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Abstract. We investigate the compatibility of I0 with various combinatorial

principles at λ`, which include the existence of λ`-Aronszajn trees, square
principles at λ, the existence of good scales at λ, stationary reflections for
subsets of λ`, diamond principles at λ and the Singular Cardinal Hypothesis
at λ. We also discuss whether these principles can hold in LpVλ`1q.

Contents

1. Introduction 1
Notations 2
2. λ`-Aronszajn tree, good scales at λ and lλ 2
2.1. There are no λ`-Aronszajn trees and lλ-sequences in LpVλ`1q 2
2.2. λ`-Aronszajn trees and lλ in V 3
2.3. Good scales at λ 6
3. Stationary reflection at λ` 7
4. Diamond and GCH at λ 9
5. The one-extender-based Prikry forcing is λ-good 12
5.1. Preliminaries on λ-good forcings 12
5.2. Gitik’s one extender-based Prikry forcing 12
5.3. Gitik’s forcing is λ-good 15
References 19

1. Introduction

Axiom I0pλq is the assertion that there is an elementary embedding j : LpVλ`1q Ñ

LpVλ`1q such that critpjq ă λ. It was first proposed and studied by Woodin in the
early 80’s and by Laver in the 90’s. For the introductory material on this axiom
and its connection with other rank-into-rank axioms, we refer the readers to [10].

Although it is stronger than the existence of supercompact cardinals in consis-
tency strength, the statement I0pλq only implies the existence of ăλ-supercompact
cardinals, there are a fair number of statements that follow from supercompactness
but are independent of I0pλq. The theme of this paper is to present some examples
of this sort in the area of combinatorics at λ`. In this context, λ is an ω-limit of
very strong large cardinals, for instance, limit of ăλ-supercompact cardinals.

Key words and phrases. Axiom I0, λ`-Aronszajn tree, square, weak square, stationary reflec-
tion, good scales, diamond, λ-continuum hypothsis, Generic absoluteness, λ-good.
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Let φ be a combinatorical principle at λ`. In this paper, we investigate the
compatibility of I0pλq axiom with various φ’s over the base theory Γ “ ZFC`I0pλq.
We ask three questions:

‚ Is φ consistent with Γ?
‚ Is ␣φ consistent with Γ?
‚ Is φ true in LpVλ`1q?

The combinatorial principles investigated in this paper include

(1) the existences of (special) λ`-Aronszajn tree and of λ`-Suslin tree; (see
§2.1 and §2.2)

(2) the lλ and the l˚
λ principles; (see §2.1 and §2.2)

(3) the existence of (good, very good) scale at λ`; (see §2.3)
(4) stationary reflection at λ`; (see §3)
(5) the ♢λ` principle; (see §4)
(6) GCH (as well as SCH) at λ; (see §4)

In the discussion of the compatibility of these principles with Γ, we also look into
their independence with respect to ZFC plus the following stronger form of I0-type
assertion:

There is an elementary embedding

j : Lω¨2`1pV
7
λ`1, Vλ`1q Ñ Lω¨2`1pV

7
λ`1, Vλ`1q

with critpjq ă λ.

We are unable to answer the question regarding stationary reflection at λ` in
LpVλ`1q, due to the lack of choice in this model. We include a scenario (see Theorem
3.3) where it could be true in LpVλ`1q, although it is unknown if that setting is even
compatible with I0. Our discussion regarding the generalized continuum hypothesis
at λ (see Theorem 4.4) assumes a stronger form of Generic absoluteness. To apply
it, we need to show that Gitik’s one-extender-based Prikry forcing is λ-good. For
that we extend the idea in [14], introduce two rank notions and develop in §5 a
systematic analysis on the ranks of (finite parts of) conditions in Gitik’s forcing.

Notations. We write I0 for the statement Dλ I0pλq. For two cardinals κ ă λ, κ
regular, we write Eκ

λ “ tα ă λ | cfpαq “ κu, and similarly write Eąκ
λ , Eďκ

λ to
denote the obvious sets. If C is a set of ordinals, we use limpCq to denote the set
of limit ordinals of C.

2. λ`-Aronszajn tree, good scales at λ and lλ

κ-tree is a tree on κ of size κ whose every level has size ăκ. A κ-Aronszajn tree
is a κ-tree that has no cofinal branch of length κ.

2.1. There are no λ`-Aronszajn trees and lλ-sequences in LpVλ`1q. Under
ZFC, there is an ω1-Aronszajn tree, however this is not true under the axiom of

determinacy. Being more precise, assuming ADLpRq, there is no ω1-Aronszajn tree
in LpRq, while it may exist in V , if AC is assumed there. In this section, we show
that a similar situation occurs at λ`, assuming I0pλq.

Theorem 2.1 (ZFC). Assume I0pλq. There is no λ` Aronszajn tree in LpVλ`1q.
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Proof. The reason there is no λ`-Aronszajn tree in LpVλ`1q is the same as that

of the nonexistence of ω1-Aronszajn tree in LpRq under ADLpRq. First, note that
pλ`qV “ pλ`qLpVλ`1q, so a λ`-tree in LpVλ`1q is also a λ`-tree in V . We show that
such a tree can not be a λ`-Aronszajn tree.

By a theorem of Woodin (see [17], 1.B.5), I0pλq implies that

LpVλ`1q |ù λ` is a measurable cardinal.

Assuming towards a contradiction that there is a λ`-Aronszajn tree T in LpVλ`1q.
Let π : LrT s Ñ M – UltpLrT s, µ X LrT sq be the ultrapower embedding induced
by a λ`-complete measure µ on λ`. Then πpT q is a πpλ`q-Aronszajn tree in M .
Notice that critpπq “ λ`, we have T “ π“T Ă πpT q and πpλ`q ą λ`. Any node
at the λ`-th level of πpT q is a cofinal branch of π“T “ T . Thus there can be no
λ`-Aronszajn tree in LpVλ`1q. □

The same argument gives us a similar result regarding the square principle, which
is due to Jensen [9].

Definition 1. Let λ be an uncountable cardinal. A lλ-sequence is sequence xCα :
α ă λ`, α P limpλ`qy such that for all α ă λ`,

(1) Cα Ď α is closed and unbounded in α,
(2) otpCα ď λ,
(3) For all β P limpCαq, Cβ “ Cα X β.

We say lλ holds if there exists a lλ-sequence.

Theorem 2.2. Assume I0pλq. Then LpVλ`1q |ù ␣lλ.

Proof. Assume not, and let C̄ “ xCα : α ă λ`, α P limpλ`qy be a lλ-sequence in
LpVλ`1q. Let µ be a λ`-complete ultrafilter that witnesses the measurability of λ`

in LpVλ`1q. Let π : LrC̄s Ñ M – UltpLrC̄s, µ X LrC̄sq be the induced elementary
embedding. Then πpC̄q is a lπpλ`q-sequence in M . Since every Cα, α ă λ`,

has ordertype ď λ in LrC̄s, every member of πpC̄q has ordertype ď πpλq “ λ,
as critpπq “ λ`. Let Cλ` be the λ`-th element of πpC̄q. On the one hand,
otppCλ`q “ λ by elementarily, the definition of C̄, and the fact that critpπq “ λ`;
on the other hand, as a member of lπpλ`q-sequence, Cλ` is a closed unbounded

subset of λ`. This is a contradiction! □
Remark. Although lλ implies the existence of a λ`-Aronszajn tree (see Exercise
IV.1C and the proof of Theorem IV.2.4, [5]), this does not enable us to conclude the
failure of lλ in LpVλ`1q from Theorem 2.1, as the construction of a λ`-Aronszajn
tree uses λ`-DC, which fails in LpVλ`1q.

