Master Theorem

 \&
Solving Recurrence Relations

Prof. Shaik Naseera
CSE Department
JNTUA College of Engineering, Kalikiri

Objectives

- Master Theorem
- Solving Recurrence Relations
- Discussion of Gate Questions

M otivation: Asymptotic Behavior of Recursive Algorithms

- The time complexity of the algorithm is represented in the form of recurrence relation.
- When analyzing algorithms, recall that we only care about the asymptotic behavior
- Rather than solving exactly the recurrence relation associated with the cost of an algorithm, it is sufficient to give an asymptotic characterization
- The main tool for doing this is the master theorem

M aster Theorem

- Let $T(n)$ be a monotonically increasing function that satisfies

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \\
& T(1)=c
\end{aligned}
$$

where $a \geq 1, b \geq 2, c>0$. If $f(n)$ is $\Theta\left(n^{d}\right)$ where $d \geq 0$ then

$$
T(n)= \begin{cases}\Theta\left(n^{d}\right) & \text { if } a<b^{d} \\ \Theta\left(n^{d} \log n\right) & \text { If } a=b^{d} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

M aster Theorem: Pitfalls

- You cannot use the M aster Theorem if
$-T(n)$ is not monotone, e.g. $T(n)=\sin (x)$
$-f(n)$ is not a polynomial, e.g., $T(n)=2 T(n / 2)+2^{n}$
- b cannot be expressed as a constant, e.g.

$$
T(n)=T(\sqrt{n})
$$

- Note that the M aster Theorem does not solve the recurrence equation
- Does the base case remain a concern?

M aster Theorem: Example 1

- Let $T(n)=T(n / 2)+1 / 2 n^{2}+n$. What are the parameters?

$$
\begin{aligned}
& a=1 \\
& b=2 \\
& d=2
\end{aligned}
$$

Therefore, which condition applies?
$1<2^{2}$, case 1 applies

- We conclude that

$$
T(n) \in \Theta\left(n^{d}\right)=\Theta\left(n^{2}\right)
$$

M aster Theorem: Example 2

- Let $T(n)=2 T(n / 4)+\sqrt{ } n+42$. What are the parameters?

$$
\begin{aligned}
& a=2 \\
& b=4 \\
& d=1 / 2
\end{aligned}
$$

Therefore, which condition applies?

$$
2=4^{1 / 2} \text {, case } 2 \text { applies }
$$

- We conclude that

$$
T(n) \in \Theta\left(n^{d} \log n\right)=\Theta(\log n \sqrt{n})
$$

M aster Theorem: Example 3

- Let $T(n)=3 T(n / 2)+3 / 4 n+1$. What are the parameters?

$$
a=3
$$

$$
b=2
$$

$$
d=1
$$

Therefore, which condition applies?
$3>2^{1}$, case 3 applies

- We conclude that

$$
T(n) \in \Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{\log _{2} 3}\right)
$$

- Note that $\log _{2} 3 \approx 1.584$..., can we say that $T(n) \in \Theta\left(n^{1.584}\right)$

No, because $\log _{2} 3 \approx 1.5849 \ldots$ and $n^{1.584} \notin \Theta\left(n^{1.5849}\right)$

- $T(n)=2 T(V n)+\log n$.
- Let $n=2^{m} \Rightarrow m=\log n$
- Then $\mathrm{T}\left(2^{\mathrm{m}}\right)=2 \mathrm{~T}\left(2^{\mathrm{m} / 2}\right)+\mathrm{m}$.
- Now let $S(m)=T\left(2^{m}\right)$.
- Then $\mathrm{S}(\mathrm{m})=2 \mathrm{~S}(\mathrm{~m} / 2)+\mathrm{m}$.
- This is case-2 of master theorem and has the solution
$-S(m)=0(m \log m)$.
$-\mathrm{So} \mathrm{T}(\mathrm{n})=\mathrm{T}\left(2^{\mathrm{m}}\right)$
$\Rightarrow S(m)=0(m \log m)=0(\log n \log \log n)$.

