Module 1:
Analyzing the Efficiency of
Algorithms

Dr. Natarajan Meghanathan
Associate Professor of Computer Science
Jackson State University
Jackson, MS 39217
E-mail: natarajan.meghanathan@jsums.edu

Based on Chapter 2 in the Textbook

What is an Algorithm?

An algorithm is a sequence of unambiguous instructions for solving a
problem, i.e., for obtaining a required output for any legitimate input in
a finite amount of time. Problem

v

Algorithm

v

Input =—=> | Computer | —> Output

Important Points about Algorithms

— The non-ambiguity requirement for each step of an algorithm
cannot be compromised

— The range of inputs for which an algorithm works has to be
specified carefully.

— The same algorithm can be represented in several different ways

— There may exist several algorithms for solving the same problem.

« Can be based on very different ideas and can solve the problem with
dramatically different speeds

The Analysis Framework

Time efficiency (time complexity): indicates how fast an algorithm
runs

Space efficiency (space complexity): refers to the amount of
memory units required by the algorithm in addition to the space
needed for its input and output

Algorithms that have non-appreciable space complexity are said to
be in-place.

The time efficiency of an algorithm is typically as a function of the
input size (one or more input parameters)

— Algorithms that input a collection of values:

» The time efficiency of sorting a list of integers is represented in terms of the
number of integers (n) in the list

» For matrix multiplication, the input size is typically referred as n*n.
» For graphs, the input size is the set of Vertices (V) and edges (E).

— Algorithms that input only one value:

» The time efficiency depends on the magnitude of the integer. In such cases,
the algorithm efficiency is represented as the number of bits 1+ _log2 nJ
needed to represent the integer n

Units for Measuring Running Time

The running time of an algorithm is to be measured with a unit that is
independent of the extraneous factors like the processor speed,
quality of implementation, compiler and etc.

— At the same time, it is not practical as well as not needed to count the
number of times, each operation of an algorithm is performed.

Basic Operation: The operation contributing the most to the total
running time of an algorithm.
— It is typically the most time consuming operation in the algorithm’s
innermost loop.

- Examples: Key comparison operation; arithmetic operation (division being
the most time-consuming, followed by multiplication)

— We will count the number of times the algorithm’s basic operation is
executed on inputs of size n.

input size

running time execution time Number of times
for basic operation basic operation 1s

executed

Examples for

Input Size and Basic Operations

Problem

Input size measure

Basic operation

Searching for key in a
list of nitems

Number of list’s items,
l.e. n

Key comparison

Multiplication of two
matrices

Matrix dimensions or
total number of elements

Multiplication of two
numbers

Checking primality of
a given integer n

n'size = number of digits
(in binary representation)

Division

Typical graph problem

#vertices and/or edges

Visiting a vertex or
traversing an edge

Orders of Growth

We are more interested in the order of growth on the number of times
the basic operation is executed on the input size of an algorithm.

Because, for smaller inputs, it is difficult to distinguish efficient
algorithms vs. inefficient ones.

For example, if the number of basic operations of two algorithms to
solve a particular problem are n and n? respectively, then
— if n= 3, then we may say there is not much difference between requiring

3 basic operations and 9 basic operations and the two algorithms have
about the same running time.

— On the other hand, if n= 10000, then it does makes a difference whether
the number of times the basic operation is executed is n or r?.

n log, n n nlogyn n? n’ Exponential-growth
functions

10 3.3 10! 3.3-101 10? 10° 10° 3.6-100

102 6.6 102 66107 1o 108 13100 9.3.101%7

10° 10 ¢ Lo108 106 10°

104 13 104 1.310° 107 1012 Source: Table 2.1
10° 17 10° 1.7-108 1010 qpls From Levitin, 3 ed.

108 20 108 2.0-107 1012 1018

Best-case, Average-case, Worst-case

For many algorithms, the actual running time may not only
depend on the input size; but, also on the specifics of a
particular input.

