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INTRODUCTION

Myrionecta rubra (= Mesodinium rubrum) (Lohmann,
1908, Jankowski 1976) (Mesodiniidae: Litostomatea) is a
common phototrophic ciliate found in pelagic estuarine
and neritic habitats (Taylor et al. 1971, Lindholm 1985,
Crawford 1989). Blooms or ‘red tides’ caused by M. rubra
are recurrent events in numerous estuarine, lagoonal
and coastal upwelling zones around the world, some-
times expanding for hundreds of square kilometers
(Lindholm 1985). While these blooms are nontoxic, they
may induce hypoxia (Hayes et al. 1989), and on rare
occasions have caused crustacean and mollusk kills
during near-shore accumulations, perhaps through
irritation of gill tissue (Horstman 1981). Bloom dynamics

of M. rubra are well studied and populations may
undergo diel vertical migrations to exploit nutrient-rich
water masses (Lindholm et al. 1990), optimal light levels
(Passow 1991), and to maintain their retention within
embayments (Crawford & Purdie 1992). M. rubra has
extraordinarily high swimming speeds for a protist,
capable of bursts of speeds over 8 mm s–1 or nearly 200
body lengths s–1 (Lindholm 1985, Crawford & Purdie
1992) and diurnal vertical migrations of 40 m (Smith &
Barber 1979). Discrete deep layers of M. rubra have been
shown to occur in the Baltic (Setälä & Kivi 2003) and
Mediterranean (Dolan & Marrasé 1995) seas to depths
greater than 80 m. 

Myrionecta rubra has long been an evolutionary
curiosity, possessing cryptophycean organelles, in-
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water’ blooms. The current study was conducted to achieve a better understanding of the relationship
of photosynthetic performance and growth with feeding on cryptophyte algae in M. rubra. During the
experiment the cryptophyte Teleaulax acuta was introduced for 2 consecutive growth periods (14 d
each) and the cultures were then starved during 4 additional periods. In both high light (HL) and low
light (LL) treatments, a significant decrease in per capita growth rates (µ) was observed over time (p <
0.05) in the absence of new prey. In the LL treatment, chlorophyll a content (chl a cell–1), photosyn-
thetic capacity (Pmax (cell)), and photosynthetic efficiency (αcell) increased after feeding and then
declined during starvation. In the HL treatment, chl cell–1 and αcell also increased and then declined
after feeding; however, Pmax (cell) showed only a slight decrease with starvation. In both treatments, M.
rubra appeared to undergo an acclimation-like response following declines in chl cell–1, with
increases in Pmax (chl) and the light saturation parameter (Ik). While photosynthetic efficiency declined
during starvation, overall photosynthetic capacity appeared to become uncoupled with growth over
time. M. rubra demonstrated a high capacity for chl production (7 to 10 µg chl a ml–1 d–1) after feed-
ing, which decreased during starvation. Declines in growth and photosynthetic parameters coincided
with the loss of prey nuclei from M. rubra cells, implicating a possible functional role for retained
prey nuclei. These data show that M. rubra can function phototrophically for extended periods
without ingesting prey, but that feeding is periodically required for optimal growth and photosynthe-
sis, especially in high light.
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cluding plastids, mitochondria (Taylor et al. 1969,
1971), and sometimes nuclei (Hibberd 1977, Oakley &
Taylor 1978). Gustafson et al. (2000) demonstrated that
M. rubra feeds on cryptophyte algae to sequester
organelles and to maintain enhanced photosynthetic
and growth rates. Although M. rubra feeds to acquire
its plastids, its physiology drastically differs from that
of other plastid sequestering ciliates. While plastid
retaining oligotrich ciliates also require light for
growth, they are unable to grow phototrophically (i.e.
without prey) due to large heterotrophic requirements
for growth (Stoecker et al. 1988, Putt 1990). In contrast,
M. rubra has long been considered a functional photo-
troph because of its ability to form blooms, utilize dis-
solved inorganic nutrients (Packard et al. 1978, Wilker-
son & Grunseich 1990), and its high photosynthetic
rates associated with bloom events. Stoecker et al.
(1991) found a large range, 1.8 to 8.6 pg C (pg chl a)–1

h–1, of photosynthetic rates for M. rubra in estuaries
and salt ponds in Falmouth, Massachusetts. While
much lower rates have been measured for cultured
Antarctic M. rubra, 0.12 to 0.22 pg C (pg chl a)–1 h–1