Example

What is the value of following recurrence.
$T(n)=5 T(n / 5)+\sqrt{n}$,
$T(1)=1$,
$\mathrm{T}(0)=0$
(A) Theta (n)
(B) Theta ($\mathrm{n}^{\wedge} 2$)
(C) Theta (sqrt(n))
(D) Theta (nLogn)

$$
\begin{aligned}
& a=5, b=5, d=1 / 2 \\
& a>b^{d}=>\text { Theta }\left(n^{\log _{5} 5}\right)=\text { Theta(n) }
\end{aligned}
$$

Answer: (A)

Master Theorem

- $4^{\text {th }}$ Condition

'Fourth' Condition

- Recall that we cannot use the M aster Theorem if $f(n)$, the non-recursive cost, is not a polynomial
- There is a limited $4^{\text {th }}$ condition of the M aster Theorem that allows us to consider poly logarithmic functions
- Corollary: If $f(n) \in \Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some $\mathbf{k} \geq 0$ then

$$
T(n) \in \Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)
$$

'Fourth' Condition: Example

- Say we have the following recurrence relation

$$
T(n)=2 T(n / 2)+n \log n
$$

- Clearly, $a=2, b=2$, but $f(n)$ is not a polynomial. However, we have $f(n) \in \Theta(n \log n), k=1$
- Therefore by the $4^{\text {th }}$ condition of the M aster Theorem we can say that

$$
T(n) \in \Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)=\Theta\left(n^{\log _{2} 2} \log ^{2} n\right)=\Theta\left(n \log ^{2} n\right)
$$

M ore Examples of M aster's Theorem

- $T(n)=3 T(n / 5)+n$
$\theta(\mathrm{n})$
- $T(n)=2 T(n / 2)+n \quad \theta(n \log n)$
- $T(n)=2 T(n / 2)+1 \quad \theta(n)$
- $T(n)=T(n / 2)+n \quad \theta(n)$
- $T(n)=T(n / 2)+1$
$\theta(\log n)$

$$
T(n)= \begin{cases}\Theta\left(n^{d}\right) & \text { if } a<b^{d} \\ \Theta\left(n^{d} \log n\right) & \text { If } a=b^{d} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } \mathrm{a}>\mathrm{b}^{d}\end{cases}
$$

where $a \geq 1, b \geq 2, c>0$. If $f(n)$ is $\Theta\left(n^{d}\right)$ where $d \geq 0$

GATE QUESTIONS

Q. NO. 1

GATE CSE 1999

If $T_{1}=O(1)$, give the correct matching for the following pairs:

List. I
(M) $T_{n}=T_{n-1}+n$
(N) $T_{n}=T_{n / 2}+n$
(0) $T_{n}=T_{n / 2}+n \log n$
(P) $T_{n}=T_{n-1}+\log n$

List - II
(U) $T_{n}=O(n)$
(V) $T_{n}=O$ (nlogn)
(W) $T_{n}=O\left(n^{2}\right)$
$(X) T_{n}=O\left(\log ^{2} n\right)$

$$
T(n)= \begin{cases}\Theta\left(n^{d}\right) & \text { if } \mathrm{a}<\mathrm{b}^{\mathrm{d}} \\ \Theta\left(n^{d} \log n\right) & \text { If } \mathrm{a}=\mathrm{b}^{\mathrm{d}} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } \mathrm{a}>\mathrm{b}^{\mathrm{d}}\end{cases}
$$

$$
\text { where } a \geq 1, b \geq 2, c>0 \text {. If } f(n) \text { is } \Theta\left(n^{d}\right) \text { where } d \geq 0
$$

(A) $M-W N-V O-U P-X$

B $M-W N-U O-X P-V$
C $M-V N-W O-X P-U$
(D) M-WN-UO-VP-X

Answer : None of the above
(M)

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& =T(n-2)+(n-1)+n \\
& =T(n-3)+(n-2)+(n-1)+n \\
& =T(n-k)+(n-(k-1))+\cdots+n
\end{aligned}
$$