2.2. λ`-Aronszajn trees and lλ in V . The two theorems above say that I0pλq
pushes λ`-Aronszajn trees as well as lλ-sequences, if exist, out of LpVλ`1q, but it
does not necessarily eliminate their existence in V . Next we show that given the
consistency of I0pλq for some λ, it is possible to produce a model with both I0pλq
and a λ`-Suslin tree. A κ-Suslin tree is a κ-Aronszajn tree with no antichain of
size κ.

Theorem 2.3 (ZFC). Assume I0pλq. Then there is a model in which I0pλq holds
and there is a special λ`-Aronszajn tree, even furthermore a λ`-Suslin tree.

Proof. To produce a special λ`-Aronszajn tree, we need the following “weak square”
principle, l˚

λ, due to Jensen (see [2], §5):
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There exist xCα : α ă λ`, α limity such that each Cα is a nonempty
set of club subsets of α, |Cα| ď λ, and for all limit α ă λ`, all
C P Cα and all β P limpCq, otppCq ď λ and C X β “ Cβ .

Jensen showed that l˚
λ is equivalent to the existence of a special λ`-Aronszajn

tree. Our approach is to force a weak square sequence. In fact, the standard
forcing Pλ due to Jensen for adding a square sequence will do. For the detail of
Pλ, one can read Cummings’ handbook article ([3], 6.6). Another relevant point
is that this forcing is ăλ`-strategically closed, therefore it adds no new subsets of
λ, preserves cardinals and cofinalities up to λ`. Let j : LpVλ`1q Ñ LpVλ`1q be
a witness embedding for I0pλq. Then the same elementary embedding witnesses
I0pλq in the generic extension.

To get a λ`-Suslin tree, we need before applying the forcing Pλ over a ground
model that satisfies GCH at λ, namely 2λ “ λ`. This is not difficult to achieve, as
we may first force 2λ “ λ` then force a square sequence, i.e. use Collpλ`, 2λq ˚ 9Pλ,

where 9Pλ is the Collpλ`, 2λq-name of Pλ. Note that this Levy collapse is a ăλ`-
closed forcing, so this two-step iterated forcing poset does not change Vλ`1 and
therefore the LpVλ`1q of the models before and after applying this forcing are
the same, hence the same elementary embedding j witnesses I0pλq in the generic
extension.

Let κ be a regular uncountable cardinal ă λ. One can produce a lλ-sequence
D̄ “ xDα | α ă λ`y and a stationary set S Ď Eκ

λ` such that S X limpDαq “ ∅ for

all α ă λ`. The proof that such D̄ and S exist can be found in [2], the paragraph
prior to 4.2. By a result of Shelah ([12], see also Theorem 2.2 of [2]), if 2ăλ “ λ and
GCH holds at λ, then ♢λ`pT q holds for every stationary T Ă Eąω

λ` . Thus we have
a ♢λ`pSq-sequence. Then by Jensen’s argument (see [2], 4.2), a λ`-Suslin tree can
be constructed from the lλ-sequence D̄ and that ♢λ`pSq-sequence. □

Next we show that under suitable assumptions, I0pλq is not compatible with the
existence of λ`-Aronszajn trees. For that we need a theorem in I0 theory.

Theorem (Cramer [1]). Assume there is an elementary embedding

j : Lω¨2`1pV
7
λ`1, Vλ`1q Ñ Lω¨2`1pV

7
λ`1, Vλ`1q

with critpjq ă λ. Then there is a λ̄ ă λ such that I0 holds at λ̄, namely, there is
an elementary embedding j̄ : LpVλ̄`1q Ñ LpVλ̄`1q with critpj̄q ă λ̄.

By a result of Shelah (see [4] Fact 2.10), if there is a supercompact κ and λ is
a cardinal such that cfpλq ă κ ă λ, then l˚

λ fails (in fact, the proof just needs κ
to be λ`-supercompact). Under the hypothesis in Cramer’s theorem, it is easy to
arrange a λ̄ so that λ̄ ą critpjq, i.e. λ̄ ą κ for some κ ă λ that is ăλ-supercompact.
In particular, this κ is λ̄`-supercompact, so we have l˚

λ̄
fails and consequently that

there is no special λ̄`-Aronszajn tree. The elimination of the adjective “special”
follows from a careful examination of Cramer’s proof of the theorem.

Theorem 2.4 (ZFC). Assume there is an elementary embedding

j : Lω¨2`1pV
7
λ`1, Vλ`1q Ñ Lω¨2`1pV

7
λ`1, Vλ`1q

with critpjq ă λ. Then there is a λ̄ ă λ such that I0pλ̄q holds and there is no
λ̄`-Aronszajn tree.
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Proof. In [11], Magidor and Shelah show that if λ is a singular limit of strongly
compact cardinals, then λ` carries no Aronszajn trees. For our purpose, it suffices
to have λ being a limit of λ`-strongly compact cardinals. Let λ̄ be as in Cramer’s
theorem. From Cramer’s proof, there is an inverse limit pJ, j⃗q such that λ̄ “ λJ . Let

j⃗ “ xjn : n ă ωy, then λ̄ “ limnăω critpjnq. Here each jn is an I0pλq embedding,
thus each critpjnq is a ăλ-strongly compact. Thus λ̄ is a limit of λ̄`-strongly
compact cardinals. Then by Magidor-Shelah’s theorem, there is no λ̄`-Aronszajn
tree. □

In fact, we have also shown that

Theorem 2.5 (ZFC). (1) ConpI0pλqq implies ConpI0pλq`lλq, and hence im-
plies ConpI0pλq `l˚

λq.
(2) Assume there is an elementary embedding

j : Lω¨2`1pV
7
λ`1, Vλ`1q Ñ Lω¨2`1pV

7
λ`1, Vλ`1q

with critpjq ă λ. Then there is a λ̄ ă λ such that I0pλ̄q holds and lλ̄ fails.

The proof of 1 is in the proof of Theorem 2.3. The proof of 2 is essentially
included in the paragraph following Cramer’s Theorem on 4, where it is argued
that under the same hypothesis, the weak square l˚

λ̄
fails for some λ̄ ă λ.

Remark. Notice that the forcing that adds a lλ-sequence adds no new subsets of

λ, and by the definability of the sharp, V 7
λ`1 is absolute, therefore the embedding

j : Lω¨2`1pV
7
λ`1, Vλ`1q Ñ Lω¨2`1pV

7
λ`1, Vλ`1q

remains to be elementary on the Lω¨2`1pV
7
λ`1, Vλ`1q of the generic extension. There-

fore Cramer’s hypothesis is consistent with the existence of a lλ-sequence, therefore
a special λ`-Aronszajn tree, as well as a λ`-Suslin tree.

Therefore lλ is in some sense independence of I0 axiom, as well as the stronger
variation in the hypothesis of Theorem 2.4. The same hold for the existence of
λ`-Aronszajn tree and λ`-Suslin tree. More precisely,

Corollary 1 (ZFC). Let Γpλq denote the assertion that there exists an elementary
embedding

j : Lω¨2`1pV
7
λ`1, Vλ`1q Ñ Lω¨2`1pV

7
λ`1, Vλ`1q

with critpjq ă λ. Let φ be one the following statements. Assume that DλΓpλq is
consistent. Then both Dλ pΓpλq`φpλqq and Dλ pΓpλq`␣φpλqq are consistent, where
φpλq is one of the following statements.

(1) there is a lλ-sequence.
(2) there is a l˚

λ-sequence.
(3) there is a (special) λ`-Aronszajn tree.
(4) there is a λ`-Suslin tree.

