Iy, AND COMBINATORICS AT \*

XIANGHUI SHI AND NAM TRANG

ABSTRACT. We investigate the compatibility of Ip with various combinatorial
principles at A*, which include the existence of A\*-Aronszajn trees, square
principles at A, the existence of good scales at A, stationary reflections for
subsets of AT, diamond principles at A and the Singular Cardinal Hypothesis
at A. We also discuss whether these principles can hold in L(Vyy1).
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1. INTRODUCTION

Axiom Ij(A) is the assertion that there is an elementary embedding j : L(Vy4+1) —
L(Vx11) such that crit(j) < A. It was first proposed and studied by Woodin in the
early 80’s and by Laver in the 90’s. For the introductory material on this axiom
and its connection with other rank-into-rank axioms, we refer the readers to [10].

Although it is stronger than the existence of supercompact cardinals in consis-
tency strength, the statement () only implies the existence of <A-supercompact
cardinals, there are a fair number of statements that follow from supercompactness
but are independent of Ip(A). The theme of this paper is to present some examples
of this sort in the area of combinatorics at A*. In this context, X is an w-limit of
very strong large cardinals, for instance, limit of <A-supercompact cardinals.

Key words and phrases. Axiom Iy, AT-Aronszajn tree, square, weak square, stationary reflec-
tion, good scales, diamond, A-continuum hypothsis, Generic absoluteness, A-good.
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Let ¢ be a combinatorical principle at A™. In this paper, we investigate the
compatibility of Iy(A) axiom with various ¢’s over the base theory I' = ZFC+ I ().
We ask three questions:

e Is ¢ consistent with I'?
e Is —¢ consistent with I'?
o Is ¢ true in L(Vy41)?

The combinatorial principles investigated in this paper include

(1) the existences of (special) AT-Aronszajn tree and of AT-Suslin tree; (see
§2.1 and §2.2)

(2) the (Jx and the [} principles; (see §2.1 and §2.2)

(3) the existence of (good, very good) scale at A™; (see §2.3)

(4) stationary reflection at A*; (see §3)
(5) the O+ principle; (see §4)
(6) GCH (as well as SCH) at A; (see §4)

In the discussion of the compatibility of these principles with I", we also look into

their independence with respect to ZFC plus the following stronger form of Iy-type
assertion:

2
3
4
5)

There is an elementary embedding

e Lw'2+1(Vf+1, Vat1) — Lw~2+1(Vf+p Vat1)
with crit(j) < A.

We are unable to answer the question regarding stationary reflection at AT in
L(Vx41), due to the lack of choice in this model. We include a scenario (see Theorem
3.3) where it could be true in L(Vy41), although it is unknown if that setting is even
compatible with Iy. Our discussion regarding the generalized continuum hypothesis
at A (see Theorem 4.4) assumes a stronger form of Generic absoluteness. To apply
it, we need to show that Gitik’s one-extender-based Prikry forcing is A-good. For
that we extend the idea in [14], introduce two rank notions and develop in §5 a
systematic analysis on the ranks of (finite parts of) conditions in Gitik’s forcing.

Notations. We write Iy for the statement IA Io(A). For two cardinals k < A, k
regular, we write Ef = {a < X | cf(a) = &}, and similarly write E{", ES" to
denote the obvious sets. If C is a set of ordinals, we use lim(C') to denote the set
of limit ordinals of C.

2. A*-ARONSZAJN TREE, GOOD SCALES AT A AND [y

k-tree is a tree on k of size k whose every level has size <k. A k-Aronszajn tree
is a k-tree that has no cofinal branch of length .

2.1. There are no A"-Aronszajn trees and [Jy-sequences in L(V);1). Under
ZFC, there is an wj-Aronszajn tree, however this is not true under the axiom of
determinacy. Being more precise, assuming ADL(R), there is no wi-Aronszajn tree
in L(R), while it may exist in V, if AC is assumed there. In this section, we show
that a similar situation occurs at A, assuming Iy(\).

Theorem 2.1 (ZFC). Assume Io(A\). There is no AT Aronszajn tree in L(Vyy1).
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Proof. The reason there is no A*-Aronszajn tree in L(Vyy1) is the same as that
of the nonexistence of w;-Aronszajn tree in L(R) under AD” (&) First, note that
A = (AL 50 a AF-tree in L(Vy,1) is also a A*-tree in V. We show that
such a tree can not be a A\*-Aronszajn tree.

By a theorem of Woodin (see [17], 1.B.5), Ip()\) implies that

L(Va41) E AT is a measurable cardinal.

Assuming towards a contradiction that there is a At-Aronszajn tree T in L(Vyy1).
Let w : L[T] - M = Ult(L[T],» n L[T]) be the ultrapower embedding induced
by a AT-complete measure p on A*. Then 7(7T) is a w(AT)-Aronszajn tree in M.
Notice that crit(w) = AT, we have T = 7“T < 7(T) and w(A*T) > A*. Any node
at the AT-th level of w(T) is a cofinal branch of 7“T" = T. Thus there can be no
At-Aronszajn tree in L(Vy11). O

The same argument gives us a similar result regarding the square principle, which
is due to Jensen [9].

Definition 1. Let A be an uncountable cardinal. A [Jy-sequence is sequence (C,, :
a < At a elim(A1)) such that for all @ < AT,

(1) Cy < ais closed and unbounded in e,
(2) otpCy < A,
(3) For all g €lim(Cy), Cg = Cq n B.

We say [\ holds if there exists a []y-sequence.
Theorem 2.2. Assume Io(\). Then L(Vyi1) E —Oa.

Proof. Assume not, and let C' = (C, : a < A\, a € lim(\*)) be a [])-sequence in
L(Vyy1). Let u be a At-complete ultrafilter that witnesses the measurability of A*

in L(Vag1). Let m: L[C] > M = Ult(L[C], u n L[C]) be the induced elementary

embedding. Then 7(C) is a [Jr(x+)-sequence in M. Since every Co, a@ < A%,
has ordertype < A in L[C], every member of 7(C) has ordertype < 7(\) = ),
as crit(m) = AT. Let Cy+ be the A*-th element of m(C). On the one hand,
otp(Cx+) = A by elementarily, the definition of C, and the fact that crit(n) = A¥;
on the other hand, as a member of [ (y+)-sequence, Cy+ is a closed unbounded

subset of A*™. This is a contradiction! O

Remark. Although [y implies the existence of a AT-Aronszajn tree (see Exercise
IV.1C and the proof of Theorem IV.2.4, [5]), this does not enable us to conclude the
failure of [y in L(Vy41) from Theorem 2.1, as the construction of a A*-Aronszajn
tree uses AT-DC, which fails in L(Vy41).