Let $n-k=1$

$$
\begin{aligned}
& \text { et } n-x=1 \\
& =T(1)+n+3+\cdots+n \\
& =1+2+\cdots \quad 0\left(p^{2}\right) \\
& =\frac{n(n+1)}{2}=O=1 \quad b=2 \quad d=a
\end{aligned}
$$

(N).

$$
\begin{aligned}
T(n) & =T\left(\frac{n}{2}\right)+n \\
& a=1 b=2 \quad \\
=O(n) & a<b
\end{aligned} \theta(n)
$$

- (0). $T(n)=T(n / 2)+n l o g n \quad$ Let $=>n=2^{m}$

$$
=T\left(2^{m-1}\right)+2^{m} \cdot m
$$

$$
\text { Let } S(m)=T\left(2^{m}\right)
$$

$$
S(m)=S(m-1)+m 2^{m}
$$

$$
=S(m-2)+(m-1) 2^{m-1}+m 2^{m}
$$

$$
=S(m-k)+(m-(k-1)) 2^{m-(k-1)}+m 2^{m}
$$

$$
=S(1)+2 \cdot 2^{0}+3 \cdot 2^{1}+\ldots+m \cdot 2^{m}
$$

$$
\leq \text { C. } m \cdot 2^{m}=0\left(m \cdot 2^{m}\right)=0(\operatorname{logn} . n)=0(n \cdot \log n)
$$

(P).

$$
\begin{aligned}
& T(n)=T(n-1)+\log n \\
&=[T(n-2)+\log (n-1)]+\log n \\
&=T(n-3)+\log (n-2)]+\log (n-1)+\log n \\
&= . \\
& \cdot \\
& \cdot \\
&=(n-k)+\log (n-(k-1))+\ldots .+\log n \\
&= T(1)+\log 2+\log 3+\ldots+\log n \\
&= T(1)+\log (1)+\log 2+\ldots .+\log n / / \log 1 \text { is } 0 \\
&==0 g(1.2 .3 \ldots n) \\
&=\left.=0 g(n!) \quad \text { (note: } n!\text { upper bound is } n^{n}\right) \\
&= 0(n \log n)
\end{aligned}
$$

GATE CSE 2009

Q. NO. 2

The running time of an algorithm is represented by the following recurrence relation:
$T(n)= \begin{cases}n & n \leq 3 \\ T\left(\frac{n}{3}\right)+c n & \text { otherwise }\end{cases}$
Which one of the following represents the time complexity of the algorithm?

A $\Theta(n)$
(B) $\Theta(n \log n)$
(c) $\Theta\left(n^{2}\right)$
(D) $\Theta\left(n^{2} \log n\right)$
$\mathrm{T}(\mathrm{n})= \begin{cases}\Theta\left(n^{d}\right) & \text { if } \mathrm{a}<\mathrm{b}^{\mathrm{d}} \\ \Theta\left(n^{d} \log n\right) & \text { If } \mathrm{a}=\mathrm{b}^{\mathrm{d}} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } \mathrm{a}>\mathrm{b}^{d}\end{cases}$ where $a \geq 1, b \geq 2, c>0$. If $f(n)$ is $\Theta\left(n^{d}\right)$ where $d \geq 0$

Case I of master theorem
Q. NO. 3

GATE CSE 2006

Consider the following recurrence:
$T(n)=2 \mathrm{~T}(\lceil\sqrt{n}\rceil)+1 \quad \mathrm{~T}(1)=1$
Which one of the following is true?

A $T(n)=\theta(\log \log n)$
B $T(n)=\theta(\log n)$
(C) $T(n)=\theta(\sqrt{n})$

D $T(n)=\theta(n)$

$$
\begin{aligned}
\text { Substitute } n=2^{m} \Rightarrow T\left(2^{m}\right)=2 T\left(2^{m} / 2\right)+1 \\
\Rightarrow T\left(2^{m}\right)=2 T\left(2^{m} / 2\right)+1 \\
\text { let } S(m)=T\left(2^{m}\right) \\
S(m)=2 S(m / 2)+1
\end{aligned}
$$

