FINAL EXAM (SAMPLE 1)

1. Which of these PDEs is the heat equation, the wave equation, or the Laplace's equation? Write the name of the equation next to it.

- $u_{t t}=2 u_{x x}$,
- $u_{t}=3 u_{x x}+3$,
- $2 u_{t}=3 u_{x x}$,
- $2 u_{x x}+2 u_{y y}=0$.

2. (a) How many initial data, and how many boundary data do we need to prescribe for the heat equation

$$
u_{t}=k u_{x x}, \quad x \in(0, L), t>0
$$

to have a well-defined initial boundary value problem?
(b) List at least one type of boundary data for the heat equation that can be prescribed at the end points?
3. State the principle of superposition for the non-homogeneous problems $L(u)=f, f \neq 0$.
4. (a) Solve the following initial-boundary-value problem for the heat equation:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}, \quad x \in(0, L), t>0 \\
u(0, t) & =0 \\
u(L, t) & =0 \\
u(x, 0) & =\sin \frac{2 \pi x}{L}+2 \sin \frac{3 \pi x}{L}
\end{aligned}
$$

(b) For the initial-boundary-value problem listed above, what is the behavior of the solution as $t \rightarrow \infty$?
5. Find the eigenvalues and the corresponding eigenfunctions of the following eigenvalue problem:

$$
\begin{aligned}
\frac{d^{2} \phi}{d x^{2}} & =-\lambda \phi, \quad x \in(-\pi, \pi) \\
\phi(-\pi) & =\phi(\pi) \\
\frac{d \phi}{d x}(-\pi) & =\frac{d \phi}{d x}(\pi)
\end{aligned}
$$

6. True of false:
(a) Solutions of the wave equation $u_{t t}=c^{2} u_{x x}$ decay in time.
(b) Solutions of the heat equation $u_{t}=k u_{x x}, k>0$, decay in time.
7. Using D'Alambert formula, find the solution of the following initial-value problem for the wave equation:

$$
\begin{aligned}
u_{t t} & =9 u_{x x}, \quad x \in(-\infty, \infty), t>0 \\
u(x, 0) & =3 e^{-x^{2}} \\
u_{t}(x, 0) & =x^{2}
\end{aligned}
$$

8. Find the solution of the following initial-boundary value problem for a damped spring:

$$
\begin{aligned}
u_{t t} & =2 u_{x x}-2 u_{t}, \quad x \in(0,1), t>0 \\
u(0, t) & =u(1, t)=0 \\
u(x, 0) & =\sin (2 \pi x) \\
u_{t}(x, 0) & =0
\end{aligned}
$$

9. What happens with the total energy E of the vibrating string satisfying

$$
u_{t t}=u_{x x}, \quad x \in(0, L), t>0
$$

if $\frac{\partial u}{\partial x}(0, t)=0$ and $u(L, t)=0$?
10. Solve the Laplace's equation inside a rectangle $0 \leq x \leq L, 0 \leq y \leq H$, with the following boundary conditions:

$$
\frac{\partial u}{\partial x}(0, y)=0, u(L, y)=\sin \left(\frac{2 \pi y}{H}\right), u(x, 0)=0, u(x, H)=0
$$

11. Are solutions of $\left\{\begin{array}{rll}\Delta u & =0 & \text { in } \Omega \\ u & =f(x) & \text { on } \partial \Omega\end{array}\right\}$ unique? Prove your statement.
12. Solve the Laplace's equations inside a circular disk of radius 1 , with the prescribed boundary data equal to:

$$
u(1, \theta)=2+\sin (\theta) \cos (\theta), \quad-\pi \leq \theta<\pi
$$

13. When do we say that a given PDE problem is well-posed?
(1). $u_{t t}=2 u_{x x}-$ ware equation

- $u_{f}=3 u_{x x}+3$ - heat equation
- $2 u_{t}=3 u_{x x}-$ heat equation
- $2 u_{x x}+2 u_{y y}=0$ - Laplace's equation
(2) (a) We need 1 initial datum, and 2 boundary data.
(b) $u(0)=0, u(L)=f(t)$
(3) Let u_{1} and u_{2} be two homogeneous solutions, i.e.,

