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6 Mass in Kähler Geometry

Hans-Joachim Hein∗ and Claude LeBrun†

Abstract

We prove a simple, explicit formula for the mass of any asymp-
totically locally Euclidean (ALE) Kähler manifold, assuming only the
sort of weak fall-off conditions required for the mass to actually be
well-defined. For ALE scalar-flat Kähler manifolds, the mass turns
out to be a topological invariant, depending only on the underly-
ing smooth manifold, the first Chern class of the complex structure,
and the Kähler class of the metric. When the metric is actually AE
(asymptotically Euclidean), our formula not only implies a positive
mass theorem for Kähler metrics, but also yields a Penrose-type in-
equality for the mass.

A complete connected non-compact Riemannian manifold (M, g) of di-
mension n ≥ 3 is said to be asymptotically Euclidean (or AE ) if there is a
compact subset K ⊂ M such that M − K consists of finitely many com-
ponents, each of which is diffeomorphic to the complement of a closed ball
Dn ⊂ Rn, in a manner such that g becomes the standard Euclidean metric
plus terms that fall off sufficiently rapidly at infinity. More generally, a Rie-
mannian n-manifold (M, g) is said to be asymptotically locally Euclidean (or
ALE ) if the complement of a compact set K consists of finitely many com-
ponents, each of which is diffeomorphic to a quotient (Rn −Dn)/Γj , where
Γj ⊂ O(n) is a finite subgroup which acts freely on the unit sphere, in such a
way that g again becomes the Euclidean metric plus error terms that fall off
sufficiently rapidly at infinity. The components ofM −K are called the ends
of M ; their fundamental groups are the afore-mentioned groups Γj, which
may in principle be different for different ends of the manifold.

∗Research funded in part by NSF grant DMS-1514709.
†Research funded in part by NSF grant DMS-1510094.
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The mass of an ALE Riemannian n-manifold is an invariant which assigns
a real number to each end. This concept originated in general relativity,
where an asymptotically flat 3-manifold could be interpreted as representing
a time-symmetric slice of some 4-dimensional space-time, in which case this
invariant becomes the so-called ADM mass [4], which reads off the apparent
mass of an isolated gravitational source from the asymptotics of its gravita-
tional field. Our conventions are chosen so that, at a given end, the mass of
an ALE manifold is given by

m(M, g) := lim
̺→∞

G(n
2
)

4(n− 1)πn/2

∫

S̺/Γj

[gkℓ,k − gkk,ℓ]n
ℓdaE

where commas represent derivatives in the given asymptotic coordinates,
summation over repeated indices is implicit, S̺ is the Euclidean coordinate
sphere of radius ̺, daE is the (n − 1)-dimensional volume form induced on
this sphere by the Euclidean metric, and ~n is the outward-pointing Euclidean
unit normal vector. While our choice here of normalization factor is of course
primarily a matter of convention, an explanation of this choice is provided
in the Appendix. Perhaps the most controversial feature of our definition is
that we have specified that the integral is to be taken over S̺/Γj rather than
over S̺, so that the mass, by our conventions, is 1/|Γj| times the value one
might otherwise expect.

Needless to say, this peculiar definition of the mass seems to depend on
the choice of asymptotic coordinates. Indeed, without additional assump-
tions, the relevant limit might not even exist, or might be coordinate depen-
dent. However, Bartnik [7] and Chruściel [15] independently discovered that
the mass is finite and independent of the choice of asymptotic coordinates
provided we impose weak fall-off conditions of the following type:

(i) the scalar curvature s of the C2 metric g belongs to L1; and

(ii) in some asymptotic chart at each end of Mn, the components of the
metric satisfy gjk−δjk ∈ C1,α

−τ for some τ > (n−2)/2 and some α ∈ (0, 1).

Here the weighted Hölder spaces Ck,α
−τ consist of Ck,α functions such that

(
k∑

j=0

|x|j|▽jf(x)|
)

+ |x|k+α[▽kf ]C0,α(B|x|/10(x)) = O(|x|−τ).
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This definition can naturally be extended to tensor fields, and the resulting
Ck,α

−τ spaces then become Banach spaces when equipped with the obvious
weighted analogs of the usual Hölder norms. While Bartnik actually does
mention these weighted Hölder spaces in passing [7, Theorem 1.2 (v)], the
state of the literature at the time led him to instead impose a slightly stronger
condition in lieu of (ii), by instead requiring g − δ to belong to the weighted
Sobolev spaces W 2,q

−τ for some q > n and some τ > (n − 2)/2. Bartnik’s
condition implies (ii), and condition (ii) in turn implies that, for some ε > 0,
the metric g satisfies the Chruściel-type fall-off condition

gjk = δjk +O(|x|1−n
2
−ε), gjk,ℓ = O(|x|−n

2
−ε)

in suitable coordinates; and this Chruściel-type fall-off is actually all that
is needed for many of our key results. The central issue is really the range
of fall-off rates τ that are to be allowed; as emphasized by both Bartnik
and Chruściel, allowing slower rates of fall-off than indicated above would
make the mass coordinate-dependent, and so essentially ill-defined. Our
definition of an ALE manifold will therefore by default include conditions (i)
and (ii), except where we clearly specify that a weaker assumption suffices
for a given result. When n = 4, some our proofs will also require analogous
control of an extra derivative of the the metric, and so by default we will
strengthen assumption (ii) in this special dimension to instead require that
gjk− δjk ∈ C2,α

−τ for some τ > (n− 2)/2 = 1, although we will also sometimes
explicitly weaken this assumption when it is not needed for a given result.

The coordinate-based definition of the mass makes it seem both enigmatic
and chimerical. In this article, however, we will show that the mass has a
completely transparent meaning when the ALE space in question is a Kähler
manifold. Along the way, we will incidentally learn that an ALE Kähler
manifold only has one end; thus, in the Kähler setting, a choice of end is not
required in order to be able to discuss the mass in the first place!

Rather than beginning with general ALE Kähler manifolds, let us first
highlight the setting that originally motivated our investigation: the so-called
scalar-flat case, where the scalar curvature is assumed to vanish identically.
In this context, we will demonstrate the following result:

Theorem A. The mass of an ALE scalar-flat Kähler manifold (M, g, J) is a
topological invariant, determined entirely by the smooth manifoldM , together
with the first Chern class c1 = c1(M,J) ∈ H2(M) of the complex structure
and the Kähler class [ω] ∈ H2(M) of the metric.
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In fact, our proof actually provides an explicit formula for the mass in
terms of these data. Revisiting familiar examples, this in particular gives a
pure-thought explanation of the second author’s observation [33] that there
are ALE scalar-flat Kähler surfaces1 of negative mass. Rather more inter-
estingly, though, a quick glance at other known examples immediately now
gives a negative answer2 to a question posed by Arezzo [3] that naturally
arose in connection with gluing constructions for cscK metrics:

Theorem B. There are infinitely many topological types of ALE scalar-flat
Kähler surfaces that have zero mass, but are not Ricci-flat.

By contrast, Corollary 4.8 below, which was pointed out to us by Cristiano
Spotti, gives a systematic explanation of why the mass actually turns out to
be negative for so many other concrete examples.

We now come to the actual formula for the mass. Because M is a smooth
manifold, one can define the compactly supported de Rham cohomology
Hk

c (M), as well as the usual de Rham cohomology. If M is a complex man-
ifold, it is in particular oriented, and Poincaré duality therefore gives us an
isomorphism H2

c (M) ∼= [H2m−2(M)]∗. On the other hand, there is a natural
map H2

c (M) → H2(M) induced by the inclusion of compactly supported
forms into all differential forms, and in the ALE setting, this map is actually
an isomorphism. We may therefore define

♣ : H2(M) → H2
c (M)

to be its inverse. Using this notation, we may now state our explicit formula
for the mass:

Theorem C. Any ALE Kähler manifold (M, g, J) of complex dimension m
has mass given by

m(M, g) = −〈♣(c1), [ω]
m−1〉

(2m− 1)πm−1
+

(m− 1)!

4(2m− 1)πm

∫

M

sgdµg

where sg and dµg are respectively the scalar curvature and volume form of
g, while c1 = c1(M,J) ∈ H2(M) is the first Chern class of the complex
structure, [ω] ∈ H2(M) is the Kähler class of g, and 〈 , 〉 is the duality
pairing between H2

c (M) and H2m−2(M).

1Throughout the article, we use the term complex surface to indicate a complex mani-
fold of complex dimension 2, and thus of real dimension 4.

2We would like to thank Ioana Şuvaina for pointing out to us that this answer was
already implicit in results of Rollin-Singer [44, §6.7] regarding the toric case.
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Here we remind the reader that the Bartnik-Chruściel fall-off condition (i)
requires the scalar curvature s to be integrable. It is remarkable that this
feature3 plays a direct role in our setting, by ensuring that the second term
on the right-hand side is well-defined. It is worth noting that our discussion
will not simply rely on the Bartnik-Chruściel theorem on the coordinate-
invariance of the mass, but rather will actually provide an independent ver-
ification of it in the Kähler setting.

The reader may find it illuminating to compare Theorem C with the more
familiar compact case. If (M2m, g, J) is a compactKähler manifold of complex
dimension m, then its total scalar curvature is well known to be topologically
determined [8, 11] by the first Chern class of the complex structure and the
Kähler class of the metric via the Gauss-Bonnet-type formula

∫

M

s dµ =
4π

(m− 1)!
〈c1, [ω]m−1〉.

The gist of Theorem C is that the mass measures the degree to which this
formula fails in the ALE case:

4πm(2m− 1)

(m− 1)!
m(M, g) =

∫

M

s dµ− 4π

(m− 1)!
〈♣c1, [ω]m−1〉.

In other words, the mass may be understood as an anomaly in the formula
for the total scalar curvature, encapsulating an essential difference between
the ALE and compact cases.

Of course, the formula in Theorem C simplifies when g is scalar-flat;
the integral on the right drops out, and the mass is then expressed purely
in terms of topological data. Theorem A is thus an immediate corollary.
Theorem B is then proved by applying this formula to some ALE scalar-flat
Kähler surfaces constructed by the second author in [34].

As we’ve already noted, there are ALE manifolds of non-negative scalar
curvature which nonetheless have negative mass. However, one expects this
to never happen for AE (asymptotically Euclidean) manifolds. Indeed, this
is actually a theorem [38, 46, 51] if one is willing to further assume that the
manifold is either low-dimensional or spin. Here we can add something new
to the discussion, by demonstrating that the conjecture also always holds in
the Kähler case, even if the manifold is high-dimensional and non-spin:

3As explained to us by Gustav Holzegel, the intimate relationship between mass and
scalar curvature apparently first came to light in the work of Brill [10] on stationary
axisymmmetric space-times.
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Theorem D (Positive Mass Theorem for Kähler Manifolds). Any asymp-
totically Euclidean (AE) Kähler manifold with non-negative scalar curvature
has non-negative mass:

s ≥ 0 =⇒ m(M, g) ≥ 0.

Moreover, m(M, g) = 0 in this context iff (M, g) is Euclidean space.

Our proof of this version of the positive mass theorem uses nothing but
our mass formula and some complex manifold theory. Indeed, the argument
actually tells us a great deal more; it in fact shows that the mass can be
bounded from below by the (2m − 2)-volume of a subvariety. This is remi-
niscent of the Penrose inequality [9, 28, 43], which gives a sharp lower bound
for the mass of an AE 3-manifold in terms of the area of a minimal surface.
Our Kähler analog goes as follows:

Theorem E (Penrose Inequality for Kähler Manifolds). Let (M2m, g, J) be
an AE Kähler manifold with scalar curvature s ≥ 0. Then (M,J) carries a
canonical divisor D that is expressed as a sum

∑
njDj of compact complex

hypersurfaces with positive integer coefficients, with the property that
⋃

j Dj 6=
∅ whenever (M,J) 6= Cm. In terms of this divisor, we then have

m(M, g) ≥ (m− 1)!

(2m− 1)πm−1

∑

j

njVol (Dj)

and equality holds if and only if (M, g, J) is scalar-flat Kähler.

Much of the intrinsic interest of our subject arises from the case of real
dimension 4, where a plethora of known examples leads to a wealth of ap-
plications, including Theorem B. However, the complex-surface case entails
technical subtleties that simply disappear in higher dimensions. Our pre-
sentation therefore begins with proofs of Theorems A and C in complex
dimension m ≥ 3. Using this high-dimensional case as our guide, but now
emphasizing the coordinate-invariant nature of the mass, we then develop a
second, more robust proof of the asymptotic form of our mass formula, in a
manner that also shows that this formula remains valid in complex dimen-
sion 2. We then prove some global results regarding ALE Kähler surfaces,
culminating in a proof of the m = 2 case of Theorem C, along with vari-
ous applications, including Theorem B. We then conclude by showing that
Theorems D and E are straightforward corollaries of our other results.
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1 The High-Dimensional Case

We begin by proving Theorems A and C when the complex dimension is
m ≥ 3. Our high-dimensional proofs will prefigure many of the ideas needed
for the complex-surface (m = 2) case, but manage to avoid a number of
difficult technical complications. Our journey begins with the following step:

Lemma 1.1. Let M∞ be an end of an ALE Kähler manifold (M2m, g, J),
m ≥ 3, and let (x1, . . . , x2m) be a real asymptotic coordinate system on the

universal cover M̃∞ of M∞ in which g satisfies the weak fall-off hypothesis

gjk = δjk +O(|x|1−m−ε), gjk,ℓ = O(|x|−m−ε)

for some ε > 0. Then there is a (non-compact) complex m-manifold X con-
taining an embedded complex hypersurface Σ ∼= CPm−1 with normal bundle

of degree +1, such that M̃∞ is biholomorphic to X − Σ.