Contrast Corollary 1 with Solovay’s theorem (see [15, 16]) regarding the incom-
patibility of square principle with supercompact cardinals, more precisely: If κ ď λ
and κ is λ`-supercompact, then lλ fails.
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2.3. Good scales at λ. Next we discuss good scales at λ. We are going to show
that there is no (very) good scale at λ in LpVλ`1q and to add the assertion of its
existence to the list in Corollary 1. In this paper, as λ is a singular cardinal of
countable cofinality, we consider only the set

ś

iăωκi, where κ̄ “ xκi : i ă ωy
is a sequence of regular cardinals such that λ “ supiăω κi, and the ideal I on ω
that consists of all finite subsets of ω. Given f, g P

ś

iκi, f ăI g if and only if
ωzti | fpiq ă gpiqu P I. A scale of length α in

ś

iκi{I is a ăI -increasing sequence
xfi : i ă αy in

ś

iκi which is cofinal in
ś

iκi under the relation ăI . A scale for λ
is a pair pκ̄, f̄q, where f̄ is a scale of length λ` in

ś

iκi{I. As λ is singular, a basic
fact of PCF theory is that, there exists a scale for λ.

Definition 2. (1) Suppose pκ̄, f̄q is a scale for λ. A point α ă λ` is good for
pκ̄, f̄q iff there is an A Ă α unbounded in α and i ă ω such that

@α, β P A@j ą i pα ă β Ñ fαpjq ă fβpjqq.

(2) Let xgi : i ă βy be a ăI -increasing sequence in
ś

iκi and g P
ś

iκi. g is an
exact upper bound (eub) for xgi : i ă βy if gi ăI g for every i ă β and for
any h P

ś

iκi, h ăI g ñ h ďI gi for some i ă β.

By Shelah’s PCF theory, the set of good points in a scale for λ is a stationary
subset of λ`. This set is determined by the sequence κ̄ modulo the nonstationary
ideal on λ`.

Definition 3. A scale pκ̄, f̄q for λ is good if except a nonstationary subset of λ`

every point of uncountable cofinality is good for f̄ .
A scale pκ̄, f̄q for λ is very good if for every limit α ă λ` such that cfpαq ą ω,

there is a C Ď α club in α and an integer m ă ω such that for all n ą m,
xfβpnq : β P Cy is strictly increasing.

Theorem 2.6 (ZFC). Assume I0pλq. There is no (good, very good) scale at λ in
LpVλ`1q.

Proof. It suffices to show that there is no scale at λ in LpVλ`1q. Suppose otherwise
and let pκ̄, f̄q be a scale for λ in LpVλ`1q. Let µ be a λ`-complete ultrafilter that
witnesses the measurability of λ` in LpVλ`1q. Let

π : Lrκ̄, f̄ s ÑM – UltpLrκ̄, f̄ s, µX Lrκ̄, f̄ sq

be the induced elementary embedding. Since Lrκ̄, f̄ s |ù @α ă β pfα ăI fβq, by
elementarity, fα ăI πpf̄qpλ`q in M , for every α ă λ`. Since ăI is absolute, that
is also true in LpVλ`1q. But then f̄ is not a scale in LpVλ`1q. Contradiction! □

Similar to the situation of lλ, we have

Theorem 2.7. (1) Assume I0pλq. Then there is a model of ZFC ` I0pλq, in
which there is a (very) good scale at λ.

(2) Assume there is an elementary embedding

j : Lω¨2`1pV
7
λ`1, Vλ`1q Ñ Lω¨2`1pV

7
λ`1, Vλ`1q

with critpjq ă λ. Then there is a λ̄ ă λ such that I0pλ̄q holds and there is
no good scale at λ̄.
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Proof. 1 follows Theorem 2.5-1 and a theorem of Cummings, Foreman and Magidor
(see [4] Theorem 3.1): If λ is singular and κ ă λ, then lλ,κ

1 implies that there is a
very good scale at λ. lλ implies lλ,κ, therefore in the model obtained by adding
a lλ-sequence, there is a very good scale at λ.

For 2, we need a theorem of Shelah (see [13], or [2] Theorem 18.1): If there is a
κ such that cfpλq ă κ ă λ and κ is λ`-supercompact, then there is no good scale
at λ. By the discussion in the paragraph following Cramer’s Theorem on page 4,
one can arrange I0pλ̄q for some λ̄ ą κ “ critpjq, but κ is ăλ-supercompact, in
particular λ̄`-supercompact, therefore, there is no good scale at λ̄. □

Corollary 2. The assertion that “ there is a (very) good scale at λ” can be added
to the list in Corollary 1.

3. Stationary reflection at λ`

Let κ be an uncountable regular cardinal. Let S be a stationary subset of κ. S
reflects at α if α ă κ, cfpαq ą ω and SXα is stationary in α. Stationary Reflection
Principle for T , where T Ď κ is stationary, says that for every stationary S Ď T , S
reflects at some α ă κ.

In this section, we show that I0 is compatible with either side of the Stationary
Reflection Principle. Let bλ` denote the Stationary Reflection Principle for λ`.

Theorem 3.1 (ZFC). Assume there is an elementary embedding

j : Lω¨2`1pV
7
λ`1, Vλ`1q Ñ Lω¨2`1pV

7
λ`1, Vλ`1q

with critpjq ă λ. Then there is a λ̄ ă λ such that I0 holds at λ̄ and bλ̄` is true.

Proof. As before (see page 4, after Cramer’s Theorem), this hypothesis yields κ, λ̄
such that κ ă λ̄ ă λ and κ is λ̄`-supercompact. Then it follows from the standard
argument that the Stationary Reflection Principle for λ̄` is true: Fix a stationary
S Ď λ̄`. Let π : V ÑM be an embedding witnessing the λ̄`-supercompactness of
κ. We claim that

Claim. π“S is a stationary subset of γ “ supπ“S “ supπ“λ̄` in M .

Let C be a closed and unbounded subset of γ in M . Since π“λ̄` is κ-closed,
i.e. closed under supremum of ă κ-sequences, π“λ̄`XC is a κ-closed and unbounded
subset of γ. Pull it back, D “ π´1“pπ“λ̄`XCq is a κ-closed and unbounded subset
of λ`. Then we have S XD ‰ ∅. And then π“S XC ‰ ∅. Thus π“S is stationary
in γ.

Since π“S Ď πpSq X γ, we have

M |ù Dγ ă πpλ`q pπpSq reflects at γq.

By elementarity, V |ù S reflects at some α ă λ̄`. □

It is well known that lκ implies that the Stationary Reflection Principle fails for
every stationary T Ď κ` ([4], Theorem 1). So one can obtain the failure of bλ̄` by
forcing a square sequence. As discussed in the proof of Theorem 2.3, that forcing is
ăλ`-strategically closed, it preserves I0pλq, therefore we have both I0pλq and ␣bλ`

in the generic extension. One can also force directly a non-reflecting stationary

1The definition of lλ,κ is irrelevant to our proof, we refer the reader to Cummings [2] for

details.
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subset of λ`. One can find such a forcing in Cummings’ handbook article [3], 6.5.
That forcing is λ`-strategically closed, therefore adds no new subsets of λ. Thus
in V rGs, we also have both I0pλq and ␣bλ` .

Theorem 3.2 (ZFC). Assume I0pλq is consistent. Then so is I0pλq ` ␣bλ` .

Corollary 3. The assertion bλ` can be added to the list in Corollary 1.

The question left is that

‚ Assuming I0pλq, is it true that LpVλ`1q |ù bλ` ?

Our first attempt is to try the trick we did in the proofs for the nonexistence
of λ`-Aronszajn tree (see Theorem 2.1) and the existence of lλ`-sequences (see
Theorem 2.2) in LpVλ`1q. However, the bλ` case is subtle. Its negation is the
following statement

DS R Iλ`@α P Eąω
λ` DCαpCα is club in α^ S X αX Cα “ ∅q.