(Gustafson et al. 2000), these measurements were
made at non-saturated photosynthetic irradiance
levels (~30 µE m–2 s–1) and low temperatures (~5°C).
Although feeding has been shown to greatly enhance
growth rates of M. rubra (Gustafson et al. 2000, Yih et
al. 2004), it remains unclear as to how long M. rubra is
able to grow or persist without ingesting cryptophyte
prey or how its photophysiology is related to feeding
and starvation. Herein we show that growth and pho-
tosynthetic performance are clearly linked to feeding,
and that both processes diminish slowly over time and
in relation to irradiance stress. 

MATERIALS AND METHDOS

Culture and experimental conditions. Myrionecta
rubra and Teleaulax acuta were isolated from Mc-
Murdo Sound, Antarctica, from a nutrient-enriched
sample of sea ice and water collected in January 1996
(Gustafson et al. 2000). Cultures were grown in 1 l
glass flasks with 32 PSU F/2 -Si media (Guillard 1975),
at 0 to 2°C. For normal culture maintenance, M. rubra
is fed the cryptophyte T. acuta periodically to maintain
positive growth rates. In preparation for this experi-
ment, cultures were acclimated to two 24 h light
regimes, 2.5 µE m–2 s–1 (low light, LL) and 55 µE m–2 s–1

(high light, HL), for 3 mo, while only receiving fort-
nightly additions of F/2 media. Thus cell populations
were starved of T. acuta prey at the beginning of
the experiment. The experiment was divided into 7
periods, whereby Period 1 = Days 0 to 14, Period 2 =
Days 15 to 28, etc. (see next paragraph for details).

At the beginning of the experiment, Myrionecta
rubra cultures were fed Teleaulax acuta in Period 1
with 3838 ± 107 and 4399 ± 698 cells ml–1 and in
Period 2 with 3162 ± 21 and 3066 ± 350 cells ml–1, for
the HL and LL treatments, respectively (Fig. 1). While
no short-term sampling was conducted to measure
grazing kinetics in this experiment, previous experi-
ments with this culture have shown ingestion rates of
1.3 prey M. rubra cell–1 h–1 and clearance rates of
128 nl cell–1 h–1 (Gustafson et al. 2000). M. rubra con-
centrations at Time (t) = 0 were 1266 ± 53 and 1420 ±
253 cells ml–1 in Period 1 and 718 ± 83 and 1244 ±
171 cells ml–1 in Period 2, for HL and LL treatments,
respectively. After Period 2, M. rubra cells were only
given fresh F/2 culture media every 2 wk in order to
establish starved cell populations (Fig. 1). Experimen-
tal treatments each had 3 replicates. Growth rates (µ)
were estimated during the exponential portion of the
growth phase using µ (divisions d–1) = [log2(n1/n0)]�t1 –
t0, where n0 and n1 are cell concentrations at the be-
ginning and start of the exponential growth phase,
respectively. 

Cellular attributes. Cell volume was determined
by measuring cell length and width using an ocular
micrometer on a Nikon Eclipse inverted microscope at
100 × magnification for at least 30 cells per replicate
and time point. Cell volume (V) was calculated using V
(µm3) = (π/6) ·w 2· l, where w is the cell width and l the
length. Cell concentrations and nuclei were enumer-
ated by staining glutaraldehyde-fixed (1% final conc.)
cells with the nucleic acid stain, 4,6-diamidino-2-
phenylindole (DAPI), and viewing cells at 100 × magni-
fication on a Nikon Eclipse compound microscope
equipped with a fluorescent light source, and Nikon
filter sets EF-4 B-2A (exciter filter 450 to 490 nm;
dichromatic beam splitter, DM, 500 nm; barrier filter,
BA, 515 nm) and UV 2E/C (exciter filter 340 to 380 nm;
DM 400 nm; BA 435 to 485 nm). Chlorophyll a was
extracted by filtering culture aliquots onto a GF/C filter
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and extracting overnight in 90% acetone at –20°C.
Chlorophyll concentrations were determined using a
Turner Designs model 10-AU fluorometer. 