$$
L\left(u_{1}\right)=0 \text { and } L\left(u_{2}\right)=0
$$

and let u_{p} be a particular solution of $L(u)=f$. Then

$$
u=c_{1} u_{1}+c_{2} u_{2}+u_{p}, c_{1}, c_{2}-\text { constants }
$$

is another particular solution of $L(u)=f$.
(4)

$$
\text { (a) }\left\{\begin{array}{l}
u_{t}=u_{x x} \\
u(0, t)=0, u(L, t)=0 \\
u(x, 0)=\sin \frac{2 \pi x}{L} t+2 \sin \frac{3 \pi x}{L}
\end{array}\right.
$$

SOLOMON: $u(x, t)=\phi(x) G(t) \Rightarrow$ From PDE: $\quad\left\{\begin{array}{l}G^{\prime}(t) \phi(x)=G(t) \phi^{\prime}(x) \mid \div G \phi \\ \frac{G^{\prime}(t)}{G(t)}=\frac{\phi^{\prime}(x)}{\phi(x)}=-\lambda, \lambda>0\end{array}\right.$

$$
\left.\begin{array}{l}
\phi^{\prime \prime}(x)=-\lambda \phi(x) \\
\phi(0)=\phi(L)=0
\end{array}\right\} \Rightarrow \begin{aligned}
& \phi_{n}(x)=\sin \frac{n \bar{L} x}{L}, n=1,2,3, \ldots . \\
& \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}
\end{aligned}
$$

GENERAL SOUNTIN:

$$
u(x, t)=\sum_{n=1}^{\sum} A_{n} \sin \frac{n \pi x}{L} \cdot G_{n}(t) \text {. }
$$

SOLVE FOR $G_{n}(t): \frac{d G}{d t}=\lambda G \Rightarrow G_{n}(t)=e^{-\lambda t}=e^{-\left(\frac{x i t}{L}\right)^{2} t}$
GENERH SoLuThas: $\mu(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} e^{-\left(\frac{n \pi}{L}\right)^{2}} t$
ITAL DATA: $A_{a}=1, A_{3}=2, A_{n}=0$ for $n \neq 2,3$
saunon: $u(x, t)=\sin \frac{2 \pi x}{L} e^{-\left(\frac{2 \pi}{L}\right)^{2} t}+2 \sin \frac{3 \pi x}{L} e^{-\left(\frac{3 \pi}{L}\right)^{2} t}$
(4)(b) $\lim _{t \rightarrow \infty} u(x, t)=0$.
(5)

$$
\begin{aligned}
& \quad t \rightarrow \infty \\
& \frac{d^{2} \phi}{d x^{2}}=-\lambda \phi \Rightarrow \phi(x)=A \cos \sqrt{\lambda} x+B \sin \sqrt{\lambda} x \\
& \phi(-\pi)=\phi(\pi) \Rightarrow A \cos \sqrt{\lambda} \pi-B \sin \sqrt{\lambda} \pi=A \cos \sqrt{\lambda} \pi+B \sin \sqrt{\lambda} \pi \\
& \phi^{\prime}(-\pi)=\psi^{\prime}(\pi) \Rightarrow A \sqrt{\lambda} \sin \sqrt{\lambda} \pi+B \sqrt{\lambda} \cos \sqrt{\lambda} \pi=-A \sqrt{\lambda} \sin \sqrt{\lambda} \pi+B \sqrt{\lambda} \cos \sqrt{\lambda} \pi
\end{aligned}
$$