Q. NO. 4

GATE CSE 2005

Suppose $T(n)=2 T(n / 2)+n, T(0)=T(1)=1$
Which one of the following is FALSE?
$T(n)=n \log n$
(A) $T(n)=O\left(n^{2}\right)$ nlogn $<=O\left(n^{2}\right)$, O represent upper bound, True
(B $T(n)=\theta(n \log n)$
θ represent both lower \& upper bound C1 nlogn<=nlogn <=c2 nlogn
(C) $T(n)=\Omega\left(n^{2}\right)$
Ω represent lower bound, $\mathrm{n}^{2}<=\mathrm{nlogn}$, false
D $T(n)=O(n \log n)$
Q. NO. 5

GATE CSE 1997

Let $T(n)$ be the function defined by $T(1)=1, T(n)=2 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\sqrt{n}$
Which of the following statements is true?
A $T(n)=O \sqrt{n}$
(B) $T(n)=O(n)$
(c) $T(n)=O(\log n)$
$T(n)= \begin{cases}\Theta\left(n^{d}\right) & \text { if } \mathbf{a}<b^{d} \\ \Theta\left(n^{d} \log n\right) & \text { If } a=b^{d} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } \mathrm{a}>\mathrm{b}^{d}\end{cases}$
(D) $T(n)=O(\log n)$
where $a \geq 1, b \geq 2, c>0$. If $f(n)$ is $\Theta\left(n^{d}\right)$ where $d \geq 0$

Case 3 is true, $a=2, b=2, d=1 / 2$
Q. NO. 6

GATE CSE 1996

The recurrence relation
$T(1)=2$
$T(n)=3 T(n / 4)+n$
has the solution, $T(n)$ equals to
(A) $O(n)$

B $O(\log n)$
(C) $O\left(\mathrm{n}^{\wedge} 3 / 4\right)$

$$
\mathrm{T}(\mathrm{n})= \begin{cases}\Theta\left(n^{d}\right) & \text { if } \mathrm{a}<\mathrm{b}^{\mathrm{d}} \\ \Theta\left(n^{d} \log n\right) & \text { If } \mathrm{a}=\mathrm{b}^{\mathrm{d}} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } \mathrm{a}>\mathrm{b}^{\mathrm{d}}\end{cases}
$$ where $a \geq 1, b \geq 2, c>0$. If $f(n)$ is $\Theta\left(n^{d}\right)$ where $d \geq 0$

D None of the above

Case 1 is true, $a=3, b=4, d=1$

An unordered list contains n distinct elements. The number of comparisons to find an element in this list that is neither maximum nor minimum is

A $\theta(n \log n)$

B $\Theta(n)$
C) $\theta(\log n)$
because all elements are distinct, select any three numbers and output $2^{\text {nd }}$ largest from them.
(D) $\theta(1)$

GATE CSE 2008

The most efficient algorithm for finding the number of connected components in an undirected graph on n vertices and m edges has time complexity

A $\theta(n)$
(B) $\Theta(m)$

C $\theta(n+m)$
(D) $\Theta(m n)$

GATE CSE 2008

The Breadth First Search algorithm has been implemented using the queue data structure. One possible order of visiting the nodes of the following graph is

A MNOPQR
(B) NQMPOR
C)

QMNPRO

D
QMNPOR

When we remove the vetex 3 trom the graph, two differt subgraph created. See the below diagam.

When we remove the vetex 5 foom the graph, vetex 6 and 7 gets disconncted fom the graph. See the beow diagam.

Art 5

Q. NO. 10

GATE | GATE-CS-2002 | Question 3

The solution to the recurrence equation $T\left(2^{k}\right)=3 T\left(2^{k-1}\right)+1, T(1)=1$, is:
(A) 2^{k}
(B) $\left(3^{\mathrm{k}+1}-1\right) / 2$
(C) $3^{\log _{2} \mathrm{k}}$
(D) $2^{\log _{3} k}$