— For example, sorting algorithms (like insertion sort) may run
faster on an input sequence that is almost-sorted rather than on a
randomly generated input sequence.

Worst case: C,, (1) — maximum number of times the basic
operation is executed over inputs of size n

Best case: C,.(n) — minimum # times over inputs of size n

Average case: C,,(n) —“average” over inputs of size n
— Number of times the basic operation will be executed on typical
input
— NOT the average of worst and best case

— Expected number of basic operations considered as a random
variable under some assumption about the probability distribution
of all possible inputs

Example for Worst and Best-Case
Analysis: Sequential Search

ALGORITHM SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
/[Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K

/! or —1 if there are no matching elements
i <0
while i <7 and A[i| # K do /* Assume the second condition will not
i «—i+1 be executed if the first condition evaluates to

*
if i < nreturni false */

else return —1

« Worst-Case: C,,(n) =n
« Best-Case: Cy(n) =1

Probability-based Average-Case
Analysis of Sequential Search

If pis the probability of finding an element in the list, then (1-p) is the
probability of not finding an element in the list.

Also, on an n-element list, the probability of finding the search key as
the " element in the list is p/n for all values of 1 <i<n

c::r_,-g(”]=[1'£+2'E_l_"'_l_i'E_l_"'_l_"'E]_'_”'(I_F]
n n n "

=5[1+2+---+:‘+---+u]+n{1—p}
pin+1)

+n(l—p)= +n(l— p).

=£n{n—|—1}
2

n

If p =1 (the element that we will search for always exists in the list),
then C,,,(n) = (n+1)/2. That is, on average, we visit half of the entries
in the list to search for any element in the list.

If p = 0 (all the time, the element that we will search never exists),
then C,,,(n) = n. That is, we visit all the elements in the list.

YouTube Link: https://www.youtube.com/watch?v=8V-bHrPykrE

500

450

400

350

300

250

200

150

100

50

Asymptotic Notations:

n
m
| |
|
"
]
"
0.05*n’
L] ..
| |
.I_
o
n
i.l
]
| |
]
|
| |
L
= o
ol ﬂ"’*“"
a ’Q*"'“‘
.l. .t¢¢*’ ;!H
>
l... ﬁw””“
I.. «WV‘““
|}
T
ot®
.-l‘!
bt *::
e L]
#$** e
aot?]
O

0 10 20 30 40 50 60 70 80 90 100

Intro

2n < 0.05 n2
forn =40
2n = O(n?)

0.05n2 = 2n
forn =40
0.05n2 = Q(n)

500
450
400
350
300
250
200
150
100

50

Asymptotic Notations: Intro

5n

2n

10

20

30

40

50

60

70

80

90

100

2n < 5n
forn=1
2n = O(n)

2Nn = n
forn=1
2n = QQ(n)

As 2n = O(n)
and 2n = Q(n),
we say

2n = O(n)

Asymptotic Notations: Formal Intro

1 ' / eg(n)
! /
: 7/ tin)
|
|
|
|
|
|
|
i
s
doesn't | _—
matter I~
i
|
>N

t(n) = O(g(n))
t(n) < c*g(n) for all n = ng

Cc is a positive constant (> 0)
and np is a non-negative integer

‘ |
3 9 t(n)
i e
3 / rcg{n]
i
]
]
|
||
|
|
i /
|
1 -
] e
] _—
1"_,,..-'-"'
doesn't ! ,,f/
=
matter [
|
I
i
1
n
nu >

t(n) = c*g(n) for all n = ng

Cc is a positive constant (> 0)
and np is a non-negative integer

Note: If t(n) = O(g(n)) = g(n) = Q(t(n));

also, if t(n) = Q(g(n)) = g(n) = O(t(n))

Asymptotic Notations: Formal Intro

IH,-'E'|Q|:H]
4 |
i o t{r)
i / / oagin)
| s y
= s i_f,f-*/f,;/
doesn't :Pf___f_-sﬂ
matter i_
= >n

t(n) = ©(g(n))
c2*g(n) < t(n) < c1*g(n) for all n =2 ng

c1 and c2 are positive constants (> 0)
and np is a non-negative integer

Asymptotic Notations: Examples

Let t(n) and g(n) be any non-negative functions defined on a set of all
real numbers.

