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We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of

short traveling wave tubes. The interaction structures are made from metal rings of uniform cross

section, which are periodically deployed along the length of the traveling wave tube. The aspect ra-

tio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of oper-

ation is controlled by the filling fraction of the ring cross section with respect to the size of the

period cell. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897235]

I. INTRODUCTION

From an operational viewpoint, a traveling wave tube

amplifier can be thought of as a cylindrical dielectrically

loaded waveguide with an electron beam running through its

center. The electron motion is parallel to the waveguide and

confined by a strong uniform magnetic field applied along

the beam. The beam is surrounded by a dielectric jacket sep-

arated from the beam by vacuum. When the dielectric con-

stant is larger than unity, it is possible to get amplification

from the traveling wave tube (TWT).1,2 Unfortunately, most

dielectric materials are insufficient for high power applica-

tions and break down after a few operational cycles. On the

other hand, Shiffler et al.3 propose sub-wavelength all-metal

interaction structures that effectively act as a dielectric me-

dium with dielectric constant greater than unity. This

provides the opportunity for design of TWTs with metal

beam-wave interaction structures.

In this paper, we investigate the influence of metal inter-

action structures on the anisotropy of the effective dielectric

tensor and the tune-ability of gain, bandwidth, and frequency

of operation for short TWT amplifiers. Along the way, it is

shown that effective dielectric properties arise naturally and

in a systematic way by applying a two-scale asymptotic

expansion for the solution of Maxwell’s equations describing

the beam-wave interaction inside the TWT.

Here we study the TWT described in the work of

Sch€achter et al.2 This TWT is a short Cerenkov system

(Figure 1) comprised of three components: a feeding wave-

guide, a finite length TWT amplifier region with metallic

inclusions (Figure 2), and an output waveguide. The metallic

inclusions are periodic (Figure 3) with two types of geome-

tries specifically being studied (Figure 4). The entire system

is excited by a generator. Each of these components has dif-

ferent characteristic impedances, and reflections can occur at

both input and output ends of the amplifier. The objective is

to characterize the influence of the geometry of the interac-

tion structure on the transmission pattern as well as its effect

on the gain and bandwidth of transmission peaks. We follow

Sch€achter et al.2 and transmission patterns are calculated

using the incident and reflected waves in the feeding wave-

guide, the dominant interacting modes inside the TWT

amplifier region, and the space-charge waves in the output

waveguide emitted from the amplifier region. In Sec. V, the

transmission coefficient is depicted as a function of fre-

quency for a collection of different all-metal beam-wave

interaction structures. To fix ideas, we study two classes of

geometries associated with the interaction structure: rings

with rounded rectangle cross sections, and rings with ellip-

soidal cross sections. Inclusion geometries are indexed by

their filling fraction relative to the period cell and their

aspect ratio related to the eccentricity of their shape (see

Figure 4). Here the filling fraction is the proportion of the

period cell occupied by the cross section of the metal ring.

For reference we calculate the transmission coefficient using

the isotropic dielectric constant chosen in Sch€acter et al.2

(see Figure 5) and use it as a benchmark to demonstrate the

effect of varying the metal interaction structure on the per-

formance of the TWT, see Figures 5–13.

The numerical calculations suggest the following trends.

The amplifier’s frequency of operation can be strongly influ-

enced by altering the filling fraction of metallic rings. Here,

higher filling fractions are seen to lower the operational fre-

quencies as well as reducing the frequency range over which

the TWT functions as an amplifier. It is found that the aspect

ratio associated with the cross-sectional shape of the rings

FIG. 1. Traveling wave tube amplifier with length d fed with an electron

beam of radius Rb traveling longitudinally from z¼�1.
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can be used to tune the gain and bandwidth of the device.

Higher gain is found to be associated with cross-sectional

shapes with eccentricity along the longitudinal direction par-

allel to the beam. It is seen that the band width of the gain

region drops with the eccentricity.

Our approach is organized as follows. In Sec. III, we

ignore finite length effects and carry out the dispersion anal-

ysis for an infinitely long TWT amplifier region loaded with

a sub-wavelength all-metal interaction structure. Here, we

apply the methods of two-scale asymptotic analysis4,5 to the

Maxwell system used to model beam wave interaction inside

the infinitely long amplifier. We focus on TM modes, and

the asymptotic analysis delivers a leading order theory, from

which we recover the leading order dispersion relation for

the amplifier. This dispersion relation is expressed in terms

of the anisotropic effective dielectric properties associated

with the all-metal interaction structure. This dispersion rela-

tion is used to calculate the wave impedances associated

with the spatially growing space-charge wave, the spatially

decaying space-charge wave, and the oscillating space-

charge wave inside the TWT beam-wave interaction region.

