CSC 323 Algorithm Design and Analysis
Module 1 - Analyzing the Efficiency of Algorithms
Instructor: Dr. Natarajan Meghanathan

Sample Questions and Solutions

1) (a) Derive an expression for the average number of key comparisons in a sequential search algorithm,
as a function of the number of elements (n) in the list and the probability (p) of finding an integer key.

(b) Consider a list with 10 integers as keys. The probability of finding an integer key using sequential
search on this 10-element list is 0.3. Using the expression derived in (a), compute the average number
of key comparisons that would be needed on this 10-element list.

(a)
« If pis the probability of finding an element in the list, then (1-p) is the
probability of not finding an element in the list.

« Also, on an n-element list, the probability of finding the search key as
the i element in the list is p/n for all values of 1 <i<n
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« Ifp =1 (the element that we will search for always exists in the list),
then C,,,(n) = (n+1)/2. That is, on average, we visit half of the entries
in the list to search for any element in the list.

< If p =0 (all the time, the element that we will search never exists),
then C,,,(n) = n. That is, we visit all the elements in the list.

(b)
Substituting for n=10 and p=0.3 in the above equation, we get C,,(n) = (0.3)(11/2) + (10)(0.7) = 8.65.

2) Consider the classical sequential search algorithm (of looking for a key in a list of keys) and a
variation of sequential search that scans a list to return the number of occurrences of a given search
key in the list. Compare the best-case, worst-case and average-case efficiency as well as the overall
time complexity of the classical sequential search with that of its variation.

In the classical sequential search (question above), the best-case scenario would be when the search is the
first element in the list — thus, requiring only 1 key comparison. At the worst-case, we would have to do n
key comparisons on an n-element list if the search key is the last element in the list or is not at all in the
list. The average case # of key comparisons is given by (n+1)/2, when we substitute for p = 1 in the above
equation (see Q1-(a)). The overall time complexity is O(n).

With the variation of sequential search, the entire list has to be always searched for (i.e., scanned) to
determine the number of occurrences of the search key. This way, the best-, average- and worst-case
number of comparisons for sequential are the same. The overall time complexity is @(n).



3) Iftl(n) € O(gl(n)) and r2(n) € O(g2(n)), then prove that t1(n) + 2(n) € O(max{gl(n), g2(n)})
For anv four arbitrarv real numbers, a3, by, a; and bz such that a; b and ax b,

Wehave a; +ax = 2max{bi. b}

Since ty(n) € O(gy(n)). then there exists some constant ¢; and non-negative integer n; such that

tin) = cygi(n) forallnzm

e

Since t2 (n) € Oig: (n)). then there exists some constant c: and non-negative integer no such that

Letcs=max{ci.co} andn=max{ny na}
0

ti(m) + t2 (n) ey galn) + ez g2(n)
=c3 gi(n) + c3 gz (n)
=caf gi(n) + g2 (n)}

= 2eymax{ gi(n), g2 (n)}
Hence, ty(n) + tzin) €O(max{ g:(n), g2 (n)}, with the constants ¢ and ny required by the O

definition being 2 cz = 2 max{ c1, cz} and max{nj, na} respectively.

4) For each of the following functions, indicate the class ®(g(n)) the function belongs to. Use the simplest
g(n) possible in your answers. Prove your assertions (Hint: Use the Limits approach)
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Hence (n? +1)!Y € 9(n?").

b)
Informally, v/10n2 4+ Tn + 3 = v/10n2 = /10n € ©(n). Formally,

1 1/10 4+ 2 + 5 = V10.
n—oo

1lin=+Tnt3
n-

lim '“]”'ﬂ_’”_" = lim = lin

n—o0 n—oQ

Hence v10n2 + Tn+ 3 € O(n).

9
2nlg(n+ 2)2 + (n+2)%1g3 = 2n2lg(n+ 2) + (n + 2)%*(Ign — 1)
€ O(nlgn) + O(n%lgn) = O(n’lgn).

d)
27+l 4 3n—1 =272 + 371 € O(27) + ©(3") = O(3")



5) Give formal definitions for the Big-Oh (O), Big-Omega () and Big-Theta (®) asymptotic notations.

lustrate the definition using appropriate figures.

t(n) = O(g(n))

t(n) £ c*g(n) forallnz ng

Cisapositive constant (= 0}

t(n) = Q(g(n))

t(n) 2 c*g(n) foralln = ng

cisapositive constant (= 0)
and ngis a non-negative integer
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t(n) = ©(g(n))
c2*g(n) <t(n) = ct1*g(n)forallnzng

c1and c2 are positive constants (= 0}
and ng is a non-negative integer

and ng is a non-negative integer
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9) Consider the standard definition-based algorithm to add two n x n matrices.

a. What is its basic operation?

b. How many times the basic operation is performed as a function of the total number of
elements in the input matrices?

c. Answer (a) and (b) for the standard definition-based algorithm for matrix multiplication.

