1. Real-valued functions of one real variable in school mathematics.

Below is a typical 'explanation' of the notion of real valued functions of one real variable in school mathematics:

Let D be a subset of \mathbb{R} (very often \mathbb{R} itself or \mathbb{R} with a few points deleted).

A real-valued function defined on D is a 'rule of assignment' from D to \mathbb{R} , so that each number in D is being assigned to exactly one element of \mathbb{R} .

When we refer to such a function by f, the set D will be referred to as the domain of this function f.

Whenever $x \in D$, $y \in \mathbb{R}$ and x is assigned to y, we write y = f(x).

The set $G = \{(x, f(x)) \mid x \in D\}$ is called the graph of f. Note that $G \subset \mathbb{R}^2$.

How about 'general' functions?

Below is a typical 'explanation' of the notion of real valued functions of one real variable in school mathematics:

Let A, B be sets.

Let D be a subset of R (very often R itself or R with a few points deleted).

A real valued function defined on D is a 'rule of assignment' from X to X, so that

each number in D is being assigned to exactly one element of \mathbb{K} .

When we refer to such a function by f, the set \mathbb{X} will be referred to as the domain of this function f. The set \mathbb{B} is called the range of f.

Whenever $x \in \mathbb{X}$, $y \in \mathbb{X}$ and x is assigned to y, we write y = f(x).

The set $G = \{(x, f(x)) \mid x \in D\}$ is called the graph of f. Note that $G \subset \mathbb{R}^2$.

2. In-formal definition of function.

Let A, B be sets.

A function from A to B is a 'rule of assignment' from A to B, so that each element of A is being assigned to exactly one element of B.

Conventions and notations.

- When we denote such a function by f, we refer to it as $f:A\longrightarrow B$. Whenever $x\in A,\,y\in B$ and x is assigned to y, we write y=f(x) (or $x{\underset{f}{\mapsto}} y$).
- A is called the **domain** of f. B is called the **range** of f.

Remark. We postpone the generalization of the notion of graphs of functions.

3. 'Blobs-and-arrows diagrams'.

We may visualize a function by its 'blobs-and-arrows diagram'.

We illustrate the idea with the example below:

Let
$$A = \{m, n, p, q, r, s, t, ...\}$$
, $B = \{c, d, e, g, h, ...\}$, and $f : A \longrightarrow B$ be defined by $f(m) = d$, $f(n) = e$, $f(p) = e$, $f(q) = h$, $f(r) = h$, $f(s) = h$, $f(t) = h$, ...

By definition, f assigns m to d, n to e, p to e, q to h, r to h, s to h, t to h, \cdots . We draw the 'blobs-and-arrows diagram' of the function f as:

4. Notion of equality for functions.

We regard two functions to be the same as each other exactly when they 'determine the same assignment'.

Definition.

Let A_1, A_2, B_1, B_2 be sets, and $f_1 : A_1 \longrightarrow B_1, f_2 : A_2 \longrightarrow B_2$ be functions.

We agree to say that f_1 is **equal** to f_2 as functions, and to write $f_1 = f_2$, exactly when

$$A_1 = A_2 \text{ and } B_1 = B_2 \text{ and } f_1(x) = f_2(x) \text{ for any } x \in A_1.$$

Examples and non-examples. h: R-R is given by 2 g.: IR→Risgiven by g.(x)=x+1 for any x∈IR; gz: R\{I}→Risgiven by 1) f.: R. El] - Righen by $|x|^{-1} = \begin{cases} 1 & \text{if } x > 0 \text{ if } x \leq 0 \end{cases}$ f (x) = x+1 for any x & R(E1); hz: R>R is given by f: R {i} > Risgive by h, (x) = { -1 if x <0 } 82(x) = x2-1 for any x ∈ R(21) fr(x) = x2-1 for any x ∈ R [1]. · Are Si, Sz equal to each other? · Are h, he equal · Are f. f. equal to each other? · No. (Reason: Domain) do not agree.) to each other? 33: R→C is given by 33(x)=x+1 for any x∈R; · No (Reason: · Tes. 'Formulae' do not · Are g., g; equal to each other? · No. (Reason: Ranges do not agree.) agree, for instance,

5. Compositions.

Out of two functions, the range of one being the same as the domain of the other, we may construct a third function

Definition.

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions.

Define the function $g \circ f : A \longrightarrow C$ by $(g \circ f)(x) = g(f(x))$ for any $x \in A$.

 $g \circ f$ is called the **composition** of the functions f, g.

Lemma (1). (Associativity of composition.)

Let A, B, C, D be sets, and

$$f: A \longrightarrow B, \quad g: B \longrightarrow C, \quad h: C \longrightarrow D$$

be functions.

 $(h \circ g) \circ f = h \circ (g \circ f)$ as functions.

Remark. Hence there is no ambiguity when we refer to $(h \circ g) \circ f$ (and $h \circ (g \circ f)$) as $h \circ g \circ f$.