We say t(n) = O(g(n)) for all functions t(n) that have a lower or the
same order of growth as g(n), within a constant multiple as n > <.

— Examples: nec 0(n), neo0@md, 100n + 5 O(n?). %n{n _Deom
n® & 0(n?), 0.00001n° € O (n?), nttn+1g0md

We say t(n) = Q(g(n)) for all functions t(n) that have a higher or the
same order of growth as g(n), within a constant multiple as n > <.

- Examples:, conm) JBeqmd, %u (n—1) Q) 100n +5 ¢ Q(n%)

We say t(n) = ©(g(n)) for all functions t(n) that have the same order of
growth as g(n), within a constant multiple as n > .

— Examples: an2 + bn + ¢ = O(n?);
n2 + logn = ©(n?)

Useful Property of Big-Oh Notation

« Ift,(n) e O(g,(n) and t,(n) € O(g,(n)) , then
ti(n) + t,(n) € O(max{g,(n), g.(n)})

For anv four arbitrarv real numbers, a;, by, a> and b- such that a; =b; and a> <=h-,

We have a; +ax = 2max{bi. bz}
Since ty(n) € O(gi1(n)). then there exists some constant ¢; and non-negative integer n; such that
ti(n) = c1 gi(n) forall n>n;

Since tz (n) € O(gz (n)). then there exists some constant ¢z and non-negative integer no such that

Note: The above property implies that

Let c3 = mazi c1. ez} and n = max {m. n2} if an algorithm comprises of two or more
t(m) + t2 (0) <c1 giln) + c2 galn) copgeoutlvely executgd pa.rts, the oyerall
ez gi(n) + 3 2o (n) efficiency of the algorithm is determined by
= ¢af g1(n) + g2 (m)} the part with the highest order of growth.
= Zeczmax{ gi(n). gz (n)}

Hence,_ t1(n) + t2in) € Oi{max{ gi1(n), gz (n)},. with the constants ¢ and ng required bv the O
definition being 2 ¢z = 2 max{ c1, c2} and max{n;, n2} respectivelv.

Extending the Property

The property that we proved in the previous slide can be
extended directly for the © notation:

If t;,(n) € ©(g,(n)) and t,(n) € ©(g,(n)) , then
ti(n) + 5,(n) € ©(max{g;(n), g-(n)})

The property can be applied for the Q notation with a
slight change: Replace the Max with the Min.

If t,(n) € Q(g,(n)) and t,(n) € Q(g.(n)) , then
ti(n) + 1(n) € Q(min{g,(n), g(n)})

Using Limits to Compare Order of Growth

0 1mplies that ¢ (n) has a smaller order of growth than g(n),
lim —— = { ¢ 1mplies that ¢(n) has the same order of growth as g(n),
oo 1mplies that ¢(n) has a larger order of growth than g(n).

The first case means t(n) = O(g(n)
if the second case is true, then t(n) = ©(g(n))
The last case means t(n) = Q(g(n))

.t : ;
L'Hopital's Rule lim “2% — fim 22

n—o0 g(n) n—oo g'(n)

Note: t'(n) and g’(n) are first-order derivatives of t(n) and g(n)

f
Stirling’s Formula n! a2 4 2mn (E) for large values of n
[

Example 1: To Determine the
Order of Growth

Find e class O (9ty) @09 and 3 gtm) o

Example 1: To Determine the
Order of Growth (continued...)