Chlorophyll a budget. Total ingested chlorophyll
(chlI) per period was calculated by measuring re-
moval of free-living prey chl using the equation: 

chlI = [(chl a ml–1)prey, T=14 – (chl a ml–1)prey, T=0] ·T –1

where T is the total number of days per period; and
chl a ml–1 was determined by multiplying chl a cell–1

and cells ml–1. The total chlorophyll a budget (chlB) for
Myrionecta rubra (MR) was determined per period by
using the equation:

chlB = [(chl a ml–1)MR, T=14 – (chl a ml–1)MR, T=0]·T –1

Total chlorophyll a production per period (chlP) was
then determined using chlP = chlB – chlI.

Photosynthesis (14C) measurements. Photosynthesis
vs. irradiance (P–E) measurements (Lewis & Smith 1983)
were made on Days 7 and 14 of each 2 wk growth
cycle, at 2°C using a photosynthetron connected to a
chiller. During Periods 1 and 2 when Teleaulax acuta
prey was present, P–E measurements were only made
when prey was at background levels (i.e. <100 cells
ml–1) (Fig. 1). Culture aliquots were removed and kept
on ice around midday, and NaH14CO3

– was added to a
final activity of 1 µCi ml–1. At t = 0, controls were taken
by adding 2 ml of labeled culture immediately to a vial
with 200 µl of formalin, and used later for subtracting
background levels of 14C activity. Background and
total activity controls were then placed in the dark at
4°C overnight. Samples for total activity were collected
by adding 100 µl of sample to 200 µl of β-phenylethyl-
amine (Sigma). 14C-spiked culture (2 ml) was then
added to 7 ml scintillation vials, on ice, and immedi-
ately transferred to the chilled photosynthetron block.
A total of 15 vials were used for each triplicate P–E
assay, and incubated for 30 min at constant irradiance
between 0 and 800 µmol photons m2 s–1. At the end of
the incubation, the vials were acidified with 500 µl 6 N
HCl to remove unincorporated 14C, and placed on a
shaker overnight at room temperature. In order to
determine the 14C activity of the vials, 4 ml of Ultima
Flo AP (Perkin Elmer) scintillation cocktail was added
to the background control and light-exposed vials,
while 5 ml was added to the total activity vials. All 14C
incorporation and control activities were determined
using a Tri-Carb 2200CA liquid scintillation counter
(Packard Bioscience). Photosynthetic rates were deter-
mined using analytical methods described by Parsons
et al. (1984), and P–E data was normalized to hourly
rates and either cell or chlorophyll a concentrations.
Curve-fitting for P–E data was conducted in Sigma
Plot (SPSS software) using an equation based on
that of Platt et al. (1980):

P = P0 + Ps · {1 – exp [(–E · α)�Ps]} · exp [(–E · β)�Ps]

where P = photosynthesis, P0 is the y-intercept, Ps is the
maximum potential rate of photosynthesis, α is the ini-
tial light-limited slope of the P–E curve, E is the irradi-
ance, and β is the slope of the photoinhibition region of
the curve. From the curve-fitted data α, Pmax (maximum
rate of photosynthesis), Ik (photosynthesis-saturating
light irradiance) = Pmax �α, and β were determined. Pmax

and α rates are presented both as cellular (e.g. Pmax (cell)

= Pmax · ml–1 cells · ml–1) and chlorophyll (e.g. Pmax (chl) =
Pmax (cell) chl · cell–1) normalized rates in this study.

Data analysis. Statistical analysis of cell attributes
and P–E parameter data were conducted using the
mixed model ANOVA and multiple regression options
in SAS/STAT 9.0 (SAS Institute), and p < 0.05 as a level
of significance. Comparisons for ANOVAs between
means were made between treatments (HL vs. LL) and
over time using Tukey’s Studentized range (honest
significant difference, HSD) test. 