Matrix Addition

OO0
0000 «
Ood- Oogno
(NN M| N

Addition is the basic operation. There are n additions per row with each addition operating on 2 integers.
On an n X n matrix with n” integers as the input size, there will be n*n = ©(n’) additions.

OO0 0
minluln

000
000

[]
[]
[]
[]

ooog!

Matrix Multiplication

rowi |[[ [ [ []] Cli.jl
col. j
Cli, j]1= A[i, 0)B[O, j]+- - -+ A[i, k]B[k, j1+ - -+ + A[i.,n —1]B[n — 1, j]

n—1a-1n-1 n—1 n-1 n—1

M(H]=ZEZ].=ZZH=ZH2=H3.

i=0 j=0 k=0 i=0 j=0 i=0
Overall time complexity: omd).
10) Compute the following sums:

a.1+3+5+7+...+999
Solution: 1 +3+5+7+...+4999=[1+2+3+4+5+....999]-[2+4+6+8+ ... +998]

*k
=w—2[1+2+3+....+499]

=999*500-2

*
[M} =999*500-499 *500

=500%(999-499) = 500*500 = 250,000
b.2+4+8+16+ ... + 1024

Solution: 2+ 4 +8 + 16+ ... + 1024 =2" + 22 + 2> + 2* + ... 4+ 210
=2%+2'+ 22+ 2+ 2%+ . 42191
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- {zzi}l: 2" —1]-1=2046
i=0
n+l

¢. 1 =[(+])-3+1]=n+l-2=n-1=0O(n)

i=3

d. Zi =3+4+ ... +(m+)=[14+2+3+4+ ...+ (m+])]-[1+2]

= -3=0@®% - 0(1) = O(n?)

{Zl(l +1)} —n(n+1) = {zl + ZZ}—H(H+1)

i=0

= G)(n ) + G)(n ) - G)(n )-0Om) = G)(n ).
Alternate Way:

n-1 n-1 n—1 n—1
Dii+D= Y P +i=) i+ )i
i=0 i=0 i=0 i=0

_ [[n—l][(n—lHl][Z(n—l)+1]}+[[n—1][(n—1)+1]}

6 2
_ [[n—1][n][2n—1]}+[[n—1][n]}
6 2
= 0@ + O’ = (1)
£33+ =3%3 =3[y 3 —1] =3[ —1] = T5=2
'= J:] j:[]

11) Find the order of growth of the following sums. Use the ®(g(n)) notation with the simples possible
g(n):

a)
n—1 -1 n—1 n—1 n—1
Z(a +1)? = Zz+21 +1) =Y d#+2¥ 2+ X1
=0 i=0 i=0 =0
O(n®) + 0(n?) +0(n) = O(n)
b)
n—1i—1 n—1 i— 1]1] n—1 3.5 1
(i+4)= ZZH'ZJ] +{58 = Y [3:° - 34
=0 j=0 i=0 ;=0 J= _0 =0
n—1 n—1



12) Answer the following questions for the algorithms (pseudo code) given below:
a) What does this algorithm compute?
b) What is its basic operation?
¢) How many times is the basic operation executed (best and worst-cases)?
d) What is the overall time complexity of this algorithm?

@) (i)
- : . Algorithm Enigma(A[0.n —1,0.n — 1])

ﬁllgorlt_h].;l Mystﬂ’y(?j»] _ //Input: A matrix A[0.n —1,0.n — 1] of real numbers
//Input: A nonnegative integer n fori—0ton—2do
5‘-—_0 forj—i+1ton—1do
for i 1 ton do if Ali,j] # Alj, 1)

S8+t return false
return S return true
@

(a) The algorithm computes the sum of the squares of integers from 1 to n, where n is the input
(b) The basic operation is multiplication

(c) The multiplication is executed n times (both best and worst-cases)

Efficiency = ZI =n
i=1

. Best— .
(d) lim DT i Loy, Hence, Overall time complexity is @(n).
n—>=Worst —case ">>n

(i)
(a) The algorithm determines whether the input matrix is symmetric (returns true) or not (returns
false). Example of a symmetric matrix is:

4 3 6
4 2 1
3 2 7
6 1 [

(b) The basic operation is the comparison of the matrix elements

(c) At the best-case, if the first comparison itself fails, then the algorithm stops returning that the
matrix is not symmetric. Depending on the matrix, the algorithm could also stop anywhere, with
the number of comparisons ranging from the best-case to the worst-case.