2.2. At-Aronszajn trees and [, in V. The two theorems above say that Io(X)
pushes AT-Aronszajn trees as well as []y-sequences, if exist, out of L(Vy;1), but it
does not necessarily eliminate their existence in V. Next we show that given the
consistency of Ip(A) for some A, it is possible to produce a model with both ()
and a A*-Suslin tree. A k-Suslin tree is a k-Aronszajn tree with no antichain of
size k.

Theorem 2.3 (ZFC). Assume Iy()\). Then there is a model in which Iy(\) holds
and there is a special A\t -Aronszajn tree, even furthermore a X' -Suslin tree.

Proof. To produce a special A\*-Aronszajn tree, we need the following “weak square”
principle, (¥, due to Jensen (see [2], §5):
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There exist (Cy, : @ < AT, o limit) such that each C, is a nonempty
set of club subsets of a, |Cy| < A, and for all limit o < AT, all
C e C, and all §€lim(C), otp(C) < Aand C n g = Cjs.

Jensen showed that [} is equivalent to the existence of a special A*-Aronszajn
tree. Our approach is to force a weak square sequence. In fact, the standard
forcing Py due to Jensen for adding a square sequence will do. For the detail of
Py, one can read Cummings’ handbook article ([3], 6.6). Another relevant point
is that this forcing is <A™ -strategically closed, therefore it adds no new subsets of
A, preserves cardinals and cofinalities up to A*. Let j : L(Vyy1) — L(Viay1) be
a witness embedding for Ip(A). Then the same elementary embedding witnesses
Ip(A) in the generic extension.

To get a AT-Suslin tree, we need before applying the forcing Py over a ground
model that satisfies GCH at A, namely 2* = A*. This is not difficult to achieve, as
we may first force 2% = A* then force a square sequence, i.e. use Coll(A*,2%) % PA,
where P, is the Coll(A*,2*)-name of P5. Note that this Levy collapse is a <A*-
closed forcing, so this two-step iterated forcing poset does not change V)i and
therefore the L(Vy41) of the models before and after applying this forcing are
the same, hence the same elementary embedding j witnesses () in the generic
extension.

Let x be a regular uncountable cardinal < A\. One can produce a []y-sequence
D = (D, | @ < A*) and a stationary set S < E%, such that S nlim(D,) = @ for
all @ < AT. The proof that such D and S exist can be found in [2], the paragraph
prior to 4.2. By a result of Shelah ([12], see also Theorem 2.2 of [2]), if 2<* = X and
GCH holds at A, then O+ (7T') holds for every stationary 7' E7{". Thus we have
a O+ (S)-sequence. Then by Jensen’s argument (see [2], 4.2), a A*-Suslin tree can
be constructed from the [Jy-sequence D and that ¢+ (S)-sequence. O

Next we show that under suitable assumptions, Ip(\) is not compatible with the
existence of AT-Aronszajn trees. For that we need a theorem in I theory.

Theorem (Cramer [1]). Assume there is an elementary embedding

J ¢ Lot (Vi 1, Vas1) = Loap1 (Vi Vast)

with crit(j) < A. Then there is a A\ < X\ such that Iy holds at \, namely, there is

an elementary embedding j : L(Vy 1) — L(Vi,1) with crit(j) < A.

By a result of Shelah (see [1] Fact 2.10), if there is a supercompact x and A is
a cardinal such that c¢f(\) < x < A, then [J¥ fails (in fact, the proof just needs x
to be AT-supercompact). Under the hypothesis in Cramer’s theorem, it is easy to
arrange a \ so that A > crit(5), i.e. A > & for some x < \ that is <A-supercompact.
In particular, this & is AT-supercompact, so we have D;‘\ fails and consequently that
there is no special A*t-Aronszajn tree. The elimination of the adjective “special”
follows from a careful examination of Cramer’s proof of the theorem.

Theorem 2.4 (ZFC). Assume there is an elementary embedding
e Lw-2+1(Vf+1, Vat1) — Lw-2+1(Vf+p Vat1)

with crit(j) < A. Then there is a A < X such that Io()\) holds and there is no
AT -Aronszajn tree.
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Proof. In [11], Magidor and Shelah show that if A is a singular limit of strongly
compact cardinals, then AT carries no Aronszajn trees. For our purpose, it suffices
to have A being a limit of A*-strongly compact cardinals. Let A be as in Cramer’s
theorem. From Cramer’s proof, there is an inverse limit (.J, j) such that A = ;. Let
j = Ujn i m < w), then A = lim,, -, crit(j,). Here each j, is an Io(\) embedding,
thus each crit(j,) is a <A-strongly compact. Thus X is a limit of A*-strongly
compact cardinals. Then by Magidor-Shelah’s theorem, there is no A*-Aronszajn
tree. (I

In fact, we have also shown that

Theorem 2.5 (ZFC). (1) Con(Ip(N)) implies Con(Ip(N) +y), and hence im-
plies Con(Ip(A) +%)-
(2) Assume there is an elementary embedding

J ¢ Loar1(VE 1 Vast) = Loas1 (Vi1 Vagsr)
with crit(§) < \. Then there is a A < X such that Io(\) holds and [y fails.

The proof of 1 is in the proof of Theorem 2.3. The proof of 2 is essentially
included in the paragraph following Cramer’s Theorem on 4, where it is argued
that under the same hypothesis, the weak square |:|§ fails for some A < A.

Remark. Notice that the forcing that adds a [Jx-sequence adds no new subsets of
A, and by the definability of the sharp, Vf 41 is absolute, therefore the embedding

J: Lw~2+1(V,\ﬁ+1y Vat1) — Lw-2+1(Vf+1, Vas1)

remains to be elementary on the L,.011 (V){i 11> Vag1) of the generic extension. There-
fore Cramer’s hypothesis is consistent with the existence of a [Jy-sequence, therefore
a special AT-Aronszajn tree, as well as a A*T-Suslin tree.

Therefore [, is in some sense independence of I axiom, as well as the stronger
variation in the hypothesis of Theorem 2.4. The same hold for the existence of
AT-Aronszajn tree and AT-Suslin tree. More precisely,

Corollary 1 (ZFC). Let T'(\) denote the assertion that there exists an elementary
embedding

J: Lw~2+1(V,\ﬁ+17 Vat1) — Lw-2+1(Vf+1, Vas1)

with crit(j) < A. Let ¢ be one the following statements. Assume that INT(N) is
consistent. Then both 3N (T'(A) +¢(N)) and IN (T(N) +—p(N)) are consistent, where
©(A) is one of the following statements.

(1) there is a [r-sequence.

(2) there is a [JX-sequence.

(8) there is a (special) AT -Aronszajn tree.
(4) there is a A\ -Suslin tree.