RESULTS

Changes in cellular composition following feeding

More than 95% of added prey were removed in both
treatments by Day 14 for Periods 1 and 2 (Fig. 2A,B).
Growth rates were highest while feeding, with the HL
treatment reaching 0.19 d–1 and the LL treatment
0.11 d–1 (Fig. 2C). At the end of Period 2, Myrionecta
rubra possessed 0.89 and 0.78 Teleaulax acuta nuclei
cell–1 in the HL and LL treatments, respectively (Fig. 3).
Cell shape and volume were highly variable in the HL
treatment when exposed to T. acuta prey. While the
mean cell volume for HL cells over the course of the ex-
periment was 4221 µm3, maximum cell volume during
Periods 1 and 2 reached 21435 and 13 066 µm3, respec-
tively. These large cells, although rare, were sometimes
irregularly shaped, with multiple ciliary bands arising
from different regions of the cell, and possessing numer-
ous ciliate macronuclei (mac) and micronuclei (mic) as
well as T. acuta nuclei. Such cells were never observed
in the LL treatment and may have been either an artifact
due to higher light and/or cell division rates or perhaps
due to sexual reproduction processes. LL cells averaged
3428 µm3 during the entire experiment, and while max-
imum cell sizes reaching 13782 µm3 during Period 4, cell
shape remained regular and such large cells were rare. 

Changes in photophysiological parameters
following feeding

In both treatments, a dramatic rise in chl a cell–1 was
observed following the introduction of prey (Fig. 4).
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This increase was more sustained in the LL treatment,
with chl a cell–1 apparently reaching a transient steady
state during Periods 3 and 4, averaging 45.9 ± 5.8 pg
chl a cell–1 during this time, without addition of new
prey. Chlorophyll budgets were determined in order to
assess relative contributions from feeding vs. chl syn-
thesis. Calculations of chlP for Myrionecta rubra during
this study revealed that feeding is a minor source of chl
a, accounting for 15 and 14% in LL and 7 and 8% in HL
of total chlP (7000 to 10 000 pg chl a ml–1 d–1) for Periods
1 and 2, respectively (Fig. 5). In the LL treatment, Pmax

(cell) increased during and after the feeding periods,
reaching 46 ± 4 pg C cell–1 h–1, and closely mirroring
trends in chl cell–1 during the experiment (Fig. 6A). HL
chl cell–1 peaked at 28 ± 3 pg chl a cell–1 but, unlike the
LL treatment, these elevated concentrations were not
maintained. HL Pmax (cell) rates showed less variation
and peaked at 21 ± 3 pg C cell–1 h–1 (Fig. 6A). In both
treatments, αcell increased after feeding to 0.55 ± 0.08
in the HL and 1.74 ± 0.31 pg C (cell)–1 (µE m–2 s–1)–1 in

LL (Fig. 6B). Pmax (chl) steadily increased following feed-
ing for both treatments, reaching a maximum of 1.18
and 1.46 pg C (pg chl a)–1 h–1 for LL and HL, respec-
tively, while αchl did not reveal any obvious trend after
feeding (Fig. 7). 

Changes in cellular composition during starvation

Following Period 2, no new prey was added to either
treatment and changes in cell parameters were ob-
served during starvation for 6 to 8 additional weeks.
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The HL treatment was terminated after 6 wk (total of
5 periods), since it contained too few cells, while the LL
treatment was continued to 8 wk past feeding or (total
of 6 periods). Prey nuclei cell–1 declined in the absence
of new prey, with under 10% of LL Myrionecta rubra
cells possessing Teleaulax acuta nuclei by the final
period (Fig. 3). After 4 wk without prey (Period 4),
µ for both treatments of M. rubra declined by nearly
half of fed growth rates to 0.072 ± 0.026 (HL) and
0.035 ± 0.009 (LL) d–1 (Fig. 2C). By 6 wk of starvation
(Period 5), no growth was observed in the HL treat-
ment while µ remained relatively steady in the LL
treatment through Period 6 (~0.035 d–1). Cell volume
slightly declined in the HL treatment over time and
increased in the LL treatment (data not shown). 