In Sec. IV, we formulate the electrodynamic problem for the

short TWT within the transmission line approximation. Here

the transmission line approximation is posed in terms of

wave impedances derived from the dispersion relations for

the space-charge waves obtained in Sec. III. The resulting

transmission patterns for the all-metal beam-wave interac-

tion structures are displayed and analyzed in Sec. V.

II. DEVICE DESCRIPTION

The short TWT amplifier consists of three regions, the

input waveguide �1 < z < 0, the beam-wave interaction

region 0 � z � d and the output waveguide d < z <1. Each

region is a circular cylindrical waveguide enclosed by per-

fectly conducting walls (see Figure 1). Both the input wave-

guide and the output waveguide have electromagnetic

properties associated with vacuum, �0¼ 8.85� 10�12 F/m

and l0¼ 4p� 10�7 H/m and are of radius Rb. The interac-

tion region, 0 � z � d has outer radius R>Rb and contains

the metal beam-wave interaction structure described by a

periodic arrangement of metal rings of constant cross section

(see Figure 2). The interaction structure is confined to the an-

nular region Rb < r < R. Away from the rings the electro-

magnetic properties are given by the vacuum values.

Far to the left (z � 0), a generator excites the lowest

symmetric transverse magnetic (TM) mode in the input

waveguide at a given frequency x above cutoff, i.e.,

x> cp1/R, where c is the vacuum speed of light, and p1 is

the first zero of the zero-order Bessel function of first kind,

J0(p1)¼ 0. In this region, i.e., �1 < z < 0, the azimuthal

component of the steady-state magnetic field is given (in

cylindrical polar coordinates) by

FIG. 4. Rounded rectangle (above) and ellipsoidal (below) cross sections

with different eccentricities corresponding to different aspect ratios K ¼ b/a.

Lengths with value a correspond to the z-direction.

FIG. 5. Transmission coefficient as a function of frequency for an isotopic

dielectric with dielectric constant 3.5 for an amplifier driven by a 1 kA

beam.

FIG. 2. The outer region, Rb < r < R contains the metal beam-wave interac-

tion structure given by the periodic distribution of rings of constant cross

section.

FIG. 3. Periodic, concentric, metallic rings embedded in a host material

whose dielectric properties are those of a vacuum.
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Hh r; z;xð Þ ¼ A0J1

p1

Rb
r

� �
e�ik1zð Þ; (1)

from which the component electric fields, Er, Ez, are recov-

ered by means of the relations

Er ¼
i

x�0

@

@z
Hh; (2)

Ez ¼ �
i

x�0

1

r

@

@r
rHhð Þ; (3)

where k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=cÞ2 � ðp1=RÞ2

q
denotes the wavenumber of

the incident wave and A0 is the amplitude.

At the entrance to the input waveguide (z¼�1), a

beam of electrons is injected into the system with average

velocity v0 and average density n0. The spatial distribution of

electrons is uniform along the transverse direction and a

strong uniform magnetic field is applied along the beam

restricting the electron velocity to be parallel to the longitu-

dinal direction. Here it is assumed that the longitudinal

momentum distribution is narrow so the electron dynamics is

described by the hydrodynamic approximation.1,2,6,7 Within

the hydrodynamic approximation, the current density is

related to the electric field by

~J ¼ Jz~ez ¼ �ix�0

x2
p

c3 x� vokð Þ2
Ez~ez; (4)

where b¼ v0/c, c¼ (1� b2)�1=2 and xp is the plasma fre-

quency, x2
p ¼ e2n0=ðm�0Þ, and m is the electron mass.7

The short TWT described here is considered in earlier

work2 under the assumption that the dielectric properties

inside the interaction region were specified by the dielec-

tric constant �¼ 3.5 for Rb < r < R. The analysis presented

here is limited to the case where the electron beam almost

fills Rb so that we can compare the transmission patterns

displayed here with those of Sch€achter et al.2 The electro-

dynamic problem for the short TWT is formulated

within the transmission line approximation and presented

in Sec. IV. Section V develops the dispersion analysis for

an infinitely long beam-wave interaction structure. This

analysis provides the wave impedances used to model

beam-wave interaction within the transmission line

approximation.