Contrast Corollary 1 with Solovay’s theorem (see [15, 16]) regarding the incom-
patibility of square principle with supercompact cardinals, more precisely: If kK < A
and « is AT-supercompact, then [y fails.
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2.3. Good scales at A. Next we discuss good scales at \. We are going to show
that there is no (very) good scale at A in L(V41) and to add the assertion of its
existence to the list in Corollary 1. In this paper, as A is a singular cardinal of
countable cofinality, we consider only the set [[,_ ri, where & = (k; : i < w)
is a sequence of regular cardinals such that A = sup,_,, x;, and the ideal I on w
that consists of all finite subsets of w. Given f,g € [[,xi, f < g if and only if
w\{i | f(i) < g(i)} € I. A scale of length o in | [,k;/I is a <;-increasing sequence
(fi i < ) in [];x; which is cofinal in [ [,x; under the relation <;. A scale for A
is a pair (%, f), where f is a scale of length A* in [I;xi/1. As X is singular, a basic
fact of PCF theory is that, there exists a scale for .

Definition 2. (1) Suppose (R, f) is a scale for A. A point a < At is good for
(R, f) iff there is an A ¢ a unbounded in « and ¢ < w such that

Va,fe AVj >i(a < B — fa(j) < f5(5))-

(2) Let {g; : i < ) be a <r-increasing sequence in [ [;x; and g € [ [,;;. ¢ is an
exact upper bound (eub) for {g; : i < ) if g; <; g for every i < 8 and for
any h e [[,ki, h <t g = h <; g; for some i < 3.

By Shelah’s PCF theory, the set of good points in a scale for A is a stationary
subset of A*. This set is determined by the sequence % modulo the nonstationary
ideal on AT,

Definition 3. A scale (&, f) for A is good if except a nonstationary subset of A\
every point of uncountable cofinality is good for f.

A scale (R, f) for \ is very good if for every limit a < A* such that cf(a) > w,
there is a C € « club in a and an integer m < w such that for all n > m,

(fa(n) : p € C) is strictly increasing.

Theorem 2.6 (ZFC). Assume Io(\). There is no (good, very good) scale at X in
L(VA+1).

Proof. 1t suffices to show that there is no scale at A in L(Vx41). Suppose otherwise
and let (%, f) be a scale for A in L(Vy;1). Let p be a AT-complete ultrafilter that
witnesses the measurability of A™ in L(Vy41). Let

7 L&, f] = M = Ult(L[#, f], u 0 L[R, f])

be the induced elementary embedding. Since L[R, f] &= Ya < B(fa <1 f3), by

elementarity, fo <7 m(f)(A*) in M, for every a < A*. Since <; is absolute, that
is also true in L(Vy41). But then f is not a scale in L(Vy41). Contradiction! O

Similar to the situation of [y, we have

Theorem 2.7. (1) Assume Io(X\). Then there is a model of ZFC + Iy(X), in
which there is a (very) good scale at .
(2) Assume there is an elementary embedding

J: Lw~2+1(VAﬁ+17 Vat1) — Lw~2+1(Vf+1, Vas1)

with crit(j) < A. Then there is a A < X such that Io(\) holds and there is
no good scale at .
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Proof. 1 follows Theorem 2.5-1 and a theorem of Cummings, Foreman and Magidor
(see [1] Theorem 3.1): If A is singular and x < \, then [y ,,* implies that there is a
very good scale at A. [Jy implies [y ,, therefore in the model obtained by adding
a [x-sequence, there is a very good scale at \.

For 2, we need a theorem of Shelah (see [13], or [2] Theorem 18.1): If there is a
k such that cf(\) < kK < X and & is AT-supercompact, then there is no good scale
at A. By the discussion in the paragraph following Cramer’s Theorem on page 4,
one can arrange Io()\) for some A > k = crit(j), but x is <M-supercompact, in
particular At-supercompact, therefore, there is no good scale at . ([l

Corollary 2. The assertion that “there is a (very) good scale at \” can be added
to the list in Corollary 1.

3. STATIONARY REFLECTION AT \ T

Let x be an uncountable regular cardinal. Let S be a stationary subset of k. §
reflects at o if a < K, cf(a) > w and S N« is stationary in «. Stationary Reflection
Principle for T, where T € k is stationary, says that for every stationary S <€ T, S
reflects at some a < k.

In this section, we show that I is compatible with either side of the Stationary
Reflection Principle. Let ®y+ denote the Stationary Reflection Principle for A*.

Theorem 3.1 (ZFC). Assume there is an elementary embedding

J: Lw-2+1(V,\ﬂ+1, Vat1) — Lw-2+1(Vf+1, Vat1)
with crit(j) < X. Then there is a A < X such that Iy holds at X\ and ®x+ is true.

Proof. As before (see page 4, after Cramer’s Theorem), this hypothesis yields x, A
such that K < A < X\ and & is A*-supercompact. Then it follows from the standard
argument that the Stationary Reflection Principle for A* is true: Fix a stationary
S < At. Let 7 : V — M be an embedding witnessing the A*-supercompactness of
k. We claim that

Claim. 7“S is a stationary subset of v = sup7“S = sup7“\* in M.

Let C be a closed and unbounded subset of v in M. Since m“A* is x-closed,
i.e. closed under supremum of < k-sequences, T“AT NC is a k-closed and unbounded
subset of 7. Pull it back, D = 7= 1“(7“AT n C) is a k-closed and unbounded subset
of AT. Then we have S n D # &. And then 7%S n C # @. Thus 7“S is stationary
in 7.

Since 7“S < 7(S) Ny, we have

M = 3y < w(AT) (7(S) reflects at 7).
By elementarity, V |= S reflects at some a < A*. O

It is well known that [],; implies that the Stationary Reflection Principle fails for
every stationary T' < k™1 ([4], Theorem 1). So one can obtain the failure of ®3+ by
forcing a square sequence. As discussed in the proof of Theorem 2.3, that forcing is
<AT-strategically closed, it preserves Iy()), therefore we have both Iy(\) and —®j+
in the generic extension. One can also force directly a non-reflecting stationary

LThe definition of O,x is irrelevant to our proof, we refer the reader to Cummings [2] for
details.
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subset of AT. One can find such a forcing in Cummings’ handbook article [3], 6.5.
That forcing is A*-strategically closed, therefore adds no new subsets of A\. Thus
in V|[G], we also have both Iy(A) and —®y+.

Theorem 3.2 (ZFC). Assume Iy(A) is consistent. Then so is Io(A) + ~®y+ .
Corollary 3. The assertion @y+ can be added to the list in Corollary 1.

The question left is that
e Assuming Io(}), is it true that L(Vyy1) = @+ ?
Our first attempt is to try the trick we did in the proofs for the nonexistence
of AT-Aronszajn tree (see Theorem 2.1) and the existence of [Jy+-sequences (see
Theorem 2.2) in L(Vyi1). However, the ®,+ case is subtle. Its negation is the
following statement

1S ¢ A\+Vae EPIC,(Cyisclubina n Snan C, = 9).