$\Rightarrow 2 B \sin \sqrt{\lambda} T=0$ and $2 A \sqrt{\lambda} \sin \sqrt{\lambda} \pi=0 \Rightarrow \sin \sqrt{\lambda} \pi=0 \Rightarrow \lambda=u^{2}$

$$
\phi_{n}(x)=A_{n} \cos n x+B_{n} \sin n x
$$

(6) (a) FALSE; (b) TRUE.
(7) D'ALambert: $u(x, t)=\frac{1}{2}(f(x-c t)+f(x+c t))+\frac{1}{2 c} \int^{x+c t} g(s) d s$

$$
\begin{aligned}
c=3: u(x, t) & =\frac{1}{2}\left[3 e^{-(x+3 t)^{2}}+3 e^{-(x-3 t)^{2}}\right]+\frac{1}{6} \int_{x-3 t}^{x+3 t} s^{2} d s \\
& =\frac{1}{2}\left[3 e^{-(x+3 t)^{2}}+3 e^{-(x-3 t)^{2}}\right]+\frac{1}{6}\left[\frac{s^{3}}{3}\right]_{x+3 t}^{x+3 t} \\
& =\frac{1}{2}\left[3 e^{-(x+3 t)^{2}}+3 e^{-(x-3 t)^{2}}\right]+\frac{1}{6}\left[\frac{(x+3 t)^{3}}{3}-\frac{(x-3 t)^{3}}{3}\right]
\end{aligned}
$$

(8)

$$
\begin{aligned}
& \left\{\begin{array}{l}
u_{t t}=2 u_{x x}-2 u_{t}, \quad x \in(0,1), t>0 \\
u(0, t)=u(1, t)=0 \\
u(x, 0)=\sin (2 \pi x) \\
u_{t}(x, 0)=0
\end{array}\right. \\
& h^{\prime \prime} \phi=2 \phi^{\prime} h-2 \phi h^{\prime} \mid \div 2 h \phi
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\phi^{\prime \prime}}{\phi}=-\lambda \Rightarrow\left\{\begin{array}{l}
\phi^{\prime \prime}=-\lambda \phi \\
\phi(0)-\phi(1)=0
\end{array}\right\} \Rightarrow \begin{array}{l}
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}=(n \pi)^{2} \\
\phi_{n}=\sin (n \pi x)
\end{array} \\
& \phi_{n}=\sin (n \pi x) \\
& h^{\prime \prime}(t)+2 h^{\prime}(t)+2 \lambda h(t)=0 \\
& \alpha^{2}+2 \alpha+2 \lambda=0 \Rightarrow \alpha_{1,2}=\frac{-2 \pm \sqrt{4-8 \lambda}}{2}=-1 \pm \sqrt{1-2 \lambda}
\end{aligned}
$$

$$
\begin{aligned}
& h_{n}(t)=e^{-t}\left(A_{n} \cos \sqrt{1-2 \lambda_{n}} t+B_{n} \sin \sqrt{1-2 \lambda_{n}} t\right) \\
& \Rightarrow u(x, t)=\sum_{n=1}^{\infty} \sin (n \pi x)\left\{A_{n} \cos \sqrt{1-2\left(\frac{n \pi}{1}\right)^{2}} t+B_{n} \sin \sqrt{1-2(n \pi)^{2}} t\right\} e^{-2} \\
& u(x, 0)=\sin 2 \pi x \Rightarrow n=2, A_{2}=1, A_{n}=0,+n \neq 2
\end{aligned}
$$

$$
\begin{aligned}
u_{L}(x, t)= & \sum_{n=1}^{\infty} \sin (n \pi x)\left\{-\sqrt{1-2(n \pi)^{2}} A_{n} \sin \sqrt{1-2 K} t+B_{n} \sqrt{1-2(\pi \pi)^{2}} \cos \sqrt{ } t\right\} e^{-t}+ \\
& +\sin (n \pi x)\left\{\quad A_{n} \cos \sqrt{ } t+B_{n} \quad \sin \sqrt{ } \quad t\right\}\left(-e^{-t}\right)
\end{aligned}
$$

$$
\begin{aligned}
u_{f}(x, 0)= & \sum_{n=1}^{\infty} \sin (n \pi x)\left\{B_{n} \sqrt{1-2(n \pi)^{2}}+A_{n}\right\}=0 \\
& \Rightarrow B_{2}=-\frac{A_{2}}{\sqrt{1-2(2 \pi)^{2}}}=-\frac{A_{2}}{\sqrt{1-8 \pi^{2}}}, B_{n}=0, n \neq 2
\end{aligned}
$$

$$
\mu(x, t)=\sin (2 \pi x)\left\{\cos \sqrt{1-8 \pi^{2}} t-\frac{1}{\sqrt{1-8 \pi^{2}}} \sin \sqrt{1-8 \pi^{2}} t\right\} e^{-t}
$$