A0
) O(gw) © M gW=n
.E;Cm. @1_‘-9;0) ﬂ\m !ﬂ1+{:1a

o - e

A
1G

_ Qif‘ﬂ [ni.Li = ,gvf‘ﬁ [*’)’{)tl

- I"\'L N -—3c0 i

N oo

2 (n*s \)m - 90

(O R (gt): Lk gw=a -

(]
- I " \o
Lia ("D i (307 = e m;‘—j = Lim =

o
Q=00 1o h_;.,m[n —) N =0 N-So

@lﬂ) (e

Example 2: To Determine the
Order of Growth

Fnd dhe o C}(‘ﬁtfﬂl Q(S{ﬂﬂ and 2 (g fr 1=

follig Fondiis
O (3 7ar 4 5)
O_E_ﬁ__[_“:ﬂ.: W garte) 2 e = o
Pick gtn)= n> = (o4 [;ﬁﬁ%ﬁ} Tty)
L 3070 Hl _ Lim JEnl-!-?n*’r‘-f _ b J%—_+1 LG
N0 Jn—‘? f\ S n4 B ALt
= ©

> (303 n+t - O(n"}

—_——

Example 2: To Determine the

Order of Growth (continued...)

& (gtm):
Pick T o oke ﬂ;\/itl.z. 4 ame degua_aﬂ 'fiini-‘(} 3:1134—7,.-1.!—!,-

#A"=a
g‘tﬂ‘]-‘—é L: M -
- l‘ —
i Eﬂ-&-—?n#h o ﬂ(m '5“‘1-_‘,-‘,“#{(Qim. 3+E=.Llf
neo T N B 'n—-m\] NN

={3
(2847014 = © (0) -
ﬂai.ﬁ(“'}!“ o
= k) = m

Ly Pk g)= o= oo

ﬂ&n '{_Bﬂ'l{-hin*ﬁ_—. L _%L'F-‘?“#_tl'. = U 1,'&3“**"‘&_ = oD,
n ™

N Ny o

&, Gng-l— Tatl = Jr U—‘;’)

Examples to Compare the Order of Growth

EXAMPLE 1 Compare the orders of growth of %u (n — 1) and n?.
1
_1 -
fim 220D Ly mon Ly Lyl
fl—s 00 ne 2 nsoo gl fl— 00 H 2

éu{n —1)e EH:HE}

EXAMPLE 2 Compare the orders of growth of log; n and ,/n.

1 ’ log, e)
L M = lim {Dg;) s —Dlbg e Hm —iep
A—00 ﬁ fl— 00 (ﬁ) fl— 00 N l—s 00 V;'_
logy n € O(y/n).

Example 3: Compare the order of growth of Iogzn and Iogn2.

2 & % %
. log“n — m logn*logn logn*logn — tm logn*logn — im
n—>ologn® > log(n*n) r>=logn+logn n>= 2logn —>®
Hence, log’n = Q(logn?) That is, logn? = O(log’n)

Some More Examples: Order of Growth

For each of the following functions, indicate the class &(g(n)) the function
belongs to. (Use the simplest g(n) possible in your answers.) Prove your
assertions.

a (n*+ DY b. V10n2 +7Tn +3
¢. 2nlgn+224(n4+2)>%1gs d. 20 4301

o a) (n%+1)'%: Informally, = (n?+1)10 = n20,

Formally, 2, 1y 10 2, 1310 LA 10
y lim £ — i @D i (””—fl) == lim (14 L)m = 1.