Proof. We first identify the range R2m −D2m of our asymptotic coordinate
system with Cm − D2m in a reasonably intelligent manner, by choosing a
constant-coefficient almost-complex structure J0 on R2m such that J → J0
at infinity. We can do this by identifying all the tangent spaces of R2m

in the usual way, using the flat Euclidean connection ▽. Since ∇J = 0,
where ∇ is the Levi-Civita connection of g, and since ∇ = ▽ + Γ, where ▽

is the coordinate Euclidean connection and Γ = O(̺−m−ε), the value of J
will approach a well-defined limit J0 along some chosen radial ray, and we
then extend this limit as a constant-coefficient tensor field on our asymptotic
coordinate domain. Along the chosen ray, we then have J−J0 = O(̺1−m−ε),
and integrating along great circles in spheres of constant radius then shows
that J − J0 has O(̺

1−m−ε) fall-off everywhere. The same argument similarly
shows that the derivative of J falls off at the same rate as the derivative of
the metric g.

Now think of (Cm, J0) as an affine chart on CPm, whose complex structure
we will also denote by J0. Let Σ ⊂ CPm be the hyperplane at infinity, and
notice that our asymptotic coordinates give us a diffeomorphism between
M̃∞ and X −Σ, where X ⊂ CPm is some neighborhood of this hyperplane.
We may then define a “rough” almost complex structure J on X by taking
it to be the given J on X − Σ, and J0 along Σ. This J is then at least C1

on X . Indeed, if (z1, z2, . . . , zm) are the standard affine coordinates on Cm,
then, in the cone |z1| ≥ max{|zj | | j > 1}, we may inspect the behavior of J

7



near infinity by observing that there is a unique (m, 0)-form with respect to
J given by

ϕ = (dz1 + ϕj̄
1dz̄

j) ∧ (dz2 + ϕj̄
2dz̄

j) ∧ · · · ∧ (dzm + ϕj̄
mdz̄

j),

and that the functions ϕj̄
k then have the same fall-off as J . Setting

(w1, w2, . . . , wm) =

(
1

z1
,
z2

z1
, . . . ,

zm

z1

)
,

one can then analogously determine the components of J from those of

ψ := −wm+1
1 ϕ = (dw1 + ψj̄

1dw̄j) ∧ (dw2 + ψj̄
2dw̄j) ∧ · · · ∧ (dwm + ψj̄

mdw̄j).

Reading off the coefficients ϕj̄
k and ψj̄

k by inspecting the type (m − 1, 1)
parts of ϕ and ψ with respect to the background complex structure J0, one
then sees that the coefficients {ψj̄

k} behave like the {ϕj̄
k} times, at worst,

O(|w1|−1), while their first derivatives behave like those of the {ϕj̄
k} times,

at worst, O(|w1|−3). Since ̺−1 = O(|w1|) in the region in question, our fall-
off conditions therefore guarantee that the almost-complex structure is at
least C1. In particular, the Nijenhuis tensor of J is continuous, and since
it vanishes on the dense set X − Σ, it vanishes identically. The Hill-Taylor
version [24] of Newlander-Nirenberg therefore guarantees the existence of
complex coordinates on (X , J). These will at least have Hölder regularity
C1,α with respect to the original atlas, for any α ∈ (0, 1).

In fact, our fall-off conditions are noticeably stronger than what is actually
needed for the proof of this lemma. In any case, whenever we can add such
a hypersurface at infinity, then, provided the complex dimension is m ≥ 3,
the following result will force the complex structure J to become completely
standard at infinity:

Lemma 1.2. Let (X , J) be a (possibly non-compact) complex m-manifold,
m ≥ 3, that contains an embedded hypersurface Σ ⊂ X which is biholomor-
phic to CPm−1 and has normal bundle of degree +1. Then Σ ⊂ X has an
open neighborhood U which is biholomorphic to an open neighborhood of a
hyperplane CPm−1 ⊂ CPm.

Proof. Since the normal bundle of Σ ∼= CPm−1 is isomorphic to O(1), and
since H1(CPm−1,O(1)) = 0, a theorem of Kodaira [31] implies that there is
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a complete analytic family of compact complex submanifolds of dimension
h0(CPm−1,O(1)) = m which represents all small deformations of Σ ⊂ X

through compact complex submanifolds. Since CPm−1 is rigid, and since
h0,1(CPm−1) = 0, we may assume, by shrinking the size of the family if
necessary, that every submanifold in the family is biholomorphic to CPm−1,
and has normal bundleO(1). Let us use Y to denote the complexm-manifold
which parameterizes these hypersurfaces; and for any y ∈ Y , let Σy ⊂ X be
the corresponding complex hypersurface. Note that, by construction, Σ = Σo

for some base-point o ∈ Y .
Now Kodaira’s theorem also gives us a natural identification of the tan-

gent space T 1,0
y Y with the holomorphic sections of the normal bundle of

Σy ⊂ X . Since H0(CPm−1,O(1)) consists of linear functions on Cm, the
space of complex directions P(T 1,0

y Y ) can thus be naturally identified with
the space of hyperplanes CPm−2 ⊂ Σy

∼= CPm−1; in other words, each Σy

is exactly the dual projective space P(Λ1,0
y Y ) of the projectivized tangent

space P(T 1,0
y Y ).

This leads us to consider the space Z of those embedded CPm−2’s in X

that arise as hyperplanes in the various Σy. Thus, by definition, each z ∈ Z

corresponds to a submanifold Πz
∼= CPm−2 of X . But since Σy = P(Λ1,0

y Y ),
any point of the projectivized tangent bundle

p : P(T 1,0
Y ) → Y

also gives rise to some such submanifold Πz. Since any Πz
∼= CPm−2 has

normal bundle O(1)⊕O(1), the family Πz, z ∈ Z , is therefore complete in
the sense of Kodaira, because every section of the normal bundle O(1)⊕O(1)
can be realized by some variation in P(T 1,0Y ). In fact, this observation
actually tells us a great deal more; not only is Z a complex manifold of
complex dimension 2m − 2, but there is a natural surjective holomorphic
submersion q : P(T 1,0

Y ) → Z . We thus obtain a double fibration

P(T 1,0Y )

Z Y

pq
❏
❏
❏
❏
❏❫

✡
✡

✡
✡
✡✢
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which embeds P(T 1,0Y ) into the product Z × Y , and thereby realizes it as

P(T 1,0
Y ) = {(z, y) ∈ Z × Y | Πz ⊂ Σy}.

In particular, for any z ∈ Z , the curve γz ⊂ Y given by p[q−1(z)] exactly
consists of those y ∈ Y for which Σy ⊃ Πz. But this also shows that γz
is an immersed complex curve, with tangent space at y exactly consisting
of sections of the normal bundle O(1) of Σy

∼= CPm−1 which vanish at the
hyperplane Πz

∼= CPm−2. Hence the lift γ̃z → P(T 1,0Y ) of γz defined by
γ̃z := T 1,0γz coincides with q−1(z). In particular, the holomorphic system of
complex curves γz, z ∈ Z , has the property that there is exactly one such
curve tangent to each direction in Y . By [32, Proposition 1.2.I], the curves γz
are therefore the unparameterized geodesics of a unique holomorphic projec-
tive connection on Y ; moreover, by replacing Y with a smaller neighborhood
of o if necessary, we may arrange that this projective connection is globally
represented by some torsion-free holomorphic affine connection ∇, with re-
spect to which Y is geodesically convex. This allows us to identify Z with
the space of unparameterized complex geodesics of ∇.

Let U ⊂ X be the open set defined by

U =
⋃

y∈Y

Σy.

The fact that this is open follows from the fact that the normal bundle O(1)
of every Σy is everywhere generated by its global sections. But now, by
construction, every x ∈ U belongs to Σy for some y ∈ Y . For each x ∈ U ,
we can therefore define a non-empty hypersurface Sx ⊂ Y by

Sx := {y ∈ Y | x ∈ Σy}.

This is a non-singular hypersurface, because the normal bundle of each
y ∈ Sx has a global holomorphic section which is non-zero at x ∈ Σy; the
set of normal sections vanishing at x thus has complex codimension 1, and
exactly corresponds to T 1,0

y Sx ⊂ T 1,0
y Y . Moreover, since Σy = P(Λ1,0

y Y ),
the tangent space T 1,0

y Sx, for any x ∈ Σy, is exactly the hyperplane in T 1,0
y Y

annihilated by the 1-dimensional subspace x ⊂ Λ1,0
y Y . It follows that there

is a hypersurface Sx tangent to any given hyperplane in T 1,0Y .
However, with respect to ∇, the hypersurfaces Sx are all totally geodesic!

Indeed, if y ∈ Sx and ξ ∈ T 1,0
y Sx−0, the section of the normal bundle of Σy

10



which represents ξ must vanish at x, and must do so at some Πz
∼= CPm−2

containing x. The geodesic γz through y in the direction ξ therefore precisely
consists of those y′ ∈ γz ⊂ Y for which Πz ⊂ Σy′ . But since x ∈ Πz, we
therefore have x ∈ Σy′ for every y

′ ∈ γz, and it therefore follows that γz ⊂ Sx.
This shows that Sx is totally geodesic, as claimed.

However, a classical theorem of Schouten and Struik [47, p. 182] asserts
that a projective connection in dimension m ≥ 3 is projectively flat iff every
hyperplane element is tangent to a totally geodesic hypersurface; cf. [48, p.
290]. Thus ∇ is projectively flat, and o ∈ Y therefore has a neighborhood
which can be identified with a ball in Cm, in such a manner that the unpa-
rameterized geodesics of ∇ are just the intersections of complex lines in Cm

with the ball. Let us again shrink Y by replacing it with this ball about o.
The hypersurfaces Sx are now just the intersections of hyperplanes in Cm

with the ball Y ; in other words, thinking of Cm as an affine chart on CPm,
they are just the intersections of projective hyperplanes with a fixed ball
about o. For the smaller U that corresponds to this smaller Y , we there-
fore get an injective holomorphic map to the dual projective space CP

∗

m by
sending x ∈ U to the hyperplane which intersects Y in Sx. This provides
the promised biholomorphism between U ⊃ Σo = Σ and a neighborhood of
a hyperplane in projective m-space.

Remark The above-cited result of Schouten and Struik is proved by showing
that the Weyl projective curvature of the projective connection vanishes, and
then using the fact, due to Weyl [50, p. 105], that, whenm ≥ 3, this curvature
condition is equivalent to the projective connection being projectively flat.
The fact that this fails when m = 2 gives the complex surface case an entirely
different flavor, as we will see in Lemma 3.4 below.

There are certainly many other ways of proving the above result. One
alternative strategy would proceed by first using [18] to show the infinitesimal
neighborhoods of Σ ⊂ X are all standard, and then invoking [16] or [25] to
conclude that a neighborhood of Σ ⊂ X is therefore biholomorphic to a
neighborhood of CPm−1 ⊂ CPm. ♦

Perhaps the single most important consequence of Lemma 1.2 is that J
must always be standard at infinity when m ≥ 3. For us, it is vital that
the asymptotic coordinates which put J in standard form can moreover be
chosen to be consistent with the hypothesized fall-off of the metric:

11



Lemma 1.3. Let (M2m, g, J) be an ALE Kähler manifold of complex di-
mension m ≥ 3 which, in some real coordinate system on each end, merely
satisfies condition (ii), as set out on page 2 above. Then there are asymptotic

complex coordinates (z1, . . . , zm) on the universal cover of M̃∞ of any end,
in which the complex structure J becomes the standard one on Cm, and in
which the metric has fall-off

gjk = δjk +O(|z|1−m−ε), gjk,ℓ = O(|z|−m−ε)

for some ε > 0.