Here .#,+ denote the nonstationary ideal on A* and E denote the set of ordinals
<A* with uncountable cofinalities. For each such a, let C, be the collection of
clubs C in a such that S " C na = &. We would like to take the ultrapower
of the structure L({C, : @ < A7), S) by a measure on A*. The problem is that
Los theorem fails for the ultrapower. In particular, we are not able to show that,
letting ¢ be the ultrapower map and (Dg : 8 < i(A1)) = i((Cq : a < AT)), for each
B <i(AT), Dg # . Also, since A\T-DC fails in L(Vy+1), we are not able to choose,
for each o < A*, a C,, € C, and consider the ZFC model L[{C,, : @ < AT), S].

We will obtain stationary reflection in L(Vy41) from a slightly stronger principle,
which unfortunately is not known to be consistent relative to Ip(A).

Theorem 3.3 (ZFC). Assume in L(Vyy1), AT is Vi y1-supercompact®. Then L(Vai1) E
Ox+ -

Proof. Working in L(V) 1), fix a measure p witnessing that A* is V), 1-supercompact.
For each 0 € Z,.+(Vay1), let M, = HOD, s} and let M = [], My/p be the pu-
ultraproduct of the structures M, ’s.

Claim 3.1. Los theorem holds for this ultraproduct.

Proof. The proof is by induction on the complexity of formulas. It’s enough to show
the following. Suppose ¢(x,y) is a formula such that the claim holds for ¢ and f is
a function such that {o | M, & Jzp[z, f(0)]} € p. We show that M & Jzp[z, [f],.].

Let g(0) = {z € o | (y € OD@)(M, = 9ly, f(o])}. Then {o | g(0) is a
non-empty subset of o} € u. By normality of u, there is a fixed real x such that
{o:xz€eg(o)} € p. Hence we can define h(o) to be the least y in OD(x) such that
M, = oy, f(0)]. It’s easy to see then that M & ¢[[h],, [f].]- O

For each z, let ¢, be the constant function f : P+ (Vay1) — {z}. By A*-
completeness, it’s easy to see that for each o < A", av = [¢o],. Also for each set z,
there is some a € V11 such that = is OD(a). In particular, if x is a set of ordinals,
by fineness of p, {o | x € M,} € p. Also if A S Vy4q, then {0 | Ano e M} € p.

2This means there is a fine, normal, AT-complete measure u on Z,.+(Vat1). Fineness and
completeness have standard meanings. In the context where full AC does not hold, normality is
defined as follows: suppose F : &, (Va41) = P+ (Vay1) is such that {o: F(0) S o A F(o) #
&} € p, then there is some x such that {o:z € F(o)} € p
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This implies that A € M by Los theorem and the fact that A = [0 — A no],. So
V)\+1 eM.

Now let S < A* be stationary and S* = [cg],. By the previous paragraph, in
M, S* n AT = S (note that (AT)M = A* because Vy;; € M) and hence S* n A"
is stationary in M. By Los,

{o|Ja < AT M, = S N« is stationary]}.
By normality of u, there is some oo < A1 such that
{o| M, =S N« is stationary}.

Now we claim that S n « is stationary. Let C'n« be club in «. By the discussion
above, {0 | C € M,} € u. Fix o such that C' € M, and M, = “S n « is stationary”.
Now in M,, C'is club in a;, so C'n S # . This shows S N « is stationary. ([

Remark. The proof above works also if we are in a model M of the form L(Vy41)[]
and M & pu is a normal, fine, A\*-complete measure on P, (Vyy1). We are opti-
mistic that such a model can be constructed from Iy(A) or from its strengthenings.

4. D1AMOND AND GCH AT )\

First of all, assuming I, no matter whether ¢+ is true or not in the universe,
diamond sequence can not exist in L(Vy41).

Theorem 4.1 (ZFC). Assume Iy holds at \. Then in L(Vyi1), 2% # AT and Ox+
fails.

Proof. Tt is a ZF theorem that {+ yields an injective function from 42()) into A\*.
The inverse of this injective function gives a A*-sequence of distinct subsets of .
So we have L(Vyy1) = Oxr — (28 = AT). If O+ holds in L(Vy, 1) then GCH holds
at AT. But 2* = AT implies that V), is wellorderable in L(V 1), this contradicts
the fact that L(Vy41) = —AC. O

This proof utilizes the fact that GCH at A\ leads to the violation of the fact that
L(Vy41) is not a full choice model. Here we give another proof, which shows that
both ¢+ and GCH at X violates a weaker statement in L(V11). It is the following
analog of the AD-fact that there is no wy-sequence of distinct reals.

Theorem 4.2 (ZFC). Assume Iy holds at . Then there is no A*-sequence of
distinct members of Vay1 in L(Vyg1).

Proof. The key point again is that AT is measurable in L(Vy;1). Suppose X =
(Zo :a < A1) is a sequence of distinct subsets of \. Let

7 L[X] = M = Ult(L[X], n ~ L[X])

be the ultrapower embedding induced by a A*-complete measure u on A*. Then
in M, m(X) is a 7(AT)-sequence of distinct subsets of A. Every member of 7(X) is
represented by a function A* — {z, | & < AT} in V, in particular, let [f] be the
At-th element of 7(X).

Claim. f is constant on a measure one subset A < \*.
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For each 8 < A, there is a unique ig € {0, 1} such that
A ={a <X | f(a)(B) =1}

is a measure one subset of AT. By AT-completeness, the set A = ({A7 | 5 < A}
has measure one. Therefore for every a € A, f(a)(8) = ig.

This means that [f] equals to z,, for some o < AT, contradicting to the assump-
tion that members of 7(X) are all distinct. O

This effectively rules out 2* > A+ in L(Vy1), thus gives a more direct reason
why O+ and GCH at A fail in L(Vy1q).

As we have discussed earlier (see the proof of Theorem 2.3), one can easily obtain
Ox+ by forcing 2* = A+ (using Levy collapse Coll(A*, 2})) without adding bounded
subsets of \, therefore preserves 2<* = X\ and Iy at A\. Thus we have

Theorem 4.3 (ZFC). Assume the consistency of Iy, then the following are consis-
tent

(1) INTo(N) + Ox+),

(2) INIo(N\) + 2> = \1).

Regarding GCH, Dimonte-Friedman ([6] Corollary 3.9) sketches an argument
that it is relatively consistent with Iy that GCH holds, in particular at A. However,
there are flaws in that argument. We will remark on this after proving our next
theorem. Here we present our result. We show the compatibility of Io(A\) with the
failure of GCH at A, and consequently, the compatibility with —=SCH at A (as A is
a singular strong limit cardinal) and with =+, from a stronger form of Iy-type
axiom and a strong generic absoluteness assumption. A few definitions.

