1. Real-valued functions of one real variable in school mathematics.

Below is a typical 'explanation' of the notion of real valued functions of one real variable in school mathematics:

Let D be a subset of \mathbb{R} (very often \mathbb{R} itself or \mathbb{R} with a few points deleted).
A real-valued function defined on D is a 'rule of assignment' from D to \mathbb{R}, so that each number in D is being assigned to exactly one element of \mathbb{R}.

When we refer to such a function by f, the set D will be referred to as the domain of this function f.

Whenever $x \in D, y \in \mathbb{R}$ and x is assigned to y, we write $y=f(x)$.
The set $G=\{(x, f(x)) \mid x \in D\}$ is called the graph of f. Note that $G \subset \mathbb{R}^{2}$.

How about 'general' functions?

Below is a typical 'explanation' of the notion of real valued functions of one real variable in sehool mathematies:
Let A, B be sets.
Let D be a subset of \mathbb{R} (very often \mathbb{R} itself or \mathbb{R} with a few peints deleted).
 each element of A
each number in D is being assigned to exactly one element of $\underset{\Re}{\Re}$.
When we refer to such a function by f, the set $\stackrel{A}{\nmid X}$ will be referred to as the domain of this function f. The set B is called the range of f.
Whenever $x \in \stackrel{A}{\notin X}, y \in \stackrel{B}{\nVdash}$ and x is assigned to y, we write $y=f(x)$.

2. In-formal definition of function.

Let A, B be sets.
A function from A to B is a 'rule of assignment' from A to B, so that each element of A is being assigned to exactly one element of B.

Conventions and notations.

- When we denote such a function by f, we refer to it as $f: A \longrightarrow B$.

Whenever $x \in A, y \in B$ and x is assigned to y, we write $y=f(x)($ or $\underset{f}{\mapsto} y)$.

- A is called the domain of $f . B$ is called the range of f.

Remark. We postpone the generalization of the notion of graphs of functions.

3. 'Blobs-and-arrows diagrams'.

We may visualize a function by its 'blobs-and-arrows diagram'.
We illustrate the idea with the example below:
Let $A=\{m, n, p, q, r, s, t, \ldots\}, B=\{c, d, e, g, h, \ldots\}$, and $f: A \longrightarrow B$ be defined by

$$
f(m)=d, f(n)=e, f(p)=e, f(q)=h, f(r)=h, f(s)=h, f(t)=h, \cdots .
$$

By definition, f assigns m to d, n to e, p to e, q to h, r to h, s to h, t to h, \cdots.
We draw the 'blobs-and-arrows diagram' of the function f as:

4. Notion of equality for functions.

We regard two functions to be the same as each other exactly when they 'determine the same assignment'.
Definition.
Let $A_{1}, A_{2}, B_{1}, B_{2}$ be sets, and $f_{1}: A_{1} \longrightarrow B_{1}, f_{2}: A_{2} \longrightarrow B_{2}$ be functions.
We agree to say that f_{1} is equal to f_{2} as functions, and to write $f_{1}=f_{2}$, exactly when

$$
A_{1}=A_{2} \text { and } B_{1}=B_{2} \text { and } f_{1}(x)=f_{2}(x) \text { for any } x \in A_{1} .
$$

Examples and non-examples.
(1)

$$
\begin{aligned}
& f_{1}: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R} \text { is given by } \\
& f_{1}(x)=x+1 \text { for any } x \in \mathbb{R} \backslash\{1\} ; \\
& f_{2}: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R} \text { is give } b_{y} \\
& f_{2}(x)=\frac{x^{2}-1}{x-1} \text { for any } x \in \mathbb{R} \backslash\{1\} .
\end{aligned}
$$