Proof. Let (x̃1, . . . , x̃2m) be some given asymptotic coordinate system in
which gjk − δjk ∈ C1,α

−τ for some τ > m − 1 and some α ∈ (0, 1), and let
us once again set ε = min(τ − (m − 1), α). We now think of R2m, with real
coordinates (x̃1, . . . , x̃2m) and the constant-coefficient almost-complex struc-
ture J0 of the proof of Lemma 1.1, as an affine chart on CPm. Lemma 1.2, in
conjunction with the proof of Lemma 1.1, then gives us a C1 diffeomorphism
Ψ between neighborhoods of CPm−1 ⊂ CPm that, by [42, 40], restricts as a
C2,ε diffeomorphism between the complement of a compact set in R2m, with
coordinates x̃, and the complement of a compact set in Cm, equipped with
standard complex coordinates (z1, . . . , zm); and let (x1, . . . , x2m) be the real
and imaginary parts of (z1, . . . , zm), so that zj = x2j−1 + ix2j . Now notice
that, for some large constant C, we in particular have

C−1|x| < |x̃| < C|x|

outside a large ball, simply because Ψ is uniformly Lipschitz near CPm−1 ⊂
CPm. Because Ψ is by construction holomorphic with respect to the complex
structure J , the functions zµ := Ψ∗zµ are holomorphic with respect to the
complex structure associated with our Kähler metric, so their real and imag-
inary parts xj := Ψ∗xj are harmonic functions with respect to the Kähler
metric g. We now use a partition of unity to construct a C1,ε Riemannian
metric ḡ on R2m which coincides with g outside some large ball, and use a
smooth cut-off function to construct C2,ε functions f j on R2m which coincide
with the xj := Ψ∗xj outside this same ball. The Laplacians ∆ḡf

j of these
functions are then compactly supported C0,ε functions on R2m.

The fall-off of the first derivative of g in x̃-coordinates implies that

∆ḡx̃
j = gkℓΓj

kℓ ∈ C0,ε
−m−ε(R

2m).

12



On the other hand, since −m − ε ∈ (−2m,−2), the Laplacian ∆ḡ induces
an isomorphism [30, Theorem 8.3.6] between C2,ε

2−m−ε(R
2m) and C0,ε

−m−ε(R
2m).

Thus, for each j, there is a unique uj ∈ C2,ε
2−m−ε(R

2m) with ∆ḡu
j = ∆ḡx̃

j . The
functions ỹj := x̃j − uj are then ḡ-harmonic functions on R2m, and provide
coordinates at infinity that are asymptotic to the x̃j . But, since ∆ḡf

j ∈ C0,ε
β

for β < −2m, [30, Theorem 8.3.6] also asserts that there is, for each j, a
unique function vj ∈ C2,ε

2−2m with ∆ḡv
j = ∆ḡf

j. The functions yj = f j − vj

are then yet another set of ḡ-harmonic functions which give us coordinates
at infinity, this time instead asymptotic to the xj .

Now choose some η ∈ (1, 2) and some q > 2m. Since the ỹj and the yj

are O(|x|) = O(|x̃|) at infinity, they therefore belong to the weighted space
Lq
η used by Bartnik [7]. On the other hand, our C1,α

−τ fall-off condition on

the metric guarantees that ḡjk − δjk ∈ W 1,q
1−m−ε/2 in x̃ coordinates, so one of

Bartnik’s key results [7, Theorem 3.1] now asserts that

Hq,η := {f ∈ Lq
η | ∆ḡf = 0}

has dimension n+ 1 = 2m+ 1, and hence that

span {1, ỹ1, . . . ỹ2m} = Hq,η = span {1, y1, . . . , y2m}.

It follows that the yj are affine-linear combinations of the ỹk; in other words,

yj = aj + Aj
kỹ

k

for an appropriate translation ~a ∈ R2m and an appropriate invertible linear
transformation A ∈ GL(2m,R). Consequently,

xj = aj + Aj
kx̃

k + wj

outside a large ball, where

wj = vj − Aj
ku

k ∈ C2,ε
2−m−ε.

In particular, ∂xj

∂x̃k − Aj
k ∈ C1,ε

1−m−ε, and inverting the Jacobian matrix then

tells us that, as functions of x̃, ∂x̃k

∂xj − (A−1)kj ∈ C1,ε
1−m−ε. We thus have

∂

∂xj
=
(
Ak

j + Uk
j

) ∂

∂x̃k

13



where Uk
j = ∂wk

∂x̃ℓ
∂x̃ℓ

∂xj ∈ C1,ε
1−m−ε. In x̃ coordinates, we therefore see that

g(
∂

∂xj
,
∂

∂xk
)− Aℓ

jA
ℓ
k ∈ C1,ε

1−m−ε

and that
∂

∂xℓ

[
g(

∂

∂xj
,
∂

∂xk
)

]
∈ C0,ε

−m−ε.

Since C−1|x| < |x̃| < C|x|, this now immediately implies that

gjk = (AtA)jk +O(|x|1−m−ε), gjk,ℓ = O(|x|−m−ε)

in x coordinates. However, since the Kähler metric g is Hermitian in the
complex coordinate system defined by the zj = x2j−1 + ix2j , the matrix AtA
must represent a Hermitian inner product on Cm, and so can be written
as B∗B for some B ∈ GL(m,C). Thus, after a complex-linear change of
coordinates ~z 7→ B−1~z, we will then have

gjk = δjk +O(|z|1−m−ε), gjk,ℓ = O(|z|−m−ε),

as desired.

Remark The above proof dovetails with Bartnik’s weighted-Sobolev results
in a way that lets us avoid having to reinvent the wheel. However, we cer-
tainly could have avoided passing to a complete manifold or citing Bartnik’s
count of harmonic functions of sub-quadratic growth. Indeed, the results in
[41, Chapter 6] allow one to argue directly that any harmonic function on

(M̃∞, g) of polynomial growth is asymptotic to a harmonic polynomial on
Euclidean space (R2m, δ). ♦

While Lemma 1.3 is still phrased in terms of any end, we will soon see
that there can actually only be one end. Indeed, Lemma 1.2 opens up a
thoroughfare to this and other global results, via the following remarkable
consequence:

Lemma 1.4. Let (M2m, g, J) be an ALE Kähler manifold of complex dimen-
sion m ≥ 3. Then we may compactify (M,J) as a complex orbifold (X, JX)
by adding a copy of CPm−1/Γj to each end. Moreover, the resulting complex
orbifold admits Kähler metrics.

14



Proof. Lemma 1.1 already told us that we could smoothly cap off the uni-
versal cover of each end by adding a CPm−1, and Lemma 1.2 then showed
that each such capped-off space is biholomorphic to a neighborhood U of
CPm−1 ⊂ CPm. Since the action of each Γj extends continuously to U , and
since it is holomorphic on the complement of CPm−1, the induced action is ac-
tually holomorphic; and since Hartogs’ theorem also tells us that this action
extends holomorphically to all of CPm, Γj therefore acts on U by projective
linear transformations. This allows us to compactify (M,J) as a complex
orbifold (X, JX) by adding a copy of the appropriate CPm−1/Γj to each end.
Here, of course, Γj is identified with a finite subgroup of U(m) ⊂ SU(m+1),
and so acts on a neighborhood of CPm−1 ⊂ CPm in a manner that preserves
not only the complex structure, but also the standard Fubini-Study metric.

Using this last observation, we will now construct a Kähler metric ĝ on
(X, JX). To do this, we first use our asymptotic coordinates on the comple-
ment of a suitable K ⋐M to identify the universal cover of each end with the
complement of a large closed ball D2m ⊂ Cm of radius ̺0 in a Γj-invariant
manner. Since Cm −D2m is 2-connected, we can then write the Kähler form
ω of our given ALE Kähler metric g as

ω = d(β + β̄) = ∂β + ∂̄β̄

for some ∂̄-closed (0, 1)-form β on Cm−D2m. However, since m ≥ 3, a result
of Andreotti-Grauert [2, p. 225] tells us that H0,1

∂̄
(Cm − D2m) = 0. Thus

β = ∂̄h for some function h, and we therefore have

ω = i∂∂̄f

where f = 2ℑmh. By averaging over the action of Γj , we then improve our
choice of the potential f so as to make it Γj-invariant on each end.

We now introduce the function u = ̺2 =
∑

|zj |2 on each end. If F (u) is
any smooth function, then along the z1-axis we have

∂∂̄F (u) = (uF ′)′(u)dz1 ∧ dz̄1 + F ′(u)

m∑

j=2

dzj ∧ dz̄j ,

so that U(m)-invariance implies that i∂∂̄F is positive semi-definite iff uF ′(u)
is a non-negative, non-decreasing function. Now choose some radius ̺1 > ̺0,
and let ψ(u) be a non-decreasing cut-off function which is ≡ 0 near u = ̺20

15



and ≡ 1 for u ≥ ̺21. Let F : [0,∞) → [0,∞) be the smooth function defined
by

F (u) =

∫ u

0

ψ(t) dt

1 + t
, (1.1)

so that uF ′(u) = ψ(u) [1 − (1 + u)−1] is non-negative and non-decreasing.
Since this ensures that i∂∂̄F is positive semi-definite, it follows that, for
any constant N > 0, M admits a Kähler metric gN that equals g/N on the
compact set K ⊂M , and which has Kähler form given by

ωN =
ω

N
+ i∂∂̄F = i∂∂̄

(
F +

f

N

)

on the ends. In particular, since i∂∂̄F coincides with the Fubini-Study Kähler
form ωFS = i∂∂̄ log(1 + u) when u > ̺21, we actually have

ωN = ωFS + iN−1∂∂̄f

when ̺ > ̺1. Now choose some ̺2 > ̺1, and let φ(u) ≥ 0 be a second smooth
cut-off function which is ≡ 0 for u ≤ ̺21 and ≡ 1 for u ≥ ̺22. We can then
consider the (1, 1)-form on M which is defined by

ω̂N = ωN − iN−1∂∂̄[φ(u)f ]

in the asymptotic regions, and given by ωN on the compact set K; the fact
that f has been taken to be Γj-invariant guarantees that this coordinate
expression is Γj-invariant, and so descends to a well-defined form on each
end. However, we then have

ω̂N = ωFS + iN−1∂∂̄[(1− φ)f ]

in the asymptotic regions ̺ ≥ ̺1. Since the Hessian of (1− φ)f is uniformly
bounded with respect to the Fubini-Study metric on the compact union of the
transition annuli ̺1 ≤ ̺ ≤ ̺2, it follows that ω̂N will be positive-definite on
these annuli for N ≫ 0. On the other hand, since ω̂N agrees with either ωFS

or ωN everywhere else, it follows that, provided we take N to be sufficiently
large, ω̂N will be a Kähler form on all of M . But the Kähler metric ĝ corre-
sponding to ω̂ := ω̂N for some such suitably large N then exactly coincides
with the standard Fubini-Study metric of each CPm/Γj in the asymptotic
region ̺ > ̺2 of each end, and so naturally extends to all of (X, JX) as a
Kähler metric. This shows that the complex orbifold X is indeed of Kähler
type, as claimed.
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Remark As was pointed out to us by Ronan Conlon, the above result can
be generalized to asymptotically conical Kähler manifolds, even when the
end is not rationally 2-connected. For details, see [17, Theorem A (iv)]. ♦

This now implies a previously promised result:

Proposition 1.5. If m ≥ 3, an ALE Kähler m-manifold has only one end.

Proof. Let (M2m, g, J) be an ALE Kähler manifold, where m ≥ 3. Consider
the orbifold compactification (X, JX) of (M,J) given by Lemma 1.4, and let
ĝ be an orbifold Kähler metric on X , with Kähler form ω̂. We may then
consider the intersection pairing

H1,1(X,R)×H1,1(X,R)
Q−→ R

( [α] , [β] ) 7−→
∫

X

α ∧ β ∧ ω̂m−2 .

on H1,1(X) := H1,1
orb(X). However, because Hodge theory is valid in the

orbifold setting, there is a Lefschetz decomposition

H1,1(X,R) = R[ω̂]⊕ P 1,1(X,R),

where the primitive harmonic (1, 1)-forms P 1,1 are pointwise orthogonal to
the Kähler form ω̂. This implies a generalization of the Hodge index theo-
rem: the intersection form Q is of Lorentz type. Indeed, the Hodge-Riemann
bilinear relations [21] tell us that Q is positive-definite on R[ω̂], and negative-
definite on P 1,1(X,R).

Let us now define a closed non-negative (1, 1)-form αj on X supported in
the closure of the jth end of M by setting αj = i∂∂̄F in the jth asymptotic
region, where F is the function defined by (1.1), and then extending αj

across the hyperplane at infinity as the Fubini-Study form ωFS, while setting
αj ≡ 0 outside the closure of the jth end. The semi-positivity of αj then
guarantees that Q([αj], [αj ]) > 0 for each j. However, Q([αj ], [αk]) = 0 if
j 6= k, since the supports of αj and αk are then disjoint. If M had two or
more ends, Q would thus admit two orthogonal positive directions. But since
the generalized Hodge index theorem says that Q is of Lorentz type, this is
impossible. To avoid this contradiction, we are thus forced to conclude that
M can only have one end.
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Remark The classes [αj ] ∈ H1,1(X) in the above proof are proportional
to the Poincaré duals of the hypersurfaces Σj = CPm−1/Γj arising as the
hyperplanes at infinity of the various ends. The fact that Q([αj ], [αk]) = 0 for
j 6= k reflects the fact that Σj ∩Σk = ∅, while the fact that Q([αj ], [αj ]) > 0
reflects the fact that the homological self-intersection of Σj is represented by
a positive multiple of the complex sub-orbifold CPm−2/Γj. This geometrical
idea is the link between the above argument and our proof of Proposition 3.2
in the complex surface case.