III. DISPERSION ANALYSIS IGNORING END EFFECTS:
AN INFINITELY LONG BEAM-WAVE INTERACTION
STRUCTURE

We now perform a dispersion analysis on an infinitely

long TWT amplifier with a sub-wavelength metal beam-

wave interaction structure. Here Maxwell’s equations inside

the beam 0 < r < Rb, �1 < z <1 are given by

r� ~E ¼ �ix~B; (5)

r� ~B ¼ ixl0�0
~E þ l0

~J ; (6)

r � ~B ¼ 0; (7)

where the beam current density ~J is given in (4). In the

beam-wave interaction region Rb < r < R, �1 < z < 1,

Maxwell’s equations outside the metal rings are given by

r� ~E ¼ �ix~B; (8)

r� ~B ¼ ixl0�0
~E; (9)

r � ~B ¼ 0; (10)

on the boundary of the metal rings ~n � ~E ¼ 0, where ~n is the

unit inward pointing normal on the ring surface. On r¼R,
we have ~n � ~E ¼ 0, where ~n is the unit normal pointing out

of the waveguide. The ring geometry is symmetric with

respect to the h variable and periodic in the variables (r, z)

(see Figure 3).

We find the dispersion relation for TM modes of the

form ~B ¼~ehwhðr; zÞe�ikz. Substitution of this mode into (5)

and (8) delivers the equation for ~B in the beam, 0 < r < Rb,

r� ��1 x; kð Þr � ~B ¼ x2

c2
~B; (11)

with the dielectric tensor

��1ðx; kÞ ¼~er �~er þ~eh �~eh

þ~ez �~ez 1�
x2

p

c3 x� v0kð Þ2

 !�1

; (12)

and in the interaction region Rb < r < R,

r�r� ~B ¼ x2

c2
~B; (13)

with ~n �r� ~B ¼ 0 on the surface of the metal rings and on

r¼R.

Here the goal is to identify the pairs x, k associated with

gain inside the TWT, i.e., complex wave numbers k with

positive imaginary part for real frequencies x. It is clear

from (12) that the beam is represented by a dielectric tensor

associated with both spatial and temporal dispersion.

In Sec. III A, we develop two-scale asymptotic expan-

sions for TM modes and recover the leading order theory for

dispersion inside TWTs containing sub-wavelength periodic

metallic interaction structures. These are expressed in

terms of the components of an anisotropic effective

dielectric tensor. In the following subsection we simplify

these to obtain a Pierce like dispersion relation for char-

acterizing growing TM modes associated with gain inside

the TWT.

A. Anisotropic effective properties and the dispersion
relation

In this section, we recover the leading order behavior

for TM waves ~B ¼~ehBh ¼~ehwðr; zÞe�ikz of (11) and (13)

using two-scale asymptotic expansions.

Within the interaction region, Rb < r < R and for any

choice of, 0 � h < 2p, the ring cross sections are the same

and are distributed periodically inside the rectangle Rb < r <
R, �1 < z < 1 (see Figure 3). The interaction structure is
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constructed so that the ratio between the side length of the

period and R is given by e¼ 1/n where n is an integer, n> 1.

Here we suppose e is small with respect to R and the meta-

material interaction structure is constructed so that the inter-

val Rb < r < R contains an integral number of periods with

side length p¼ eR. To carry out the two-scale expansion, we

rescale both r and z coordinates by 1/R and introduce the

dimensionless coordinates ~r ¼ r=R; ~z ¼ z=R. The coordi-

nates of the center of each period cell of side length e con-

tained within Rb=R < ~r < 1;�1 < ~z <1 is given by

ðe ~r
e

� �
; e ~z

e

� �
Þ, where [s] denotes the integer part of the number

s (the nearest integer greater than s). Any point ð~r; ~zÞ within

the rectangle Rb=R < ~r < 1;�1 < ~z <1, can be written

as ðe ~r
e

� �
þ eq; e ~z

e

� �
þ eyÞ where ðq; yÞ ¼ ~r

e �
~r
e

� �
; ~z
e � ~z

e

� �
Þ

�
lie

inside the unit period cell Y given by �1/2 < q < 1/2, �1/2

< y < 1/2.