- Are f_{1}, f_{2} equal to each other?
- Yes.
(2) $\rho_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is given by $f_{1}(x)=x+1$ for any $x \in \mathbb{R}$; $\rho_{2}: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R}$ is given by $\rho_{2}(x)=\frac{x^{2}-1}{x-1}$ for on g $x \in \mathbb{R}\{1\}$.
- Are g_{1}, ρ_{2} equal to each sher?
- No. (Reason: Domains do nt agree.)
$\rho_{3}: \mathbb{R} \rightarrow \mathbb{C}$ is given by
$\rho_{3}(x)=x+1$ for any $x \in \mathbb{R}$;
- Are ρ_{1}, ρ_{3} equal to each other?
- No. (Rearan: Ranges do ut agree.)
(3) $h_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is overly

$$
h_{1}(x)= \begin{cases}-1 & \text { if } x \leq 0 \\ 1 & \text { if } x>0 ;\end{cases}
$$

$$
h_{2}: \mathbb{R} \rightarrow \mathbb{R} \text { is given by }
$$

$$
h_{2}(x)= \begin{cases}-1 & \text { if } x<0 \\ 1 & \text { if } x \geqslant 0 .\end{cases}
$$

- Are h_{1}, h_{2} equal to each other ?
- No. (Reason:
'Formulae' do nt agree, for instance, at 0 .)

5. Compositions.

Out of two functions, the range of one being the same as the domain of the other, we may construct a third function

Definition.

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions.
Define the function $g \circ f: A \longrightarrow C$ by $(g \circ f)(x)=g(f(x))$ for any $x \in A$.
$g \circ f$ is called the composition of the functions f, g.

Example of composition.
The function

- $x \longmapsto x^{\text {x }}$ for an g $x \in(0,+\infty)^{\prime}$
with domain $(0,+\infty)$ and
range \mathbb{R} is the
composition oof in which:
- $f:(0,+\infty) \rightarrow \mathbb{R}$ is the function gives by $f(x)=x \ln (x)$ forany
$x \in(0,+\infty)$ and

$$
x \in(0,+\infty) \text {, and }
$$

$$
\therefore \mathbb{D} \rightarrow \mathbb{D} \text { i the }
$$

function given by

$$
\rho(y)=\exp (y) \text { for any }
$$

$$
y \in \mathbb{R}
$$

Lemma (1). (Associativity of composition.)

Let A, B, C, D be sets, and

$$
f: A \longrightarrow B, \quad g: B \longrightarrow C, \quad h: C \longrightarrow D
$$

be functions.
$(h \circ g) \circ f=h \circ(g \circ f)$ as functions.
Remark. Hence there is no ambiguity when we refer to $(h \circ g) \circ f$ (and $h \circ(g \circ f))$ as $h \circ g \circ f$.

Proof of Lemma (1).
Let A, B, C, D be sets, and $f: A \longrightarrow B, g: B \longrightarrow C, h: C \longrightarrow D$ be functions.
Note that $(h \circ g) \circ f, h \circ(g \circ f)$ have the same domain, namely, A.
Also note that $(h \circ g) \circ f, h \circ(g \circ f)$ have the same range, namely, D.
[We want to verify: For any $x \in A,((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x)$.]

$$
\begin{aligned}
& \text { Pick any } x \in A . \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) . \\
& (h \circ(g \circ f))(x)=h((\rho \circ f)(x))=h(g(f(x))) . \\
& \text { Then }(c h \circ \rho) \circ f)(x)=(h \circ(g \circ f))(x) \text {. } \\
& \text { It follows that }(h \circ \rho) \circ f=h \circ(g \circ f) \text { as functions. }
\end{aligned}
$$

6. Identity function, inclusion function, restrictions and extensions.

Here are the formal definitions (in terms of set language) of several miscellaneous notions used in various ocassions.

Definition.

Let A be a set.
(a) Define the function $\operatorname{id}_{A}: A \longrightarrow A$ by $\operatorname{id}_{A}(x)=x$ for any $x \in A$. id_{A} is called the identity function on A.
(b) Let S be a subset of A. Define the function $\iota_{S}^{A}: S \longrightarrow A$ by $\iota_{S}^{A}(x)=x$ for any $x \in S$. ι_{S}^{A} is called the inclusion function of S into A.