Various other means for proving Proposition 1.5 are also available. For
example, a proof directly based on the pseudo-convexity of the boundary
can be found in [49]. Alternatively, uniqueness of the end can be deduced by
applying [45, Theorem 6.3] to the Remmert reduction [20] of (M,J). ♦

With Lemma 1.3 and Proposition 1.5 in hand, Theorem C becomes com-
paratively easy to prove in complex dimension m ≥ 3. Here is the key step:

Proposition 1.6. Let (M2m, g, J) be an ALE Kähler manifold, m ≥ 3,
satisfying both conditions (i) and (ii), as set forth on page 2. Then, in any

asymptotic coordinate system, its mass is given by

m(M, g) = lim
̺→∞

1

2(2m− 1)πm

∫

S̺/Γ

θ ∧ ωm−1

for any 1-form θ with dθ = ρ on the end M∞, where ρ is the Ricci form of g.

Proof. Taking the Bartnik-Chruściel coordinate invariance of the mass [7,
15] as given, we will begin by first checking that the assertion is true in a
particular asymptotic coordinate system and for a particular choice of θ.

Because g is Kähler, the asymptotic complex coordinates (z1, . . . , zm)
of Lemma 1.3 are all harmonic, and the same therefore applies to the real
coordinates (x1, . . . , xn) obtained by taking their real and imaginary parts.
Thus

Γℓ := gjkΓℓ
jk = ∆xℓ = 0,

so that

gjk
(
gji,k −

1

2
gjk,i

)
= 0

and

gjk (gjℓ,k − gjk,ℓ) = −1

2
gjkgjk,ℓ = −

(
log
√
det g

)
,ℓ
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in this asymptotic coordinate system. On the other hand, our fall-off condi-
tions guarantee that

gjk (gjℓ,k − gjk,ℓ) = [δjk+O(̺1−m−ε)] (gjℓ,k − gjk,ℓ) = giℓ,i−gii,ℓ+O(̺1−2m−2ε),

and that the Hodge star operators associated with g and δ differ byO(̺1−m−ε).
Thus

∫

S̺/Γ

[gij,i − gii,j]n
jdaE = −

∫

S̺/Γ

⋆ d log
√

det g +O(̺−2ǫ)

in these coordinates, and the mass is therefore given by

m(M, g) = − lim
̺→∞

(m− 1)!

4(2m− 1)πm

∫

S̺/Γ

⋆ d log
√
det g .

However, the Kähler condition allows us to rewrite the integrand as

⋆ d log
√

det g =

[
−i(∂ − ∂̄) log

ωm

|dz|2m
]
∧ ωm−1

(m− 1)!

and since

d

[
i

2
(∂ − ∂̄) log

ωm

|dz|2m
]
= −i∂∂̄ log ωm

|dz|2m = ρ

on our Kähler manifold, we therefore have

m(M, g) = lim
̺→∞

1

2(2m− 1)πm

∫

S̺/Γ

θ ∧ ωm−1

for a particular 1-form

θ =
i

2
(∂ − ∂̄) log

ωm

|dz|2m

with dθ = ρ on the end M∞.
On the other hand, since b1(M∞) = 0, the most general 1-form θ̃ on M∞

with dθ̃ = ρ is given by θ̃ = θ + df for a function f . Choosing a different θ
would thus change the integrand by an exact form, and so leave the integral
on each S̺/Γ completely unchanged.

Finally, the limit is independent of the asymptotic coordinate system.
Indeed, notice that

d
[
θ ∧ ωm−1

]
= ρ ∧ ωm−1 =

s

2m
ωm = (m−1)!

2
s dµ.
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Consequently, if S is a real hypersuface in the region E̺ exterior to S̺/Γ
such that S̺/Γ and S are the boundary components of a bounded region
V ⊂ E̺, then

2
(m−1)!

∣∣∣∣∣

∫

S

θ ∧ ωm−1 −
∫

S̺/Γ

θ ∧ ωm−1

∣∣∣∣∣ =
∣∣∣∣
∫

V

s dµ

∣∣∣∣ ≤
∫

V

|s| dµ ≤
∫

E̺

|s| dµ,

and the expression at the far right tends to zero as ̺→ ∞, since, by hypoth-
esis, the scalar curvature s belongs to L1.

Remark If the metric g is scalar-flat Kähler, the form θ ∧ ωm−1 is actually
closed, so the integral becomes independent of the radius ̺, and the mass
can be calculated without the need for taking a limit.

When m = 2, the above argument still works if one simply assumes that
there is an asymptotic chart in which J is standard and g falls off as in
Lemma 1.3. While this assumption does in fact hold for many interesting
examples, it unfortunately fails for the general ALE Kähler surface. This
complication will force us to develop a more flexible approach in order to be
able to definitively treat the complex-surface case. ♦

We now provide some key conceptual underpinning for our mass formula.

Lemma 1.7. Let (M, g) be any ALE manifold of real dimension n ≥ 4. Then
the natural map H2

c (M) → H2
dR(M) from compactly supported cohomology

to ordinary de Rham cohomology is an isomorphism. Consequently, every
element of H2(M) is represented by a unique L2 harmonic 2-form.

Proof. We can compactify M as a manifold-with-boundary M by adding a
copy of Sn−1/Γj to each end. The natural map in question therefore fits into
an exact sequence

· · · → H1
dR(∪i[S

n−1/Γi]) → H2
c (M) → H2

dR(M) → H2
dR(∪i[S

n−1/Γi]) → · · ·

corresponding to the exact cohomology sequence of the pair (M, ∂M). On
the other hand, since de Rham cohomology injects upon passing to a finite
cover, we have Hk

dR(S
n−1/Γi) ⊂ Hk

dR(S
n−1) = 0 when 0 < k < n − 1.

It therefore follows that H2
c (M) → H2

dR(M) is an isomorphism. Moreover,
since g is asymptotically conical, this in turn implies [13, 23] that H2(M) can
be identified with the space H2

2(M, g) of L2 harmonic 2-forms on (M, g).
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This entitles us to make the following definition:

Definition 1.8. If (M, g, J) is any ALE Kähler manifold, we will use

♣ : H2
dR(M) → H2

c (M)

to denote the inverse of the natural map H2
c (M) → H2

dR(M).

We are now ready to state and prove our mass formula.

Theorem 1.9. The mass of any ALE Kähler manifold (M, g, J) of complex
dimension m ≥ 3 is given by the formula

m(M, g) = −〈♣(c1), [ω]
m−1〉

(2m− 1)πm−1
+

(m− 1)!

4(2m− 1)πm

∫

M

s dµ

where 〈 , 〉 is the duality pairing between H2
c (M) and H2m−2(M).

Proof. Choose some 1-form θ on M∞ such that dθ = ρ, where ρ is the Ricci
form of (M, g, J). Next, choose some asymptotic coordinate system on M∞,
and temporarily let r denote the corresponding coordinate radius on M∞.
Finally, choose a smooth cut-off function f : M → [0, 1] which is ≡ 0 on
M −M∞ and ≡ 1 for r ≥ �, where � is some fixed large real number. We
then set ψ := ρ − d(fθ). Since M only has one end M∞ by Proposition
1.5, this ψ is then a compactly supported closed 2-form on M . Since ψ is
moreover cohomologous to ρ, it therefore represents ♣([ρ]) = 2π♣(c1) in
compactly supported cohomology.

For any ̺ > �, we now let M̺ ⊂ M be the compact manifold-with-
boundary obtained by removing r > ̺ from M , so that ∂M̺ = S̺/Γ. Since

ρ ∧ ωm−1 =
s

2m
ωm =

(m− 1)!

2
s dµg,

we have

(m− 1)!

2

∫

M̺

s dµ =

∫

M̺

ρ ∧ ωm−1 =

∫

M̺

[ψ + d(fθ)] ∧ ωm−1 .
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It follows that

2π〈♣(c1), [ω]
m−1〉 =

∫

M

ψ ∧ ωm−1 =

∫

M̺

ψ ∧ ωm−1

= −
∫

M̺

d(fθ ∧ ωm−1) +
(m− 1)!

2

∫

M̺

s dµ

= −
∫

∂M̺

fθ ∧ ωm−1 +
(m− 1)!

2

∫

M̺

s dµ

= −
∫

S̺/Γ

θ ∧ ωm−1 +
(m− 1)!

2

∫

M̺

s dµ .

In other words,

1

2(2m− 1)πm

∫

S̺/Γ

θ ∧ ωm−1 = −〈♣(c1), [ω]
m−1〉

(2m− 1)πm−1
+

(m− 1)!

4(2m− 1)πm

∫

M̺

s dµ.

Taking the limit of both sides as ̺→ ∞ therefore yields

m(M, g) = − 〈♣(c1), [ω]〉
(2m− 1)πm−1

+
(m− 1)!

4(2m− 1)πm

∫

M

s dµ

by Proposition 1.6. This proves the desired mass formula.

Specializing to the scalar-flat case, we now obtain the high-dimensional
version of Theorem A:

Theorem 1.10. If (M2m, g, J) is any ALE scalar-flat Kähler m-manifold,
m ≥ 3, its mass is given by

m(M, g) = −〈♣(c1), [ω]
m−1〉

(2m− 1)πm−1
.

In particular, the mass is a topological invariant in this context, entirely
determined by the smooth manifold M , the first Chern class of the complex
structure and the Kähler class of the metric.

We now conclude our discussion of the high-dimensional case by pointing
out some other useful consequences of Lemma 1.4.

Lemma 1.11. The orbifold (X, JX) of Lemma 1.4 satisfies H1(X,O) = 0.
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Proof. By Lemma 1.2, the orbifold (X, J) contains an open set of the form
U /Γ, where U ⊂ CPm is a tubular neighborhood of a hyperplane CPm−1,
and this tubular neighborhood then contains a (perhaps smaller) neighbor-
hood Ǔ of CPm−1 which is the union of all the projective lines CP1 ⊂ U .
If α ∈ H0(X,Ω1) is a global holomorphic 1-form on the orbifold X , we can
restrict it to U /Γ and then pull it back to obtain a holomorphic 1-form
α̂ ∈ H0(U ,Ω1). However, the cotangent bundle of CPm restricted to a pro-
jective line is isomorphic toO(−2)⊕O(−1)⊕· · ·⊕O(−1), so any holomorphic
1-form on U must vanish identically along any projective line CP1 ⊂ U . It
follows that α̂ vanishes identically on Ǔ . Hence α ≡ 0 on a non-empty open
set, and hence α ≡ 0 on X by the uniqueness of analytic continuation. Thus
H0(X,Ω1) = 0. However, H0(X,Ω1) = H1,0(X) and H1(X,O) = H0,1(X)
are conjugate by Hodge symmetry, since X admits Kähler metrics. This
shows that H1(X,O) = 0, as claimed.

In the asymptotically Euclidean case, this now allows us to prove a result
that will play a leading role in §5 below:

Proposition 1.12. When m ≥ 3, any AE Kähler m-manifold (M2m, g, J)
admits a proper holomorphic degree-one map M → Cm.

Proof. Since Γ = {1} by assumption, the compactification (X, JX) of (M,J)
is a manifold, and by Lemma 1.2 it contains an open set biholomorphic to
some tubular neighborhood U of CPm−1 ⊂ CPm. In particular, X contains
a complete, m-complex-dimensional family of hypersurfaces arising as hyper-
planes in U ⊂ CPm. Since H1(X,O) = 0, holomorphic line bundles on X
are classified by their Chern classes, and it therefore follows that all of these
hypersurfaces determine the same divisor line bundle L → X ; that is, they
all belong the same m-dimensional linear system |H0(X,O(L))|. Since no
point belongs to all of these hypersurfaces, this linear system has no base
locus, and it therefore gives rise to a globally defined holomorphic map

Φ : X → P[H0(X,O(L))∗] ∼= CPm.

Since the hyperplanes we initially considered lie entirely within U and give
projective coordinates on some smaller tubular neighborhood Ǔ of CPm−1,
this map takes Ǔ biholomorphically to its image, and no point of Φ(Ǔ )
has any other pre-image in X . Thus Φ has degree 1, and the hyperplane
Σ ∼= CPm−1 used to compactifyM is taken biholomorphically to a hyperplane
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CPm−1 ⊂ CPm. The restriction of Φ toM = X−Σ therefore defines a proper,
degree-one holomorphic map M → Cm, as desired.

