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The Euclidean algorithm
For x , y ∈ N = {0, 1, . . .}, x ≥ y ≥ 1,

(ε) gcd(x , y) = if (rem(x , y) = 0) then y else gcd(y , rem(x , y))

where rem(x , y) is the remainder of the division of x by y ,

x = iq(x , y) · y + rem(x , y) (0 ≤ rem(x , y) < y)

cε(x , y) = the number of divisions required to compute gcd(x , y)

by the Euclidean algorithm

≤ 2 log(y) (x ≥ y ≥ 2)

I Is the Euclidean optimal for computing gcd(x , y) from rem?

I Is the Euclidean optimal for deciding coprimeness from rem?

x⊥⊥y ⇐⇒ gcd(x , y) = 1
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A partial result

Theorem (van den Dries, ynm)

If an algorithm α decides the coprimeness relation x⊥⊥y on N from
the primitives ≤,+,−· , iq, rem, then for infinitely many a > b

cα(a, b) >
1

10
log log a (*)

where cα(x , y) is the minimum number of applications of the
primitives which must be executed in sequence in the computation

I cα(x , y) is a depth (parallel time) complexity

I The result is one log short of establishing the optimality of the
Euclidean (and one log = ∞ in this context)

I (*) holds for all sufficiently large a, b such that
- a2 = 1 + 2b2 (solutions of Pell’s equation),
- or a = Fn+1, b = Fn (successive Fibonacci numbers)

I Claim: This applies to all algorithms from the specified primitives
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Outline
Slogan: Absolute lower bound results

are the undecidability facts about decidable problems

. . . and so they should be (to some extent) a matter of logic

(1) Tweak logic (a bit) so it applies smoothly to computation theory
(2) Three (simple) axioms for elementary algorithms,

a la abstract model theory
(3) Lower bounds from these axioms
(4) Lower bounds from stronger hypotheses about algorithms

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with vDD, to appear)

Y. Mansour, B. Schieber, and P. Tiwari (1991)
A lower bound for integer greatest common divisor computations,
Lower bounds for computations with the floor operation

J. Meidânis (1991): Lower bounds for arithmetic problems
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(Partial) algebras and induced subalgebras

I A (partial, pointed) algebra is a structure M = (M, 0, 1,ΦM)

where 0, 1 ∈ M, Φ is a set of function symbols (the vocabulary)

and ΦM = {φM}φ∈Φ, with φM : Mnφ ⇀ M for each φ ∈ Φ

Nε = (N, 0, 1, rem), the Euclidean algebra
Nu = (N, 0, 1,S ,Pd), the unary numbers
Nb = (N, 0, 1,Parity, iq2, (x 7→ 2x), (x 7→ 2x + 1)), the binary numbers
N = (N, 0, 1,+,−· , iq, rem, ·), the full algebra of numbers

I Restrictions: for {0, 1} ⊆ U ⊆ M,

U = M�U = (U, 0, 1,ΦU),

where for φ ∈ Φ,

φU(~x) = w ⇐⇒ ~x ,w ∈ U & φM(~x) = w

For finite U ⊂ N, Nb �U is a finite, properly partial subalgebra of Nb
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Subalgebras and embeddings

I An embedding ι : U � M from one Φ-algebra into another is
any injection ι : U � M such that

ι(0U) = 0M, ι(1U) = 1M,

and for all φ ∈ Φ, x1, . . . , xn,w ∈ U,

φU(x1, . . . , xn) = w =⇒ φM(ιx1, . . . , ιxn) = ιw

I U ⊆p M if the identity I : U � M is an embedding

(so that for every M, M�{0, 1} ⊆p M)
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Subalgebras generated from the input, M = (M , 0, 1, ΦM)

For ~x = x1, . . . , xn ∈ M, set

G0(~x) = {0, 1, x1, . . . , xn}
Gm+1(~x) = Gm(~x) ∪ {φM(~u) | φ ∈ Φ, ~u ∈ Gm(~x) and φM(~u)↓}

so that

Gm(~x) = {tM[x1, . . . , xn] ∈ M | t(v1, . . . , vn) is a term of depth ≤ m}

M�Gm(~x) is the subalgebra of depth m generated by ~x

(M�
⋃

m Gm(~x) is the subalgebra generated by ~x)
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The complexity of values

I Basic principle: If an algorithm α computes f : Mn → M from
the primitives of M = (M, 0, 1,ΦM), then

if f (~a) /∈ Gm(~a), then cα(~a) ≥ m

I No hidden primitives — growth arguments

Gm(a) in Nb: 0 1 2 · · · 2m+1 − 1 gap iq(a, 2m) · · · a · · ·

Theorem (van den Dries)

If an algorithm α computes gcd(x , y) from

+, −· , <, =, iq, rem, ·,

then for all a > b such that a2 = 1 + 2b2 (Pell pairs)

cα(a + 1, b) ≥ 1

4

√
log log b

I Cannot get lower bounds for decision problems by this method
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I The Locality Axiom