(9) $u_{t t}=u_{x x}\left|\cdot u_{t}\right| \cdot \int_{0}^{L} d x \Rightarrow$

$$
\begin{aligned}
& \int_{0}^{L} u_{t t} u_{t} d x=\int_{0}^{L} u_{x x} u_{t} d x \Rightarrow \frac{1}{2} \int_{0}^{L} \frac{\partial}{\partial t}\left(u_{t}\right)^{2}=-\int_{0}^{L} \underbrace{u_{x t}}_{\frac{1}{2} \frac{\partial}{\partial t}\left(u_{x}\right)^{2}} d x+\left.\left[u_{x} u_{t}\right]\right|_{0} ^{L} \\
& \Rightarrow \frac{1}{2} \frac{d}{d t} \int_{0}^{L}\left(u_{t}\right)^{2} d x+\frac{1}{2} \frac{d}{d t} \int_{0}^{L}\left(u_{x}\right)^{2} d x=\left(u_{x} u_{t}\right)(x=L)-\left(u_{x} u_{t}\right)(x=0)
\end{aligned}
$$

Since $u(L, t)=0 \Rightarrow u_{t}^{\circ}(L, t)=0$. An since $u_{x}(0, t)=0$ we have $\frac{1}{2} \frac{d}{d t} \int_{0}^{L}\left(u_{t}\right)^{2} d x+\frac{1}{2} \frac{d}{d t} \int_{0}^{L}\left(u_{x}\right)^{2} d x=0$. Thus, $\frac{d E(t)}{d t}=0 \Rightarrow E(t)$ is constant
\Rightarrow ENERGY IS CONSERVED.
(10)

$$
\left\{\begin{array}{l}
\Delta u=0 \text { in } \Omega \\
u_{x}(0, y)=0 \\
u(L, y)=\sin \left(\frac{2 \pi y}{H}\right) \\
u(x, 0)=0 \\
u(x, H)=0
\end{array}\right.
$$

$$
u_{x}=0 \underbrace{u=0}_{u=0} u=\sin \frac{2 \pi y}{H}
$$

$$
u(x, y)=h(x) \phi(y) \Rightarrow \frac{h^{\prime \prime}}{h}=-\frac{\phi^{\prime \prime}}{\phi}=\lambda, \quad \lambda>0
$$

$$
\begin{aligned}
& \text { EIGENVALUE PROBLEM: } \\
& \left\{\begin{array}{l}
\phi^{4}=-\lambda \phi \\
\phi(y=0)=\phi(y=H)=0
\end{array}\right\} \Rightarrow \phi_{n}(y)=\sin \frac{n \pi y}{H}, \lambda_{n}=\left(\frac{n \pi}{H}\right)^{2} \\
& n=1,2,3, \ldots
\end{aligned}
$$

PROBLEM FOR h :

$$
h^{\prime \prime}(x)=\lambda h(x) \Rightarrow h(x)=A \cosh \sqrt{\lambda} x+B \sinh \sqrt{\lambda} x
$$

GENERAL SOLUTION:

$$
u(x, y)=\sum_{n=1}^{\infty} \sin \frac{n \pi y}{H}\left(A_{n} \cosh \frac{n \pi x}{H}+B_{n} \sinh \frac{n \pi x}{4}\right)
$$

use: $u(x=0, y)=0: \Rightarrow u(0, y)=\sum_{n=1}^{\infty} \sin \frac{n \pi y}{H} A_{n}=0 \Rightarrow A_{n}=0, \forall n$

$$
\Rightarrow u(x, y)=\sum_{n=1}^{\infty} \sin \frac{n \pi y}{4} \cdot B_{n} \sinh \frac{n \pi x}{H}
$$

use: $u(L, y)=\sin \left(\frac{2 \pi y}{4}\right): \Rightarrow B_{2}=1, B_{n}=0, n \neq 2$

$$
\Rightarrow u(x, y)=\sin \frac{2 \pi y}{H} \cdot \sinh \frac{2 \pi x}{H}
$$

(11) Yes, solutions of $\left\{\begin{aligned} \Delta u=0 & \text { in } \Omega \\ u-f & \text { on } \partial \Omega\end{aligned}\right\}$ are nuique.