Definition 4. Suppose X < Vy4;.
(1) Let OF =qer {a | L(X,Vay41) | there is a surjective 7 : Vi1 — af.
(2) An ordinal o < ©F is X-good if every element of L, (X, Vy41) is definable
in Ly(X,Vay1) from an element in V1 U {X}.

Definition 5. Assume j : L(X, Vi11) — L(X, Vy41) is a proper elementary embed-
ding and crit(j) < A. Let (M., jo.) be the w-iterate of (L(X, Vxt1),7). Suppose
a < OF and «a is X-good. We say that Generic Absoluteness holds for X at o if
the following proposition holds:

Suppose P € jo.,(Va), G € V is an M,-generic filter for P, and

cof(\) = w in M,,. Then there is some o' < o and X' € V41 such

that Lo (X', M,[G] 0 Vas1) < Lo (X, Vag1).

We refer the readers to Woodin’s monograph [18] for relevant terminology and
basics in Iy theory. Recent work by S. Cramer [1] suggests the Generic Absoluteness
hypothesis in the following theorem is redundant, but at the moment, we don’t see
how to make do without it.

Theorem 4.4 (ZFC). Assume there is a proper elementary embedding

LV, Vagr) = L(VE, |, Vag)

f
with crit(j) < A and GCH holds in V. Suppose that o € (GA,GE\/*“) and « is
V)Ll—good and assume that Generic Absoluteness holds for V/\ﬁJrl at a. Then it is
consistent that Io(\) holds and 2 > \*.
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Proof. Let M, be the w-iterate of L(V/\ﬂH,V)\H) by j. Then by elementarity, A
is <jow(A)-strong in M, and GCH holds in jo . (Vy). Pick an n € [ATF, j0.,(N)).
Let P = Py ,, be Gitik’s one-extender-based Prikry forcing (with a single extender)
that changes the cofinality of A to w and adds n many cofinal w-sequence in A (see
[7]). The key is to show that P is A-good in M, as this implies that there are
M,,-generic filters in V' (see [14] Proposition 3.9 or [18] page 405). The next section
is devoted to verifying this matter.

Let G < P be an M,,-generic filter in V. Then 2* = 5 holds in M,[G]. As
O < a, jl Lo, (Vas1) € La(V)?H, Vat+1). By Generic Absoluteness for V)?H at a,
there is an o/ < a and an X’ < V1 such that

Lo (X', MU[G] A Vas1) < La(VE, 1, Vagr)-

By the definability of sharp, X’ = (M,[G] n Vay1)f. Since j|Le, (Vay1) is in
La(VfH, Va+1), there is a

j'e Lo ((Mu[G] N V>\+1)ﬁa My[G] N Vi)

such that dom(j") = Lo/ (M, [G]NVat1), where ©' is the ©) computed in L(M,[G]n
Vat1), and such that the L(M,[G] n Viyq)-ultrafilter p; given by X e py iff
71V € 7/(X) induces an elementary embedding of L(M,[G] n Vi41) into itself.
This gives us Ip(A) in M,[G]. O

Remarks. 1. The GCH assumption in the theorem is not essential. Suppose j :
L(VfJr17 at1) — L(Vfﬂ, Va+1) is a proper elementary embedding with crit(j) < A.
Relativize Dimonte-Friedman argument (see [0]) for L(Vx11), then there is a poset P
(backward Easton forcing up to \) such that in its generic extension V[H], j can be
lifted to L(V/\u_ﬂ, Va+1)[H] and GCH holds in Vy. According to Dimonte-Friedman
([6]), this poset is above w, so we have

L(V§,y, Var)[H] = LIVIH] .y, V[H]xs0).
Moreover, this poset is AT-c.c. and is definable in
N = Lot (M[G] A Vag1 ), Mu[G] A Vas).

Notice that N and V agree on V) and the elementary embedding witnessing Generic
Absoluteness for V/\ti 41 (at @), let us call it m, has critical point > (AT)". Thus

can be lifted to a 7 : N[Ho] — La(V[H]4,,, V[H]rs1). Again
N[Ho] = Lo ((Mu[G][Ho]  V[H]x11)", Mu[G[Ho] n V[H]xs1)-

Therefore the generic absoluteness assumption is also preserved by P.

2. We pointed out earlier that there are some issues with the argument Dimonte-
Friedman sketched for the compatibility of Iy with the failure of GCH at A ([6],
Corollary 3.9). To be more specific, one is that the hypothesis of their corol-
lary, that generic absoluteness holds for all a < O, is not enough to ensure that
7Y j1 La(Vaz1)), @ < O, can be pieced together to form j*. It is unclear why
(the union of) the sequence (771 (j1 Lo (Vas1)) : @ < ©) is in the domain of w. The
second issue is more serious: it is not clear why jI L, (Vi4+1) falls in the range of ,
and then it would make no sense to talk about 7 (5 Lo (Vay1))-

3. However, the current status of generic absolutness is only up to Ls(Viy1),
where ¢ is least such that Ls(Vyy1) < L(Va41), which is due to Cramer [1]. It is
not clear at this point if generic absoluteness assumption in the hypothesis of our
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theorem follows from the existence of an elementary embedding j : L(V/\jj 1 Vag1) &
L(VE, |, Vag1) with crit(j) < .

5. THE ONE-EXTENDER-BASED PRIKRY FORCING IS A-GOOD

5.1. Preliminaries on A-good forcings. In order to apply the Generic Absolute-
ness Theorem, we need to ensure that their generics exist in V. For that, we use a
notion of A-goodness for posets due to Woodin (see [18]).

Definition 6. Let A be an infinite cardinal. We say a partially ordered set P is
A-good (in V) if it adds no bounded subsets of A and for every generic filter G and
for every A < Ord in V[G] and of size < A, there is a non-c-decreasing w-sequence
(A; 1 i <w) such that A = | J;A; and each A;, i <w, isin V.

Below is a relativized version of Proposition 3.8 of [14], which asserts that generics
for forcings that are A-good in the w-th iterate exist in V.

Proposition. Assume that j : L(X,Vyy1) — L(X,Viy1) is a proper elementary
embedding with critical point < A. Let (M., jo) be the w-iterate of (L(X, Vat1), ).
Suppose P € jo ., (Va) and P is A-good in M,,. Then there exists G S P in V such
that G is M, -generic.