An algorithm α of arity n of an algebra M = (M, 0, 1,ΦM) assigns
to each subalgebra U ⊆p M an n-ary (strict) partial function

αU : Un ⇀ U

I M-algorithms “compute” partial functions, and they can be
localized (relativized) to arbitrary subalgebras of M

We write

U |= α(~x) = w ⇐⇒ ~x ∈ Un,w ∈ U and αU(~x) = w
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II The Embedding Axiom

If α is an n-ary algorithm of M, U,V ⊆p M, and
ι : U � V is an embedding, then

U |= α(~x) = w =⇒ V |= α(ι~x) = ιw (x1, . . . , xn,w ∈ U)

In particular, if U ⊆p M, then αUvαM

I An algorithm treats the primitives of M as oracles: it can
request values φM(~y), and use them if they are provided
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III The Finiteness Axiom

If α is an n-ary algorithm of M, then

M |= α(~x) = w =⇒ there is an m such that ~x ,w ∈ Gm(~x)

and M�Gm(~x) |= α(~x) = w

In particular,
αM(~x)↓ =⇒ α(~x) ∈

⋃
m Gm(~x)

I “The computation” of αM(~x) takes place within the
subalgebra of M generated by the input, and it is finite: take
m large enough so that every y “used in the computation”
is in Gm(~x)
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All elementary algorithms satisfy these axioms

I Explicit computation: αU(~x) = tU[~x ], where t(~v) is a Φ-term

I αU is the partial function computed a fixed recursive
(McCarthy) program A in the signature Φ

I αU is computed from ΦU by any of the familiar machine
models of computation—register machines, Random Access
Machines, Turing machines, etc.

I αU is computed in PCF above the algebra U

I αU by computed by non-deterministic versions of any of these
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Axioms for elementary algorithms

I I, Locality Axiom: An algorithm α of arity n of an algebra
M = (M, 0, 1,ΦM) assigns to each subalgebra U ⊆p M an
n-ary partial function

αU : Un ⇀ U (U |= α(~x) = w ⇐⇒ αU(~x) = w)

I II, Embedding Axiom: If U,V ⊆p M, and ι : U � V is an
embedding, then

U |= α(~x) = w =⇒ V |= α(ι~x) = ιw (x1, . . . , xn,w ∈ U)

I III, Finiteness Axiom:

M |= α(~x) = w =⇒ there is an m such that ~x ,w ∈ Gm(~x)

and M�Gm(~x) |= α(~x) = w

Yiannis N. Moschovakis: The axiomatic derivation of absolute lower bounds 12/22



The embedding complexity of an algorithm

If α is an algorithm of M and M |= α(~x) = w , set

c ι
α(~x) = the least m such that M�Gm(~x) |= α(~x) = w

This is defined by the Finiteness Axiom

I Intuitively, if m = c ι
α(~x), then any implementation of α will

need to “consider” (use) some u ∈ M of depth m above ~x ;
and so it will need at least m steps to construct this u from
the input using the primitives

I If α(~x) = tM[~x ], then c ι
α(~x) ≤ depth(t(~v))

I c ι
α is majorized in the examples by all usual time-complexity

measures, including

cα(x , y) = the minimum number of applications of the primitives
which must be executed in sequence in the computation
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? The embedding complexity of a (computable) function

Fix f : Mn → M. An embedding ι : M�Gm(~x) � M respects f at ~x if

f (~x) ∈ Gm(~x) & ι(f (~x)) = f (ι(~x))

Lemma
If some algorithm computes f in M, then for each ~x, there is some
m such that every embedding ι : M�Gm(~x) � M respects f at ~x

Proof Take m = c ι
α(~x) for some α such that f = αM

c ι
f (~x) = the least m such that every ι : M�Gm(~x) � M respects f at ~x

If α computes f in M, then c ι
f (~x) ≤ c ι

α(~x)

I To show that m is an absolute lower bound for the
computation of the value f (~x), show that f (~x) /∈ Gm(~x) or

construct ι : M�Gm(~x) � M such that ιf (~x) 6= f (ι~x)
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Outline of a proof

Theorem (van den Dries, ynm)

In M = (N, 0, 1,≤,+,−· , iq, rem): if a is sufficiently large and
a2 = 1 + 2b2 or a = Fn+1, b = Fn, then

c ι
⊥⊥(a, b) >

1

10
log log(a) (*)

So if α decides coprimeness in M, then (*) holds with cα(a, b)

I If 224m+6 ≤ a, then every X ∈ Gm(a, b) can be written uniquely as

X =
x0 + x1a + x2b

x3
with xi ∈ Z, |xi | ≤ 224m

and we can define ι : M�Gm(a, b) � M using λ = 1 + a!,

ι(X ) =
x0 + x1λa + x2λb

x3
, so (ι(a), ι(b)) = (λa, λb)
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The “universal constant” 1
10