The worst-case number of comparisons is incurred if all the iterations are executed:
n=2 n-1 n=2

2 21:z[(”_l)_(i+1)+1]=f(n—l)—i:(n—l)(n_l)_w

i=0 j=i+l =0 2

_ (n_l)[Zn—Z—n+2}:n(n—l)= n_z_n

2 2 2 2
@ lim best —case — lim 1 _

n—>e worst —case r—>>n(n—1)/2
The overall time complexity of the algorithm is O(nd).

13) Analyze the worst-case run-time complexity of the following algorithm to determine whether or not
the elements of an array are unique. Show all your work.



ALGORITHM  UnigueElements(A[0..n — 1])
//Determines whether all the elements in a given array are distinet
/fInput: An array A[0.n — 1] . _
/fOutput: Returns “true™ if all the elements in A are distinct
f and “false” otherwise
ior: «—0ton —-2do
forj —i+1ton—1do
if A[i]= A[/] return false
return true

Solution:
n—2 n-1
er:r(n]=z Z I—Z[fn— 1]—[!-!—1}4—]]—-2[;:—1_;}
!—L'!;—;+1 i=l "
_Zfri—l}—z;—m_l]zl_ 2}("—1]
i=0
=(n— 1]2 _ (n—2)(n—1) _ fﬂ — 1)n ~ _"2

Best-case =1 comparison.
Hence, overall time complexity is O(n?).

14) Develop a ®(nlogn) algorithm to determine whether or not the elements of an array are unique.
Analyze its overalln-time complexity. Hint: First, pre-sort the array using any ®(nlogn) algorithm

Solution:

Use a O(nlogn) algorithm to sort the n-elements of the array. Then, scan the elements of the scanned array
from index O to n-2 (compare elements at indices O and 1, at indices 1 and 2, and etc until elements at
indices n-2 and n-1). If in any of these n-1 = ®(n) comparisons, the two elements compared are observed
to be the same, then the elements of the array are not unique. The overall run-time complexity is @(nlogn)
+ O(n) = O(nlogn).

15) Develop an algorithm to compute the largest element in an array of n integers. Analyze its overall
time complexity.

Solution:
ALGORITHM LargestElenent(AJ0...n-1])
max = A[0]
fori < 1ton-1do
if max < A[i] then
max = Ali]
end if
end for

return max

The basic operation is the element comparison operation that is executed n-1 times (as part of the if
statement inside the for loop). The best and worst-case comparisons are n-1. Hence, the overall-time
complexity is n-1 = O(n).
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16) Analyze the best, worst and overall time complexity of the following algorithm to determine whether
an integer is prime or not. What is the basic operation? Show all your work.

Input: Integer n
OQutput: True (is prime) or False (not prime)

fori=2ton-1do
if (7 mod i = 0) then
return false
end if
end for

return true

Solution:

"Division" is the basic operation. At the minimum (best-case), we may do just one division and if the
number is not prime, we would stop the algorithm (returning false). At the maximum (worst-case), we
may do n-2 divisions, to test whether the number n is divisible by 2, 3, ..., n-1.

lim best — case ~ lim 1 ~0

n=> yWorst —case "—><n—2

Hence, the overall time complexity is O(n).

17) Solve the following recurrence relations:
a) XmM)=Xm-1)+5, forn>1,X(1)=0
z(n) = =zn-1)+5
[#(n—2)+5]+b=a2(n—-2)+5-2
= [#(n—-3)+5]+5-2=2(n—3)+5-3

x(n—1)+51

z(1)4+5-(n—1)=5(n—-1).
= 0O(n)

b) X(n) = 3*X(n-1) for n>1,X(1) =4
z(n) = 3z(n-1)

3[3z(n — 2)] = 3z(n — 2)

3%[3z(n —3)] = 3%°z(n - 3)

3iz(n —1)

= 3"71z(1)=4-3""1
= (4/3)3" = O(3")
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¢)X(m)=Xm-1)+n forn>0,X0)=0
z(n) = =z(n-1)+n

= [zn=-2)+(n=-1)+n=2zn—-2)+(n—-1)+n
[zn=3)+(n=2)+(n—-1)+n=zn—-3)+(n—-2)+(n—-1)+n

zn—1)+n—2+1)+(n—242)+--+n

n(n+1)

= 2(0)+1+2+ - +n=—7

X(n) = O(n’)

d) X(n)=X®/2)+n, forn>1,X(1)=1 [Solve for n= 2k]

= [x(gk_zj + Qk_]] + 2k = z(2F~2) 4 9k—1 4 9k
= (250 425 42 42 = p(250) 4 252 9k 40k