Proof: Suppose u_{1} and u_{2} are two solutions. Then:

$$
\left\{\begin{array}{c}
\Delta u_{1}=0 \text { in } \Omega \\
u_{1}=f \text { on } \partial \Omega
\end{array}\right\} \text { AND }\left\{\begin{aligned}
\Delta u_{2}=0 & \text { in } \Omega \\
u_{2}=f & \text { on } \partial \Omega
\end{aligned}\right\} \text {. }
$$

Let $w:=u_{1}-u_{2}$. The function w satisfies:

$$
\left\{\begin{aligned}
\Delta w & =\Delta u_{1}-\Delta u_{2}=0 \\
w=f-f=0 & \text { in } \Omega \\
w & \text { on } \partial \Omega
\end{aligned}\right\}
$$

From the maximum principle :
From the minimum principle:

$$
w \leq \max _{\partial \Omega} w=0
$$

$\min \omega \leqslant w$ 2Ω
Therefore:

$$
0 \leq w \leq 0
$$

and so $w \equiv 0$ everywhere in Ω. Therefore, u_{1} must be equal to u_{2}, aud so there is only one solution to $\left\{\begin{array}{l}\Delta u=0 \text { on } \Omega \\ u=f \text { on } \partial \Omega\end{array}\right\}$
(12)

SOLUTION:

$$
\begin{aligned}
\Delta u & =0 \quad \text { in } \Omega=\{(r, \theta) ; 0 \leq r<1,-\pi \leq \theta<\pi\} \\
u & =2+\sin \theta \cdot \cos \theta \text { on } \partial \Omega=\{(1, \theta),-\pi \leq \theta<\pi\}
\end{aligned}
$$

Recall: $\quad \Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}$
Separation of variables: $u(r, \theta)=G(r) \phi(\theta)$
Plug into PDE $\Rightarrow \quad \frac{r}{G(r)}\left(r G^{\prime}(r)\right)^{\prime}=-\frac{\phi^{\prime \prime}(\theta)}{\phi^{\prime}(\theta)}=\lambda>0$

Need boundary data at $\theta=-\pi, \theta=\pi, r=0, r=1$. Periodic bandary conditions are prescribed at $\theta=-\pi, \partial=\pi$:

$$
\begin{align*}
u(r,-\pi) & =u(r, \pi) \\
\frac{\partial u}{\partial \theta}(r,-\pi) & =\frac{\partial u}{\partial \theta}(r, \pi) \tag{*}
\end{align*}
$$

At $r=0$ we want the solution to be bounded:

$$
|u(0, \theta)|<\infty
$$

At $r=1$ we have out preraribed boundary data:

$$
u=2+\sin \theta \cdot \cos \theta=2+\frac{1}{2} \sin (2 \theta)
$$

Now we eau solve the problem.

- eigenvalue problem: $\phi^{\prime \prime}(\theta)=-\lambda \phi(\theta)$

Fran (*) we have: $\left\{\begin{array}{l}\phi(-\pi)=\phi(\pi) \\ \phi^{\prime}(-\pi)=\phi^{\prime}(\pi)\end{array}\right.$
Solution: $\quad \phi(\theta)=A \cos \sqrt{\lambda} \theta+B \sin \sqrt{\lambda} \theta$
Boundary data:

$$
\left.\begin{array}{l}
\phi(-\pi)=A \cos \sqrt{\lambda} \pi-B \sin \sqrt{\lambda} \pi \\
\phi(\pi)=A \cos \sqrt{\lambda} \pi+B \sin \sqrt{\lambda} \pi
\end{array}\right\}=
$$