Remark While the last result roughly says that any AE Kähler manifold
is a generalized blow-up of Cm, it should be emphasized that some rather
complicated scenarios are in principle allowed when m ≥ 3. For example,
one could blow up Cm at a point, then choose a smooth sub-variety V in the
resulting exceptional CPm−1, then modify the blow-up C̃m by replacing V
with its projectivized normal bundle, and then repeat this procedure. While
Proposition 3.3 below will provide an analogous result when m = 2, the low-
dimensional picture is simpler, as the most general AE Kähler surface will
turn out to just be an iterated blow-up of C2 at isolated points. ♦

More generally, the Kodaira-Baily embedding theorem [5] and Lemma
1.11 together imply that the Kähler orbifold compactification X of M given
by Lemma 1.4 is always a complex projective variety; and Lemma 3.1 below
leads to a similar result when m = 2. After resolution of singularities, it is
therefore easy to show that any ALE Kähler manifold is biholomorphic to the
complement of a rationally connected hypersurface in a rationally connected
smooth projective variety.

2 Coordinate Invariance of the Mass

Proposition 1.6 shows that the mass of an ALE Kählerm-manifold of complex
dimension m ≥ 3 can be calculated by integrating a coordinate-independent
differential form over a family of hypersurfaces that tends to infinity. This
perhaps sounds like it should imply the Kähler case of the coordinate-invariance
of the mass, in the sense of the celebrated results of Bartnik [7, Theorem 4.2]
and Chruściel [15, Theorem 2]. However, our proof actually proceeded by
checking our asymptotic mass formula in a special coordinate system, and
then noticing that this formula actually has an interpretation that is essen-
tially coordinate-free; to know that our expression also coincides with the
standard expression for the mass in other charts, we still had to rely on
Bartnik-Chruściel. In this section, we will remedy this by proving a more
robust version of Proposition 1.6 that directly relates our integral to the stan-
dard mass expression in any asymptotic chart in which the metric satisfies
a weak fall-off hypothesis. One remarkable consequence of this argument
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will be that Proposition 1.6 still holds when m = 2, even though Lemma 1.3
cannot be generalized to this setting. The following technical result is the
linchpin of our argument:

Proposition 2.1. Let g be a C2 Kähler metric on (R2m −D2m)/Γ, m ≥ 2,
where Γ ⊂ SO(2m) is some finite group that acts without fixed-points on
S2m−1. In the given coordinate system (x1, . . . , x2m) on R2m −D2m, assume
that g satisfies the weak fall-off hypothesis

gjk = δjk +O(̺−τ), gjk,ℓ = O(̺−τ−1)

where ̺ = |x| and where τ = m − 1 + ε for some ε > 0. Then there is a
continuously differentiable 1-form θ on (R2m −D2m)/Γ such that

∫

S̺/Γ

[gkj,k − gkk,j]n
jdaE − 2

(m− 1)!

∫

S̺/Γ

θ ∧ ωm−1 = O(̺−2ε)

and such that dθ = ρ, where ρ is the Ricci form of g with respect to a given
compatible integrable almost-complex structure J .

Proof. Let J be a given almost-complex structure which is parallel with re-
spect to g, and recall that this implies that J is integrable. By the argu-
ment used in the proof of Lemma 1.1, we may then find a unique constant-
coefficient almost-complex structure J0 on R2m such that

J = J0 +O(̺−τ ), ▽J = O(̺−τ−1),

where ▽ denotes the Euclidean connection associated with the coordinate
system and where ̺ = |x|. By rotating our coordinates if necessary, we may
then assume that J0 is the usual complex-structure tensor of Cm. Since Γ
preserves J and acts by linear transformations, it automatically preserves J0,
too, so we actually have Γ ⊂ U(m). We will now systematically work in the
complex coordinates (z1, . . . , zm) associated with this picture of J0.

Per standard conventions [8], we let J act on 1-forms φ by Jφ = −φ ◦ J ,
thereby making it consistent with index-raising. With this understood, then,
at least at large radius,

J dzµ = −i(dzµ + K
µ
ν̄ dz̄

ν̄ + L
µ
ν dz

ν)

for a uniquely determined collection of coefficients K
µ
ν̄ and L µ

ν with the
same C1

−τ fall-off as J − J0. Since we consequently also have

J dz̄µ̄ = +i(dz̄µ̄ + K
µ
ν̄ dz

ν + L
µ
ν dz̄

ν̄),

25



applying J again therefore gives us

J2dzµ ≡ − (dzµ + 2L µ
ν dz

ν) mod C1
−2τ .

The fact that J2 = −I therefore implies that L µ
ν ∈ C1

−2τ , and hence that

J dzµ ≡ −i(dzµ + K
µ
ν̄ dz̄

ν̄) mod C1
−2τ ,

thus allowing us to sweep the L
µ
ν into the error term in our calculations.

Now consider the collection of 1-forms defined by

ζµ := 1
2
(dzµ + iJdzµ) ≡ dzµ + 1

2
K

µ
ν̄ dz̄

ν̄ mod C1
−2τ .

These are all (1, 0)-forms with respect to J , so the m-form

ϕ = ζ1 ∧ · · · ∧ ζm

is consequently of type (m, 0) with respect to J . If we now let

ϕ0 = dz1 ∧ · · · ∧ dzm

denote the standard coordinate (m, 0)-form with respect to J0, then

ϕ ≡ ϕ0 − 1
2

m∑

µ,ν̄=1

(−1)µK µ
ν̄ dz̄ν̄ ∧ dz1 ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzm mod C1

−2τ .

Consequently,
ϕ ∧ ϕ̄ ≡ ϕ0 ∧ ϕ̄0 mod C1

−2τ , (2.1)

even though we merely have ϕ− ϕ0 ∈ C1
−τ .

Because g is Kähler with respect to J , we of course have ∇J = 0, where
∇ denotes the Levi-Civita connection of g. In our real asymptotic coordinate
system (x1, . . . , x2m) this statement takes the explicit form

▽jJ
ℓ
k + Γℓ

jeJ
e
k − Γe

jkJ
ℓ
e = 0

where ▽ denotes the flat Euclidean coordinate connection, and where Γ are
once again the Christoffel symbols of g. By thinking of Γℓ

jk as a matrix-valued
1-form [Γj ], we can now usefully rewrite this as

▽jJ =
[
J , [Γj ]

]
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or, equivalently, as

▽j(J − J0) =
[
J0 , [Γj ]

]
+
[
(J − J0) , [Γj ]

]
.

But since our fall-off conditions tells us that Γ = O(̺−τ−1) and that J−J0 =
O(̺−τ), we therefore have

▽j(J − J0) =
[
J0 , [Γj ]

]
+O(̺−2τ−1). (2.2)

Now set

K := K
µ
ν̄

∂

∂zµ
⊗ dzν̄ ,

where the Einstein summation convention is understood, and notice that

J ≡ J0 + iK − iK mod C1
−2τ .

Expressing the endomorphism [Γj ] as

[Γj ] = Γ
µ
jν

∂

∂zµ
⊗ dzν + Γ

µ
jν̄

∂

∂zµ
⊗ dzν̄ + Γ

µ̄
jν

∂

∂zµ̄
⊗ dzν + Γ

µ̄
jν̄

∂

∂zµ̄
⊗ dzν̄

we can thus rewrite (2.2) as

iK µ
ν̄,j = 2iΓµ

jν̄ +O(̺−2τ−1)

and so deduce that
Γ

µ
jν̄ =

1
2
K

µ
ν̄,j +O(̺−2τ−1).

In particular, after decomposing the index j into parts of type (1, 0) and
(0, 1) with respect to J0, we consequently have

K
µ
ν̄,λ = 2Γµ

λν̄ +O(̺−2τ−1) (2.3)

and
K

µ

ν̄,λ̄
= 2Γµ

λ̄ν̄
+O(̺−2τ−1). (2.4)

Since the Levi-Civita connection ∇ is torsion-free, equation (2.4) then implies
that

K
µ

ν̄,λ̄
− K

µ

λ̄,ν̄
= O(̺−2τ−1).

Thus, with the Einstein summation convention understood,

K
µ

ν̄,λ̄
dz̄ν̄ ∧ dz̄λ̄ = O(̺−2τ−1), (2.5)
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in contrast to the O(̺−τ−1) fall-off we might have näıvely expected.
The same sort of decomposition also allows us to express the metric as

g = gµνdz
µ ⊗ dzν + gµν̄dz

µ ⊗ dz̄ν̄ + gµ̄νdz̄
µ̄ ⊗ dzν + gµ̄ν̄dz̄

µ̄ ⊗ dz̄ν̄

where symmetry and reality imply that

gµν = gνµ = gµ̄ν̄ = gν̄µ̄, gµν̄ = gν̄µ = gµ̄ν = gνµ̄.

Our fall-off hypothesis now becomes

gµν ∈ C1
−τ , gµν̄ − δµν̄ ∈ C1

−τ ,

with the understanding that δ denotes the standard Euclidean metric, so that
[δµν̄ ] is one-half times the identity matrix. The Kähler form is thus given by

ω = g(J ·, ·)
≡ i gµν(dz

µ + K
µ

λ̄
dzλ̄)⊗ dzν + i gµν̄(dz

µ + K
µ

λ̄
dzλ̄)⊗ dz̄ν̄

−i gµ̄ν(dz̄µ̄ + K
µ

λ̄
dzλ)⊗ dzν − i gµ̄ν̄(dz̄

µ̄ + K
µ

λ̄
dzλ)⊗ dz̄ν̄ mod C1

−2τ

≡ igµν̄dz
µ ∧ dz̄ν̄ − i

2
δλ[µ̄K

λ
ν̄] dz̄

µ̄ ∧ dz̄ν̄ + i
2
δλ̄[µK̄

λ̄
ν] dz

µ ∧ dzν mod C1
−2τ ,

where we have used the fact that ω is anti-symmetric, and hence equal to
its own skew part; here the square brackets, denoting skew-symmetrization,
have simply been added for clarity. Taking the (0, 2) component of ω with
respect to J0 thus gives us the interesting complex 2-form

ω0,2 ≡ − i
2
δλ[µ̄K

λ
ν̄] dz̄

µ̄ ∧ dz̄ν̄ mod C1
−2τ .

Our fall-off conditions now imply that

[d∗(ω0,2)]ℓ = −gjk∇j(ω
0,2)kℓ = −δjk(ω0,2)kℓ,j +O(̺−2τ−1),

so that
[d∗(ω0,2)]λ = O(̺−2τ−1),

while (2.3) implies that

[d∗(ω0,2)]κ̄ = −δµν̄(ω0,2)ν̄κ̄,µ +O(̺−2τ−1)

= i
2
δµν̄δλ[ν̄K

λ
κ̄],µ +O(̺−2τ−1)

= iδµν̄δλ[ν̄Γ
λ
κ̄]µ +O(̺−2τ−1)

= i
2
δµν̄
(
g[κ̄ν̄],µ + gµ[ν̄,κ̄] − gµ[κ̄,ν̄]

)
+O(̺−2τ−1)

= −iδµν̄gµ[κ̄,ν̄] +O(̺−2τ−1).

28



Thus
d∗(ω0,2) = −iδµν̄gµ[λ̄,ν̄]dz̄λ̄ +O(̺−2τ−1),

and complex conjugation then gives us

d∗(ω2,0) = iδνµ̄gµ̄[λ,ν]dz
λ +O(̺−2τ−1).

Setting
� := iω2,0 − iω0,2,

we therefore obtain a real co-exact 1-form

γ = d∗� = − ⋆ d ⋆�

that is explicitly given by

γ = −2ℜe (δµν̄gµ[λ̄,ν̄]dz̄λ̄) +O(̺−2τ−1).

Next, we consider the 1-form

ג = gjkΓ
jdxk

obtained from the vector field Γj ∂
∂xj by index-lowering, where

Γj := gkℓΓj
kℓ = ∆xj .

The usual formula for the Christoffel symbol then tells us that

ν̄ג = gκν̄Γ
κ = δκν̄Γ

κ +O(̺−2τ−1)

= δκν̄g
jkΓκ

jk +O(̺−2τ−1)

= 2δκν̄δ
µλ̄Γκ

µλ̄ +O(̺−2τ−1)

= δµλ̄(gµν̄,λ̄ + gλ̄ν̄,µ − gµλ̄,ν̄) +O(̺−2τ−1)

= δµλ̄gλ̄ν̄,µ + 2δµλ̄gµ[ν̄,λ̄] +O(̺−2τ−1).