Here Iλ` denote the nonstationary ideal on λ` and Eąω
λ` denote the set of ordinals

ăλ` with uncountable cofinalities. For each such α, let Cα be the collection of
clubs C in α such that S X C X α “ H. We would like to take the ultrapower
of the structure LpxCα : α ă λ`y, Sq by a measure on λ`. The problem is that
 Los theorem fails for the ultrapower. In particular, we are not able to show that,
letting i be the ultrapower map and xDβ : β ă ipλ`qy “ ipxCα : α ă λ`yq, for each
β ă ipλ`q, Dβ ‰ H. Also, since λ`-DC fails in LpVλ`1q, we are not able to choose,
for each α ă λ`, a Cα P Cα and consider the ZFC model LrxCα : α ă λ`y, Ss.

We will obtain stationary reflection in LpVλ`1q from a slightly stronger principle,
which unfortunately is not known to be consistent relative to I0pλq.

Theorem 3.3 (ZFC). Assume in LpVλ`1q, λ
` is Vλ`1-supercompact2. Then LpVλ`1q |ù

bλ` .

Proof. Working in LpVλ`1q, fix a measure µ witnessing that λ` is Vλ`1-supercompact.
For each σ P Pκ`pVλ`1q, let Mσ “ HODσYtσu and let M “

ś

σ Mσ{µ be the µ-
ultraproduct of the structures Mσ’s.

Claim 3.1.  Los theorem holds for this ultraproduct.

Proof. The proof is by induction on the complexity of formulas. It’s enough to show
the following. Suppose φpx, yq is a formula such that the claim holds for φ and f is
a function such that tσ |Mσ ( Dxφrx, fpσqsu P µ. We show that M ( Dxφrx, rf sµs.

Let gpσq “ tx P σ | pDy P ODpxqqpMσ ( φry, fpσsqu. Then tσ | gpσq is a
non-empty subset of σu P µ. By normality of µ, there is a fixed real x such that
tσ : x P gpσqu P µ. Hence we can define hpσq to be the least y in ODpxq such that
Mσ ( φry, fpσqs. It’s easy to see then that M ( φrrhsµ, rf sµs. □

For each x, let cx be the constant function f : Pλ`pVλ`1q Ñ txu. By λ`-
completeness, it’s easy to see that for each α ă λ`, α “ rcαsµ. Also for each set x,
there is some a P Vλ`1 such that x is ODpaq. In particular, if x is a set of ordinals,
by fineness of µ, tσ | x P Mσu P µ. Also if A Ď Vλ`1, then tσ | A X σ P Mσu P µ.

2This means there is a fine, normal, λ`-complete measure µ on Pκ` pVλ`1q. Fineness and
completeness have standard meanings. In the context where full AC does not hold, normality is

defined as follows: suppose F : Pκ` pVλ`1q Ñ Pκ` pVλ`1q is such that tσ : F pσq Ď σ ^ F pσq ‰

Hu P µ, then there is some x such that tσ : x P F pσqu P µ
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This implies that A PM by  Los theorem and the fact that A “ rσ ÞÑ AX σsµ. So
Vλ`1 PM .

Now let S Ď λ` be stationary and S˚ “ rcSsµ. By the previous paragraph, in
M , S˚ X λ` “ S (note that pλ`qM “ λ` because Vλ`1 P M) and hence S˚ X λ`

is stationary in M . By  Los,

tσ | Dα ă λ` Mσ ( S X α is stationaryu.

By normality of µ, there is some α ă λ` such that

tσ |Mσ ( S X α is stationaryu.

Now we claim that SXα is stationary. Let CXα be club in α. By the discussion
above, tσ | C PMσu P µ. Fix σ such that C PMσ and Mσ ( “SXα is stationary”.
Now in Mσ, C is club in α, so C X S ‰ H. This shows S X α is stationary. □

Remark. The proof above works also if we are in a model M of the form LpVλ`1qrµs
and M ( µ is a normal, fine, λ`-complete measure on Pλ`pVλ`1q. We are opti-
mistic that such a model can be constructed from I0pλq or from its strengthenings.

4. Diamond and GCH at λ

First of all, assuming I0, no matter whether ♢λ` is true or not in the universe,
diamond sequence can not exist in LpVλ`1q.

Theorem 4.1 (ZFC). Assume I0 holds at λ. Then in LpVλ`1q, 2λ ‰ λ` and ♢λ`

fails.

Proof. It is a ZF theorem that ♢λ` yields an injective function from Ppλq into λ`.
The inverse of this injective function gives a λ`-sequence of distinct subsets of λ.
So we have LpVλ`1q |ù ♢λ` Ñ p2λ “ λ`q. If ♢λ` holds in LpVλ`1q then GCH holds
at λ`. But 2λ “ λ` implies that Vλ`1 is wellorderable in LpVλ`1q, this contradicts
the fact that LpVλ`1q |ù ␣AC. □

This proof utilizes the fact that GCH at λ leads to the violation of the fact that
LpVλ`1q is not a full choice model. Here we give another proof, which shows that
both ♢λ` and GCH at λ violates a weaker statement in LpVλ`1q. It is the following
analog of the AD-fact that there is no ω1-sequence of distinct reals.

Theorem 4.2 (ZFC). Assume I0 holds at λ. Then there is no λ`-sequence of
distinct members of Vλ`1 in LpVλ`1q.

Proof. The key point again is that λ` is measurable in LpVλ`1q. Suppose X “

xxα : α ă λ`y is a sequence of distinct subsets of λ. Let

π : LrXs ÑM – UltpLrXs, µX LrXsq

be the ultrapower embedding induced by a λ`-complete measure µ on λ`. Then
in M , πpXq is a πpλ`q-sequence of distinct subsets of λ. Every member of πpXq is
represented by a function λ` Ñ txα | α ă λ`u in V , in particular, let rf s be the
λ`-th element of πpXq.

Claim. f is constant on a measure one subset A Ă λ`.
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For each β ă λ, there is a unique iβ P t0, 1u such that

A
iβ
β “ tα ă λ` | fpαqpβq “ iu

is a measure one subset of λ`. By λ`-completeness, the set A “
Ş

tA
iβ
β | β ă λu

has measure one. Therefore for every α P A, fpαqpβq “ iβ .
This means that rf s equals to xα for some α ă λ`, contradicting to the assump-

tion that members of πpXq are all distinct. □
This effectively rules out 2λ ě λ` in LpVλ`1q, thus gives a more direct reason

why ♢λ` and GCH at λ fail in LpVλ`1q.
As we have discussed earlier (see the proof of Theorem 2.3), one can easily obtain

♢λ` by forcing 2λ “ λ` (using Levy collapse Collpλ`, 2λq) without adding bounded
subsets of λ, therefore preserves 2ăλ “ λ and I0 at λ. Thus we have

Theorem 4.3 (ZFC). Assume the consistency of I0, then the following are consis-
tent

(1) DλpI0pλq ` ♢λ`q,
(2) DλpI0pλq ` 2λ “ λ`q.

Regarding GCH, Dimonte-Friedman ([6] Corollary 3.9) sketches an argument
that it is relatively consistent with I0 that GCH holds, in particular at λ. However,
there are flaws in that argument. We will remark on this after proving our next
theorem. Here we present our result. We show the compatibility of I0pλq with the
failure of GCH at λ, and consequently, the compatibility with ␣SCH at λ (as λ is
a singular strong limit cardinal) and with ␣♢λ` , from a stronger form of I0-type
axiom and a strong generic absoluteness assumption. A few definitions.

Definition 4. Suppose X Ď Vλ`1.