L1
n—oo n—oo (1) n—oo n—oo T"

Hence (n” + 1) € ©(n?").

b) Informally, v/10n2 + Tn + 3 = V10n2 = v/10n € ©(n). Formally,

lim U rintd iy ”}”'_’” — lim \/1[1 b= = 10.
TL— O n TL— O TL— D0

Hence V10n? + Tn + 3 € O(n).
2nlg(n + 2)2 + (n+ 2)*1g% = 2n2lg(n + 2) + (n+ 2)*(lgn — 1)

C
) e E]I[Tllgn} |. (;] Eln-n} { Elﬂ'n} on+ 1 } qn— 1_2?!2} nl CO(Z”} } 0(.}?4)_0(.}?4)

d)

Some More Examples: Order of Growth

List the following functions according to their order of growth from the lowest
to the highest:

(n—2)), 5lg(n+100)1% 22 0.001n* 430 +1, In?n, In, 3

(n—2) € O((n—2)!) |5lg(n+100)'" = 501g(n+100) € O(logn)

24" = (2°)" € O(4") 0.001n* + 3n® + 1 € On*) [In®n € O(log” n)

; ' p . The listing of the functions in the increasing
; 1 T _ T
Vn € 9(nt)| 3" € O(3") Order of growth is as follows:

5lg(n + 100)1°, In®n, /n, 0.001n* 430 +1, 37, 22" (n-—2)

log2n 2logn 6 logn 6 18
Lim - = Lim --emeeemeeeeeee- = -mmmmmeeee- = memmemmmemeees =Lim -------- =0
n>e« n”® n->« n*1/3)nt23) nt® n*(1/3)nt23 n > e« nllB

Hence, log2n = O(n'73)

Time Efficiency of Non-recursive
Algorithms: General Plan for Analysis

« Decide on parameter nindicating /nput size
« |dentify algorithm’s basic operation

« Determine worst, average, and best cases for input of size
n, if the number of times the basic operation gets executed
varies with specific instances (inputs)

« Set up a sum for the number of times the basic operation is
executed

« Simplify the sum using standard formulas and rules

Useful Summation Formulas and Rules

Yo =111+ 41 =u-1+1
In particular, £_..1=n-1+1=ne O(n)

Yicenl=1+42+...4n=n(n+1)/12 = n?/2 € O(n?)
Yicn P =12422+...+? = n(n+1)(2n+1)/6 = n3/3 € O(rd)

Yoip@ =1+a+...+a =(a@a*-1)(a-1) forany a= 1
In particular, £,_.,2' =2°+ 21 +...+4 2" =2™1 -1 € ©(2")

LC3; = CLa; L@ = Liciem@i+ 1<k

Zullz(u—l+1)
i=l

Examples on Summation

e 1+3+5+7+....4+999
=[1+2+3+4+5+....999]-[2+4+6+8+ ... +998]

*
_ 22 ;000 —2[1+2+3+....+499]
*
= 999*500—2{4992500} =999 * 500 — 499 * 500

= 500%(999-499) = 500*500 = 250,000

e 2+4+8+16+ ... + 1024

=21 422423424+ 4 2W
=[20+ 21+ 224+ 234244+ . +210] 1

[10
=| S22 | -1= 2" ~1]-1=2046
| =0

HZ:_II =[(n+1)-3+1]=n+l1-2=n-1=0(n)

i=3

HZ_II. :3+4+....+(ﬂ+1}:[1+2+3-|—4—|—____—|—(11_|_1j]_[1_|_2]

I=

_m+D+2) _3_ 902 e(1) = 0@

2
HZ:_II(I-I-D: Hifz +3:HZ:_13 +HZ_1:3
_ _[H—I][(H—I}I][Z(H—D-I—l]}+|:[H—1][(H—1)+1]:‘
i 6 2
_ _[ﬂ—1][??][2??—1]}{[??—1][??]}
: 6 2
= 0O(n?) + O(n?) = O(1n?)

n—1 n—1 n—I1

Y (E#+1)P2= Y (*+2+1)=) 4 +QZz +Zl

=0 1=0 1=0
€ 6(n?) + 6(n?) + 6(n) = 6(n?)

n—11—1
2. 2l

i=0 ;=0

S b T

s=0 =0 =0

— 3.2 1
= > [52° — 51
L2 2
1 =0
3 n—1 5) n—1
-3y 3%
2 2
=0 =0

Example 1: Finding Max. Element

ALGORITHM MaxElement(A[0..n — 1])

/[{Determines the value of the largest element in a given array
[Input: An array A[0..n — 1] of real numbers

[{Output: The value of the largest element in A
maxval «— A[0]
fori «—1ton —1do
if A[i] = maxval
maxval < A[i]
return maxval

'I;]hel basic operation is the comparison executed on each repetition of
the loop.

