
 1

CSC 323 Algorithm Design and Analysis

Module 1 – Analyzing the Efficiency of Algorithms
Instructor: Dr. Natarajan Meghanathan

Sample Questions and Solutions

1) (a) Derive an expression for the average number of key comparisons in a sequential search algorithm,

as a function of the number of elements (n) in the list and the probability (p) of finding an integer key.

(b) Consider a list with 10 integers as keys. The probability of finding an integer key using sequential

search on this 10-element list is 0.3. Using the expression derived in (a), compute the average number

of key comparisons that would be needed on this 10-element list.

(a)

(b)

Substituting for n=10 and p=0.3 in the above equation, we get Cavg(n) = (0.3)(11/2) + (10)(0.7) = 8.65.

2) Consider the classical sequential search algorithm (of looking for a key in a list of keys) and a

variation of sequential search that scans a list to return the number of occurrences of a given search

key in the list. Compare the best-case, worst-case and average-case efficiency as well as the overall

time complexity of the classical sequential search with that of its variation.

In the classical sequential search (question above), the best-case scenario would be when the search is the

first element in the list – thus, requiring only 1 key comparison. At the worst-case, we would have to do n

key comparisons on an n-element list if the search key is the last element in the list or is not at all in the
list. The average case # of key comparisons is given by (n+1)/2, when we substitute for p = 1 in the above

equation (see Q1-(a)). The overall time complexity is O(n).

With the variation of sequential search, the entire list has to be always searched for (i.e., scanned) to

determine the number of occurrences of the search key. This way, the best-, average- and worst-case

number of comparisons for sequential are the same. The overall time complexity is Θ(n).

 2

3) If t1(n) ∈ O(g1(n)) and t2(n) ∈ O(g2(n)), then prove that t1(n) + t2(n) ∈ O(max{g1(n), g2(n)})

4) For each of the following functions, indicate the class Θ(g(n)) the function belongs to. Use the simplest

g(n) possible in your answers. Prove your assertions (Hint: Use the Limits approach)

a)

b)

c)

d)

 3

5) Give formal definitions for the Big-Oh (O), Big-Omega (Ω) and Big-Theta (Θ) asymptotic notations.

Illustrate the definition using appropriate figures.

6)

 4

7)

 5

8)

 6

9) Consider the standard definition-based algorithm to add two n x n matrices.

a. What is its basic operation?

b. How many times the basic operation is performed as a function of the total number of

elements in the input matrices?

c. Answer (a) and (b) for the standard definition-based algorithm for matrix multiplication.

Matrix Addition

Addition is the basic operation. There are n additions per row with each addition operating on 2 integers.

On an n x n matrix with n
2
 integers as the input size, there will be n*n = Θ(n

2
) additions.

Matrix Multiplication

Overall time complexity: Θ(n

3
).

10) Compute the following sums:
a. 1 + 3 + 5 + 7 + … + 999

 Solution: 1 + 3 + 5 + 7 + … + 999 = [1 + 2 + 3 + 4 + 5 + …. 999] – [2 + 4 + 6 + 8 + … + 998]

 = []499....3212
2

1000*999
++++−

 = 500*499500*999
2

500*499
2500*999 −=

−

 = 500*(999-499) = 500*500 = 250,000

 b. 2+ 4 + 8 + 16 + … + 1024

 Solution: 2+ 4 + 8 + 16 + … + 1024 = 2
1
 + 2

2
 + 2

3
 + 2

4
 + … + 2

10

 = [2
0
+ 2

1
 + 2

2
 + 2

3
 + 2

4
 + … + 2

10
] – 1

 7

 = 12
10

0

−

∑

=i

i
= [] 11211

−− = 2046

 c. ∑
+

=

1

3

1
n

i

 = [(n+1) - 3 + 1] = n+1 - 2 = n-1 = Θ(n)

 d. ∑
+

=

1

3

n

i

i = 3 + 4 + + (n+1) = [1 + 2 + 3 + 4 + + (n+1)] - [1 + 2]

 = 3
2

)1(
−

+nn
= Θ(n

2
) - Θ(1) = Θ(n

2
)

e. ∑
−

=

+
1

0

)1(
n

i

ii

=)1()1(
0

+−

+∑

=

nnii
n

i

 =)1(
00

2
+−

+∑∑

==

nnii
n

i

n

i

= Θ(n
3
) + Θ(n

2
) - Θ(n

2
) - Θ(n) = Θ(n

3
).

Alternate Way:

∑
−

=

+
1

0

)1(
n

i

ii = ∑ ∑ ∑
−

=

−

=

−

=

+=+
1

0

1

0

1

0

22
n

i

n

i

n

i

iiii

=

 +−−
+

 +−+−−

2

]1)1][(1[

6

]1)1(2][1)1][(1[nnnnn

=

 −
+

 −−

2

]][1[

6

]12][][1[nnnnn

= Θ(n
3
) + Θ(n

2
) = Θ(n

3
)

11) Find the order of growth of the following sums. Use the Θ(g(n)) notation with the simples possible

g(n):

a)

b)

 8

12) Answer the following questions for the algorithms (pseudo code) given below:

a) What does this algorithm compute?
b) What is its basic operation?

c) How many times is the basic operation executed (best and worst-cases)?

d) What is the overall time complexity of this algorithm?