Writing ~wð~r; ~zÞ ¼ wðR~r;R~zÞ, we develop the two-scale

expansion for ~wð~r; ~zÞ given by

~wð~r; ~zÞ ¼ ~wð~r; q; yÞ ¼ ~w0ð~rÞ þ e~w1ð~r ; q; yÞ
þ e2 ~w2ð~r; q; yÞ þ � � � ; (14)

where ~wð~r; q; yÞ is periodic in (q, y) with period cell Y. For

x fixed the wave number is expanded as

k ¼ k0 þ ek1 þ e2k2 þ � � � : (15)

Changing coordinates r ! ~r ; z! ~z, in (11) and (13), substi-

tution of the expansions (14) and (15), and equating like

powers of e delivers the homogenized differential equation

for ~w0ð~rÞ. Changing back to (r, z) coordinates, writing

w0ðrÞ ¼ ~w0ðr=RÞ delivers the leading order behavior for ~B
given by

~B ¼~ehw0ðrÞe�ik0z þ OðeÞ; (16)

where the equations and boundary conditions satisfied by

w0(r) are given by

r� ��1 x; k0ð Þr �~ehw0 rð Þe�ik0z ¼ x2

c2
~ehw0 rð Þe�ik0z (17)

within the beam, 0 < r < Rb, where the dielectric tensor is

��1 x; k0ð Þ ¼~er �~er þ~ez �~ez 1�
x2

p

c3 x� v0k0ð Þ2

 !�1

;

(18)

and in the interaction region, Rb < r < R,

r� �effð Þ�1r�~ehw0 rð Þe�ik0z ¼ x2

c2
~ehw0 rð Þe�ik0z; (19)

~B also satisfies the boundary conditions that ~n � ð�effÞ�1r�
ð~ehw0ðrÞe�ik0zÞ vanish at r¼R and at r¼Rb:

~n � ð�effÞ�1r� ð~ehw0ðrÞe�ik0zÞjr¼Rþ
b

¼ ~n � ��1ðx; k0Þr � ð~ehw0ðrÞe�ik0zÞjr¼R�
b
: (20)

The effective dielectric tensor �eff is defined by local field

problems defined on the unit period cell Y containing the

ring cross section. The boundary of the ring cross section is

denoted by @P, and the part of the unit cell containing vac-

uum surrounding the ring is denoted by M. The unit outward

pointing normal to @P is denoted by ~n ¼ nr~er þ ny~ez. The

effective dielectric tensor is written as

�eff ¼ �eff
rr ~er �~er þ �eff

zz ~ez �~ez: (21)

Here, the components of �eff are given by

�eff
rr ¼

ð
M

ðruqðq; yÞ þ~erÞ dq dy; (22)

�eff
zz ¼

ð
M

ðruyðq; yÞ þ~ezÞ dq dy; (23)

where uq and uy are periodic with unit period Y and are,

respectively, solutions of

r2uq ¼ 0 and r2uy ¼ 0; (24)

in the vacuum region M and

~n � ðruq þ~erÞj@P ¼ 0; (25)

~n � ðruy þ~ezÞj@P ¼ 0; (26)

on the surface of the ring cross sections @P. Here

r ¼~er@q þ~ez@y. The effective coefficients �eff
rr and �eff

zz are

computed numerically for the different cross-sectional

shapes. An outline of the two-scale approach used to recover

the homogenized problem is provided in the Appendix.

The Bh field inside the beam 0 < r < Rb is given by

Bh ¼ C0J1ð�brÞe�ik0z: (27)

And, in the metamaterial Rb < r < R, we apply the

boundary condition on the outer wall of the TWT to get

Bh ¼ C2T1ð�drÞe�ik0z; (28)

with

T1ð�drÞ ¼ J1ð�drÞY0ð�dRÞ � Y1ð�drÞJ0ð�dRÞ; (29)

where

�2
b ¼ 1�

x2
p

v0c3
x
v0

� k0

� �2

0
B@

1
CA
�1

� x2

c2
� k2

0

� �
;

(30)

and

�2
d ¼ �eff

zz

x2

c2
� �

eff
zz

�eff
rr

k2
0: (31)

The dispersion relation follows from the transmission

condition (20). From now on, we focus on the leading order

behavior and write k¼ k0. The dispersion relation between

frequency x and propagation constant k is of the form
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Dactðx; kÞ ¼ 0; (32)

where Dact is defined as

Dactðx; kÞ ¼Dbeamðx; kÞFbeamðx; kÞ
þ�eff

zz Dpassðx; kÞFpassðx; kÞ: (33)