Here we are only interested in the case that X = Vi A useful sufficient

A+l
condition for showing A-goodness as follows (see [14]): For all

2 < {D < P| D is open dense in P}

such that |2| < A, for any p € P, there are p° <p p and a nondecreasing sequence
(Dpi i <wy of subsets of Z such that the following hold
(1) 72 = UH{Zp,i |i <w},
(2) for all ¢ < w such that 2,; # &, (%, is dense below p°, i.e. for any
r <p p°, there exists 7’ <p r such that ' € D for every D € ), ;.

5.2. Gitik’s one extender-based Prikry forcing. Now we describe Gitik’s one-
extender-based Prikry forcing and show that it is A-good. The definitions in the
next two pages are taken from §3 of Gitik’s handbook article ([7]).> However we
keep it minimal as far as it is necessary for our later arguments, for further details
regarding this forcing, we refer the readers to Gitik’s article.

Let X, d be two cardinals such that § is a strong limit cardinal above A and A is
<d-strong. We assume that GCH holds up to §. Let 1 be a cardinal = A™". Then
there is a (\,n)-extender E and a function f : A — X such that j(f)(n) = A, where
j is the elementary embedding corresponded to E. For every « € [A,n), define a
A-complete ultrafilter U, as follows: for X € A,

XeU, iff aej(X).

Clearly, each U,, a € [\, n), is normal. A relevant property is that they are P-point
ultrafilters, i.e. for every f: A — A, if f is not constant modulo U,, then there is a
Y € U, such that for every v < \, |[Y n f7H{v}] < A

The binary relation <g defined below is a partial order on [\, 7n):

a<g B f a<pBAje(f)(B)=aforsome f: \— A\

3Some small modifications are made for the sake of the proof of A-goodness.
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([A\n),<g) is a At t-directed and A <g « for every a € [A,n). There is a system
of mappings m5.o : A — A, for o, 8 € [\, n) such that a <g B, with the following
properties:*
(1) Uqa,mg,0 1 A< <p f < 1) is a <gg-commutative system of A\-complete
ultrafilters, i.e.

a<pf iff VX S A(X €U, o w5, (X) € Up).

(2) There is a set X such that X € U, and 740X = identity, for every
a e [A,n).

(3) Forevery a, 3,7 € [\, n) such that v <g  <g «a, T4, agrees with 7, gomg 5
on aset Y e U,.

(4) For every a, 8,7 € [\,n), if a,8 <g v and a < 3, then

{veX|malv) <mypgv)}eU,.

(5) For o, B e [A,n), if a <g B, then w5 (V) = mo \(7p,a(v)) for all v e A.

(6) For every a, B € [\, 1), Tar(v) = mpa(v) for all v e A
For v € X, let v* = 7, 5 (v) for some (or equivalently, for all) a € [\,n). Then the
following weak normality holds for U,, « € [\, n):

(7) If X; € Uy for i < A, then
AF X =aer {v | Vi < v* (v e X;)} € U.

We say that a sequence (v; : i < n), where n > 0 and each v; < A, is #-increasing
if ¥ <vf <--- <y, and an ordinal v < X is permitted for (v; : i < k) if v* > v}
for all ¢ < k. A very important fact about members of U,, « € [\, 1), is that if
X € Uy, then for every vy, 11 € X such that v < vf, |[{ve X | v* < i} <vf.

Let (2,Z) denote the tree of all finite #-increasing sequences of ordinals in A,
ordered by end-extension. Let f be any one of 7g ., a <g . By property 5 and 6
on page 13, f preserves the =-value, namely (f(v))* = v* for v € A\. Thus such f
induces a length-preserving homomorphism of = into itself. Abusing the notation,
we use [ for the induced homomorphism as well. Below is a frequently used fact
about these f’s:

Fact 5.1. Let f = mg, o for some o <g B. Suppose T, € Z is a U,-tree and Tg € =
is a Ug-tree. Then Ty, N f “Tg is a Uy-tree and Tg  (f~1) “T,, is a Ug-tree.

Now we define the extender-based Prikry-like forcing PPy , that changes the co-
finality of A to w and at the same time adds n many w-sequences of ordinals that
are cofinal in \.

Definition 7. A condition p € Py ,, is of the form

{(v,p") | v € g\{max(g)}} U {(max(g), p™>@, T)},

where

(1) g < [A\,n) has cardinality < A, A € g and g has a <g-maximal element.
Denote g by supp(p), max(g) by mc(p), T by TP, and p™@*(9) by pme,
(2) p¥ € E, for every v € g.

4These properties and an example of such a system can be found in Gitik [8, 7].
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(3) T < = is a subtree with trunk p™¢. All splitting nodes of T are required to
be in Up,e(p), i-e. for every ¢ € T' such that ¢ =7 p™©,

sucer (t) =get {v < A | 07v €T} € Upey),

and further that t; =1 t2 =7 p™° = sucer(t1) S sucer(ta).
(4) For every v € supp(p) m me(p), max(p™°) is not permitted for p7.
(5) For every v € sucer(p™°),

{~ € g | v is permitted for p”}| < v*.

mc) A5

(6) 7Tmc(p),)\(p =p.

We will only be concerned with subtrees of = such that all its splitting nodes are
in the associated ultrafilter as in item 3 above. So when we say a “tree at ”, we
refer to a subtree of = with the property that all its splitting nodes are in Ul,.

For a tree T and o € T, let T, =q¢ {7 | 077 € T}. Next we define the binary
relation on P = P ,,.

Definition 8. For p,q € P, let p <p ¢ iff

(1) supp(p) = supp(q);

(2) For every v € supp(q), p” 2 ¢7;
(3) prel@d e T4,

(4) For every ~ € supp(q),

p’Y\qry = 7Tmc(q),v((pmc(q)\qmc(q)) r(‘pmc(q”\(i’y + 1)))a

where i, is the largest i < [p™°(@| such that p™°(@(4) is not permitted for
q7;

(5) Tme(p),me(q) Projects Time into T4

wp q 6
pme(a)? Hamely Tme(p),me(q) Tme cT ’

pmc(a) ;
mC)

(6) For every v € supp(q) and v € succrs (p™©), if v is permitted for p?, then

Tmc(p),y (V) = Tmc(q),y (ﬂ-mc(p),mc(q) (V))

A remark about item 5. Consider 7 4, o <g 8. Note that 75, sends members
of Ug to members of U,. So g, projects a subtree at 3 to a subtree at o.

Let p,q € Py, when p <p ¢ and for every v € supp(q), p” = ¢7, we say p is a
direct extension of ¢ and write p <f ¢. We will omit the subscript P in these two
partial orders when it causes no confusion. Below we summerize the facts about
this forcing in Gitik’s article [7].

Fact. Let P =Py ,. Then

(1) (P,<) is a partial order.

(2) (P, <) satisfies \TT-c.c.

(8) (P,<*) is A-closed.