(1) Let ΘX
λ “def tα | LpX,Vλ`1q |ù there is a surjective π : Vλ`1 Ñ αu.

(2) An ordinal α ă ΘX
λ is X-good if every element of LαpX,Vλ`1q is definable

in LαpX,Vλ`1q from an element in Vλ`1 Y tXu.

Definition 5. Assume j : LpX,Vλ`1q Ñ LpX,Vλ`1q is a proper elementary embed-
ding and critpjq ă λ. Let pMω, j0,ωq be the ω-iterate of pLpX,Vλ`1q, jq. Suppose
α ă ΘX

λ and α is X-good. We say that Generic Absoluteness holds for X at α if
the following proposition holds:

Suppose P P j0,ωpVλq, G P V is an Mω-generic filter for P, and
cofpλq “ ω in Mω. Then there is some α1 ď α and X 1 Ď Vλ`1 such
that Lα1pX 1,MωrGs X Vλ`1q ă LαpX,Vλ`1q.

We refer the readers to Woodin’s monograph [18] for relevant terminology and
basics in I0 theory. Recent work by S. Cramer [1] suggests the Generic Absoluteness
hypothesis in the following theorem is redundant, but at the moment, we don’t see
how to make do without it.

Theorem 4.4 (ZFC). Assume there is a proper elementary embedding

j : LpV 7
λ`1, Vλ`1q Ñ LpV 7

λ`1, Vλ`1q

with critpjq ă λ and GCH holds in Vλ. Suppose that α P pΘλ,Θ
V 7
λ`1

λ q and α is

V 7
λ`1-good and assume that Generic Absoluteness holds for V 7

λ`1 at α. Then it is

consistent that I0pλq holds and 2λ ą λ`.



I0 AND COMBINATORICS AT λ` 11

Proof. Let Mω be the ω-iterate of LpV 7
λ`1, Vλ`1q by j. Then by elementarity, λ

is ăj0,ωpλq-strong in Mω and GCH holds in j0,ωpVλq. Pick an η P rλ``, j0,ωpλqq.
Let P “ Pλ,η be Gitik’s one-extender-based Prikry forcing (with a single extender)
that changes the cofinality of λ to ω and adds η many cofinal ω-sequence in λ (see
[7]). The key is to show that P is λ-good in Mω, as this implies that there are
Mω-generic filters in V (see [14] Proposition 3.9 or [18] page 405). The next section
is devoted to verifying this matter.

Let G Ď P be an Mω-generic filter in V . Then 2λ “ η holds in MωrGs. As

Θλ ă α, jæLΘλ
pVλ`1q P LαpV

7
λ`1, Vλ`1q. By Generic Absoluteness for V 7

λ`1 at α,
there is an α1 ď α and an X 1 Ď Vλ`1 such that

Lα1pX 1,MωrGs X Vλ`1q ă LαpV
7
λ`1, Vλ`1q.

By the definability of sharp, X 1 “ pMωrGs X Vλ`1q
7. Since jæLΘλ

pVλ`1q is in

LαpV
7
λ`1, Vλ`1q, there is a

j1 P Lα1ppMωrGs X Vλ`1q
7,MωrGs X Vλ`1q

such that dompj1q “ LΘ1pMωrGsXVλ`1q, where Θ1 is the Θλ computed in LpMωrGsX
Vλ`1q, and such that the LpMωrGs X Vλ`1q-ultrafilter µj1 given by X P µj1 iff
j1æVλ P j1pXq induces an elementary embedding of LpMωrGs X Vλ`1q into itself.
This gives us I0pλq in MωrGs. □

Remarks. 1. The GCH assumption in the theorem is not essential. Suppose j :

LpV 7
λ`1, Vλ`1q Ñ LpV 7

λ`1, Vλ`1q is a proper elementary embedding with critpjq ă λ.
Relativize Dimonte-Friedman argument (see [6]) for LpVλ`1q, then there is a poset P
(backward Easton forcing up to λ) such that in its generic extension V rHs, j can be

lifted to LpV 7
λ`1, Vλ`1qrHs and GCH holds in Vλ. According to Dimonte-Friedman

([6]), this poset is above ω, so we have

LpV 7
λ`1, Vλ`1qrHs “ LpV rHs7λ`1, V rHsλ`1q.

Moreover, this poset is λ`-c.c. and is definable in

N “ Lα1ppMωrGs X Vλ`1q
7,MωrGs X Vλ`1q.

Notice that N and V agree on Vλ and the elementary embedding witnessing Generic

Absoluteness for V 7
λ`1 (at α), let us call it π, has critical point ě pλ`qN . Thus π

can be lifted to a π̄ : N rH0s Ñ LαpV rHs
7
λ`1, V rHsλ`1q. Again

N rH0s “ Lα1ppMωrGsrH0s X V rHsλ`1q
7,MωrGsrH0s X V rHsλ`1q.

Therefore the generic absoluteness assumption is also preserved by P.
2. We pointed out earlier that there are some issues with the argument Dimonte-

Friedman sketched for the compatibility of I0 with the failure of GCH at λ ([6],
Corollary 3.9). To be more specific, one is that the hypothesis of their corol-
lary, that generic absoluteness holds for all α ă Θ, is not enough to ensure that
π´1pjæLαpVλ`1qq, α ă Θ, can be pieced together to form j˚. It is unclear why
(the union of) the sequence xπ´1pjæLαpVλ`1qq : α ă Θy is in the domain of π. The
second issue is more serious: it is not clear why jæLαpVλ`1q falls in the range of π,
and then it would make no sense to talk about π´1pjæLαpVλ`1qq.

3. However, the current status of generic absolutness is only up to LδpVλ`1q,
where δ is least such that LδpVλ`1q ă LpVλ`1q, which is due to Cramer [1]. It is
not clear at this point if generic absoluteness assumption in the hypothesis of our
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theorem follows from the existence of an elementary embedding j : LpV 7
λ`1, Vλ`1q Ñ

LpV 7
λ`1, Vλ`1q with critpjq ă λ.

5. The one-extender-based Prikry forcing is λ-good

5.1. Preliminaries on λ-good forcings. In order to apply the Generic Absolute-
ness Theorem, we need to ensure that their generics exist in V . For that, we use a
notion of λ-goodness for posets due to Woodin (see [18]).

Definition 6. Let λ be an infinite cardinal. We say a partially ordered set P is
λ-good (in V ) if it adds no bounded subsets of λ and for every generic filter G and
for every A Ă Ord in V rGs and of size ă λ, there is a non-Ă-decreasing ω-sequence
xAi : i ă ωy such that A “

Ť

iAi and each Ai, i ă ω, is in V .

Below is a relativized version of Proposition 3.8 of [14], which asserts that generics
for forcings that are λ-good in the ω-th iterate exist in V .

Proposition. Assume that j : LpX,Vλ`1q Ñ LpX,Vλ`1q is a proper elementary
embedding with critical point ă λ. Let pMω, j0,ωq be the ω-iterate of pLpX,Vλ`1q, jq.
Suppose P P j0,ωpVλq and P is λ-good in Mω. Then there exists G Ď P in V such
that G is Mω-generic.

Here we are only interested in the case that X “ V 7
λ`1. A useful sufficient

condition for showing λ-goodness as follows (see [14]): For all

D Ď tD Ď P | D is open dense in Pu

such that |D | ă λ, for any p P P, there are p˝ ďP p and a nondecreasing sequence
xDp,i : i ă ωy of subsets of D such that the following hold

(1) D “
Ť

tDp,i | i ă ωu,
(2) for all i ă ω such that Dp,i ‰ ∅,

Ş

Dp,i is dense below p˝, i.e. for any
r ďP p˝, there exists r1 ďP r such that r1 P D for every D P Dp,i.

