĵ

b̂ = î + cos(θ) ĵ θ

1

θ 1

a
b

?

?

?

?

j
i
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2.9 ♣ Vector components for a crane-boom. (Section 1.4)

Shown right is a crane whose cab A supports a
boom B that swings a wrecking ball Co.

Right-handed orthogonal unit vectors î, ĵ, k̂ are
directed with î horizontally-right, ĵ vertically-
upward, and k̂ outward-normal to the plane
containing points No, AB , BC , Co.

Draw each position vector listed below and
then use your knowledge of sine/cosine to re-
solve these vectors into î and ĵ components.

LB

x A

θC

N

B

LC

BC

AB
No

Co

Draw position vectors

Copyright (c) by Paul Mitiguy 2021.  All rights reserved.

θB

Position from No to AB
No�rAB = î + ĵ

Position from AB to BC
AB�rBC = î + ĵ

Position from BC to Co
BC�rCo = î + ĵ

Position from No to BC
No�rBC = [ + ] î + ĵ

Position from No to Co
No�rCo = [ ] î + [LB sin(θB) − LC cos(θC)] ĵ

2.10 Dot products and distance calculations. Show work. (Section 2.9)

Shown right is a crane whose cab A supports
a boom B that swings a wrecking ball Co. To
prevent the wrecking ball from hitting a car,
the distance between No and point BC (the tip

of the boom) must be controlled.

To start this problem, express �r (the position

vector from No to BC) in terms of x, LB , n̂x, b̂x.

Result: �r = n̂x + b̂x

LB

x A

θC

N

B

LC

BC

AB

Co

Copyright (c) by Paul Mitiguy 2021.  All rights reserved.

θB

No

• Without resolving �r into n̂x and n̂y components, use |�r| =
√
�r ············· �r [from equation (3.1)] and the

distributive property to calculate the distance between No and BC in terms of x, LB , θB.
Result: (if stumped, hint below).1 Optional: Calculate |�r| when x = 20 m, LB = 10 m, θB = 30◦.

Distance between No and BC: |�r| =
√

2 +
2

+ 2xLB cos(θB) ≈ 29.1 m

• Homework 2.9 showed �r can be expressed as �r = [x + LB cos(θB)] n̂x + LB sin(θB) n̂y.
Use this expression to verify your previous result for |�r| =

√
�r ············· �r.

Result: |�r| simplifies to the previous result but uses an inefficient process and sin2(θB) + cos2(θB) = 1.

• Optional: Calculate the distance between No and Co in terms of x, LB, LC , θB, and θC.
Result: |No�rCo | =

√
x2 + L2

B + L2
C + 2 xLB cos(θB) + 2 xLC sin(θC) − 2 LB LC sin(θB−θC)

2.11 ♣ Cross products with right-handed orthogonal unit vectors. (Section 2.10)

Given: Vectors �v and �w expressed in terms of right-handed orthogonal unit
vectors î, ĵ, k̂, with: �v × �w = (a î + b ĵ + c k̂)︸ ︷︷ ︸

�v

× (x î + y ĵ + z k̂)︸ ︷︷ ︸
�w

i

j

k

1Hint: The distributive property for vector dot-multiplication is
�
�a + �b

� ············· ��c + �d
�

= �a ·············�c + �a ·············�d + �b ·············�c + �b ·············�d.

Use the distributive property to express �r ············· �r in terms of x, LB , and �nx ············· �bx. Thereafter, use the dot-product definition

of (�nx ············· �bx) to form �r ············· �r = 2 +
2

+ 2 x LB (�nx ············· �bx) =
(2.2)

2 +
2

+ 2 x LB cos( ).
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• Use the distributive property for cross products to write �v × �w in terms of î× î, î× ĵ, etc.
Next, use the definition of the cross product to calculate î × î, î × ĵ, etc. (below-right).
Result:
�v × �w = a x î × î + a y î × ĵ + î × k̂

+ b x ĵ × î + b y × + ×
+ c x k̂ × î + c y × + ×

î × î = �0 î × ĵ = k̂ î × k̂ = -̂j

ĵ × î = ĵ × ĵ = ĵ × k̂ =

k̂ × î = k̂ × ĵ = k̂ × k̂ =

• Combine your previous results to calculate �v × �w in terms of a, b, c, x, y, z.
Result: �v × �w =

(
b z − )

î +
( − a z

)
ĵ +

( )
k̂

2.12 ♣ Cross products and determinants (orthogonal unit vectors). (Section 2.10.2)

Shown right are arbitrary vectors �v and �w expressed in terms
of right-handed orthogonal unit vectors î, ĵ, k̂. Show that
calculating �v × �w with the distributive property of the
cross product (seen in Hw 2.11) happens to be equal to the
determinant of the matrix shown to the right.
Result: �v × �w =

(
b z − )

î +
( − a z

)
ĵ +

( )
k̂

�v = a î + b ĵ + c k̂
�w = x î + y ĵ + z k̂

�v × �w = det


 î ĵ k̂

a b c
x y z




2.13 ♣ Cross product as skew-symmetric matrix multiplication. (Section 2.10.3)

Shown right, calculate the 3×3 skew symmetric matrix mul-
tiplied by the 3×1 column matrix. In view of Hw 2.11, the î, ĵ, k̂
coefficients of �v × �w happen to be equal to the elements that
result from skew symmetric matrix multiplication.