The four components of Dact are

Dbeam ¼ �eff
zz �dT0ð�dRbÞY1ð�vacRbÞ
��vacY0ð�vacRbÞT0ð�dRbÞ; (34)

Fbeam ¼ ��1=2
b J1ð�bRbÞJ0ð�vacRbÞ
�J0ð�bRbÞJ1ð�vacRbÞ; (35)

Dpass ¼� �vac�
eff
zz J0ð�vacRbÞT1ð�dRbÞ

��dJ1ð�vacRbÞT0ð�dRbÞ; (36)

Fpass ¼� J1ð�bRbÞY0ð�vacRbÞ
þ ��1=2

b J0ð�bRbÞY1ð�vacRbÞ; (37)

with �b defined as

�b ¼ 1�
x2

p

v0c3
x
v0

� k

� �2

0
B@

1
CA
�1

(38)

and

T0ð�dRbÞ ¼ J0ð�dRbÞY0ð�dRÞ � Y0ð�dRbÞJ0ð�dRÞ: (39)

B. A pierce-like approach to dispersion

For x fixed and in the absence of the beam the propaga-

tion constant k¼ k(0) is the root of the cold structure disper-

sion relation

Dpassðx; kð0ÞÞ ¼ 0: (40)

Set

a ¼
x2

p

v2
0c

3
x
v0

� k

� �2
: (41)

Following Sch€achter et al., assume the beam does not sig-

nificantly affect the fields in the waveguide and suppose a
� 1. Fixing x, expand Dact as a function of a and k in a

Taylor series about a¼ 0 and k¼ k(0). Writing k¼ k(0)þ q
gives

Dactða; kÞ ¼Dactð0; kð0ÞÞ þ @kDactð0; kð0ÞÞq
þ@aDactð0; kð0ÞÞaþ oða; qÞ: (42)

Neglecting higher order terms in the expansion for Dact, we

get the third order equation for q given by

ðDk � qÞ2q ¼ �K3; (43)

where Dk ¼ x
v0
� kð0Þ is the slip between the phase velocity

of the beam and the propagation constant in the cold struc-

ture and K3 is the non-normalized Pierce factor given here by

K3 ¼ eg0I

mc2 bcð Þ3pR2
b

 !
� @aDact 0; k 0ð Þ

� 	
@kDact 0; k 0ð Þ

� 	 : (44)

This equation has three roots: one real, and one pair of

complex conjugates. Denoting the roots by qj, j¼ 1, 2, 3, the

wave numbers for the beam wave interaction structure are

given by jj¼ k(0)þ qj, j¼ 1, 2, 3. The complex root q of the

third order equation with positive imaginary part Im{q}

corresponds to the growing wave and is a measure of the

gain per unit length associated with the infinitely long

TWT.8 The gain seen over a distance d within the infinitely

long TWT is 20 log f expðImfqgdÞg and is displayed to-

gether with the transmission coefficient for the finite length

device, d¼ 15 cm, for different metamaterial interaction

structures in Figures 5–13.

We conclude by noting that the effect of the all-metal

interaction structure is encoded into the effective dielectric

properties appearing in the dispersion relation (43).

IV. ELECTRODYNAMICS INSIDE A FINITE LENGTH
TWT: TRANSMISSION LINE MODEL

The transmission and reflection for the short TWT

system is calculated accounting for the interaction of all

electromagnetic and space-charge waves present in the

input waveguide, the interaction region, and in the output

waveguide. For generic situations, this requires the use of

an infinite number of modes in order to satisfy transmission

conditions between waveguides. However, the system con-

sidered here is operated over a frequency range for which

an exponentially growing mode is excited within the inter-

action region. It is also assumed that the energy stored in

the other modes are smaller than that in the growing mode.

With these caveats in mind, the electrodynamics for the

short TWT is modeled within the transmission line approx-

imation.2 Here voltage waves V¼V (z) along the transmis-

sion line are equivalent to the radial component of the

electric field Er(z), while current waves I¼ I(z) are equiva-

lent to the azimuthal component of the magnetic field

Hh(z).