5.2. Gitik’s one extender-based Prikry forcing. Now we describe Gitik’s one-
extender-based Prikry forcing and show that it is λ-good. The definitions in the
next two pages are taken from §3 of Gitik’s handbook article ([7]).3 However we
keep it minimal as far as it is necessary for our later arguments, for further details
regarding this forcing, we refer the readers to Gitik’s article.

Let λ, δ be two cardinals such that δ is a strong limit cardinal above λ and λ is
ăδ-strong. We assume that GCH holds up to δ. Let η be a cardinal ě λ``. Then
there is a pλ, ηq-extender E and a function f : λÑ λ such that jpfqpηq “ λ, where
j is the elementary embedding corresponded to E. For every α P rλ, ηq, define a
λ-complete ultrafilter Uα as follows: for X Ď λ,

X P Uα iff α P jpXq.

Clearly, each Uα, α P rλ, ηq, is normal. A relevant property is that they are P -point
ultrafilters, i.e. for every f : λÑ λ, if f is not constant modulo Uα, then there is a
Y P Uα such that for every ν ă λ, |Y X f´1tνu| ă λ.

The binary relation ďE defined below is a partial order on rλ, ηq:

α ďE β iff α ď β ^ jEpfqpβq “ α for some f : λÑ λ.

3Some small modifications are made for the sake of the proof of λ-goodness.
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prλ, ηq,ďEq is a λ``-directed and λ ďE α for every α P rλ, ηq. There is a system
of mappings πβ,α : λ Ñ λ, for α, β P rλ, ηq such that α ďE β, with the following
properties:4

(1) xUα, πβ,α : λ ď α ďE β ă ηy is a ďRK-commutative system of λ-complete
ultrafilters, i.e.

α ďE β iff @X Ď λ pX P Uα Ø π´1
β,αpXq P Uβq.

(2) There is a set X̄ such that X̄ P Uα and πα,αæX̄ “ identity, for every
α P rλ, ηq.

(3) For every α, β, γ P rλ, ηq such that γ ďE β ďE α, πα,γ agrees with πα,β˝πβ,γ

on a set Y P Uα.
(4) For every α, β, γ P rλ, ηq, if α, β ďE γ and α ă β, then

tν P λ | πγ,αpνq ă πγ,βpνqu P Uγ .

(5) For α, β P rλ, ηq, if α ďE β, then πβ,λpνq “ πα,λpπβ,αpνqq for all ν P λ.
(6) For every α, β P rλ, ηq, πα,λpνq “ πβ,λpνq for all ν P λ.

For ν P X̄, let ν˚ “ πα,λpνq for some (or equivalently, for all) α P rλ, ηq. Then the
following weak normality holds for Uα, α P rλ, ηq:

(7) If Xi P Uα for i ă λ, then

∆˚
iăλXi “def tν | @i ă ν˚ pν P Xiqu P Uα.

We say that a sequence xνi : i ď ny, where n ą 0 and each νi ă λ, is ˚-increasing
if ν˚

0 ă ν˚
1 ă ¨ ¨ ¨ ă ν˚

n , and an ordinal ν ă λ is permitted for xνi : i ă ky if ν˚ ą ν˚
i

for all i ă k. A very important fact about members of Uα, α P rλ, ηq, is that if
X P Uα, then for every ν0, ν1 P X such that ν˚

0 ă ν˚
1 , |tν P X | ν˚ ă ν˚

0 u| ă ν˚
1 .

Let pΞ,Ďq denote the tree of all finite ˚-increasing sequences of ordinals in λ,
ordered by end-extension. Let f be any one of πβ,α, α ďE β. By property 5 and 6
on page 13, f preserves the ˚-value, namely pfpνqq˚ “ ν˚ for ν P λ. Thus such f
induces a length-preserving homomorphism of Ξ into itself. Abusing the notation,
we use f for the induced homomorphism as well. Below is a frequently used fact
about these f ’s:

Fact 5.1. Let f “ πβ,α for some α ďE β. Suppose Tα Ď Ξ is a Uα-tree and Tβ Ď Ξ
is a Uβ-tree. Then Tα X f“Tβ is a Uα-tree and Tβ X pf

´1q“Tα is a Uβ-tree.

Now we define the extender-based Prikry-like forcing Pλ,η that changes the co-
finality of λ to ω and at the same time adds η many ω-sequences of ordinals that
are cofinal in λ.

Definition 7. A condition p P Pλ,η is of the form

txγ, pγy | γ P gztmaxpgquu Y txmaxpgq, pmaxpgq, T yu,

where

(1) g Ă rλ, ηq has cardinality ď λ, λ P g and g has a ďE-maximal element.
Denote g by suppppq, maxpgq by mcppq, T by T p, and pmaxpgq by pmc.

(2) pγ P Ξ, for every γ P g.

4These properties and an example of such a system can be found in Gitik [8, 7].
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(3) T Ď Ξ is a subtree with trunk pmc. All splitting nodes of T are required to
be in Umcppq, i.e. for every t P T such that t ěT pmc,

succT ptq “def tν ă λ | σ⌢ν P T u P Umcppq,

and further that t1 ěT t2 ěT pmc ñ succT pt1q Ď succT pt2q.
(4) For every γ P suppppq Xmcppq, maxppmcq is not permitted for pγ .
(5) For every ν P succT pp

mcq,

|tγ P g | ν is permitted for pγu| ă ν˚.

(6) πmcppq,λpp
mcq “ pλ.5

We will only be concerned with subtrees of Ξ such that all its splitting nodes are
in the associated ultrafilter as in item 3 above. So when we say a “tree at α”, we
refer to a subtree of Ξ with the property that all its splitting nodes are in Uα.

For a tree T and σ P T , let Tσ “def tτ | σ
⌢τ P T u. Next we define the binary

relation on P “ Pλ,η.

Definition 8. For p, q P P, let p ďP q iff

(1) suppppq Ě supppqq;
(2) For every γ P supppqq, pγ Ě qγ ;
(3) pmcpqq P T q;
(4) For every γ P supppqq,

pγzqγ “ πmcpqq,γppp
mcpqqzqmcpqqqæp|pmcpqq|zpiγ ` 1qqq,

where iγ is the largest i ă |pmcpqq| such that pmcpqqpiq is not permitted for
qγ ;

(5) πmcppq,mcpqq projects T p
pmc into T q

pmcpqq , namely πmcppq,mcpqq“T
p
pmc Ď T q

pmcpqq ;
6

(6) For every γ P supppqq and ν P succTpppmcq, if ν is permitted for pγ , then
πmcppq,γpνq “ πmcpqq,γpπmcppq,mcpqqpνqq.

A remark about item 5. Consider πβ,α, α ďE β. Note that πβ,α sends members
of Uβ to members of Uα. So πβ,α projects a subtree at β to a subtree at α.

Let p, q P Pλ,η, when p ďP q and for every γ P supppqq, pγ “ qγ , we say p is a
direct extension of q and write p ď˚

P q. We will omit the subscript P in these two
partial orders when it causes no confusion. Below we summerize the facts about
this forcing in Gitik’s article [7].

Fact. Let P “ Pλ,η. Then

(1) pP,ďq is a partial order.
(2) pP,ďq satisfies λ``-c.c.
(3) pP,ď˚q is λ-closed.
(4) pP,ď,ď˚q satisfies Prikry condition: For every p P P and for every sentence

φ in the forcing language, there is a q ď˚ p such that q decides φ, i.e. either
q , φ or q , ␣φ.

