MATH 553 Qualifying Exam

January 2011

Note. There are 5 questions in 15 parts. Each part worths 8 points. But the maxmal points you may receive is 100 points. You may do them in any order but label your solutions clearly. You may do any problem/part by assuming the conclusion of other problems/parts.

1. Let *p* be a prime and let $G = \mu_p \times \mu_p$, where $\mu_p = \{\zeta \in \mathbb{C} : \zeta^p = 1\}$. Let *k* be an extension of $\mathbb{Q}(\mu_p)$ and let $K = k(\alpha, \beta)$ be a finite extension of degree p^2 over *k* such that $\alpha^p, \beta^p \in k$.

- (a) Show that G has exactly p + 1 subgroups of order p.
- (b) Show that $\operatorname{Gal}(K/k) \to G, \sigma \mapsto (\sigma(\alpha)/\alpha, \sigma(\beta)/\beta)$ is an isomorphism of groups.
- (c) Let *E* be a subfield of *K* such that $k \subsetneq E \subsetneq K$. Show that *E* is equal to one of

$$k(\alpha), k(\alpha\beta), \ldots, k(\alpha\beta^{p-1}), k(\beta).$$

- **2.** Let *n* be an integer and let $f(X) = X^3 nX^2 (n+3)X 1$.
 - (a) Show that f(X) is irreducible in $\mathbb{Q}[X]$.
 - (b) Show that if α is a root of f(X), then $-1/(1 + \alpha)$ is also a root of f(X).
 - (c) Let *K* be the splitting field of f(X) over \mathbb{Q} . Show that $Gal(K/\mathbb{Q})$ is cyclic of order 3.

3. Let *p* be a prime number. Let *G* be a finite subgroup of S_p , such that the order *n* of *G* is divisible by *p*, and $n < p^2$.

- (a) Show that G contains a p-cycle c.
- (b) Show that the subgroup N generated by c is normal in G.
- (c) Show that G/N is cyclic. You may use the fact that \mathbb{F}_{p}^{\times} is cyclic.
- (d) Let k be a field and $f \in k[X]$ be irreducible of degree p. Suppose that the splitting field K of f(X) over k is generated by two roots of f. Show that Gal(K/k) has order $m < p^2$, and m is divisible by p.
- (e) Maintain the notaiton and hypothesis of (d). Show that K/k contains a unique subextension of degree m/p over k.
- 4. Let G be a finite group and let be P be a p-Sylow subgroup of G for some prime p
 - (a) Assume that *P* is cyclic and p = 2. Show that $N_G(P) = Z_G(P)$, where $N_G(P) = \{g \in G : gPg^{-1} = P\}$, $Z_G(P) = \{g \in G : gxg^{-1} = x \text{ for all } x \in P\}$.
 - (b) Show that $N_G(P)$ may be different from $Z_G(P)$ if p = 2 but P is not cyclic by giving an example.
 - (b) Show that $N_G(P)$ may be different from $Z_G(P)$ if $p \neq 2$ by giving an example.

5. Consider the ring $R = \mathbb{Z}[X]/I$, where *I* is the ideal of $\mathbb{Z}[X]$ generated by $X^3 + X + 1$, $X^3 + X - 1$. Determine the cardinality of *R* and the structure of R^{\times} .