(4) (P, <, <*) satisfies Prikry condition: For every p € P and for every sentence
@ in the forcing language, there is a ¢ <* p such that q decides p, i.e. either

ql-9 orql-—p.
Below is the main theorem in §3 of Gitik’s handbook article ([7]),

5Here it should be “Tme(p),x “PT¢ p*”. But as we said earlier, from here on, we abuse the

notation, write w3 o’s as functions on Z.

In Gitik’s article, it is “myc(p) me(q) Projects Tgmc into Tgmc”. This should be an error.
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Theorem. Suppose § is a strong limit cardinal, A\ < ¢ is <d-strong and n is a
cardinal in [ATT,8). Let P =Py, as defined above and G < P be a V -generic filter.
Then the following hold in V[G]:

(1) cof(A) = w and A\ = 1.

(2) All the cardinals are preserved.

(3) No new bounded subsets of \ is added.

5.3. Gitik’s forcing is A\-good. To show that P is A-good, we follow the idea in
§3.5 of [14], define a notion of rank with respect to this forcing. For the rest of the
section, we fix some notations. We use U, 7y, and 7, , for p,q € P such that
q < p and v € [A,n) such that v <z mc(p), to abbreviate for Unc(p); Tme(q),me(p)
and Ty, (p),~, respectively. For p e P and ¢ € sucers (p™°), let

P~ =aet {(7,p") | 7 € supp(p) N me(p)},
7 =aet p~ U {{me(p), P},
(P)s =det (Vs (07)r,.(5)) | 7 € supp(p) N me(p)}
U {<me(p), pEE), Tome~ sy}
where
P m, 4(0), if § is permitted for p?;

7, otherwise.

(P )rp8) = {

So p = p~ U {{mce(p),p™°, TP)}, and using the t¥ notation, p can be naturally
identified as the pair (tp,T;,’mc). For a s € Epme, (p)s is recursively defined by
Po =pand pspiy1 = (Psyi)s@) for @ < [s]. The (p)s, (p)s notations also make sense
when p is of the form ¢? for some ¢ € P.

Definition 9. Suppose D € P is open. Define R on {t? | p € P} as follows:
e Let HY = D and RZ, = R} = {t? | pe D}.
o For a>0,let HZ, = Jsz_,Hf and RZ, = J;_ RS-
— Let HP be the set of p € P such that t®s e RP for every § €
sucerr (p™°).
— Let RP be the set of t? for p € P such that HY is (<, <*)-dense below
p, i.e. for every q < p, there is a r <* ¢ in HY.

The following properties follow immediately from the definition.

Proposition 5.1. The HP and RP-hierarchies have the following properties:
(1) o < B implies that HY = HY and RE = RE.
(2) RD, = RJ<DIIP’|+ and HP = H<Dm,‘+.
(3) RP is open with respect to (P, <), i.e. if ¢ < p and t? € RY then t? e RD.
(4) HP is <*-open, i.e. if pe HP and q <* p, then qe HP.
(5) HP “c”RD ie {t? |pe HP} < RP.

Proof. 1. First, as D is open, HP? < HP and RY < RP. Note that R? < R
implies that HY < HP |, and H? < HP | implies that R? < R? . Therefore 1
follows by induction.

2. This follows immediately from 1.

3. Suppose p € RP and ¢ < p. If HY is (<, <*)-dense below p, it is also
(<, <*)-dense below g. So g € RP.
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4. The case HP is trivial. Suppose p € HP and ¢ <* p. For every ( €
sucera (¢™°), (9)¢ <* (P)x, ,(¢)- Since RZ, is open with respect to (P, <*), tlde e
R . Therefore e HY.

5. Suppose p € HP and g < p. Let r = g and ¢ € succr-(r™°). Then (r)c <* (p)s
for some s € Thu\{@}. Aspe HE, t®mine) e RD . By 3, t®+ ¢ RD_ and t(< e
RZ . Therefore, r € HP. So HP is (<, <*)-dense below p, hence tP € RY. O

Definition 10. For p € P, rankp(tP), the D-rank of tP, is the least ordinal «
such that t? € R if it exists; otherwise rankp(t?) = o.” We often write the

relativized notation rank, p(s), in which case called (p, D)-rank of s, to abbreviate
for rankp (t(®)+), for s € Tyue, although its value only depends on t7.

Here are some quick facts about ranks.

Proposition 5.2. Suppose D € P is open and p,q € P.
(1) If rankp(t?) < o0, then rankp(t*) < |P|*.
(2) If rankp(t?) < o0 and g < p, then rankp(t?) < rankp(tP).

Proof. 1. This follows immediately from Proposition 5.1-1.
2. If ¢ < p and rankp (t?) < oo, then by Proposition 5.1-3,
@ #{aeOrd |tP € RP}  {a e Ord | t7 € RP}.
Thus rankp(?) < rankp(tP). O

Definition 11. Suppose D < P is open and p € P. We say that p is D-good if
pe HP and for every s € Thue and for 8 < o,

(p)s € H[’? = (p)sﬁ<5> € Hfﬁ, for all § € sucerr (s).

Clearly if p is D-good, then so is (p), for every s € Tjue.

Proposition 5.3. Suppose D € P is open. Let Ep =qet {p € P | p is D-good}.
Then Ep is <*-dense below any p with rankp (t?) < o0; or equivalently, for every
p such that rankp (tP) < oo, there is a ¢ <* p in Ep.

Proof. Take an N < V), for a sufficiently large p and such that [N| = AT, N*C N.
Let k < n be an ordinal such that x =g ¢ for all { € N n [\, n). We write
RPN and HP for the corresponding notions defined in N, and write rank® (¢7)
and rankﬁD(s)g, $ € Thuc, for the corresponding notions computed in N. By the
elementarity of N, these notions are absolute between N and V', more precisely,
RPN — RD A N, HP'N — HP ~ N for a € Ord NN, and rank (t?) = rankp (t?)
for pe P n N. Proposition 5.3 follows from the following lemma.

Lemma 5.1. Suppose pe P N and T is a U,-tree with trunk s, and such that
P U {(k, 5., TH} <* p. Suppose rankp (t?) < 0. Then there are a ¢ € N and a
Uy-subtree T" < T such that r = q U {{k, sk, T")} is a D-good direct extension of
p.

Grant Lemma 5.1. Suppose p € N and rank} (t?) < o0. By Lemma 5.1, there
is a ¢ € V that is D-good and directly extends p® and hence p. Since rankp(-)
is absolute between N and V, for every p € P n N with rankp(tP) < oo, there is

"We demand that o0 > a for all a € Ord.
8More precisely, should be rankl _ (tP) and ranngnN(s).
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a D-good direct extension of p in V. By elementarity, for every p € P n N with
rankg (tP) < oo, there is a D-good direct extension of p in N. Using elementarity
again, every p € P in V' with rankp(#?) < oo has a D-good direct extension. Thus
the set Ep is dense below p°. O

Now we prove Lemma 5.1.