Changes in photophysiological parameters
during starvation

Chl cell–1 remained at relatively constant levels in
the LL treatment for about 4 wk following Period 2,

despite no new additions of prey and positive growth
rates for Myrionecta rubra. In the HL treatment, chl a
cell–1 continued to increase briefly in Period 3 (Days 28
to 42) and then steadily declined during starvation to
near pre-feeding levels (12.8 ± 3.4 pg chl a cell–1)
(Fig. 4A). In the LL treatment, chl a cell–1 also fell to
pre-feeding levels (19.8 ± 2.6 pg chl a cell–1) by Period
6 (Days 70 to 84) (Fig. 4B). Declines in chl a cell–1 were
reflected in measurements of Pmax (cell); however, this
was more pronounced in the LL treatment (Fig. 6A).
αcell also declined during the starvation period. In the
LL treatment, αcell was highly variable; however, the
pattern was similar to that observed for Pmax (cell)

(Fig. 6B). The HL treatment showed little variability in
αcell and, like Pmax (cell), steadily declined with time.
Increases in Pmax (chl) reached a maximum during
Period 5 (Days 56 to 70) for both treatments, at 1.36 ±
0.12 and 1.22 ± 0.27 pg C (pg chl a)–1 h–1 for the HL and
LL, respectively, before leveling off in both treatments
(Fig. 7A). αchl showed no clear pattern for either treat-
ment during the experiment (Fig. 7B). Data for the β
parameter (slope of light saturated portion of P–E
curve) revealed low levels of photoinhibition for the LL
treatment [mean β: 6.5 × 10–5 pg C (pg chl a) h–1], while
the HL treatment [mean β: –1.07 × 10–4 pg C (pg chl a)
h–1] never reached photoinhibited levels (data not
shown). Within both treatments, β was highly variable,
with no significant trend over time. However, overall β
between treatments was significantly higher in LL vs.
HL through Periods 1 to 5 (paired t-test; p = 0.0004).
The Ik parameter continued to increase throughout the
starvation period, nearly doubling values from Period 1
and reaching 60 and 40 µE m–2 s–1 for HL and LL
treatments, respectively (Fig. 6C).

DISCUSSION

The physiology and survival strategy of Myrionecta
rubra is unique. While other ciliated protists have been
shown to sequester plastids and mitochondria from
their prey (Johnson et al. 1995), none appear to retain
prey nuclei or function completely as a phototroph.
Plastidic ciliates are important members of marine and
freshwater planktonic communities (Stoecker et al.
1987). In coastal marine and estuarine systems, M.
rubra is frequently the dominant plastidic ciliate (e.g.
Sanders 1995, Witek 1998, Sorokin et al. 1999) and the
only species known to cause recurrent red water
events. Other plastidic ciliates may also have high
photosynthetic rates, but are predominantly mixo-
trophic (Stoecker et al. 1988). Putt (1990) found that
most carbon acquired via photosynthesis in the oligo-
trich Laboea strobila was used for respiration, while
ingested carbon was used primarily for growth. While
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many plastidic oligotrichs are obligate phototrophs,
their plastids have short residence times (hours) and
thus are highly dependent on phagotrophy not only for
heterotrophic growth, but also for replacing aging
chloroplasts (Stoecker & Silver 1990). Clearly M. rubra
is unique in this regard, in that it can grow photo-
trophically for long periods without prey, and has capa-
city for substantial, albeit transient, pigment synthesis. 

The effects of ingesting cryptophyte prey upon the
photophysiological capacity of Myrionecta rubra in
this study were immediate and dramatic. Chl a cell–1

quickly increased for both HL and LL treatments when
fed, and resulted in maximum observed µ. The dra-
matic rise in chl a cell–1 and maintenance of elevated
chl a concentrations without further addition of prey
suggests a capacity for chl a synthesis in M. rubra, as
shown previously by Gustafson et al. (2000). While ele-
vated chl a cell–1 was maintained longer in LL, actual
chl a production for both treatments was nearly iden-
tical (Fig. 5). The faster decline of chl a cell–1 in HL
(Fig. 3) was most likely due to higher growth rates, and
a lower acclimation state chl a quotient (i.e. for acclima-
tion to high light). While it is possible that the more pre-
cipitous decline in chl a cell–1 and µ in HL treated cells
were due to greater photooxidative stress than in LL
cells, we have no evidence to support such a conclu-
sion. Despite dramatic changes in chl a cell–1 over time,
αchl was relatively steady throughout the experiment for
both treatments, suggesting no real loss in photosyn-
thetic efficiency per unit chlorophyll over time (Fig. 7B).
That M. rubra is able to grow phototrophically (i.e. in
the absence of prey) while synthesizing chl a suggests
at least some transient capacity for maintaining and re-
pairing sequestered plastids. Interestingly, Teleaulax
acuta nuclei were retained by M. rubra and remained
within the cell population for up to 6 wk into the starva-
tion period. These nuclei apparently do not undergo
division in M. rubra and, while >90% of cells may con-
tain them, after feeding the proportion of cells with
prey nuclei is diluted through cell division. The ab-
sence of new prey and the eventual loss of prey nuclei
from the population may have resulted in the loss of
certain functions associated with plastid biosynthetic
pathways, pigment synthesis and regulation. 