It is assumed that there are no incident space-charge

waves, and that the voltage wave along the input transmis-

sion line is given by an incident wave (of unit magnitude,

excited by a generator) together with a reflected wave of am-

plitude q, with

VðzÞ ¼ e�ikinz þ qeikinz (45)

in the region �1 < z < 0. The wave impedance of the input

line is

Zin ¼ Er=Hh ¼ g0ckin=x; (46)

with g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=�0

p
. The current is equivalent to the azi-

muthal component of the magnetic field and is given by
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I zð Þ ¼
1

Zin

e�ikinz � q
Zin

qeikinz (47)

for �1 < z < 0,

Following Sch€achter et al., the electrodynamics within

the interaction region, 0 � z � d, is modeled by four waves

VðzÞ ¼
X3

j¼1

Aje
�ijjz þ A4eikð0Þz (48)

with wave numbers

jj ¼ kð0Þ þ qj; j ¼ 1; 2; 3: (49)

Here k(0) is the wave number for the infinite beam-wave

interaction structure in the absence of the beam and is the so-

lution of the cold structure dispersion relation Dpass (x,

k(0))¼ 0. The wave numbers jj are associated with the space-

charge waves in the infinite beam-wave interaction structure,

where qj are the roots of (43). The associated wave impedan-

ces are given by

Zj
bw ¼ g0cjj=x; j ¼ 1; 2; 3; (50)

Z4
bw ¼ �g0ckð0Þ=x: (51)

The current inside the interaction region is given by

I zð Þ ¼
X3

j¼1

Aj

Zj
bw

e�ijjz � A4

Z4
bw

eik 0ð Þz: (52)

Along the output transmission line, the voltage wave

consists of two space-charge waves emitted from the interac-

tion region and one electromagnetic mode

VðzÞ ¼ se�ikoutz þ
X3

j¼2

Bje
�ivjz; (53)

for d < z < 1. The wave number kout¼ kin for the electro-

magnetic mode, and the wave numbers of the emitted space-

charge waves v2, v3 are given by2

v2 ¼
x
v0

þ xp

c3=2v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cp1

cbxRb

� �2
s

; (54)

v3 ¼
x
v0

� xp

c3=2v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cp1

cbxRb

� �2
s

: (55)

Their associated wave impedances are given by

Zout ¼ Zin; (56)

Zj
out ¼ g0cvj=x; j ¼ 2; 3; (57)

and the current wave along the output line is given by

I zð Þ ¼ B1

Zout

e�ikoutz þ
X3

j¼2

Bj

Zj
out

e�ivjz (58)

for d < z <1.

We conclude by writing down the beam dynamics asso-

ciated with the hydrodynamic approximation. The beam

modulation is given by the electronic oscillation dv(z) about

the average beam velocity v0 and is proportional to the elec-

tric field in the longitudinal direction,2,6,7 i.e.,

dv zð Þ ¼ �
ie

mc3 x� v0kð ÞEz zð Þ

¼ � ie

mc3 x� v0kð Þ
1

g0ck
Er zð Þ

¼ � ie

mc3 x� v0kð Þ
1

g0ck
V zð Þ: (59)

The perturbation of electron density about its average

value n0 is given by

dn zð Þ ¼
n0k

x� v0k
dv zð Þ

¼ � ien0

mcg0c3 x� v0kð Þ2
V zð Þ: (60)

A. Solution of the transmission line approximation

The voltage and current waves are determined by impos-

ing the continuity of V (z), I(z), dv(z), and dn(z) at z¼ 0 and

z¼ d. Imposing continuity on the voltage, V (z¼ 0�)¼V
(z¼ 0þ), yields

1þ q ¼
X3

j¼1

Aj þ A4: (61)

Continuity of the current, I(z¼ 0�)¼ I(z¼ 0þ), gives

1

Zin

� q
Zin

¼
X3

j¼1

Aj

Zj
bw

� A4

Z4
bw

: (62)

Continuity of the electron oscillation, dv(z¼ 0�)

¼ dv(z¼ 0þ), delivers the condition

1

kin x� v0kinð Þ þ
q

kin xþ v0kinð Þ

¼
X3

j¼1

Aj

jj x� v0jjð Þ
þ A4

k 0ð Þ xþ v0k 0ð Þ
� 	 ; (63)

and continuity of electron density, dn(z¼ 0�)¼ dn(z¼ 0þ)

gives

1

x� v0kinð Þ2
� q

xþ v0kinð Þ2

¼
X3

j¼1

Aj

x� v0jjð Þ2
� A4

xþ v0k 0ð Þ
� 	2

: (64)