Proof of Lemma 5.1. The proof proceeds by induction on a = rankg (t?) in N. For
a = 0, it is trivial. We follow the idea in Gitik’s proof of his Lemma 3.12 in [7]
(page 1387). Assume that for all 8 € a n N, the claim holds.

Assume p € P and t? € RP n N. By definition, we may replace p with a p° <* p
in N with least o < rank® (¢?) in N such that p° € H? ~ N. So we may assume
in addition that rank}(t4) = rank®(t?) = a for any ¢ <* p in H? n N. By
elementarity, for any ¢ € H?, rankp (t7) = rankp (t?) = a. Let A = succr(s,). We
shall construct inductively ((pg, T¢) : £ € A). To simplify the presentation, we may
assume that p~ = @ and s, = 9.

Suppose we already have {(pg, T¢) : § € A n (). Now we construct pc and T°.
Let pi =pu (Ufpe | €€ An(}) and

e = pe V{2, U{Te | § € A\CH}-

Then (r)¢ <* (P)r, ,(0)- As P () € RBD’N for some B € an N, rank ) (£77)¢) <
B, by the inductive hypothesis, there are a ¢ € N and a Uj-subtree T, < T, such
that g U {(k,{(), T¢)} is a D-good direct extension of (r;)¢. Let pc = pi v {{,¢) |
v € supp(g)\supp(r¢)}. This completes the inductive construction.

At the end, let ¢ = | J;_\pe. For i <A, let

Ci = {(sucere ((§)) [ £ € A &F =i}

Since the set of £ € A such that £* = i is bounded, C; € Uy for each i < A. Set
A* = An (A, C;). By the weak normality for U, A* € U,. Let T" be the tree
obtained from ( J{T¢¢, | £ € A*} by intersecting all levels of it with A*. Then by
Claim 3.12.1 in Gitik’s [7] (page 1388), r = q U {{x,@,T")} is in P and directly
extends p.

By our construction, for every ¢ € succyr (@), ()¢ is D-good and directly extends
(P)r,..o(c)- Since ()¢ <* (P)r,, () rankp (£07¢) < rankp(tPma©) < a. So

r € HP. By our additional assumption on p, rankp(t") = rankp(t?) = a. So r is
D-good. (]

The Prikry condition for P (see Lemma 3.12, [7]) can be stated in terms of our
rank notion as follows.

Proposition 5.4 (Gitik). Suppose D < P is dense and open. Let lp denote the
largest element of P. Then rankp (t'¥) < o0; or equivalently, for every p € P, there
isaq<*pinHD,.

Proof. Rerun Gitik’s proof but with “p decides o” replaced by “pe HZ 7. ([
Next we define a notion of rank on members of E'p to isolate a set of “D-better”

conditions. For every p € Ep, we define a rank function p, p(-) on Té’mc inductively
as follows:

o if (p)s € D, then p, p(s) = 0;
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o if (p)s ¢ D, then p, p(s) is the least a such that there is a U,-measure one
Ac succrr, (s) such that a = p, p(s7(d)) + 1 for all § € A.

By the definition of D-goodness, if p € Ep, then the set {s € Tju. | rank, p(s) > 0}
is a wellfounded subtree of Tjue. Thus p, p(s) is defined for all s € T if p€ Ep.
Below is a simple observation to be used in our proof of A-goodness for P.

Proposition 5.5. Suppose D € P is open and p € Ep. If ¢ < p, then for every
5 € Tyne, rank p (£9)+) < rankp (t D70 and Pa,0(8) < pp,0(Tqp(5))-

Proof. Tt suffices to consider only the case ¢ <* p. The proof proceeds by induction
on pg,p(s). We leave the details to the readers. O

Lemma 5.2. Suppose D € P is open and p € Ep. Then p, p(@) < w. More
precisely, there is a Uy-subtree S, S Tyue such that for every s € Sy, ppp(s) =
max(pp, () — |5, 0).

Proof. Clearly, the range of p, p(-) is an ordinal. The lemma follows from the fact
that U, is countably complete. Assume towards a contradiction that p, p (@) >
w, then there is an s € Thue such that p, p(s) = w. But due to the countably
completeness of U, there is a finite number k such that p, p(s™(0)) < k for a
Up-measure one set of 6 € sucerr, . (s). Therefore p, p(s) < k <w. Contradiction!

Using the idea in §3.4 of [14], by trimming off nodes s in T}u.\{@} such that
pp.0(8) = pp.p(st(|s| —1)) > 0, one obtain a Uy-subtree S, < Thuc such that for

every s € Sy, either p, p(s) = 0 or p, p(s) = sup{p, p(s~{0)) + 1| 0 € succs,(s)}.
It is easy to see that this S, works as desired. O

Definition 12. Suppose D < P is open. For a p € Ep, we say p is D-better if Tfmc
satisfies the condition that for every s € Thue, pp,p(s) = max{p, p(2) — |s|,0}.

From Lemma 5.2, we have
Corollary 4. Bp is <*-dense in Ep, therefore <*-dense in P.
Now we are ready to prove the main result of this section.
Lemma 5.3. P is A-good.

Proof. Fix a p € P and 2, a collection of dense open subsets of P with |2| < A.
Enumerate 2 as {D, | ¢ < |2|}. Start with p, we inductively construct a <*-
decreasing sequence (p, : ¢+ < |Z|) and a sequence of integers (k, : ¢ < |Z]|) as
follows:

First, let po be a Dg-better direct extension of p and ko = pp, p(&). Suppose
we have constructed the two sequences up to some ¢ > 0, i.e.{p; : { < ¢y and
(ke + ¢ < 1. Since (P, <*) is A-closed, there is a g, € P such that p, <* ¢, for all
¢ <t Let p, be a D,-better direct extension of ¢, and k, = pg, p ().

At the end, pick a p° € P such that p°> <* p, for all « < |2)]. For each k < w, let
D = {D, | k, < k}. We may assume that 7, # @ for all i < w. We claim that
(%Zp.i is dense below p° for all k < w.

Fix a k < w. Suppose r < p°. By replacing r with a ¢ <* p° such that r = ¢” s for
some s € Tgmc, we may assume that r <* p°. Note that by Proposition 5.5 for any
s € Tlme and any ¢ < || such that D¢ € 9,1, rankp (t(M+) < rankD(t(qE)”Wg(S))

T

and pr, p, (Tr,4¢ (8)) < ppe D, (8). Pick an s € T such that |s| > k, then p,. p(s) = 0
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every D € 9, 1. Hence, (1), € D for every D € 9, ;. This shows that (%, is

dense below p°. (I
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