Below is the main theorem in §3 of Gitik’s handbook article ([7]),

5Here it should be “πmcppq,λ“p
mc “ pλ”. But as we said earlier, from here on, we abuse the

notation, write πβ,α’s as functions on Ξ.
6In Gitik’s article, it is “πmcppq,mcpqq projects T p

pmc into T q
qmc”. This should be an error.
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Theorem. Suppose δ is a strong limit cardinal, λ ă δ is ăδ-strong and η is a
cardinal in rλ``, δq. Let P “ Pλ,η as defined above and G Ď P be a V -generic filter.
Then the following hold in V rGs:

(1) cofpλq “ ω and λω ě η.
(2) All the cardinals are preserved.
(3) No new bounded subsets of λ is added.

5.3. Gitik’s forcing is λ-good. To show that P is λ-good, we follow the idea in
§3.5 of [14], define a notion of rank with respect to this forcing. For the rest of the
section, we fix some notations. We use Up, πq,p and πp,γ , for p, q P P such that
q ď p and γ P rλ, ηq such that γ ďE mcppq, to abbreviate for Umcppq, πmcpqq,mcppq

and πmcppq,γ , respectively. For p P P and δ P succTpppmcq, let

p´ “def txγ, p
γy | γ P suppppq Xmcppqu,

tp “def p
´ Y txmcppq, pmcyu,

ppqδ “def txγ, pp
γqπp,γpδqy | γ P suppppq Xmcppqu

Y txmcppq, pmc⌢xδy, Tmc
pmc⌢xδyyu,

where

ppγqπp,γpδq “

#

pγ⌢πp,γpδq, if δ is permitted for pγ ;

pγ , otherwise.

So p “ p´ Y txmcppq, pmc, T pyu, and using the tp notation, p can be naturally
identified as the pair ptp, T p

pmcq. For a s P Ξpmc , ppqs is recursively defined by
p∅ “ p and psæi`1 “ ppsæiqspiq for i ă |s|. The ppqδ, ppqs notations also make sense
when p is of the form tq for some q P P.

Definition 9. Suppose D Ď P is open. Define RD
α on ttp | p P Pu as follows:

‚ Let HD
0 “ D and RD

ă0 “ RD
0 “ tt

p | p P Du.
‚ For α ą 0, let HD

ăα “
Ť

βăαH
D
β and RD

ăα “
Ť

βăαR
D
β .

– Let HD
α be the set of p P P such that tppqδ P RD

ăα for every δ P
succTpppmcq.

– Let RD
α be the set of tp for p P P such that HD

α is pď,ď˚q-dense below
p, i.e. for every q ď p, there is a r ď˚ q in HD

α .

The following properties follow immediately from the definition.

Proposition 5.1. The HD and RD-hierarchies have the following properties:

(1) α ď β implies that HD
α Ď HD

β and RD
α Ď RD

β .

(2) RD
ă8 “ RD

ă|P|` and HD
ă8 “ HD

ă|P|` .

(3) RD
α is open with respect to pP,ďq, i.e. if q ď p and tp P RD

α then tq P RD
α .

(4) HD
α is ď˚-open, i.e. if p P HD

α and q ď˚ p, then q P HD
α .

(5) HD
α “ Ď”RD

α , i.e. ttp | p P HD
α u Ď RD

α .

Proof. 1. First, as D is open, HD
0 Ď HD

1 and RD
0 Ď RD

1 . Note that RD
ăα Ď RD

α

implies that HD
α Ď HD

α`1, and HD
α Ď HD

α`1 implies that RD
α Ď RD

α`1. Therefore 1
follows by induction.

2. This follows immediately from 1.
3. Suppose p P RD

α and q ď p. If HD
α is pď,ď˚q-dense below p, it is also

pď,ď˚q-dense below q. So q P RD
α .
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4. The case HD
0 is trivial. Suppose p P HD

α and q ď˚ p. For every ζ P
succT q pqmcq, pqqζ ď

˚ ppqπq,ppζq. Since RD
ăα is open with respect to pP,ď˚q, tpqqζ P

RD
ăα. Therefore q P HD

α .
5. Suppose p P HD

α and q ď p. Let r “ q and ζ P succT r prmcq. Then prqζ ď
˚ ppqs

for some s P T p
pmczt∅u. As p P HD

α , tppqminpsq P RD
ăα. By 3, tppqs P RD

ăα and tprqζ P

RD
ăα. Therefore, r P HD

α . So HD
α is pď,ď˚q-dense below p, hence tp P RD

α . □
Definition 10. For p P P, rankDpt

pq, the D-rank of tp, is the least ordinal α
such that tp P RD

α , if it exists; otherwise rankDpt
pq “ 8.7 We often write the

relativized notation rankp,Dpsq, in which case called pp,Dq-rank of s, to abbreviate

for rankDpt
ppqsq, for s P T p

pmc , although its value only depends on tp.

Here are some quick facts about ranks.

Proposition 5.2. Suppose D Ď P is open and p, q P P.
(1) If rankDpt

pq ă 8, then rankDpt
pq ă |P|`.

(2) If rankDpt
pq ă 8 and q ď p, then rankDpt

qq ď rankDpt
pq.

Proof. 1. This follows immediately from Proposition 5.1-1.
2. If q ď p and rankDpt

pq ă 8, then by Proposition 5.1-3,

∅ ‰ tα P Ord | tp P RD
α u Ď tα P Ord | tq P RD

α u.

Thus rankDpt
qq ď rankDpt

pq. □
Definition 11. Suppose D Ď P is open and p P P. We say that p is D-good if
p P HD

α and for every s P T p
pmc and for β ď α,

ppqs P H
D
β ñ ppqs⌢xδy P H

D
ăβ , for all δ P succTp

pmc
psq.

Clearly if p is D-good, then so is ppqs for every s P T p
pmc .

Proposition 5.3. Suppose D Ď P is open. Let ED “def tp P P | p is D-goodu.
Then ED is ď˚-dense below any p with rankDpt

pq ă 8; or equivalently, for every
p such that rankDpt

pq ă 8, there is a q ď˚ p in ED.

Proof. Take an N ă Vµ for a sufficiently large µ and such that |N | “ λ`, Nλ Ď N .
Let κ ă η be an ordinal such that κ ěE ζ for all ζ P N X rλ, ηq. We write

RD,N
α and HD

α for the corresponding notions defined in N , and write rankN
Dpt

pq

and rankN
p,Dpsq

8, s P T p
pmc , for the corresponding notions computed in N . By the

elementarity of N , these notions are absolute between N and V , more precisely,
RD,N

α “ RD
α X N , HD,N

α “ HD
α X N for α P OrdXN , and rankN

Dpt
pq “ rankDpt

pq

for p P PXN . Proposition 5.3 follows from the following lemma.

Lemma 5.1. Suppose p P P X N and T is a Uκ-tree with trunk sκ and such that
tp Y txκ, sκ, T yu ď

˚ p. Suppose rankN
Dpt

pq ă 8. Then there are a q P N and a
Uκ-subtree T r Ď T such that r “ q Y txκ, sκ, T

ryu is a D-good direct extension of
p.

Grant Lemma 5.1. Suppose p P N and rankN
Dpt

pq ă 8. By Lemma 5.1, there
is a q P V that is D-good and directly extends p˝ and hence p. Since rankDp¨q

is absolute between N and V , for every p P P X N with rankDpt
pq ă 8, there is

7We demand that 8 ą α for all α P Ord.
8More precisely, should be rankNDXN ptpq and rankNp,DXN psq.
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a D-good direct extension of p in V . By elementarity, for every p P P X N with
rankN

Dpt
pq ă 8, there is a D-good direct extension of p in N . Using elementarity

again, every p P P in V with rankDpt
pq ă 8 has a D-good direct extension. Thus

the set ED is dense below p˝. □

Now we prove Lemma 5.1.