Likewise, imposing continuity conditions at output (z¼ d)

yields, for voltage,

X3

j¼1

Aje
�ijjd þ A4eikð0Þd ¼ se�ikind þ

X
l¼2;3

Ble
�ivld; (65)
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for current,

X3

j¼1

Aje
�ijjd

Zj
bw

� A4eik 0ð Þd

Z4
bw

¼ se�ikoutd

Z1
out

þ
X
l¼2;3

Ble
�ivld

Zl
out

; (66)

for electron oscillation,

X3

j¼1

Aje
�ijjd

jj x� v0jjð Þ
þ A4eik 0ð Þd

k 0ð Þðxþ v0k 0ð ÞÞ

¼ seikoutd

kout x� v0koutð Þ þ
X
l¼2;3

Ble
�ivld

vl x� v0vlð Þ
; (67)

and for electron density,

X3

j¼1

Aje
�ijjd

x� v0jjð Þ2
� A4eik 0ð Þd

xþ v0k 0ð Þ
� 	2

¼ se�ikoutd

x� v0koutð Þ2
þ
X
l¼2;3

Ble
�ivld

x� v0vlð Þ2
: (68)

We apply an iterative numerical method to solve the

system (61)–(68) and depict the transmission coefficient s as

a function of frequency for different beam-wave interaction

structures.

V. DISCUSSION OF RESULTS

We now turn to the qualitative trends observed in the

transmission patterns displayed in Figures 5–13. We charac-

terize metamaterial geometries by the filling fraction H (rela-

tive to a unit cell size) and aspect ratio K of cross sections of

a single metallic inclusion. The filling fraction of an inclu-

sion is a measure of its size, and the aspect ratio measures

the eccentricity of its shape. The aspect ratio is defined by K
¼ b/a, where b corresponds to cross-sectional length in the

radial direction, and a corresponds to the longitudinal. Cross

sections with aspect ratio K less than unity correspond to

inclusions that are more eccentric in the longitudinal direc-

tion; aspect ratios exceeding unity correspond to radial ec-

centricity (see Figure 4).

Figures 5–13 are compositions of three separate

graphs. The grey dotted curve is a plot of

20 log f expðImfqgdg versus frequency. Here Im{q} is the

gain factor associated with the infinitely long TWT. The

left axis is a measure of 20 log f expðImfqgdÞg in dB. The

dark solid curve is a plot of the transmission coefficient s
for the short TWT device versus frequency. The left axis

is a measure of s in dB. The grey dashed curve is the

transmission coefficient s for the short TWT with no

beam present and is plotted against the right axis in dB.

Here there is no gain, and perfect transmission corre-

sponds to 0 dB loss.

All transmission profiles are computed and plotted for

an amplifier of length d¼ 15 cm, Rb¼ 1.4 cm, R¼ 1.82 cm

driven by a 1-KA beam current, and b¼ v0/c¼ 0.9.

The transmission peaks and valleys correspond to,

respectively, constructive and destructive interference due to

reflection in the short TWT configuration.

Figure 5 corresponds to the isotropic dielectric constant

�eff� 3.5 considered in the work of Sch€achter et al.2 This is

realized using metallic inclusions with symmetric cross sec-

tions (for instance, rounded rectangle cross sections with fill-

ing fraction H¼ 0.5508 or with circular cross sections with

filling fraction H¼ 0.5410). This transmission pattern is

used as a benchmark to identify the effects of changing as-

pect ratios and filling fractions on transmission profiles.

It should be noted that all filling fractions and aspect

ratios studied here are measured with respect to a reference

period cell. Hence, for fixed filling fraction, extremely

eccentric geometries are not permissible, as the cross sec-

tions must be contained within the unit cell. Although the

eccentricities we considered here are relatively mild (0.8

<K< 1.3), the effect on transmission patterns can be

significant.

Figure 6 shows transmission profiles for rounded rectan-

gle inclusions with different aspect ratios. The filling fraction

for each cross section is fixed at 0.5508. As mentioned ear-

lier the symmetric rounded square shape (a¼ b) with filling

fraction 0.5508 delivers �eff¼ 3.5 (the same dielectric con-

stant used in the work of Sch€achter et al.).
Figure 7 shows the transmission patterns for the same

range of aspect ratios but for ellipsoidal cross sections at

fixed volume fraction H ¼ 0.5410. As pointed out earlier,

the circular cross section with this filling fraction delivers

�eff¼ 3.5. Both figures show a relatively constant range of

operation and bandwidths that shrink slightly as aspect ratios

increase. Both also show an increase in gain for more eccen-

tric geometries, with a more uniform increase corresponding

to longitudinal eccentricity.