On the other hand, the trace of equation (2.3) tells us that

K
µ
ν̄,µ = 2Γµ

ν̄µ +O(̺−2τ−1)

= gµλ̄(gµλ̄,ν̄ + gλ̄ν̄,µ − gµν̄,λ̄) +O(̺−2τ−1)

= δµλ̄(gµλ̄,ν̄ + gλ̄ν̄,µ − gµν̄,λ̄) +O(̺−2τ−1)

= δµλ̄gλ̄ν̄,µ − 2δµλ̄gµ[ν̄,λ̄] +O(̺−2τ−1).
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This gives us an identity

ℜe (K µ
ν̄,µdz̄

ν̄) = 1
2
ג + 2γ (2.6)

which will eventually prove to be invaluable.
Now, because g is Kähler, the Levi-Civita connection ∇ of g induces

a connection on K := Λm,0 by restriction, and we will simply denote this
connection by ∇, too. Thus, in the asymptotic region where ϕ 6= 0 has been
defined,

∇ϕ = ϑ⊗ ϕ

for some complex-valued connection 1-form ϑ. Setting

α := ϑ0,1, β := ϑ1,0,

we will now use (2.5) and the fact [8, 29] that the Chern and Levi-Civita
connections on K = Λm,0 coincide to compute α and β modulo harmless
error terms. Now since ∇ is actually the Chern connection, ∇0,1 = ∂̄ := ∂̄J ,
and hence

α ∧ ϕ = ∇0,1ϕ = ∂̄ϕ = dϕ = d(ϕ− ϕ0)

= −d
[

1
2

m∑

µ,ν̄=1

(−1)µK µ
ν̄ dz̄ν̄ ∧ dz1 ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzm

]
+O(̺−2τ−1)

= −1
2

m∑

µ,ν̄=1

(−1)µdK µ
ν̄ ∧ dz̄ν̄ ∧ dz1 ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzm +O(̺−2τ−1)

= 1
2

m∑

µ,ν̄,κ̄=1

(−1)µK µ
ν̄,κ̄dz̄

ν̄ ∧ dz̄κ̄ ∧ dz1 ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzm

−1
2

m∑

µ,ν̄=1

K
µ
ν̄,µdz̄

ν̄ ∧ dz1 ∧ · · · ∧ dzm +O(̺−2τ−1)

=

(
−1

2

m∑

µ,ν̄=1

K
µ
ν̄,µdz̄

ν̄

)
∧ ϕ0 +O(̺−2τ−1)

=

(
−1

2

m∑

µ,ν̄=1

K
µ
ν̄,µζ̄

ν̄

)
∧ ϕ+O(̺−2τ−1),
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where we have used (2.5) to sweep K
µ
ν̄,κ̄dz̄

ν̄ ∧ dz̄κ̄ into the error term. Since

the ζ̄ ν̄ are a basis for Λ0,1
J , this shows that

α = −1
2
K

µ
ν̄,µζ̄

ν̄ +O(̺−2τ−1)

= −1
2
K

µ
ν̄,µdz̄

ν̄ +O(̺−2τ−1),

where the Einstein summation convention is of course understood.
On the other hand, the Chern connection is also compatible with the

Hermitian inner product 〈 , 〉 induced on the canonical line bundle K by g.
Thus, if h := ‖ϕ‖2 = 〈ϕ, ϕ〉, we have

∂h = ∇1,0〈ϕ, ϕ〉
= 〈∇1,0ϕ, ϕ〉+ 〈ϕ,∇0,1ϕ〉
= 〈β ⊗ ϕ, ϕ〉+ 〈ϕ, α⊗ ϕ〉
= 〈ϕ, ϕ〉β + 〈ϕ, ϕ〉ᾱ
= h(β + ᾱ)

and hence
β = −ᾱ + ∂ log h.

On the other hand,

h = ‖ϕ‖2 = im
2

m!
ϕ ∧ ϕ̄
ωm

,

and equation (2.1) therefore tells us that

∂ log h = ∂ log
ϕ ∧ ϕ̄
ωm

= −∂ log ωm

ϕ0 ∧ ϕ̄0
+ ∂ log

ϕ ∧ ϕ̄
ϕ0 ∧ ϕ̄0

= −∂ log
√

det g +O(̺−2τ−1),

since ϕ0 ∧ ϕ̄0 is just a constant times the coordinate volume element |dz|2m,
while ωm is just a constant times the metric volume element of g. Thus,
relative to the trivialization given by ϕ, the connection form ϑ of the Chern
connection on K is given by

ϑ = α + β = α− ᾱ− ∂ log
√

det g +O(̺−2τ−1)

where ∂ := ∂J , and where

α = −1
2
K

µ
ν̄,µdz̄

ν̄ +O(̺−2τ−1).
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However, the curvature of the Chern connection on K is given by iρ,
where ρ once again denotes the Ricci form of (g, J). Thus

dϑ = iρ,

and the real 1-form θ defined by

θ = ℑmϑ = − i
2
(ϑ− ϑ̄)

therefore satisfies dθ = ρ. In conjunction with (2.6), the above calculation
thus shows that

θ = i(ᾱ− α) + i
2
(∂ − ∂̄) log

√
det g +O(̺−2τ−1)

= −J(α + ᾱ) + i
2
(∂ − ∂̄) log

√
det g +O(̺−2τ−1)

= J ℜe (K µ
ν̄,µdz̄

ν̄)− 1
2
J d log

√
det g +O(̺−2τ−1)

= 1
2
J +ג) 4γ − d log

√
det g) +O(̺−2τ−1)

where the 1-form ג corresponds to Γj := gkℓΓj
kℓ by index lowering, and where

the 1-form γ is co-exact. On the other hand, the Kähler condition also implies
that any 1-form φ satisfies

⋆φ = Jφ ∧ ωm−1

(m− 1)!
,

so it follows that

+ג)⋆ 4γ − d log
√

det g) =
2

(m− 1)!
θ ∧ ωm−1 +O(̺−2τ−1).

Notice, moreover, that both sides are invariant under the isometric linear
action of Γ ⊂ U(m). Setting τ = m− 1 + ε, where ε > 0, we therefore have

∫

S̺/Γ

−ג)⋆ d log
√
det g) + 4

∫

S̺/Γ

⋆γ =
2

(m− 1)!

∫

S̺/Γ

θ ∧ ωm−1 +O(̺−2ε).

However, since ⋆γ = d⋆�, the second integral on the left vanishes by Stokes’
theorem, and we therefore deduce that

∫

S̺/Γ

−ג)⋆ d log
√

det g) =
2

(m− 1)!

∫

S̺/Γ

θ ∧ ωm−1 +O(̺−2ε).
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But since d−ג log
√
det g = O(̺−τ−1), and since ⋆ differs from the Euclidean

Hodge star by O(̺−τ ), this implies that

∫

S̺/Γ

[
jג − (log

√
det g),j

]
njdaE =

2

(m− 1)!

∫

S̺/Γ

θ ∧ ωm−1 +O(̺−2ε).

However,

jג =
1
2
gkℓ(gjk,ℓ + gjℓ,k − gkℓ,j) = gjk,k − 1

2
gkk,j +O(̺−2τ−1)

and
(log

√
det g),j =

1
2
gkk,j +O(̺−2τ−1),

and we therefore have
∫

S̺/Γ

[gkj,k − gkk,j]n
jdaE − 2

(m− 1)!

∫

S̺/Γ

θ ∧ ωm−1 = O(̺−2ε),

as claimed.

This now implies our coordinate-invariant reformulation of the mass:

Theorem 2.2. Let (M2m, g, J) be a ALE Kähler manifold of any complex
dimension m ≥ 2. Suppose only that g is a C2 metric whose scalar curva-
ture s belongs to L1, and that, in some real asymptotic coordinate system
(x1, . . . , x2m) on a given end M∞, the metric g has fall-off

gjk = δjk +O(|x|1−m−ε), gjk,ℓ = O(|x|−m−ε)

for some ε > 0. Then the mass at the given end, expressed as the limit of an
integral computed in these coordinates, is well-defined, and satisfies

m(M, g) = lim
̺→∞

1

2(2m− 1)πm

∫

S̺/Γ

θ ∧ ωm−1

for any 1-form θ with dθ = ρ on the end M∞, where ρ is the Ricci form of g.
Moreover, the mass, determined in this manner, is coordinate independent;
computing it in any other asymptotic coordinate system in which the metric
satisfies this weak fall-off hypothesis will produce exactly the same answer.
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Proof. By Proposition 2.1, there is a particular 1-form θ with dθ = ρ such
that

lim
̺→∞

(m−1)!
4πm(2m−1)

∫

S̺/Γ

[gkj,k − gkk,j]n
jdaE = lim

̺→∞

∫

S̺/Γ

θ ∧ ωm−1

2πm(2m− 1)
(2.7)

provided either limit exists. The left-hand side of equation (2.7) is of course
the coordinate definition of the mass associated with the given asymptotic
chart. On the other hand, the last paragraph of the proof of Proposition 1.6
shows that, when s ∈ L1, the limit on the right-hand side of (2.7) exists and
actually coincides with the limit obtained by instead performing the relevant
integrals on the level sets of an arbitrary exhaustion function for M̃∞. But
since Γ is finite, H1

dR(M∞) = Hom(Γ,R) = 0, and any other primitive θ̃ for
the Ricci form can be expressed as θ̃ = θ + df ; thus, choosing a different
primitive θ̃ would just change the integrand by an exact form, and so leave
the right-hand-side of (2.7) unchanged. This shows that the right-hand limit
is coordinate-independent. Consequently, the limit on the left-hand side of
(2.7) exists and is also independent of the choice of coordinates, provided we
restrict ourselves to asymptotic charts in which g satisfies the above weak
fall-off hypothesis.

Note that we obtain something stronger if (M, g, J) is a scalar-flat Kähler
manifold. Indeed, when s ≡ 0, the differential form θ∧ωm−1 is closed, and the
integral

∫
S
θ∧ωm−1 then only depends on the homology class of the compact

hypersurface S ⊂ M∞. One can thus replace the limit on the right-hand of
(2.7) with the integral on a single hypersurface! This remarkable fact played
a central role in the process of discovery that led to the present results.

In order to extend our proof of Theorem C to them = 2 case, we now lack
only one last ingredient: the fact that an ALE Kähler surface can only have
one end. In the next section, we will show that this is indeed true. In the
process, we will also discover other interesting and useful results governing
the complex-analytic behavior of ALE Kähler surfaces.

3 Complex Asymptotics: The Surface Case

As we saw in Lemma 1.3, the complex structure of any ALE Kähler manifold
of complex dimension m ≥ 3 is standard at infinity, in the sense that the
complement of a suitable compact set is biholomorphic to (Cm − D2m)/Γ,
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where D2m ⊂ Cm is the closed unit ball. However, concrete examples show
[19, 27] that this is not generally true when m = 2. Nonetheless, many of our
high-dimensional results still have workable analogs in the complex surface
case. For example, here is an m = 2 version of Lemma 1.1:

Lemma 3.1. Let M∞ be an end of an ALE Kähler surface (M4, g, J), where
we just assume that, in some asymptotic chart, the metric either has fall-off

gjk − δjk ∈ C1
−τ

for some τ > 3/2, or else that

gjk − δjk ∈ C2,α
−τ

for some τ > 1. Then there is a (non-compact) complex surface X contain-
ing an embedded holomorphic curve Σ ∼= CP1 with self-intersection +1, such
that the universal cover M̃∞ of M∞ is biholomorphic to X − Σ.

Proof. If τ > 3/2, the proof of Lemma 1.1 goes through with only minor
improvements. Indeed, suppose τ ≥ 1 + ε for some ε ∈ (1/2, 1). Then the
almost-complex structure J constructed by our previous method will still be
of Hölder class C0,ε. Since we have assumed that ε > 1/2, the Hill-Taylor
version [24] of Newlander-Nirenberg thus says that J is integrable, in the
sense of the existence of complex coordinate charts, iff its Nijenhuis tensor
vanishes in the distributional sense. However, our J belongs to W 1,p ∩ C0,ε

for any p ∈ (4, 2/(1 − ε)), and its Nijenhuis tensor thus has components
of class Lp. But since the Nijenhuis tensor of J vanishes in the classical
sense on M∞ = X − Σ, it therefore vanishes almost everywhere; and since
its components belong to Lp, this means they also vanish as distributions.
The Hill-Taylor theorem then tells us that (X , J) can be covered with local
complex coordinate charts, and that these will be at least C1,ε with respect
to the original atlas.

However, when τ ∈ (1, 3/2], this argument breaks down, and we instead
need to assume that gjk−δjk ∈ C2,α

−τ in order to obtain the desired conclusion.
We proceed by an argument exactly parallel to that given in [22, Section 3.2].
The key idea is to first change coordinates on C2−D4 in such a manner that
all the complex lines through the origin in C2 become J-holomorphic curves.
The reason for doing this is that, when passing from Cm to CPm by invert-
ing a coordinate, the worst loss of regularity in our previous construction
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occurred in the radial directions. Improving the radial behavior of J by im-
posing this gauge choice will allow us to overcome this difficulty. Indeed,
assuming that g − δ ∈ C2,α

−τ , Picard iteration [22, Section 3.2, Step 1] allows
one to construct such a change of coordinates Φ : C2−B → C2−D4, outside
a sufficiently large ball B, such that the components of Φ − id belong to
C2,α

1−τ . (One does gain control of an extra derivative only along radial com-
plex lines, where the problem we are solving is elliptic, but, due to the lack of
ellipticity in the transverse directions, this is all that we can expect.) Thus
(Φ∗J)− J0 is now of class C1,α

−τ , and moreover vanishes in radial complex di-
rections. Thus, our previous fall-off analysis shows that J induces a complex
structure on a neighborhood of a projective line CP1 ⊂ CP2 that is actually
of Hölder class C1,ε, where ε = min(α, τ − 1). In particular, the resulting
almost-complex structure has vanishing Nijenhuis tensor by continuity, and
so, by standard versions [42, 40] of Newlander-Nirenberg, becomes standard
in complex charts that are at least C2,ε with respect to our original atlas.