As expected, highest rates for Pmax (cell) and αcell closely
followed maximum chl a cell–1 levels, especially in the
LL treatment. The photosynthetic rates measured here
are somewhat modest for Myrionecta rubra, as pre-
vious measurements during blooms have shown ex-
tremely high chlorophyll-specific, light-saturated car-
bon assimilation rates of >10 pg C (pg chl a)–1 h–1

(Smith & Barber 1979). The reason for this discrepancy
may be that our Antarctic strain is grown at 0 to 2°C
(P–E curves at 2°C) and in constant light, both of which
may decrease light saturated rates of photosynthesis

(Cota et al. 1994). Indeed, light-saturated photosyn-
thetic measurements of Antarctic M. rubra field popu-
lations are also relatively low, at 1.04 pg C (pg chl a)–1

h–1, falling within the range of those presented here
(Satoh & Watanabe 1991). The increase in Ik with time
is also attributable to chl a cell–1 loss, and indicates a
loss of steady state acclimation to experiment growth
irradiance (Fig. 6C). During the experiment, Ik re-
mained at or below growth irradiance for the HL treat-
ment, while Ik was always higher than growth irradi-
ance in LL. Overall, Ik values were low, perhaps due
not only to the relatively low growth irradiance used in
this experiment, but also to adaptation to low tempera-
ture, as seen with polar algae (e.g. Cota et al. 1994). 

Myrionecta rubra cells in this experiment appeared
to be acclimated to their respective irradiance regimes
and regulate chl a cell–1 levels to apparently optimize
growth. While declines in Pmax (cell) over time can simply
be explained by decreasing chl a cell–1 during starva-
tion, reasons for variation in Pmax (chl) are less obvious.
The lower rates measured for Pmax (chl) in the LL treat-
ment suggest that under saturating irradiance LL cells
experienced a greater packaging effect, i.e. inefficient
chl a light absorption due to an abundance of chl a
cell–1. In fact, the steady increase in Pmax (chl) over time,
concurrent with losses of chl a cell–1, suggests that
either both treatments experienced a packaging effect,
or responded by up-regulating photochemistry. Never-
theless, increases in Pmax (chl) for both treatments repre-
sented an increase in photosynthetic efficiency with
time. For both treatments, the leveling off of Pmax (chl)

coincided with a new, lower chl a cell–1 steady state. 
In this experiment, maximum chl a cell–1 and Pmax (chl)

levels occurred after Period 2 and were out of syn-
chrony with maximum observed µ, perhaps indicating
that growth for Myrionecta rubra is greatest after
sequestering new organelles from cryptophyte algae.
Alternatively, this imbalance with photosynthesis and
growth may suggest that mixotrophy enhanced growth
rates while feeding. To evaluate the importance of
ingesting prey carbon, we used C cell–1 measurements
of our Teleaulax acuta culture (unpubl. data) and
observed prey removal (d–1) during the first 2 periods.
Maximum potential C contributions from ingestion
were calculated as being 10.0 and 10.6% (for HL) and
10.8 and 8.8% (for LL), of total growth requirements in
Periods 1 and 2, respectively. However, these calcula-
tions are probably gross overestimates as they assume
total C assimilation and do not account for organelle
retention. Therefore mixotrophic C gain from ingestion
of cryptophyte prey does not account for the substan-
tially higher growth rates observed when M. rubra is
feeding. To further evaluate the C budget of M. rubra,
we calculated carbon contributions from observed
photosynthetic rates (CP), prey removal rates (CU) and
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estimated C cell–1 values (Ccell) (Menden-Deuer &
Lessard 2000) to calculate mixotrophic gross growth
efficiencies (GGEM) during each period. Here we
define GGEM as G/C*·100, where G = Ccell·yield, and
yield is the maximum population size during period
(assuming no mortality) and C* = CP + CU. This esti-
mate of GGEM is therefore based on mixotrophic
growth, as it includes parameters for both phototrophy
(CP) and heterotrophy (CU). During the feeding period,
GGEM were greatest, suggesting some enhancement
of µ associated with feeding, while during late starva-
tion, GGEM declined, indicating an imbalance be-
tween C assimilation and growth (i.e. a C sink) (Fig. 8).
Maximum GGEM values were 52 and 74% for the HL
and LL treatments, respectively. During starvation, the
decline in GGEM was dramatic in the HL treatment,
approaching zero in Period 5, while the LL treatment
was near 30% (Fig. 8). The total collapse of µ in the HL
treatment, despite ongoing C fixation, suggests that M.
rubra loses anabolic functions related to photosynthe-
sis when starved of cryptophyte prey for long periods,
and that fixed C is either stored or excreted. The differ-
ence in rates of GGEM decline between treatments was
perhaps due to greater photooxidative stress in the HL. 