Detailed version of result
In M = (N, 0, 1,≤,+,−· , iq, rem): if 1 < ξ < 2, ξ is a quadratic
algebraic irrational, C > 0, a is sufficiently large, and a⊥⊥b, then

1

Cb2
<

∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ c ι

⊥⊥(a, b) >
1

K
log log a,

with K ≥ 2 log(log C + 19)

I Liouville: for some C , infinitely many a, b satisfy the
hypothesis

I With ξ =
√

2 and a2 = 1 + 2b2, we can take C = 5,K ≥ 10

I With ξ = 1
2(1 +

√
5) and a = Fn+1, b = Fn, again,

C = 5,K ≥ 10
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M = (N, 0, 1, Parity, iq2,≤, +,−· , Presburger functions)

I (van den Dries, ynm) If R(x) is one of the relations

x is prime , x is a perfect square , x is square free ,

then for some r > 0 and infinitely many a, c ι
R(a) > r log(a)

I (van den Dries, ynm) For some r > 0 and infinitely many a, b,

c ι
⊥⊥(a, b) > r log(max(a, b))

I (Joe Busch) If R(x , p) ⇐⇒ x is a square mod p ,

then for some r > 0 and a sequence (an, pn) with pn →∞,

c ι
R(an, pn) > r log(pn)

In the last two examples, the results match up to a multiplicative
constant the known binary algorithms, so these are optimal
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Primality in binary

I If Prime(p) ⇐⇒ p is prime, then in

Nb = (N, 0, 1,Parity, iq2, (x 7→ 2x), (x 7→ 2x + 1)),

for all sufficiently large primes p,

c ι
Prime(p) ≥ 1

6
log p (*)

I This should follow trivially from number-theoretic results,
because it takes at least i applications of the primitives of Nb

to read i bits of the input; we should have 1 in the place of 1
6

I Theorem (Tao). For infinitely many primes p, if p′ is
constructed by changing any bit in the binary expansion of p
except the highest, then p′ is not prime

I Tao found subsequently that this result is implicit in a paper
of Cohen and Selfridge from 1975 and explicitly noted in a
2000 paper by Sun, and he obtained more general results
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Non-uniform complexity

What if you are only interested in deciding R(~x) for n-bit numbers
(< 2n) and you are willing to use a different algorithm for each n?

I The lookup algorithm: For each k-ary relation R on N and
each n, there is an Nb-term (with conditionals) tn(~v) of depth
≤ n = log(2n) which decides R(~x) for all ~x < 2n.

I Non-uniform lower bounds on depth are never greater than log

I The best ones establish the optimality of the lookup algorithm
(and are most interesting when some uniform algorithm
matches the lookup up to a multiplicative constant)

I They are mostly about “the size” of t(~v)

I They do not follow from Axiom I – III

Yiannis N. Moschovakis: The axiomatic derivation of absolute lower bounds 19/22



Recursive (McCarthy) programs of M = (M , 0, 1, ΦM)

Explicit Φ-terms (with pn
i partial function variables)

A :≡ 0 | 1 | vi | φ(A1, . . . ,An) | pn
i (A1, . . . ,An)

| if (A0 = 0) then A1 else A2,

Recursive program (only ~xi , p1, . . . , pK occur in each part Ai ):

A :


pA(~x0) = A0

p1(~x1) = A1
...

pK (~xK ) = AK

(A0 : the head, (A1, . . . ,AK ) : the body)

The elementary algorithms of M are expressed by recursive programs

They satisfy Axioms I – III, but also have a rich structure
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A non-uniform lower bound result for elementary algorithms

If α is the algorithm expressed by a recursive program in M, let

cs
α(~x) = the number of calls to the primitives

made in the computation of α(~x) ≥ c ι
α(~x)

Theorem (van den Dries, ynm)

Let M = (N, 0, 1,≤,+,−· , iq, rem). There is some r > 0, such that
for all sufficiently large n and every M-elementary algorithm α which
decides coprimeness for all x , y < 2n, there exist a, b < 2n such that

cs
α(a, b) > r log n ≥ r log log(max(a, b))

The proof is by the embedding method, but uses special properties
of recursive programs (the computation space)
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Remarks

(1) A technique for deriving lower bounds for decision problems
which are absolute, i.e., they hold of all computational models

(2) Main limitation: in its current version, it only yields lower
bounds which are no better than O(n) (linear in the length of
the input)

(3) Problem: prove that the Euclidean algorithm is optimal for
computing the gcd in the algebra Nε = (N, 0, 1, rem)

(4) Problem: prove an O(n2) lower bound for primality in
Nb = (N, 0, 1,Parity, iq2, (x 7→ 2x), (x 7→ 2x + 1))

Comment: (4) may need some number theory, but it will also need
some logical analysis of computation (since the entire input is
known in O(n) steps)
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