 (i) (ii)

(i)

(a) The algorithm computes the sum of the squares of integers from 1 to n, where n is the input
(b) The basic operation is multiplication

(c) The multiplication is executed n times (both best and worst-cases)

Efficiency = ∑
=

=
n

i

n
1

1

(d) 1limlim ==
−

−

∞>−∞>− n

n

caseWorst

caseBest

nn
. Hence, Overall time complexity is Θ(n).

(ii)

(a) The algorithm determines whether the input matrix is symmetric (returns true) or not (returns

false). Example of a symmetric matrix is:
 1 4 3 6

 4 5 2 1

 3 2 8 7

 6 1 7 9
(b) The basic operation is the comparison of the matrix elements

(c) At the best-case, if the first comparison itself fails, then the algorithm stops returning that the

matrix is not symmetric. Depending on the matrix, the algorithm could also stop anywhere, with
the number of comparisons ranging from the best-case to the worst-case.

The worst-case number of comparisons is incurred if all the iterations are executed:

∑ ∑ ∑∑
−

=

−

=

−

=

−

+=

−−
−−−=−−=++−−=

2

0

2

0

2

0

1

1 2

)1)(2(
)1)(1()1(]1)1()1[(1

n

i

n

i

n

i

n

ij

nn
nninin

=
2

)1(

2

222
)1(

−
=

 +−−
−

nnnn
n =

22

2
nn

−

(d) 0
2/)1(

1
limlim =

−
=

−

−

∞>−∞>− nncaseworst

casebest

nn

The overall time complexity of the algorithm is O(n
2
).

13) Analyze the worst-case run-time complexity of the following algorithm to determine whether or not

the elements of an array are unique. Show all your work.

 9

Solution:

Best-case = 1 comparison.

Hence, overall time complexity is O(n
2
).

14) Develop a Θ(nlogn) algorithm to determine whether or not the elements of an array are unique.

Analyze its overalln-time complexity. Hint: First, pre-sort the array using any Θ(nlogn) algorithm

Solution:

Use a Θ(nlogn) algorithm to sort the n-elements of the array. Then, scan the elements of the scanned array

from index 0 to n-2 (compare elements at indices 0 and 1, at indices 1 and 2, and etc until elements at
indices n-2 and n-1). If in any of these n-1 = Θ(n) comparisons, the two elements compared are observed

to be the same, then the elements of the array are not unique. The overall run-time complexity is Θ(nlogn)

+ Θ(n) = Θ(nlogn).

15) Develop an algorithm to compute the largest element in an array of n integers. Analyze its overall

time complexity.

Solution:

The basic operation is the element comparison operation that is executed n-1 times (as part of the if

statement inside the for loop). The best and worst-case comparisons are n-1. Hence, the overall-time

complexity is n-1 = O(n).

 10

16) Analyze the best, worst and overall time complexity of the following algorithm to determine whether

an integer is prime or not. What is the basic operation? Show all your work.

Solution:
"Division" is the basic operation. At the minimum (best-case), we may do just one division and if the

number is not prime, we would stop the algorithm (returning false). At the maximum (worst-case), we
may do n-2 divisions, to test whether the number n is divisible by 2, 3, ..., n-1.

0
2

1
limlim =

−
=

−

−

∞>−∞>− ncaseworst

casebest

nn

Hence, the overall time complexity is O(n).

17) Solve the following recurrence relations:

a) X(n) = X(n-1) + 5, for n > 1, X(1) = 0

 = Θ(n)

b) X(n) = 3*X(n-1) for n > 1, X(1) = 4

= (4/3)3

n
 = Θ(3

n
)

 11

c) X(n) = X(n-1) + n for n > 0, X(0) = 0

X(n) = Θ(n

2
)

d) X(n) = X(n/2) + n, for n > 1, X(1) = 1 [Solve for n = 2
k
]

X(n) = Θ(n)

e) X(n) = X(n/3) + 1 for n > 1, X(1) = 1 [Solve for n = 3
k
]

X(n) = Θ(logn)

 12

18)

19)

 13

20) Set up and solve a recurrence relation for the number of multiplications to be done while

computing F(n) = n! through a recursive algorithm.

21) Consider the following recursive algorithm for computing the sum of the first n cubes: S(n) = 1
3

+ 2
3
 + … + n

3
.

 14

a) Set up and solve a recurrence relation for the number of times the algorithm’s basic operation is

executed.
Multiplication is the basic operation. The recurrence relation is: M(n) = M(n-1) + 2 for n > 1; M(1) = 0

Solving using backward substitution, we get:

M(n) = Θ(n)
b) How does this algorithm compare with the straightforward non-recursive algorithm for computing this

function?