Proof of Lemma (1).

Let A, B, C, D be sets, and $f: A \longrightarrow B, g: B \longrightarrow C, h: C \longrightarrow D$ be functions.

Note that $(h \circ g) \circ f$, $h \circ (g \circ f)$ have the same domain, namely, A.

Also note that $(h \circ g) \circ f$, $h \circ (g \circ f)$ have the same range, namely, D.

[We want to verify: For any $x \in A$, $((h \circ g) \circ f)(x) = (h \circ (g \circ f))(x)$.]

Pick any
$$x \in A$$
.

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x))).$$

$$(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x))).$$
Then $((h \circ g) \circ f)(x) = (h \circ (g \circ f))(x).$
It follows that $(h \circ g) \circ f = h \circ (g \circ f)$ as functions.

6. Identity function, inclusion function, restrictions and extensions.

Here are the formal definitions (in terms of set language) of several miscellaneous notions used in various ocassions.

Definition.

Let A be a set.

- (a) Define the function $id_A : A \longrightarrow A$ by $id_A(x) = x$ for any $x \in A$. id_A is called **the** identity function on A.
- (b) Let S be a subset of A. Define the function $\iota_S^A: S \longrightarrow A$ by $\iota_S^A(x) = x$ for any $x \in S$. ι_S^A is called the **inclusion function of** S **into** A.

Definition.

Let A, B be sets, and $f: A \longrightarrow B$ be a function.

- (a) Let S be a subset of A. The function $f \circ \iota_S^A : S \longrightarrow B$ is called the **restriction of** f **to** S. It is denoted by $f|_S$.
- (b) Let H be a set which contains A as a subset, K be a set which contains B as a subset. Suppose $g: H \longrightarrow K$ be a function which satisfies $g \circ \iota_A^H = \iota_B^K \circ f$. Then g is called an **extension of** f.

Examples of restrictions from one-variable calculus. is the function obtained by 'restricting'
the tangent function to the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$.

2 Sim $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] : \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ is the function obtained by 'restricting'
the sine function to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Why relevant? Such 'restrictions' are useful when we want to introduce 'arctagent', 'arsne' respectively.

7. Graphs of functions.

To generalize the notion of graphs of functions, we need bring in the notion of cartesian products for two arbitrary sets.

Definition.

Let A, B be sets, and $f : A \longrightarrow B$ be a function. Define $G = \{(x, f(x)) \mid x \in A\}$. G is called the **graph of the function** f. Note that $G \subset A \times B$.

Lemma (2). (Equality of functions and equality of graphs.)

Let A, B be sets, and $f_1, f_2 : A \longrightarrow B$ be functions. Suppose G_1, G_2 are the respective graphs of f_1, f_2 . Then f_1 is equal to f_2 as functions iff $G_1 = G_2$.

Proof of Lemma (2). Exercise in set language.

& .. 'Coordinate plane diagrams'.

We may visualize a function, displaying its graph, by its 'coordinate plane diagram'. We illustrate the idea with the example below:

Let $A = \{m, n, p, q, r, s, t, ...\}$, $B = \{c, d, e, g, h, ...\}$, and $f : A \longrightarrow B$ be defined by f(m) = d, f(n) = e, f(p) = e, f(q) = h, f(r) = h, f(s) = h, f(t) = h, ...

By definition, the graph of f is the set

$$G = \{(m, d), (n, e), (p, e), (q, h), (r, h), (s, h), (t, h), \dots\}$$

We draw the 'coordinate plane diagram' of the function f as:

9. 'Blobs-and-arrows diagram' versus 'coordinate plane diagram'.

Depending on how we like the 'information' concerned with a given function $f: A \longrightarrow B$ is presented, we may draw its 'coordinate plane diagram' or its 'blobs-and-arrows diagram'.

Each has its own advantage.

The two diagrams may be converted from one to the other in a systematic way.

Illustration:

Let
$$A = \{m, n, p, q, r, s, t, ...\}$$
, $B = \{c, d, e, g, h, ...\}$, and $f : A \longrightarrow B$ be defined by $f(m) = d, f(n) = e, f(p) = e, f(q) = h, f(r) = h, f(s) = h, f(t) = h, ...$

(a) 'Coordinate plane diagram' of f:

(b) In-between the two kinds of diagrams:

(c) 'Blobs-and-arrows diagram' of f:

10. Basic examples of functions in school maths and beyond.

We have encountered various examples of functions in school mathematics and in basic MATH courses.

- (a) Polynomial functions with real coefficients.
- (b) Rational functions with real coefficients.
- (c) 'Algebraic functions' in school maths.
- (d) Elementary transcendental functions.
- (e) 'Multivariable functions' in multivariable calculus.
- (f) Functions of one complex variable.
- (g) Infinite sequences and families.
- (h) 'Algebraic operations' for algebraic structures.
- (i) Linear transformations and 'transformation for various algebraic structures'.
- (j) Various 'operations' in calculus and beyond.