We remark that this Lemma was first discovered in the special case of
scalar-flat Kähler metrics [14, 35, 36, 37], where, at the outset, one can
arrange for g to have much better fall-off, and where the relevant complex
surface X actually arises as a hypersurface in a twistor space. Lemma 3.1
thus allows us to generalize various proofs from the narrow world of scalar-flat
Kähler surfaces to the present, broader context. In particular, an argument
used in [36] now yields an analog of Proposition 1.5:

Proposition 3.2. Any ALE Kähler surface (M4, g, J) has only one end.

Proof. Lemma 3.1 allows us to construct an orbifold compactification X of
M by adding a quotient of CP1 to each end. After blowing up, this pro-
duces a smooth compactification X of M which is a non-singular complex
surface. Moreover, the closure of each end ofM contains smoothly immersed
rational curves of positive normal bundle, and each such curve has posi-
tive self-intersection. Grauert’s criterion therefore guarantees [6] that X is
projective, and so in particular is of Kähler type. The Hodge index theorem
therefore tells us that the intersection form on H1,1(X,R) must be of Lorentz
type. However, the curves arising from two different ends of M would nec-
essarily be disjoint, and therefore would be orthogonal with respect to the
intersection form. Since this would contradict the Hodge index theorem if
there were two or more ends, we are therefore forced to conclude thatM can
only have one end.
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Similarly, an argument from [35, 37] proves the following:

Proposition 3.3. Any AE Kähler surface is biholomorphic to an iterated
blow-up of C2.

Proof. In the asymptotically Euclidean case, the compactification X is ac-
tually a complex manifold, obtained by adding a CP1 of self-intersection +1
to M . Grauert’s criterion [6] thus implies that X is projective, and in par-
ticular is Kähler. However, we must have H1,0(X) = 0, since the Kodaira
deformations [31] of this CP1 sweep out an open subset of X , and since Λ1,0X
must be isomorphic to O(−2) ⊕ O(−1) on any one of these smoothly em-
bedded copies of CP1. Hodge symmetry therefore tells us that H0,1(X) = 0,
and it therefore follows that all of these rational curves actually belong to
the same linear system. Since the intersection of all these rational curves is
empty, this linear system has no base locus. Since Kodaira’s theorem [31]
moreover tells us that the dimension of this family is 2, this linear system
defines a non-singular holomorphic map X → CP2 which sends a neighbor-
hood of Σ ⊂ X biholomorphically to a neighborhood of a projective line
CP1 ⊂ CP2. Since bimeromorphic maps between compact surfaces always
factor into blow-ups and blow-downs, it follows that X is obtained from CP2

by blowing up points away from this CP1. Deleting the line at infinity, we
thus see that M is simply a blow-up of C2.

In particular, Proposition 3.3 tells us that the complex structure of an
AE Kähler surface is always standard at infinity, just as it was in higher
dimensions. We emphasize, however, that the corresponding statement is
generally false for ALE Kähler surfaces. Here it is perhaps worth emphasizing
that the proof of Proposition 3.3 is global in nature. This should be contrasted
with the local type of rigidity displayed by Lemma 1.2, the proof of which
fails in a crucial respect when m = 2.

Indeed, if Σ ⊂ X is an embedded CP1 of self-intersection +1 in a non-
compact complex surface, the Kodaira family Y of its deformations still car-
ries a holomorphic projective structure, but now any holomorphic projective
structure on a complex surface locally arises in this fashion [26, 32]. While
the Weyl curvature always vanishes for a 2-dimensional projective structure,
most such structures are certainly not flat. Indeed, the obstruction to pro-
jective flatness in dimension m = 2 is actually measured by the projective
Cotton tensor, which can locally be expressed as Cλµν = ∇[µrν]λ, where ∇ is
any torsion-free holomorphic connection that both represents the projective
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structure and induces a flat connection on the canonical line bundle of Y , and
where r denotes the Ricci tensor of ∇. The Cotton tensor of Y at the base-
point o is actually the obstruction to the triviality of the fourth infinitesimal
neighborhood Σ(4). Nonetheless, one can still prove the following:

Lemma 3.4. Let X be a (possibly non-compact) complex surface, and let
Σ ⊂ X be an embedded CP1 of self-intersection +1. Then the third infinites-
imal neighborhood Σ(3) of Σ ⊂ X is isomorphic to the third infinitesimal
neighborhood of a projective line CP1 ⊂ CP2.

Combining this with the proof of Proposition 1.3 then yields

Proposition 3.5. Let (M4, g, J) be an ALE Kähler surface. Then there is
an asymptotic coordinate system (x1, . . . , x4) on the universal cover of the
end M∞ of M in which

g = δ +O(|x|−1−ε), ▽g = O(|x|−2−ε)

and
J = J0 +O(|x|−3), ▽J = O(|x|−4)

where ▽ is the coordinate (Euclidean) derivative, and J0 is the familiar
constant-coefficient almost complex structure tensor on C2 = R4.

Thus, while one cannot always arrange for J to be standard at infinity, it is
at least asymptotic to the standard complex structure to a higher order than
the fall-off of the metric would näıvely lead one to expect. In the asymptotic
coordinates provided by Proposition 3.5, the proof of Proposition 2.1 then
simplifies dramatically, because the 1-forms ג and γ become negligible error
terms. Assuming the Bartnik-Chruściel coordinate-invariance of the mass,
a variant of the demonstration of Proposition 1.6 thus suffices to prove the
m = 2 case of the result. This was how we first obtained the asymptotic
mass formula in the complex-surface case.

While Lemma 3.4 cannot be improved in general, one can still do sys-
tematically better in many cases of interest. Indeed, notice the action of Γ
on M̃∞ always extends to a holomorphic action on X , and that this then
induces an action on Y preserving both the holomorphic projective structure
and the base-point o ∈ Y . Moreover, the induced action of Γ on T 1,0Y ∼= C2

is just given by the tautological 2-dimensional representation of Γ ⊂ U(2).
Since the Cotton tensor at o must be invariant under the action of Γ, it ei-
ther vanishes, or else the action of Γ on [C2 ⊗ Λ2(C2)]∗ must have a trivial
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1-dimensional sub-representation. In our context, this will force Σ(4) to be
standard, allowing one to osculate J by J0 to higher order at infinity, unless
Γ is a cyclic group Zℓ, where ℓ is odd, acting on C2 with generator

[
e2πi/ℓ 0
0 e−4πi/ℓ

]
.

However, the ℓ = 3 examples of Honda [27] show that Proposition 3.5 is
actually optimal for certain ALE scalar-flat Kähler surfaces.

4 The Mass Formula for Complex Surfaces

All the pieces needed to finish the proofs of Theorem A and C are now in
place. Of course, the remaining step is to demonstrate the m = 2 case of the
mass formula. Once this is done, we will then obtain Theorem B by simply
re-examining some off-the-shelf examples using these new instruments.

Theorem 4.1. The mass of any ALE Kähler surface (M4, g, J) is given by

m(M, g) = − 1

3π
〈♣(c1), [ω]〉+

1

12π2

∫

M

sg dµg .

Proof. Theorem 2.2 shows that the asymptotic mass formula of Proposition
1.6 also holds in the m = 2 case. Meanwhile, Proposition 3.2 shows that the
m = 2 version of Proposition 1.5 also holds. With these minor substitutions,
the proof of Theorem 1.9, with m set now equal to 2, then proves the desired
cohomological mass formula.

In conjunction with Theorem 1.9, Theorem 4.1 now implies Theorem C.
We also obtain the following corollary:

Theorem 4.2. The mass of any ALE scalar-flat Kähler surface (M4, g, J)
is given by

m(M, g) = − 1

3π
〈♣(c1), [ω]〉.

In particular, the mass is a topological invariant in this setting, and depends
only on the underlying manifold M , together with the cohomology classes
c1(M,J) and [ω].
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Theorem A is now an immediate consequence of Theorems 1.10 and 4.2.

Let us now recast Theorem 4.2 in a more concrete form by identifying
H2

c (M,R) with the homology group H2(M,R) via Poincaré duality. In this
setting, the intersection pairing on H2

c (M) becomes the geometric pairing on
H2(M) obtained by counting intersection numbers of compact (real) surfaces
in M . Note that Lemma 1.7 implies that this pairing

H2(M,R)×H2(M,R) → R

is non-degenerate on any ALE 4-manifold M .

Theorem 4.3. Let (M, g, J) be an ALE scalar-flat Kähler surface. Let
E1, . . . Eb be a basis for H2(M,R), and let Q = [Qjk] = [Ej · Ek] be the
corresponding intersection matrix. If we define a1, . . . , ab by



a1
...
ab


 = Q−1




∫
E1

c1
...∫

Eb

c1


 (4.1)

then the mass of (M, g) is given by

m = − 1

3π

b∑

j=1

aj

∫

Ej

[ω] (4.2)

where [ω] denotes the Kähler class of (M, g, J).

Proof. The cycle
∑
ajEj is exactly determined by the requirement that

(∑
ajEj

)
·D =

∫

D

c1

for anyD ∈ H2(M). However, since H2(M,R) = H2
c (M) by Poincaré duality,

this is equivalent to saying that

∑
aj

∫

Ej

0 = 〈c1,0〉

for any 0 ∈ H2
c (M). However, for any Ω ∈ H2(M), we have

〈♣(c1),Ω〉 = 〈♣(c1),♣(Ω)〉 = 〈c1,♣(Ω)〉

40



so that, setting 0 = ♣(Ω), we have

〈♣(c1),Ω〉 =
∑

aj

∫

Ej

♣(Ω) =
∑

aj

∫

Ej

Ω .

Setting Ω = [ω], we therefore have

m(M, g, J) = − 1

3π
〈♣(c1), [ω]〉 = − 1

3π

∑
aj

∫

Ej

[ω]

by Theorem 4.1.

Recalling Proposition 3.3, we thus obtain the following:

Corollary 4.4. Let (M, g, J) be an AE scalar-flat Kähler surface. We may
then choose a homology basis E1, . . . , Eb ∈ H2(M,Z) with intersection matrix
Q = −I in which c1(M) is Poincaré dual to −∑Ej. Consequently,

m(M, g) =
1

3π

b∑

j=1

∫

Ej

[ω]

where [ω] is the Kähler class of (M, g, J).

Proof. By Proposition 3.3, (M,J) is an iterated blow-up of C2 at b points,
and so has a small deformation which is a blow-up of C2 at distinct points.
One can then take the Ej to be the homology classes of the exceptional
divisors of these distinct points.

When C2 is blown up at distinct points, the expression for the mass
provided by Corollary 4.4 is obviously a sum of areas of holomorphic curves,
and so is certainly positive if b > 0. However,

∑b

j=1Ej is always homologous
to a sum of holomorphic curves with positive integer coefficients, even in
the degenerate cases, so this expression for the mass will actually always be
positive whenever M 6= C2. We will return to this point in Theorem 5.1
below.

Corollary 4.5. Let (M, g, J) be an ALE scalar-flat Kähler surface, where
(M,J) is obtained from the total space of the O(−ℓ) line bundle over CP1 by
blowing up b− 1 distinct points that do not lie on the zero section. Let F be
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the homology class of the zero section, and let E1, . . . , Eb−1 be the homology
classes of the exceptional divisors of the blown up points. Then

m(M, g) =
1

3π

[
2− ℓ

ℓ

∫

F

ω +
b−1∑

j=1

∫

Ej

ω

]
.

Proof. In the homology basis F,E1, . . . , Eb−1, the intersection form is repre-
sented by the matrix

Q =




−ℓ
−1

. . .

−1




while 


∫
F
c1∫

E1

c1
...∫

Eb−1

c1


 =




2− ℓ
1
...
1




and the result therefore follows from Theorem 4.3.

In particular, one sees that the mass is negative when ℓ ≥ 3 and no points
are blown up. This was laboriously discovered by hand for specific explicit
examples in [33], but now we see that this phenomenon occurs as a matter
of general principle.

