1 Conjugate Function

1.1 Extended Real-valued functions

Sometimes, we may allow functions to take infinite values. For example the indicator function of a set X defined by

$$
\delta_{X}(x)= \begin{cases}0 & x \in X \\ \infty & x \notin X\end{cases}
$$

These functions are characterize by their epigraph.
The epigraph of a function $f: X \rightarrow[-\infty, \infty]$, where $X \subset \mathbb{R}^{n}$, is given by

$$
\operatorname{epi}(f)=\{(x, w) \mid x \in X, w \in \mathbb{R}, f(x) \leqslant w\} .
$$

The effective domain of f is given by

$$
\operatorname{dom}(f)=\{x \mid f(x)<\infty\} .
$$

Note that $\operatorname{dom}(f)$ is just the projection of $\operatorname{epi}(f)$ on \mathbb{R}^{n}.
We also say f is proper if $f(x)<\infty$ for at least one $x \in X$ and $f(x)>-\infty$ for all $x \in X$. We say f is improper if it is not proper. By considering epi (f), it means that epi (f) is not empty and does not conatin any vertical line.

Next, we will extend our definition of convexity to extended real-valued function. Since the sum $-\infty+\infty$ is not well defined, we cannot follow the definition in the real-valued case. The epigraph provides us a way to deal with this.

We say a extended real-valued function $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ is convex if $\operatorname{epi}(f) \subset \mathbb{R}^{n+1}$ is convex.

If the epigragh of a function $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ is closed, we say that f is a closed function.

1.2 Conjugate Function

Consider a function $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$. The conjugate function of f is the function $f^{*}: \mathbb{R}^{n} \rightarrow[\infty, \infty]$ defined by

$$
f^{*}(y)=\sup _{x \in \mathbb{R}^{n}}\{\langle x, y\rangle-f(x)\}
$$

Remark: f^{*} is convex even if f is not convex.

Figure 1.6.1. Visualization of the conjugate function

$$
f^{\star}(y)=\sup _{x \in \Re^{n}}\left\{x^{\prime} y-f(x)\right\}
$$

of a function f. The crossing point of the vertical axis with the hyperplane that has normal $(-y, 1)$ and passes through a point $(\bar{x}, f(\bar{x}))$ on the graph of f is

$$
f(\bar{x})-\bar{x}^{\prime} y
$$

Thus, the crossing point corresponding to the hyperplane that supports the epigraph of f is

$$
\inf _{x \in \Re^{n}}\left\{f(x)-x^{\prime} y\right\}
$$

which by definition is equal to $-f^{\star}(y)$.

Examples of conjugate functions

1. $f(x)=\|x\|_{1}$

$$
\begin{aligned}
f^{*}(a) & =\sup _{x \in \mathbb{R}^{n}}\langle x, a\rangle-\|x\|_{1} \\
& =\sup \sum\left(a_{n} x_{n}-\left|x_{n}\right|\right) \\
& = \begin{cases}0 & \|a\|_{\infty} \leq 1 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

2. $f(x)=\|x\|_{\infty}$

$$
\begin{aligned}
f^{*}(a) & =\sup _{x \in \mathbb{R}^{n}} \sum a_{n} x_{n}-\max _{n}\left|x_{n}\right| \\
& \leq \sup \sum\left|a_{n} \| x_{n}\right|-\max _{n}\left|x_{n}\right| \\
& \leq \max _{n}\left|x_{n}\right|\|a\|_{1}-\max _{n}\left|x_{n}\right| \\
& \leq \sup \|x\|_{\infty}\left(\|a\|_{1}-1\right) \\
& = \begin{cases}0 & \|a\|_{1} \leq 1 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

If $\|a\|_{1} \leq 1,\langle 0, a\rangle-\|0\|_{\infty}=0, f^{*}(a) \geq 0$ in this case. If $\|a\|_{1}>1$, then $\langle x, a\rangle-\|x\|_{\infty}$ is unbounded. Hence

$$
f^{*}(a)= \begin{cases}0 & \|a\|_{1}<1 \\ \infty & \text { otherwise }\end{cases}
$$

We can also consider the conjugate of f^{*} (double conjugate of f). It is given by

$$
f^{* *}(x)=\sup _{y \in \mathbb{R}^{n}}\left\{\langle y, x\rangle-f^{*}(y)\right\}
$$

It is natural to ask whether $f=f^{* *}$. Indeed, this is true under some conditions.

Proposition: Let $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ be a function. Then:

1. $f(x) \geq f^{* *}(x)$ for all $x \in \mathbb{R}^{n}$.
2. If f is closed, proper and convex, then $f(x)=f^{* *}(x)$.

Proof. (1) For all x and y, we have

$$
f^{*}(y) \geq\langle x, y\rangle
$$

So $f(x) \geq\langle x, y\rangle-f^{*}(y)$ for all x, y. ($\left.^{*}\right)$
Therefore, $f(x) \geq \sup \left\{\langle x, y\rangle-f^{*}(y)\right\}=f^{* *}(x)$.
(2) By (1), we have $\operatorname{epi}(f) \subset \operatorname{epi}\left(f^{* *}\right)$. We need to show $\operatorname{epi}\left(f^{* *}\right) \subset \operatorname{epi}(f)$. It suffices to show that $\left(x, f^{* *}(x)\right) \in \operatorname{epi}(f)$. So suppose not.
Since epi (f) is a closed convex set, $\left(x, f^{* *}(x)\right)$ can be strictly separated from epi(f). Hence

$$
\langle y, z\rangle+b s<c<\langle y, x\rangle+b f^{* *}(x)
$$

for some y, b, c, and for all $(z, s) \in \operatorname{epi}(f)$.
We may assume $b \neq 0$ (If not, add $\epsilon(\bar{y},-1)$ to (y, b), where $\bar{y} \in \operatorname{dom} f^{*}$).
We must have $b<0$. Since if $b>0$, we have a contradiction by choosing s large.
Therefore, we further assume $b=-1$. Hence, in particular, we have

$$
\langle y, z\rangle-f(z)<c<\langle y, x\rangle-f^{* *}(x)
$$

Then taking supremum over z, we have

$$
f^{*}(y)+f^{* *}(x)<\langle x, y\rangle
$$

This is a contradiction to $\left({ }^{*}\right)$. Hence $\operatorname{epi}\left(f^{* *}\right)=\operatorname{epi}(f)$. Therefore, $f=f^{* *}$.