 0 -c b

c 0 -a
-b a 0





x

y
z


=


 b z −

− a z




Skew symmetric matrix multiplication is an inefficient way to calculate a cross product True/False .
Note: The number of mathematical operations required to multiply the 3×3 matrix by the 3×1 matrix (including mul-

tiplication by 0) is 9 multiplications and 6 additions/subtractions whereas the number of operations to calculate the

elements of the simplified answer is 6 multiplications and 3 subtractions.
Note: Using skew symmetric matrix multiplication for a cross product is useful in theory/proofs, e.g., Section 9.5.2.

2.14 ♣ Scalar triple product with bases. (Section 2.11)

The figure shows right-handed orthogonal unit vectors î, ĵ, k̂.
Given
�u = 2 î + 3 ĵ + 4 k̂
�v = x î + y ĵ + z k̂
�w = 5 î − 6 ĵ + 7 k̂

Calculate
�u × �v ············· �u =
�u × �v ············· �w = z − x − 6 y

�u ············· �v × �w = z − 45 x − y

i

j

k

Note: Although the order of operations in �u ×�v ············· �u is unambiguous, parentheses may clarify your work.
�u×�v ············· �w = �u ············· �v× �w and it is OK to switch ············· and × in scalar triple products. True/False .
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2.15 ♣ Optional: Scalar triple products and determinants. (Section 2.11)

Given arbitrary vectors �a, �b, �c expressed in terms of right-
handed orthogonal unit vectors n̂x, n̂y, n̂z as shown right,
show that calculating �a ············· (�b× �c) happens to be equal to the
determinant of the matrix shown to the right.

�a = ax n̂x + ay n̂y + az n̂z

�b = bx n̂x + by n̂y + bz n̂z

�c = cx n̂x + cy n̂y + cz n̂z

�a ············· �b×�c =

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣
2.16 †††††††††††††Optional: Form �v from �v ············· û and �v × û . Show work. (Table in Section 2.10)

Given: �v ············· âx = 15 �v × âx = 5 âz

Form: Vector �v in terms of right-handed orthogonal unit vectors âx, ây, âz.
Result: �v = âx − ây

ax

ay

az

Given: Unit vector û = 0.6 âx + 0.8 ây �v ············· û = 15 �v × û = 4 âx − 3 ây + 5 âz.
Form: Vector �v in terms of right-handed orthogonal unit vectors âx, ây, âz.
Result: �v = âx + ây − âz Note: �v × �u is not arbitrary. It is perpendicular to �u.

ax

ay

az

Given: �s = 0.6 â1 + 0.8 â2 �v ·············�s = 15 �v ×�s ≈ 2.07846 â1 − 3 â2 + 5 â3.
Form: Vector �v in terms of right-handed non-orthogonal unit vectors â1, â2, â3.
Result: �v ≈ 12.476 â1 + 3.643 â2 − â3 (Hint: �s is not a unit vector). a1

a2

a3

60

2.17 ♣ Cross products: Commercial area calculation algorithm (surveying). (Sections 2.10.1, 3.3)

Complex planar objects such as the polygon B below can be decomposed
into triangles for important planar measurements (e.g., farming acreage,
building costs, and mass and area properties of 2D objects).
• Number the vertices sequentially in counter-clockwise fashion.
• Label a vertex B0 and number the remaining vertices sequentially in counter-clockwise fashion.
• Form B0�rBi , the position from B0 to Bi (i = 1, 2, . . .)

• Calculate �A2 and �A4, the vector-areas of triangles B0 B2 B3 and B0 B4 B5.
• Account for overlapped areas with positive and negative vector areas.
Result: [Just fill in the calculations for �A2, �A4, and A using eqn(3.4)].