Reminder
the same as the identity function on A.
In fact, $L_{S}^{A}=i d_{A}$ as functions of $S=A$.

Definition.
Let A, B be sets, and $f: A \longrightarrow B$ be a function.
(a) Let S be a subset of A. The function $f \circ \iota_{S}^{A}: S \longrightarrow B$ is called the restriction of f to S. It is denoted by $\left.f\right|_{S}$.
(b) Let H be a set which contains A as a subset, K be a set which contains B as a subset. Suppose $g: H \longrightarrow K$ be a function which satisfies $g \circ \iota_{A}^{H}=\iota_{B}^{K} \circ f$. Then g is called an extension of f.

Examples of restrictions from one-variable calculus.
(1) $\left.\tan \right|_{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)}:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$
is the function Stained by 'restricting' the tangent function to the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(2) $\left.\sin \right|_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ is the "function obtained by 'restricting' the sine function to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Why relevant? Such 'restrictions' are useful' when we wart to introduce 'arctangent', 'arsine' respectively.

7. Graphs of functions.

To generalize the notion of graphs of functions, we need bring in the notion of cartesian products for two arbitrary sets.

Definition.

Let A, B be sets, and $f: A \longrightarrow B$ be a function. Define $G=\{(x, f(x)) \mid x \in A\}$.
G is called the graph of the function f. Note that $G \subset A \times B$.
Lemma (2). (Equality of functions and equality of graphs.)
Let A, B be sets, and $f_{1}, f_{2}: A \longrightarrow B$ be functions. Suppose G_{1}, G_{2} are the respective graphs of f_{1}, f_{2}. Then f_{1} is equal to f_{2} as functions iff $G_{1}=G_{2}$.
Proof of Lemma (2). Exercise in set language.
8.. 'Coordinate plane diagrams'.

We may visualize a function, displaying its graph, by its 'coordinate plane diagram'.
We illustrate the idea with the example below:
Let $A=\{m, n, p, q, r, s, t, \ldots\}, B=\{c, d, e, g, h, \ldots\}$, and $f: A \longrightarrow B$ be defined by

$$
f(m)=d, f(n)=e, f(p)=e, f(q)=h, f(r)=h, f(s)=h, f(t)=h, \cdots .
$$

By definition, the graph of f is the set

$$
G=\{(m, d),(n, e),(p, e),(q, h),(r, h),(s, h),(t, h), \cdots\}
$$

We draw the 'coordinate plane diagram' of the function f as:

9. 'Blobs-and-arrows diagram' versus 'coordinate plane diagram'.

Depending on how we like the 'information' concerned with a given function $f: A \longrightarrow B$ is presented, we may draw its 'coordinate plane diagram' or its 'blobs-and-arrows diagram'.
Each has its own advantage.
The two diagrams may be converted from one to the other in a systematic way.
Illustration:
Let $A=\{m, n, p, q, r, s, t, \ldots\}, B=\{c, d, e, g, h, \ldots\}$, and $f: A \longrightarrow B$ be defined by

$$
f(m)=d, f(n)=e, f(p)=e, f(q)=h, f(r)=h, f(s)=h, f(t)=h, \cdots
$$

(a) 'Coordinate plane diagram' of f :
(b) In-between the two kinds of diagrams:
(c) 'Blobs-and-arrows diagram' of f :

10. Basic examples of functions in school maths and beyond.

We have encountered various examples of functions in school mathematics and in basic MATH courses.
(a) Polynomial functions with real coefficients.
(b) Rational functions with real coefficients.
(c) 'Algebraic functions' in school maths.
(d) Elementary transcendental functions.
(e) 'Multivariable functions' in multivariable calculus.
(f) Functions of one complex variable.
(g) Infinite sequences and families.
(h) 'Algebraic operations' for algebraic structures.
(i) Linear transformations and 'transformation for various algebraic structures'.
(j) Various 'operations' in calculus and beyond.