Ir:c this algorithm, the number of comparisons is the same for all arrays
of size n.

The algorithm makes one comparison on each execution of the loop,
which is repeated for each value of the loop’s variable i within the
bounds 1 and n-1 (inclusively). Hence, n—1
Cin)=) 1=n—1€08(n)
i=1

Example 2: Sequential Key Search

ALGORITHM SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
/[Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K

/! or —1 if there are no matching elements

i <0

while i <7 and A[i| # K do /* Assume the second condition will not
P41 be executed if the first condition evaluates to

*
if i < nreturni false */

else return —1 Depending on the value of the Key K,
the number of comparisons performed
can range from 1 to n.

+ Worst-Case: Cworst(n) =N | |n such cases, it would be more appropriate
e Best-Case: Cbest(n) = 1 to denote the overall time complexity for the
basic operation as O(N), rather than @(N).

Example 3: Finding Prime

Input: Integer »
Output: True (is prime) or False (not prime)

fori=2ton-1do
if (n mod i = 0) then
return false
end if
end for

return true

The number of division operations could range anywhere from 2 to n-1.
For example, if n = 9, the number of divisions is only 2 (for i = 2 and 3)
If n =541, a prime the number of divisions is 539 (fori =2, 3, ..., 540)

Thus, for a given n, the number of divisions could be as small as 1,
and as large as n — 2. In such cases, it would be more appropriate to denote

the overall time complexity for the basic operation as O(N), rather than @(N).

Rule of Thumb

We will use the notation ©(f(n)), when the number of times the basic
operation will be executed is tightly bound to f(n).

— Like in Example 1 — To find the maximum element in an array

— In general: When the best case / worst case ratio tends to a constant
(which was 1 for Example 1), as n grows to .

We will use the notation O(f(n)), when the number of times the basic
operation will be executed is bounded at most (i.e., the upper
bound) to f(n) and the lower bound could be anything arbitrary (like
1).

— Like in Example 3 — To find whether an integer is prime or not.

— In general: When the best case / worst case ratio tends to 0, as n grows

to «. For Example 3, the best case / worst case ratio is 1/(n-2), and this
ratio evaluates to 0, as n grows to .

Comparison of O and ©: Which is better?

If two algorithms A and B for a particular problem incur overall time
complexities O(f(n)) and O(f(n)), then, it would be better to choose

algorithm A with complexity O(f(n)) as the algorithm incurs at most
f(n) complexity for certain inputs; where as, algorithm B incurs f(n)

complexity on all inputs.

Revisiting Examples 1 and 3

« Example 1: To find the max. element
— Best-case: n-1 comparisons

— Worst-case: n-1 comparisons

. Best—case . n—-1 _
lim —lm ——=Im1=1 (a constant)
n—>= Worst —case n>ep—1 n->e
After discarding the constants and lower order terms, the overall time

complexity is ©(worst-case comparisons) = @(N).

« Example 3: To find whether an integer is prime or not
— Best-case: 1 division
— Worst-case: n-2 divisions
. Best —case . 1
hm = lim
n—>= [Worst — case n—>*n—2

=0

After discarding the constants and lower order terms, the overall time
complexity is O(worst-case comparisons) = O(n).

Example 4: Element Uniqueness Problem

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
/] and “false” otherwise
fori < Oton—2do

forj «<—i+1ton—1do

if A[i] = A[/] return false

return true

Best-case situation:

If the two first elements of the array are the same, then we can exit
after one comparison. Best case = 1 comparison.