B0

B1

B2

B3

B4

B5

B6

B7

B

by
bxbz

Bcm

�r1 = B0�rB1 = 2.0 b̂x + 2.0 b̂y

�r2 = B0�rB2 = 0.5 b̂x + 2.5 b̂y

�r3 = B0�rB3 = 3.0 b̂x + 4.0 b̂y

�r4 = B0�rB4 = -0.5 b̂x + 7.0 b̂y

�r5 = B0�rB5 = -1.0 b̂x + 5.0 b̂y

�r6 = B0�rB6 = -3.0 b̂x + 6.0 b̂y

�r8 = B0�rB8 = -2.0 b̂x + 0.0 b̂y

�A1 = 1
2
(�r1 ×�r2) = 2 b̂z

�A2 = 1
2
(�r2 ×�r3) = .75 b̂z

�A3 = . . . = 11.5 b̂z

�A4 = . . . = .25 b̂z

�A5 = . . . = 4.5 b̂z

�A6 = 1
2
(�r6 ×�r7) = 6 b̂z

�A =
∑6

i = 1
�Ai =

Area =
∣∣�A∣∣ = 23.5

Planar objects, courtesy of Working Model and Design-Simulation Technologies.
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2.18 Locating a microphone (2D). Show work. (Section 1.4)

A microphone Q is attached to two pegs B and C by two cables. Knowing the peg locations, cable
lengths, and points B, C, Q, No all lie in the same plane, determine the distance between Q and No.
Do the problem with Euclidean geometry (e.g., law of cosines), then try vectors (see Hw 1.38).

Q

15

y

89

x

B

nx

ny

C

8

No

?

Distance between B to C 15 m
Distance between No to B h 8 m
Length of cable joining B and Q LB 9 m
Length of cable joining C and Q LC 8 m
Distance between No and Q 9.01 m

Note: Although there are two mathematical answers to this problem, one is
above the ceiling by ≈ 12 m and requires the cables to be in compression.

2.19 †††††††††††††Locating a microphone (3D).
A microphone Q is attached to three pegs A, B, and C by three cables. Knowing the peg locations
and cable lengths, determine the distance between Q and point No. Show work.2

A C

Q

No

1520

15 13
11

Note: The floor is horizontal, the walls are vertical. 

B

8

Distance between A to B 20 m
Distance between B to C 15 m
Distance between No to B h 8 m
Length of cable joining A and Q LA 15 m
Length of cable joining B and Q LB 13 m
Length of cable joining C and Q LC 11 m
Distance between No and Q 13.3 m
If Q is above ceiling, distance ≈ 17 m

Note: This is part of the process of a camera targeting a
football/baseball in a stadium or laser targeting cancer or . . .

Vocabulary: In this forward kinematics analysis, the cable lengths are known and you determine the position of “end-effector” Q.

2.20 †††††††††††††Cable length to keep a window-washer’s beam stationary and horizontal. Show work.

A beam B is attached to the roof of a building N by two relatively light (massless) cables A and C.
Cable A attaches to the roof at point No of N and to the beam at point Bo of B.
Cable C attaches to the roof at point NC of N and to the beam at point BC of B.
No, Bo, Bcm, BC , NC are all in the same vertical plane. Bcm (center of mass of beam/workers) is LB

4
from Bo.

Description Symbol Type Value

Distance between No and NC LN Constant 15 m
Distance between Bo and BC LB Constant 7 m

Length of cable A LA Constant 7 m

Length of cable C LC Constant ? m

Determine LC so the beam stays horizontal.
Result: LC = 9 m

No N

Bo

B
Bcm

LC

A C
Nc

Bc

LA

LN

LB

Demo with a meter stick and two strings.

Stumped? www.MotionGenesis.com ⇒ Textbooks ⇒ Resources

If LB = LN , intuition/analysis predicts LC = LA (vertical cables), independent of Bcm’s location between Bo and BC .

2.21 Optional: Draw the free-body diagram (FBD) for each object below.
A C

Q

No

1520

15 13
11

Note: The floor is horizontal, the walls are vertical. 

B

8 10 kg

10 kg

T

C

W

N

B

θ

BN

rR

θ 

PFP

B

Q

O
N

h
d

L

L

nx

ny

Bcm
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Particle Q Top block Bottom pulley Rolling spool B Bureau B Entire system
Hw 2.19 Hw 16.12 Hw 16.14 Hw 17.14 Hw 17.10 Hw 15.18

2Hint: See Homework 1.38 or Section 3.4. Introduce whatever identifiers facilitate your work.
Although nonlinear algebraic equations are usually solved with a computer, these can also be solved “by-hand”.
Solution at www.MotionGenesis.com ⇒ Get Started ⇒ 2D/3D geometry. Alternatively, go to www.WolframAlpha.com and type
Solve x^2 + (-20+z)^2 + (-8+y)^2 = 225, x^2 + z^2 + (-8+y)^2 = 169, z^2 + (-15+x)^2 + (-8+y)^2 = 121
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