1 Conjugate Function

1.1 Extended Real-valued functions

Sometimes, we may allow functions to take infinite values. For example the indicator function of a set X defined by

$$\delta_X(x) = \begin{cases} 0 & x \in X \\ \infty & x \notin X \end{cases}$$

These functions are characterize by their epigraph.

The *epigraph* of a function $f: X \to [-\infty, \infty]$, where $X \subset \mathbb{R}^n$, is given by

$$epi(f) = \{(x, w) | x \in X, w \in \mathbb{R}, f(x) \leq w\}.$$

The *effective domain* of f is given by

$$\operatorname{dom}(f) = \{x | f(x) < \infty\}.$$

Note that dom(f) is just the projection of epi(f) on \mathbb{R}^n .

We also say f is proper if $f(x) < \infty$ for at least one $x \in X$ and $f(x) > -\infty$ for all $x \in X$. We say f is *improper* if it is not proper. By considering epi(f), it means that epi(f) is not empty and does not conatin any vertical line.

Next, we will extend our definition of convexity to extended real-valued function. Since the sum $-\infty + \infty$ is not well defined, we cannot follow the definition in the real-valued case. The epigraph provides us a way to deal with this.

We say a extended real-valued function $f : \mathbb{R}^n \to [-\infty, \infty]$ is *convex* if $epi(f) \subset \mathbb{R}^{n+1}$ is convex.

If the epigraph of a function $f : \mathbb{R}^n \to [-\infty, \infty]$ is closed, we say that f is a *closed* function.

1.2 Conjugate Function

Consider a function $f : \mathbb{R}^n \to [-\infty, \infty]$. The conjugate function of f is the function $f^* : \mathbb{R}^n \to [\infty, \infty]$ defined by

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle x, y \rangle - f(x) \}$$

Remark: f^* is convex even if f is not convex.

Figure 1.6.1. Visualization of the conjugate function

$$f^{\star}(y) = \sup_{x \in \Re^n} \left\{ x'y - f(x)
ight\}$$

of a function f. The crossing point of the vertical axis with the hyperplane that has normal (-y, 1) and passes through a point $(\overline{x}, f(\overline{x}))$ on the graph of f is

$$f(\overline{x}) - \overline{x}'y.$$

Thus, the crossing point corresponding to the hyperplane that supports the epigraph of f is

$$\inf_{x\in\Re^n} \{f(x)-x'y\},\,$$

which by definition is equal to $-f^{\star}(y)$.

Examples of conjugate functions

1. $f(x) = ||x||_1$

$$f^*(a) = \sup_{x \in \mathbb{R}^n} \langle x, a \rangle - ||x||_1$$
$$= \sup \sum (a_n x_n - |x_n|)$$
$$= \begin{cases} 0 & ||a||_\infty \le 1\\ \infty & \text{otherwise} \end{cases}$$

2.
$$f(x) = ||x||_{\infty}$$

$$f^*(a) = \sup_{x \in \mathbb{R}^n} \sum a_n x_n - \max_n |x_n|$$

$$\leq \sup \sum |a_n| |x_n| - \max_n |x_n|$$

$$\leq \max_n |x_n| ||a||_1 - \max_n |x_n|$$

$$\leq \sup ||x||_{\infty} (||a||_1 - 1)$$

$$= \begin{cases} 0 & ||a||_1 \le 1 \\ \infty & \text{otherwise} \end{cases}$$

If $||a||_1 \leq 1$, $\langle 0, a \rangle - ||0||_{\infty} = 0$, $f^*(a) \geq 0$ in this case. If $||a||_1 > 1$, then $\langle x, a \rangle - ||x||_{\infty}$ is unbounded. Hence

$$f^*(a) = \begin{cases} 0 & ||a||_1 < 1\\ \infty & \text{otherwise} \end{cases}$$

We can also consider the conjugate of f^* (double conjugate of f). It is given by

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{ \langle y, x \rangle - f^*(y) \}$$

It is natural to ask whether $f = f^{**}$. Indeed, this is true under some conditions.

Proposition: Let $f : \mathbb{R}^n \to [-\infty, \infty]$ be a function. Then:

- 1. $f(x) \ge f^{**}(x)$ for all $x \in \mathbb{R}^n$.
- 2. If f is closed, proper and convex, then $f(x) = f^{**}(x)$.

Proof. (1) For all x and y, we have

$$f^*(y) \ge \langle x, y \rangle$$

So $f(x) \ge \langle x, y \rangle - f^*(y)$ for all x, y. (*) Therefore, $f(x) \ge \sup\{\langle x, y \rangle - f^*(y)\} = f^{**}(x)$. (2) By (1), we have $\operatorname{epi}(f) \subset \operatorname{epi}(f^{**})$. We need to show $\operatorname{epi}(f^{**}) \subset \operatorname{epi}(f)$. It suffices to show that $(x, f^{**}(x)) \in \operatorname{epi}(f)$. So suppose not. Since $\operatorname{epi}(f)$ is a closed convex set, $(x, f^{**}(x))$ can be strictly separated from $\operatorname{epi}(f)$. Hence

$$\langle y, z \rangle + bs < c < \langle y, x \rangle + bf^{**}(x)$$

for some y, b, c, and for all $(z, s) \in epi(f)$.

We may assume $b \neq 0$ (If not, add $\epsilon(\overline{y}, -1)$ to (y, b), where $\overline{y} \in \text{dom}f^*$). We must have b < 0. Since if b > 0, we have a contradiction by choosing s large.

Therefore, we further assume b = -1. Hence, in particular, we have

$$\langle y, z \rangle - f(z) < c < \langle y, x \rangle - f^{**}(x)$$

Then taking supremum over z, we have

$$f^*(y) + f^{**}(x) < \langle x, y \rangle$$

This is a contradiction to (*). Hence $epi(f^{**}) = epi(f)$. Therefore, $f = f^{**}$.