Of course, the mass formula we have discovered is purely topological, and
thus insensitive to deformations of complex structure. As an application, we
immediately now see the following:

Corollary 4.6. Let (M, g, J) be an ALE scalar-flat Kähler surface, where
(M,J) is obtained from the total space of the O(−ℓ) line bundle over CP1 by
blowing up b− 1 distinct points that lie on the zero section. Let F̃ be the ho-
mology class of the proper transform of the zero section, and let E1, . . . , Eb−1

be the homology classes of the exceptional divisors of the blown up points.
Then

m(M, g) =
1

3πℓ

[
(2− ℓ)

∫

F̃

ω + 2
b−1∑

j=1

∫

Ej

ω

]
.
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Proof. This example is diffeomorphic to the previous one, in a manner that
preserves the first Chern class. The mass formula therefore follows from
Corollary 4.5, together with the observation that F̃ + E1 + · · · + Eb−1 is
homologous to F .

Applying Corollary 4.6 to some examples constructed in [34], we now
immediately obtain Theorem B:

Theorem 4.7. There are infinitely many topological types of ALE scalar-
flat Kähler surfaces that have zero mass, but are not Ricci-flat. Indeed, for
any ℓ ≥ 3, the blow-up of the O(−ℓ) line bundle on CP1 at any non-empty
collection of distinct points on the zero section admits such metrics.

Proof. Let p0, p1, . . . , pb−1 be distinct points in hyperbolic 3-space H3, chosen
so that that the geodesic rays −−→p0p1, . . . ,−−−−→p0pb−1 all have distinct initial tangent
directions at p0. Let rj, j = 0, . . . , b−1, denote the hyperbolic distance from
pj, considered as a function on H3. Let X = H3 − {p0, p1, . . . , pb−1}, and
let P → X be the principal U(1)-bundle with c1 = −ℓ on a small 2-sphere
around p0 and c1 = −1 on a small 2-sphere around any other pj . Set

V := 1 +
ℓ

e2r0 − 1
+

b−1∑

j=1

1

e2rj − 1
,

on X , and let ϑ be a connection 1-form on P → X with curvature

dϑ = ⋆dV,

where the Hodge star is computed with respect to the hyperbolic metric h

on X ⊂ H3 and standard orientation. Finally, let

g =
1

4 sinh2 r0

[
V h + V −1ϑ2

]

on P , and let (M, g) be the metric completion of (P, g). Then (M, g) is an
ALE scalar-flat Kähler surface, and (M,J) is obtained [34, p. 244] from the
O(−ℓ) line bundle on CP1 by blowing up b − 1 distinct points on the zero
section. The proper transform F̃ of the zero section is represented in this
picture by the sphere at infinity of H3, and the restriction of g to F̃ is just
the standard Fubini-Study metric, with total area π. On the other hand, the
exceptional curve Ej is the closure in M of the inverse image in P of the
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geodesic ray in H3 which starts at pj and points diametrically away from p0;
its total area is given by 2π/(e2�j − 1), where �j = r0(pj) is the hyperbolic
distance from p0 to pj. By Corollary 4.6, the mass of the resulting metric is
therefore given by

m(M, g) =
1

3ℓ

[
2− ℓ+ 4

b−1∑

j=1

1

e2�j − 1

]

and so, if ℓ ≥ 3 and b − 1 ≥ 1, this obviously changes sign as we let the
�j range over all of R+. To be more concrete and specific, we in particular
obtain a non-Ricci-flat example with zero mass if we take b− 1 = ℓ− 2 ≥ 1
and �j = log

√
5 for every j = 1, . . . , b− 1.

Interestingly, though, the above construction depends in practice on a
choice of (M,J) which is non-minimal, in the sense of being the blow-up of
another complex surface. This appears to be essential. Indeed, the following
consequence of Theorem 4.3, which was graciously pointed out to us by
Cristiano Spotti, offers a systematic result along these lines:

Corollary 4.8. Let (M4, g, J) be an ALE scalar-flat Kähler surface, and
suppose that (M,J) is the minimal resolution of a surface singularity. Then
m(M, g) ≤ 0, with equality iff g is Ricci-flat.

Proof. Choose a basis for H2 that is represented by a collection of smooth
rational curves Ej . Because the resolution is assumed to be minimal, each Ej

has self-intersection ≤ −2, and adjunction therefore tells us that
∫
Ej
c1 ≤ 0

for every j. However, it is also known [1, Remark 3.1.2] that every entry
in the inverse Q−1 of the intersection matrix of such a minimal resolution
is non-positive. Thus, the coefficients defined by equation (4.1) all satisfy
aj ≥ 0, and the mass formula (4.2) therefore produces a non-positive answer.
Moreover, if the mass is zero, then aj = 0 for all j, so that Q~a vanishes
and c1 = 0. But Lemma 1.7 tells us that c1 is represented by a unique L2

harmonic 2-form, and, since g is scalar-flat Kähler, one such representative
is ρ/2π, where ρ is the Ricci-form of (M, g, J). The mass therefore vanishes
for such a manifold if and only if the metric is Ricci-flat.

Lock and Viaclovsky [39] have recently given a systematic construction of
ALE scalar-flat Kähler metrics on minimal resolutions of surface singularities,
thereby putting the earlier examples of Calderbank and Singer [12] into a
broader context. The above Corollary now shows that all of these examples
actually have negative mass.
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5 The Positive Mass Theorem

We conclude this article by proving the positive mass theorem for Kähler
manifolds, along with our related Penrose-type inequality.

Suppose that (M2m, g, J) is an AE Kähler manifold. Then, as we saw in
Proposition 1.12, there is a proper holomorphic map F : M → Cm which
has degree 1, and which is a biholomorphism outside a compact set. We now
consider the holomorphic m-form

Υ = F ∗dz1 ∧ · · · ∧ dzm,

which is a holomorphic section of the canonical line bundle of M , and which
exactly vanishes at the set of critical points of F . Because this zero set
is locally the zero set of a non-trivial holomorphic function, it is purely of
complex codimension 1, and we moreover know this locus is compact because
F is a biholomorphism outside of a compact set. Breaking up the locus Υ = 0
as a finite union of its irreducible components Dj, and assigning each of these
an integer multiplicity nj given by the order of vanishing of Υ along Dj, we
can thus express the divisor D as

D =
∑

j

njDj .

Since Υ is a holomorphic section of the canonical line bundle KM , the
homology class [D] =

∑
nj [Dj ] is then Poincaré dual to ♣(c1(KM)) =

−♣(c1(M,J)). The mass formula of Theorem C therefore can be rewrit-
ten as

m(M, g) =
1

(2m− 1)πm−1
[ω]m−1(D) +

(m− 1)!

4(2m− 1)πm

∫

M

sgdµg,

and we therefore obtain the Penrose inequality promised by Theorem E:

Theorem 5.1. Suppose that (M2m, g, J) is an AE Kähler manifold with
scalar curvature s ≥ 0. Then, in terms of the complex hypersurfaces Dj and
positive integer multiplicities nj described above,

m(M, g) ≥ (m− 1)!

(2m− 1)πm−1

∑

j

njVol (Dj) ,

with equality iff (M, g, J) is scalar-flat Kähler. Moreover,
⋃

j Dj 6= ∅ if
(M,J) 6= Cm.

45



Proof. Since we have assumed that s ≥ 0, the scalar curvature integral in the
mass formula is non-negative, and equals zero only if g is scalar-flat. Since
the volume form induced by g on the regular locus ofDj is just ω

m−1/(m−1)!,
we can therefore transform [ω]m−1(D) into (m− 1)! times a sum of volumes,
weighted by multiplicities, and the stated inequality now follows from the
mass formula.

Finally,
⋃

j Dj can only be empty if Υ = F ∗dz1 ∧ · · · ∧ dzm is everywhere
non-zero. But this happens iff F has no critical points, or in other words iff
F is a local diffeomorphism. However, F is a degree 1 proper holomorphic
map. Thus the fact that f is a local diffeomorphism implies that it is actually
a global biholomorphism.

With this in hand, we can now easily read off our Positive Mass Theorem,
announced in the introduction as Theorem D:

Theorem 5.2. Suppose that (M2m, g, J) is an AE Kähler manifold with
scalar curvature s ≥ 0. Then its mass m(M, g) is non-negative, and equals
zero only if (M, g, J) is flat.

Proof. By Theorem 5.1, the mass is positive unless g is scalar-flat Kähler,⋃
j Dj = ∅, and (M,J) = Cm. However, the Ricci form ρ of an ALE scalar-

flat Kähler metric is an L2 harmonic form, and so, by Lemma 1.7, must
vanish if the cohomology class 2πc1 it represents vanishes. Thus, g would
necessarily be a Ricci-flat AE metric on Cm. But the AE condition implies
that a metric’s volume growth is asymptotically exactly Euclidean, and the
Bishop-Gromov inequality thus implies that a complete Ricci-flat metric with
this property is necessarily flat.

Appendix A: Normalization of the Mass

In this appendix, we provide a “physical” explanation of our normalization
of the mass integral. We work throughout in units where G = c = 1.

In the absence of matter, tidal forces in Newtonian gravitation distort
the shape of a cloud of test particles without changing its volume, to lowest
order in time. Thus, the acceleration vector field due to gravitation should
be divergence-free in empty space. If we assume that an isolated object
generates an acceleration field that points towards the object, with magnitude
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only depending on the distance ̺ from the source, the acceleration field in
dimension n must therefore take the form

~a = ∇
(

M

̺n−2

)

for some constant M , which we now declare to be the mass of the source. In
the classical case of n = 3, this of course reproduces Newton’s law of gravi-
tation. Since a test particle following a circular orbit of radius ̺ and angular
frequency ω about the origin exhibits an in-pointing radial acceleration of
magnitude ̺ω2, this acceleration can be ascribed to our gravitational field iff

ω2 = (n− 2)
M

̺n
.

This is a crude generalization of Kepler’s third law of planetary motion.
Einstein’s vacuum equations state that the Ricci curvature of the space-

time metric should vanish in the absence of matter; inspection of Jacobi’s
equation reveals that this is again equivalent to requiring that tidal forces
distort the shape of a cloud of test particles without changing its volume, to
lowest order in time. In space-time dimension n+ 1, the general spherically
symmetric solution of these equations is the generalized Schwarzschild metric

g = −
(
1− A

̺n−2

)
dt2 +

(
1− A

̺n−2

)
−1

d̺2 + ̺2h

where h denotes the standard unit-radius metric on Sn−1 and A is a real
constant. Notice that

ξ =
∂

∂t
+ ω

∂

∂θ
is a Killing field for this metric, where ∂/∂θ is the usual generator of rotation
of Sn−1 ⊂ Rn around Rn−2 ⊂ Rn. Now a flow line of a Killing field is
a geodesic iff it passes through a critical point of g(ξ, ξ); indeed, Killing’s
equation ∇(aξb) = 0 tells us that

(∇ξξ)b = ξa∇aξb = −ξa∇bξa = −1

2
∇bξ

aξa = −1

2
∇b g(ξ, ξ),

and the claim therefore follows from the fact that g(ξ, ξ) is constant along
the flow. However, restricting to the great circle in Sn−1 where ∂/∂θ has
maximal length,

g(ξ, ξ) = −
(
1− A

̺n−2

)
+ ω2̺2 ,
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and the critical-point condition then reduces to

0 =
d

d̺

[
−
(
1− A

̺n−2

)
+ ω2̺2

]
= −(n− 2)A

̺n−1
+ 2ω2̺ .

Thus, when

ω2 =
(n− 2)

2

A

̺n

a flow-line is a space-time geodesic, and represents a test particle moving
in a circular orbit at constant angular velocity ω. Comparison with circular
orbits in the Newtonian model discussed above therefore leads us to interpret
the Schwarzschild metric as representing the gravitational field of an object
of mass

M =
A

2
.

The spatial slice t = 0 of the Schwarzschild metric

g =

(
1− A

̺n−2

)
−1

d̺2 + ̺2h

is totally geodesic, and provides the prototype for defining the mass of an
ALE manifold. If we interpret ̺ as the Euclidean radius in Rn, this metric
takes the form

gjk = δjk +
A

̺n
xjxk +O(

1

̺n−1
)

so that

gjk,ℓ =
A

̺n
(δjℓxk + δkℓxj − n

xjxkxℓ
̺2

) +O(
1

̺n
)

Thus

gij,i−gii,j =
A

̺n
(δjixi+ δiixj −δijxi−δijxi)+O(

1

̺n
) = (n−1)

A

̺n−1
νj+O(

1

̺n
)

and

lim
̺→∞

∫

Sρ

[gij,i − gii,j]n
jdaE = (n− 1)AVol(Sn−1)

= 2(n− 1)M Vol(Sn−1)

=
4(n− 1)πn/2

G(n
2
)

M
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Thus, defining the mass of an n-dimensional ALE manifold (at a given end)
to be

m(M, g) := lim
̺→∞

G(n
2
)

4(n− 1)πn/2

∫

Sρ/Γj

[gij,i − gii,j]n
jdaE

will result in a mass of m = M for the t = 0 spatial slice of the Schwarzschild
metric. In particular, when n = 3, the normalizing constant simplifies to
1/16π, which is the well-established value found throughout the literature.
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