Note. There are 5 questions in 15 parts. Each part worths 8 points. But the maxmal points you may receive is 100 points. You may do them in any order but label your solutions clearly. You may do any problem/part by assuming the conclusion of other problems/parts.

1. Let p be a prime and let $G=\mu_{p} \times \mu_{p}$, where $\mu_{p}=\left\{\zeta \in \mathbb{C}: \zeta^{p}=1\right\}$. Let k be an extension of $\mathbb{Q}\left(\mu_{p}\right)$ and let $K=k(\alpha, \beta)$ be a finite extension of degree p^{2} over k such that $\alpha^{p}, \beta^{p} \in k$.
(a) Show that G has exactly $p+1$ subgroups of order p.
(b) Show that $\operatorname{Gal}(K / k) \rightarrow G, \sigma \mapsto(\sigma(\alpha) / \alpha, \sigma(\beta) / \beta)$ is an isomorphism of groups.
(c) Let E be a subfield of K such that $k \subsetneq E \subsetneq K$. Show that E is equal to one of

$$
k(\alpha), k(\alpha \beta), \ldots, k\left(\alpha \beta^{p-1}\right), k(\beta) .
$$

2. Let n be an integer and let $f(X)=X^{3}-n X^{2}-(n+3) X-1$.
(a) Show that $f(X)$ is irreducible in $\mathbb{Q}[X]$.
(b) Show that if α is a root of $f(X)$, then $-1 /(1+\alpha)$ is also a root of $f(X)$.
(c) Let K be the splitting field of $f(X)$ over \mathbb{Q}. Show that $\operatorname{Gal}(K / \mathbb{Q})$ is cyclic of order 3 .
3. Let p be a prime number. Let G be a finite subgroup of S_{p}, such that the order n of G is divisible by p, and $n<p^{2}$.
(a) Show that G contains a p-cycle c.
(b) Show that the subgroup N generated by c is normal in G.
(c) Show that G / N is cyclic. You may use the fact that \mathbb{F}_{p}^{\times}is cyclic.
(d) Let k be a field and $f \in k[X]$ be irreducible of degree p. Suppose that the splitting field K of $f(X)$ over k is generated by two roots of f. Show that $\operatorname{Gal}(K / k)$ has order $m<p^{2}$, and m is divisible by p.
(e) Maintain the notaiton and hypothesis of (d). Show that K / k contains a unique subextension of degree m / p over k.
4. Let G be a finite group and let be P be a p-Sylow subgroup of G for some prime p
(a) Assume that P is cyclic and $p=2$. Show that $N_{G}(P)=Z_{G}(P)$, where $N_{G}(P)=\left\{g \in G: g P g^{-1}=\right.$ $P\}, Z_{G}(P)=\left\{g \in G: g x g^{-1}=x\right.$ for all $\left.x \in P\right\}$.
(b) Show that $N_{G}(P)$ may be different from $Z_{G}(P)$ if $p=2$ but P is not cyclic by giving an example.
(b) Show that $N_{G}(P)$ may be different from $Z_{G}(P)$ if $p \neq 2$ by giving an example.
5. Consider the ring $R=\mathbb{Z}[X] / I$, where I is the ideal of $\mathbb{Z}[X]$ generated by $X^{3}+X+1, X^{3}+X-1$. Determine the cardinality of R and the structure of R^{\times}.