Proof of Lemma 5.1. The proof proceeds by induction on α “ rankN
Dpt

pq in N . For
α “ 0, it is trivial. We follow the idea in Gitik’s proof of his Lemma 3.12 in [7]
(page 1387). Assume that for all β P αXN , the claim holds.

Assume p P P and tp P RD
α XN . By definition, we may replace p with a p˝ ď˚ p

in N with least α ď rankN
Dpt

pq in N such that p˝ P HD
α X N . So we may assume

in addition that rankN
Dpt

qq “ rankN
Dpt

pq “ α for any q ď˚ p in HD
α X N . By

elementarity, for any q P HD
α , rankDpt

qq “ rankDpt
pq “ α. Let A “ succT psκq. We

shall construct inductively xppξ, T
ξq : ξ P Ay. To simplify the presentation, we may

assume that p´ “ ∅ and sκ “ ∅.
Suppose we already have xppξ, T

ξq : δ P A X ζy. Now we construct pζ and T ζ .
Let p1

ζ “ pY p
Ť

tpξ | ξ P AX ζuq and

r1
ζ “ p1

ζ Y txκ,∅,
Ť

tTxξy | ξ P Azζuyu.

Then pr1
ζqζ ď

˚ ppqπκ,ppζq. As tppqπκ,ppζq P RD,N
β for some β P αXN , rankN

Dpt
pr1

ζqζ q ď

β, by the inductive hypothesis, there are a q P N and a Uκ-subtree Tζ Ď Txζy such
that qY txκ, xζy, Tζyu is a D-good direct extension of pr1

ζqζ . Let pζ “ p1
ζ Y txι, q

ιy |

ι P supppqqz supppr1
ζqu. This completes the inductive construction.

At the end, let q “
Ť

ξăλpξ. For i ă λ, let

Ci “ t
Ş

succT ξpxξyq | ξ P A^ ξ˚ “ iu.

Since the set of ξ P A such that ξ˚ “ i is bounded, Ci P Uκ for each i ă λ. Set
A˚ “ A X p∆˚

iăλCiq. By the weak normality for Uκ, A˚ P Uκ. Let T r be the tree
obtained from

Ť

tTxξy | ξ P A˚u by intersecting all levels of it with A˚. Then by
Claim 3.12.1 in Gitik’s [7] (page 1388), r “ q Y txκ,∅, T ryu is in P and directly
extends p.

By our construction, for every ζ P succT r p∅q, prqζ is D-good and directly extends

ppqπκ,qpζq. Since prqζ ď
˚ ppqπκ,qpζq, rankDpt

prqζ q ď rankDpt
ppqπκ,qpζqq ă α. So

r P HD
α . By our additional assumption on p, rankDpt

rq “ rankDpt
pq “ α. So r is

D-good. □

The Prikry condition for P (see Lemma 3.12, [7]) can be stated in terms of our
rank notion as follows.

Proposition 5.4 (Gitik). Suppose D Ď P is dense and open. Let 1P denote the
largest element of P. Then rankDpt

1Pq ă 8; or equivalently, for every p P P, there
is a q ď˚ p in HD

ă8.

Proof. Rerun Gitik’s proof but with “p decides σ” replaced by “p P HD
ă8”. □

Next we define a notion of rank on members of ED to isolate a set of “D-better”
conditions. For every p P ED, we define a rank function ρp,Dp¨q on T p

pmc inductively
as follows:

‚ if ppqs P D, then ρp,Dpsq “ 0;
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‚ if ppqs R D, then ρp,Dpsq is the least α such that there is a Up-measure one
A Ď succTp

pmc
psq such that α ě ρp,Dps

⌢xδyq ` 1 for all δ P A.

By the definition of D-goodness, if p P ED, then the set ts P T p
pmc | rankp,Dpsq ą 0u

is a wellfounded subtree of T p
pmc . Thus ρp,Dpsq is defined for all s P T p

pmc if p P ED.
Below is a simple observation to be used in our proof of λ-goodness for P.

Proposition 5.5. Suppose D Ď P is open and p P ED. If q ď p, then for every

s P T q
qmc , rankDpt

pqqsq ď rankDpt
pqqπq,ppsqq and ρq,Dpsq ď ρp,Dpπq,ppsqq.

Proof. It suffices to consider only the case q ď˚ p. The proof proceeds by induction
on ρq,Dpsq. We leave the details to the readers. □

Lemma 5.2. Suppose D Ď P is open and p P ED. Then ρp,Dp∅q ă ω. More
precisely, there is a Up-subtree Sp Ď T p

pmc such that for every s P Sp, ρp,Dpsq “
maxpρp,Dp∅q ´ |s|, 0q.

Proof. Clearly, the range of ρp,Dp¨q is an ordinal. The lemma follows from the fact
that Up is countably complete. Assume towards a contradiction that ρp,Dp∅q ě
ω, then there is an s P T p

pmc such that ρp,Dpsq “ ω. But due to the countably

completeness of Up, there is a finite number k such that ρp,Dps
⌢xδyq ă k for a

Up-measure one set of δ P succTp
pmc
psq. Therefore ρp,Dpsq ď k ă ω. Contradiction!

Using the idea in §3.4 of [14], by trimming off nodes s in T p
pmczt∅u such that

ρp,Dpsq ě ρp,Dpsæp|s| ´ 1qq ą 0, one obtain a Up-subtree Sp Ď T p
pmc such that for

every s P Sp, either ρp,Dpsq “ 0 or ρp,Dpsq “ suptρp,Dps
⌢xδyq ` 1 | δ P succSppsqu.

It is easy to see that this Sp works as desired. □

Definition 12. Suppose D Ď P is open. For a p P ED, we say p is D-better if T p
pmc

satisfies the condition that for every s P T p
pmc , ρp,Dpsq “ maxtρp,Dp∅q ´ |s|, 0u.

From Lemma 5.2, we have

Corollary 4. BD is ď˚-dense in ED, therefore ď˚-dense in P.

Now we are ready to prove the main result of this section.

Lemma 5.3. P is λ-good.

Proof. Fix a p P P and D , a collection of dense open subsets of P with |D | ă λ.
Enumerate D as tDι | ι ă |D |u. Start with p, we inductively construct a ď˚-
decreasing sequence xpι : ι ă |D |y and a sequence of integers xkι : ι ă |D |y as
follows:

First, let p0 be a D0-better direct extension of p and k0 “ ρp0,Dp∅q. Suppose
we have constructed the two sequences up to some ι ą 0, i.e. xpζ : ζ ă ιy and
xkζ : ζ ă ιy. Since pP,ď˚q is λ-closed, there is a qι P P such that pζ ď

˚ qι for all
ζ ă ι. Let pι be a Dι-better direct extension of qι and kι “ ρqι,Dp∅q.

At the end, pick a p˝ P P such that p˝ ď˚ pι for all ι ă |D |. For each k ă ω, let
Dp,k “ tDι | kι ď ku. We may assume that Dp,k ‰ ∅ for all i ă ω. We claim that
Ş

Dp,k is dense below p˝ for all k ă ω.
Fix a k ă ω. Suppose r ď p˝. By replacing r with a q ď˚ p˝ such that r “ q⌢s for

some s P T q
qmc , we may assume that r ď˚ p˝. Note that by Proposition 5.5 for any

s P T r
rmc and any ξ ă |D | such that Dξ P Dp,k, rankDpt

prqsq ď rankDpt
pqξqπr,qξ

psq
q

and ρr,Dξ
pπr,qξpsqq ď ρpξ,Dξ

psq. Pick an s P T r
rmc such that |s| ě k, then ρr,Dpsq “ 0
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for every D P Dp,k. Hence, prqs P D for every D P Dp,k. This shows that
Ş

Dp,k is
dense below p˝. □
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