$\phi(-\pi)=\phi(\pi)$ implies $\quad 2 B \sin \sqrt{\lambda} \pi=0$
Boundary data: $\left.\phi^{\prime}(-\pi)=A \sqrt{\lambda} \sin \sqrt{\lambda} \pi+B \sqrt{\lambda} \cos \sqrt{\lambda} \pi\right\}=$

$$
\phi^{\prime}(\pi)=-\lambda \sqrt{\lambda} \sin \sqrt{\lambda} \pi+B \sqrt{\lambda} \cos \sqrt{\lambda} \pi
$$

$\phi^{\prime}(-\pi)=\phi(\pi)$ implies $\quad 2 A \sqrt{\lambda} \sin \sqrt{\lambda} \pi=0$
$\Rightarrow \sin \sqrt{\lambda} \pi=0$ which implies $\sqrt{\lambda_{n}}=n$ of $\lambda_{n}=n^{2}$
Solution (eigusalues and eigulumetions):

$$
\phi_{n}(\theta)=A_{n} \cos n \theta+B_{n} \sin n \theta, \quad \lambda_{n}=n^{2}, n=0,1,2, \ldots
$$

We need to solve:

- Solution for $G_{n}(r): \quad r^{2} G^{\prime \prime}(r)+r G^{\prime}(r)=n^{2} G(r)$

Look for Solution: $G(r)=r^{\alpha}$. Pug nato DDE to obtack:

$$
\begin{array}{ll}
& \alpha(\alpha-1) r^{2} r^{\alpha-2}+\alpha r r^{\alpha-1}=n^{2} r^{\alpha} \\
\text { or } & \alpha(d-1) r^{\alpha}+\alpha r^{\alpha}=n^{2} r^{\alpha} \\
\text { or } & \left(\alpha(\alpha-1)+\alpha-n^{2}\right) r^{\alpha}=0
\end{array}
$$

Thus: $\alpha(\alpha-1)+\alpha-n^{2}=0 \Rightarrow \alpha= \pm n$
Therefore:

$$
G_{n}(r)=c_{1} r^{n}+c_{2} r^{-n}, n=1,2,3, \ldots .
$$

This is a good general solution when $n \neq 0$ (we get 2 linearly independent solutions r^{n} ard,,$^{-x}$). When $x=0$, both $r^{n}=r^{0}=1, r^{-k}=r^{0}=1$ are then sane. This is why we Solve the ODE for G directly when $x=0$:

$$
\begin{aligned}
& \text { or } \frac{r^{2} G^{\prime \prime}(r)+r G^{\prime}(r)=0}{r\left(r G^{\prime}(r)\right)^{\prime}=0} \quad \text { or }\left(r G^{\prime}(r)\right)^{\prime}=0 \Rightarrow r G^{\prime}(r)=\text { count }=C \\
& \Rightarrow \quad G^{\prime}(r)=\frac{c}{r} \Rightarrow G_{0}(r)=c \operatorname{cus} r+D, C, D \text {-constant }
\end{aligned}
$$

From $|n(0, \theta)|<\infty \Rightarrow C_{2}=0$ in $G_{n}(r)=C_{1} r^{n}+C_{2} r^{-n}, n=1,2, \ldots$

$$
C=0 \text { in } G_{0}(r)=C \operatorname{Ln} r+D
$$

Thus: $\begin{aligned} & G_{n}(r)=r^{n} \\ & G_{0}(r)=1 \\ & \text { for } n=1,2,3, \ldots \\ & \text { for } \\ & n=0\end{aligned}$

$$
G_{0}(r)=1 \quad \text { for } \quad n=1,
$$

GENERAL SOLUTION: $u(r, \theta)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right) r^{n}$
From boundary data: $u(1, \theta)=2+\frac{1}{2} \sin 2 \theta \Rightarrow A_{0}=2, B_{2}=\frac{1}{2}, A_{n}=\theta$ SOLUTION: $u(r, \theta)=2+\frac{1}{2} \sin 2 \theta r^{2}$
(13) A PDE problem is well-posed if:
(1) It has at least one solution (existence)
(2) I He SOLUTION IS UNIQUE (UNIQUENESS)
(3) THE SOUTION DEPENDS CONTINUOUSLY ON NON-HOMOGENEOS DATA.