Worst-case situation:

« The basic operation is the comparison in the inner loop. The worst-
case happens for two-kinds of inputs:

— Arrays with no equal elements

— Arrays in which only the last two elements are the pair of equal
elements

Example 4: Element Uniqueness Problem

« For these kinds of inputs, one comparison is made for each repetition
of the innermost loop, i.e., for each value of the loop’s variable |
between its limits i+1 and n-1; and this is repeated for each value of the
outer loop i.e., for each value of the loop’s variable i between its limits O

and n-2. Accordingly, we get,

n—2 n—1 n—2 a—2
Cuorst)= 3 D 1= [n=D—G+D+1]=) (n—1-1)
=0 j=i+1 i=0 i=0
n—2 n—2 A—2
. (n —2)(n —1)
= — 1) — =(n—1 1 —
E{n) Z I = (n }E 5
i =0 i=0 i =0
- {.rj_!. - I}E- e {” 17 E:}{H T 1} e [n' T 1:"1 o i 2
2 2
 Best —case | 1 9 Hence, o.verlall time
lim = lim ——— = lim — = 0| Complexity is O(n?)
n—>=Worst —case n><n”[2 n—>=p After discarding the constants

and lower order terms, if any

Example 5: Matrix Multiplication

A B C

row i Cli. f]

col. j

Cl:, j]= Al O]BJO, j]+-- -+ Ali, k|Blk, j]+ --- 4+ Ali, n — 1]|B[n — 1, j]

ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0.n — 1, 0..n — 1])

[Multiplies two square matrices of order n by the definition-based algorithm
/[Mnput: Two n x n matrices A and B
[{Output: Matrix C = AB
fori < Oton—1do
for j «—0Oton —1do
C[i, j] < 0.0
fork «<—Oton— 1do
Cli, j] < C[i, j]+ A[i, k] = B[k, j]

return C

Example 5: Matrix Multiplication

The innermost loop has two arithmetic operations — addition and
multiplication — executed once, each time the loop is entered.

Basic operation - the multiplication operation in the innermost loop.

Since the number of basic operations depends only on the size of the
input matrices and not on the value of the elements, the best-case,
average-case and worst-case scenarios are one and the same.

The number of multiplications made for every pair of specific values of

variablesiandjis:

1

k=0
The total number of multiplications is expressed as follows:
n—1n-1n-1 n—1 n—1 n—1

M(u}—Y‘TT:i—ZZH—E =

i=0 j=0 k=0 i=0 j=0

We do the same number of multiplications all the time.
Hence, overall time complexity is @(n3).

Time Efficiency of Recursive

Algorithms: General Plan for Analysis

Decide on a parameter indicating an input’s size.
|dentify the algorithm’s basic operation.

Check whether the number of times the basic op. is executed may vary
on different inputs of the same size. (If it may, the worst, average, and
best cases must be investigated separately.)

Set up a recurrence relation with an appropriate initial condition
expressing the number of times the basic op. is executed.

Solve the recurrence (or, at the very least, establish its solution’s order
of growth) by backward substitutions or another method.

Recursive Evaluation of n!

Definition: n!=1*2 = ... %(n-1) * n forn>1 and 0! =1
* Recursive definition of n!: F(n) = F(n-1) * n forn>1 and

F(0) =1
ALGORITHM F(n) Miny=M(n—-1) + 1 form = 0.
: to compute to multiply
[/{Computes n! recursively Fia—1) Fin—1) by a
//Input: A nonnegative integer n
[f{Output: The value of n! M(ny=M(n—1)4+1 forn=0,
iftn =0return 1
else return F(n — 1) % n M(0)=0.
M(0) =0
the calls stop when n=0 T T no multiplications when n=0
M(n-1) = M(n-2) + 1; M(n-2) = M(n-3)+1

M(n) = [M(n-2)+1] + 1 = M(n-2) + 2 = [M(n-3)+1+2] = M(n-3) + 3
=M(n-n) + n=n

Overall time Complexity: O(n)
YouTube Link: https://www.youtube.com/watch?v=K25MWuKKYAY

Counting the # Bits of an Integer

ALGORITHM BinRec(n)

[Input: A positive decimal integer n

[{Output: The number of binary digits in n’s binary representation
ifn=1return 1

else return BinRec(|n/2|)+ 1

Divisions A(n)=A(|n/2])4+1 form > 1.