_ .”L'[Qk_i)—FQk_i_l +2k‘—i+2+_“+2k

2(2F) 42t 422y 2R =12t 422y 2k
= 981 _1=92.9" _1=9n_1.
X(m) = O()

e ) Xm)=Xw3)+1 forn>1, X(1)=1 [Solve for n= 3k]
z(3F) = =2(3*")+1

[2(3* )+ 1]+ 1==2(3"2) 42
2(3* ) + 1) +2==2(3*3) +3

= 2(3¥ %)+

= 23 ") +k=2(1)+k=1+loggn
X(n) = O(logn)
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18)

Consider the following recursive algorithm:

Algorithm Q(n)

//Input: A positive integer n

if n =1 return 1

else return @Q(n—1)+2+n—1

Set up a recurrence relation for this function’s values and solve it to determine what this algorithm
computes.

Qn)=Qn—-1)+2n—-1 forn>1 Q(1)=1

Computing the first few terms of the sequence yields the following:
QR2)=Q(1)+2-2-1=1+2-2-1=4;
Q3)=Q(2)+2-3—-1=4+2-3-1=09;
QM4)=Q(3)+2-4-1=9+2-4-1=16.

Thus, it appears that Q(n) = n®. We'll check this hypothesis by substi-
tuting this formula into the recurrence equation and the initial condition.

The left hand side yields @Q(n) = n®. The right hand side yields

Qn—-1)+2n—-1=(n-1>2+2n—-1=n.

19)
Consider the following algorithm to determine the number of bits needed for the binary representation
of a positive integer n. Set up a recurrence relation for the number of times the basic operation is
executed and solve for the same.

ALGORITHM BinRec(n)
/Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation
ifn =1return 1
else return BinRec(|n/2]) + 1

Solution:

Addition is the basic operation. # additions: A(m)=A(ln/2)+1 forn>1. A(D)=0

Since the recursive calls end when n is equal to 1 and there are no additions made
then, the initial condition is

1 1 bit
g -3 2 bits
Solution Approach: If we use the backward substitution g:is 2 E:Eg
method (as we did in the previous two examples, we will 16-31 5 hite
get stuck for values of n that are not powers of 2). 32-63 6 bits

We proceed by setting n = 2 for k = 0.

New recurrence A2H =AY 41 fork>0
relation to solve: 5 - : )
A(2") =0.
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A2H =AY +1 substitute A(25-1) = A(2¥-2) +1
=[A2*2) +1]4+1=A@2*2) +2 substitute A(2*-2) = A(2*—3) 4+ 1
=[A@*?) +1]4+2=A2"3) +3

=AY +i

= A" 4 k.

A(n) =log, n € O(log n).

20) Set up and solve a recurrence relation for the number of multiplications to be done while
computing F(n) = n! through a recursive algorithm.

ALGORITHM F(n)
//Computes n! recursively
//Input: A nonnegative integer »
//Output: The value of n!
ifn =0return 1
else return F(n — 1) #n

Mn)=M(n—-1) + 1 forn = 0.
to compute to multiply
Fin-1) Fin—1) by n

Mn)=Mm —-1)+1 forn=0,
M(0)=0.

M(0)=0

the calls stop when n=0 T T no multiplications when n= 0

Mn-1)=M(n-2)+ 1; Mn-2)=M(n-3)+1
M(n) = [M(n-2)+1]+ 1 =M(n-2) + 2 = [M(n-3)+1+2] = M(n-3) + 3
= M(n-n) + n=n = O(n)

21) Consider the following recursive algorithm for computing the sum of the first n cubes: S(n) = 1
+2°+...+0.

Algorithm S(n)

//Input: A positive integer n
//Output: The sum of the first n cubes
if n =1 return 1

else return S(n— 1)+ n+n=*n
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a) Set up and solve a recurrence relation for the number of times the algorithm’s basic operation is
executed.
Multiplication is the basic operation. The recurrence relation is: M(n) = M(n-1) + 2 forn> 1; M(1) =0
Solving using backward substitution, we get:
M(n) = Mn-1)+2

= Mn-2)+21+2=M(n-2)+2+2

= Mn-3)+2]+24+2=Mn-3)+2+2+2
= Mn-1)+2

= M) +2n—-1)=2(n-1).
M(n) = O(n)
b) How does this algorithm compare with the straightforward non-recursive algorithm for computing this
function?

b. Non-recursive version

Algorithm NonrecS(n)
//Computes the sum of the first n cubes nonrecursively
//Input: A positive integer n
//Output: The sum of the first n cubes.
S—1
forz — 2 ton do
S—S4rx232
return S

The number of multiplications made by this algorithm is given by:

n n

Y 2=2)1=2(r-1)

1=2 =2