Figures 8–10 demonstrate the effect of varying the fill-

ing fraction of rounded rectangle inclusions, each of them

for a different aspect ratio. In each case, the range of opera-

tion increases as the filling fraction decreases, while both

gain and bandwidth remain relatively constant. Comparing

each of the three figures, it can again be seen that more lon-

gitudinally eccentric geometries yield a higher gain, as sug-

gested by Figures 6 and 7. The same trends are seen for

ellipsoidal inclusions in Figures 11–13. For fixed aspect

ratios, ellipsoidal geometries show uniformly higher gains

than their rounded rectangle counterparts. The large gain

seen in Figure 11 for filling fraction H ¼ 0.6 stems from the

fact that neighboring cross sections are separated by a dis-

tance that is a small fraction of their common diameter.

From an operational perspective, this geometry is not desira-

ble due to the presence of high electric field concentrations

between adjacent cross sections.

VI. SUMMARY

We conclude by pointing out that this work investigates

the sensitivity of TWT performance with respect to varia-

tions of a simple interaction structure. It is seen that the ge-

ometry of the structure strongly influences the performance

of the TWT and can be controlled for tuning frequency of

operation, gain, and bandwidth. The interaction structure

considered here does not account for the support structures

connecting the metal rings to the outer wall of the TWT.
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FIG. 7. The effect of aspect ratio K is seen for ellipsoidal inclusions with fixed filling fraction H ¼ 0.5410.

FIG. 6. The effect of aspect ratio K is seen for rounded rectangle inclusions with fixed filling fraction H ¼ 0.5508.
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FIG. 8. The effect of filling fraction is seen for rounded square inclusions (K ¼ 1, i.e., rounded square inclusions).

FIG. 9. The effect of filling fraction is seen for rounded rectangle inclusions with aspect ratio K ¼ 1.25.
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FIG. 10. The effect of filling fraction is seen for rounded rectangle inclusions with aspect ratio K ¼ 0.80.

FIG. 11. The effect of filling fraction is seen for ellipsoidal inclusions with aspect ratio K ¼ 1 (i.e., circular inclusions).
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FIG. 12. The effect of filling fraction is seen for ellipsoidal inclusions with aspect ratio K ¼ 1.25.

FIG. 13. The effect of filling fraction is seen for ellipsoidal inclusions with aspect ratio K ¼ 0.80.
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Indeed, the support structure itself can effect the TWT per-

formance introducing multiple hybrid modes and shifting the

frequency of operation. Building on the methodology devel-

oped here, new types of interaction structures, together with

their support structures, are currently under development for

control of TWT performance.
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APPENDIX

We provide an outline of the two-scale asymptotic

method as it is applied here to identify the homogenized

transmission problem for the infinitely long TWT. The

method starts with the definition of q and y given in Sec. III

A and writing the total derivatives for terms in the expansion
~wi; i ¼ 1; 2;…,

d

d~r
~wi ~r; q; yð Þ ¼ @

@~r
þ 1

e
@

@q

� �
~wi; (A1)

d

d~z
~wi ~r ; q; yð Þ ¼ 1

e
@

@y
~wi: (A2)

Now apply the change of variables r ! ~r; z! ~z to Eqs.

(11)–(13), and substitute the expansions (14), (15) into these

and apply (A1), (A2). Equating like powers of e delivers a

sequence of transmission problems. Here the solution of the

transmission problems ~wj, kj, with j< i provide data for the

transmission problem and consistency conditions used to deter-

mine ~wi and ki. The leading order problem (17), (18), (19),

(20) is obtained from the consistency condition for the solution

of the transmission problem for ~w2 and changing from ð~r; ~zÞ
coordinates back to (r, z) coordinates. The effective properties

appearing in this relation are identified as the moments of

@q
~w1 and @y

~w1. The linearity of the problem allows one to

express ~w1 as linear combinations of the solution of the cell

problems (24), (25), (26) and this delivers the expressions for

the effective properties given by (22) and (23).
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