Since the recursive calls end when nis equal to 1 and there are no divisions
made, the initial condition is: A(1) = 0.

1 1 bit

2-3 2 bits
Solution Approach: If we use the backward substitution g:is 3 E: :Eg
method (as we did in the previous two examples, we will 16-31 5 bits
get stuck for values of n that are not powers of 2). 32-63 6 bits

We proceed by setting n = 2 for k 2 0.

New recurrence A[Ek Y= A [Ek_l} L1 forks0
relation to solve: 5 ,
A(27) =0.

Counting the # Bits of an Integer

A2 =AY +1 substitute A(2¥-1) = A(2*-%) +1
=[A2*2) +1]+1=A2%2%) +2 substitute A(2*-2) = A(2*3) + 1
=[AQ*}) +1]4+2=42"3) +3

=AR) +i

= A2¥*) + k.

A(n) =log, n € B(log n).

Examples for Solving Recurrence

0 Relations
Min)=2Mn—-1)+1 form =1,
M) =1.
Mn)=2M(n-1)+1 sub. M(n —1)=2M(n - 2) +1

=22M(n -2+ 1]+1=22M(n—-2)+2+1 sub. M(n —2)=2M(n—3) +1
=2 2M(n=3)+1]4+2+1=2Mn-3)+ 2 +2+ 1

Mm)=2Mmn—i)4+ 271422 ... 4241 1=2Mn—-+2' —1.
M) =2""Mn—n—-1)+2"1-1

=2M) 2 = = el =]
-0O(2n)

2) X(n)=X(m-1)+5, forn>1,X(1)=0

z(n) = zn—-1)+5
= |z(n—2)+5|+5=2(n—-2)+5-2
= |#¢(n—3)+5/+5-2=2(n—-3)+5-3
= z(n—1)+5-1

= z(1)+5-(n=1)=5(n-1).

= O(n) 3) X(n) = 3*X(n-1) for n>1,X(1) =4

z(n) = 3z(n-—-1)
= 3[3z(n—2)] =3%’z(n—2)
= 3?[3z(n — 3)] = 3%z(n — 3)

Fx(n —1)

— 31-'.-.—13:[]):4_3?1—1_
— (4/3)3» = O(3")

4)

X@)=X@1)+ 0 forn>0,X(0)=0

zn-1)+n

= [en-2)+(n-1)+n=2(n-2)+(n-1)+n

= [en-3)+n-2)+(n-1)+n=2n-3)+(n-2)+(n-1)+n

z(n)

zn-1)+(n-14+1)+(n-142)++n

n(n+1)

= 20)+14244n= ?

X(n) = O@?)

3)

X(n)=X(/?2)+n, forn>1,X(1)=1 [Solve for n=2¥|

z(2¥) = z(2¥1) +9*
2(2572) 4 2671 4 2F = (2572) 4 2k 4 98
2(267%) £ 267 £ 96T L 0F = p(2FF) 4 2R ok Lok

I(gk-i) + 2.‘::-!'-':-1 + 23:-’&4-2 4.4 Qk

= 224+ 2+ 4 =142 4224 408

= 1 _1=92.9"_1=m-1.
X(n) = O(n)

6)

X(n)=Xm3)+1 forn>1, X(1)=1 [Solve for n= 3]

z(3F) = (3 1) +1
= [(3*) +1]+1=2(3"2)+2
= [2(3* %) +1]+2=2(3"7)+3
= 1(3“:—1}4—1

= z(3* M) +k=2(1)+k=1+log,n
X(n) = O(logn)