$$
\begin{aligned}
& \mathrm{T}\left(2^{k}\right)=3 \mathrm{~T}\left(2^{\mathrm{k}-1}\right)+1 \\
& =3^{2} \mathrm{~T}\left(2^{\mathrm{k}-2}\right)+1+3 \\
& =3^{3} \mathrm{~T}\left(2^{\mathrm{k}-3}\right)+1+3+9 \\
& \ldots(\mathrm{k} \text { steps of recursion (recursion depth)) } \\
& =3^{k} \mathrm{~T}\left(2^{k-k}\right)+\left(1+3+9+27+\ldots+3^{k-1}\right) \\
& =3^{k}+\left(\left(3^{k}-1\right) / 2\right) \\
& =\left(\left(2^{*} 3^{k}\right)+3^{k}-1\right) / 2 \\
& =\left(\left(3^{*} 3^{k}\right)-1\right) / 2 \\
& =\left(3^{k+1}-1\right) / 2
\end{aligned}
$$

Hence, B is the correct choice.

Practice Problems

1. $T(n)=3 T(n / 2)+n^{2} \Longrightarrow T(n)=\Theta\left(n^{2}\right)($ Case 1)
2. $T(n)=4 T(n / 2)+n^{2} \Longrightarrow T(n)=\Theta\left(n^{2} \log n\right)($ Case 2)
3. $T(n)=T(n / 2)+2^{n} \Longrightarrow \Theta\left(2^{n}\right) \begin{aligned} & \text { Master Theorem not applicable, } \\ & \text { Possible with substitution method }\end{aligned}$
4. $T(n)=2^{n} T(n / 2)+n^{n} \Longrightarrow$ Does not apply (a is not constant)
5. $T(n)=16 T(n / 4)+n \Longrightarrow T(n)=\Theta\left(n^{2}\right)($ Case 3)
6. $T(n)=2 T(n / 2)+n \log n \Longrightarrow T(n)=n \log ^{2} n($ Case 2)
7. $T(n)=2 T(n / 2)+n / \log n \Longrightarrow$ Does not apply (non-polynomial difference between $f(n)$ and $n^{\log _{\Delta} a}$)
8. $T(n)=2 T(n / 4)+n^{0.51} \Longrightarrow T(n)=\Theta\left(n^{0.51}\right)$ (Case 1)
9. $T(n)=0.5 T(n / 2)+1 / n \Longrightarrow$ Does not apply $(a<1)$
10. $T(n)=16 T(n / 4)+n!\Longrightarrow T(n)=\Theta(n!)$ (Case 1)
11. $T(n)=\sqrt{2} T(n / 2)+\log n \Longrightarrow T(n)=\Theta(\sqrt{n})($ Case 3$)$
12. $T(n)=3 T(n / 2)+n \Longrightarrow T(n)=\Theta\left(n^{\lg 3}\right)($ Case 3$)$

Practice Problems

12. $T(n)=3 T(n / 2)+n \Rightarrow T(n)=\Theta\left(n^{\lg 3}\right)$ (Case 3)
13. $T(n)=3 T(n / 3)+\sqrt{n} \Rightarrow T(n)=\theta(n)($ Case 3$)$
14. $T(n)=4 T(n / 2)+c n \Rightarrow T(n)=\Theta\left(n^{2}\right)($ Case 3$)$
15. $T(n)=3 T(n / 4)+n \log n \Rightarrow T(n)=\Theta(n \log n)($ Case 1$)$
16. $T(n)=3 T(n / 3)+n / 2 \Rightarrow T(n)=\Theta(n \log n)($ Case 2$)$
17. $T(n)=6 T(n / 3)+n^{2} \log n \Rightarrow T(n)=\Theta\left(n^{2} \log n\right)($ Case 1$)$
18. $T(n)=4 T(n / 2)+n / \log n \Rightarrow T(n)=\Theta\left(n^{2}\right)($ Case 3$)$
19. $T(n)=64 T(n / 8)-n^{2} \log n \Rightarrow$ Does not apply $(f(n)$ is not positive)
20. $T(n)=7 T(n / 3)+n^{2} \Rightarrow T(n)=\Theta\left(n^{2}\right)($ Case 1)
21. $T(n)=4 T(n / 2)+\log n \Rightarrow T(n)=\Theta\left(n^{2}\right)($ Case 3$)$

THANK YOU