GGE for heterotrophic protists are generally between
40 and 60% (Caron & Goldman 1990). Skovgaard
(1998) compared the GGE of a heterotrophic dinofla-
gellate Gyrodinium sp., to that of the similar sized plas-
tid retaining dinoflagellate, G. gracilentum, finding 23
to 27% higher GGE in G. gracilentum. While optimal
net growth efficiency (i.e. for fixed C) for some pho-
totrophs can exceed 80% (Herzig & Falkowski 1989),
plastid maintenance has been estimated to be a major
energetic sink in phototrophs, requiring up to 50% of
cell energy costs and resulting in lower growth rates

compared to heterotrophs (Raven 1997). Thus, in klep-
toplastidic protists photosynthesis may be viewed as a
luxury carbon source, resulting in higher GGE (e.g.
Skovgaard 1998), and perhaps causing cells to endure
periods of limited prey availability (e.g. Blackbourn et
al. 1973). When feeding and sequestering new plas-
tids, Myrionecta rubra may benefit from reduced costs
associated with plastid maintenance, and thus have
higher growth rates. However, because M. rubra is
capable of plastid division and long-term phototrophic
growth, it does not gain a free photosynthetic ‘ride’ as
do other kleptoplastidic protists. Using data from Skov-
gaard (1998) we calculated GGEM for G. gracilentum
to be ~48% in high irradiance (90 µmol photons m–2

s–1). While this value is comparable to those obtained
here for M. rubra, plastids in G. gracilentum were
determined to be useful for only ~2 d (Skovgaard
1998). These comparisons underscore the paradoxical
nature of M. rubra. While it functions as a phototroph
and has the capacity to synthesize chl a, it occasionally
requires ingestion of prey to sequester new organelles.
Thus, M. rubra defies comparison with most other
functional classifications for protists. 

We have shown that while Myrionecta rubra attains
higher growth rates under HL conditions, cell popula-
tions have longer sustained growth under LL condi-
tions. Under low temperature conditions such as those
used in this study, respiration rates would be relatively
low (Caron et al. 1990), and therefore survival under
prolonged starvation might be longer than that
expected for cells grown at higher temperatures. Low
respiration rates under polar conditions and the ability,
shown here, of M. rubra to survive and even grow at
low photosynthetically active radiation levels (PAR),
may explain how populations of M. rubra can remain
active during winter in certain regions of Antarctica.
During winter in Ace Lake, a brackish lake in Antarc-
tica, PAR at 2 m under ice is <1 µE m–2 s–1, and active
populations of M. rubra have been shown to occur at
densities of up to 80 cells ml–1. Studies in temperate
regions have shown M. rubra cells to form discrete lay-
ers at great depths (Setälä & Kivi 2003). Furthermore,
recurrent blooms of this ciliate have been shown to
occur at dynamic boundaries in various upwelling
regions (i.e. Ryther 1967), or following stratification in
partially mixed estuaries (i.e. Crawford et al. 1997) or
in fjords (i.e. Fenchel 1968, Lindholm 1978) around the
world. These observations and the photophysiological
measurements shown herein suggest that M. rubra
may be adapted for survival under low light conditions,
while thriving for shorter periods in high light. In con-
clusion, while feeding on cryptophyte algae ultimately
limits growth and photosynthetic performance in M.
rubra, the ciliate is able to function for long periods as
a phototroph before feeding again.
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