小型多価イオン源用ビームラインの開発

量子·物質工学科 山田研究室 谷中 佑樹

1. 背景・目的

多価イオンは太陽コロナや核融合炉な どの高温プラズマ中に存在するため、そ の原子データはプラズマ中で起きている 現象の解析に不可欠である。また、多価 イオンは膨大な内部エネルギーを持つた めに反応性が高く、さまざまな分野にお いての応用が期待されている。例えば、 固体表面との反応で多数の電子を奪い、 表面にナノサイズの構造変化をもたらす 特徴を持つことから、表面微細加工技術 への応用が望まれている。

我々の研究グループでは、電子ビーム イオントラップ(EBIT; Electron Beam Ion Trap)と呼ばれる大型イオン源(通称 Tokyo-EBIT)によって生成される多価イ オンを用いて様々な研究を行ってきた。 しかし、Tokyo-EBIT は高度に電離された 重元素多価イオンを用いた研究には適し ているが、低価数あるいは中程度の価数 を持ったイオンの生成には過剰性能であ る側面がある。そこで最近、より小型で 簡便な EBIT が製作され、中程度の価数 を持った多価イオンの分光研究が効率的 に行われている。

本研究の目的は、小型 EBIT での分光 以外の研究の幅を広げるために、生成さ れた多価イオンを取り出し、衝突実験を 可能とすることである。そのためにイオ ン取り出しビームラインの設計およびシ ミュレーションを行った。

2. 原理と装置

2.1 EBIT

Electron Beam Ion Trap(EBIT)の原理 を図1に示す。EBIT は大きく分けて電子 銃(e-gun)、3つのドリフトチューブ(DT)、 電子コレクター(e-collector)で構成されて いる。さらに DT の周りには超伝導コイ ル(SCM)を配置し、ビーム軸方向に強磁 場を形成する。電子銃から出射した電子 ビームは図のような電位配置によって加 速され、磁力線に沿って径方向に圧縮さ れながら DT に入射する。ビームの軸方 向にはDTに加える井戸型ポテンシャル、 径方向には電子ビームの空間電荷ポテン シャルによってイオンをトラップする。 DT 内部に閉じ込められたイオンに電子 ビームを照射して電子衝突により逐次電 離を行い、多価イオンを生成する。

2.2 アインツェルレンズ

ビームラインの製作にあたり、イオン ビームを集束させるための静電レンズと、 様々な価数を持ったイオンを分ける価数 分析器が必要となる。本研究では静電レ ンズにはアインツェルレンズを、価数分 析器にはウィーンフィルターを用いた。 ここではアインツェルレンズの原理につ いて説明する。

図2のようにアインツェルレンズは3 つの円筒電極で構成されており、中心の 電極2を高電位に、両端の電極1,3をグ ランド電位にすることで、レンズ通過前 後でのエネルギーを変化させることなく ビームの集束を行うことが可能である。

図 2. アインツェルレンズの概観

2.3 ウィーンフィルター

ウィーンフィルターは図3のように磁 極と電極が互いに垂直に配置され、直交 電磁場を形成する。この直交電磁場中に おいて電場、磁場の各々よりイオンが受 ける2つの力が釣り合う時に、イオンは 直進する。力の釣り合う条件が質量/価 数比および速度に依存することを利用し て価数を分別する。

図 3. ウィーンフィルター

2.4 SIMION

アインツェルレンズおよびウィーンフ ィルターのサイズ・形状については、軌 道計算ソフト SIMION を用いてシミュレ ーションを行い決定した。SIMION には 次のような特徴がある。 (1)平面の若しくは円筒対称な個々の電極 /磁極について描写できる。 (2)ポテンシャル、等電位線/磁力線、イ

(3)各電極/磁極を詳細に決められるため、 収差の全ての影響が考慮される。 こにより、個々の電極/磁極について最 適なデザインを決定することができる。

3. 結果

3.1 アインツェルレンズ

オンの軌道が算出される。

本研究では、より多くのビームを取り 込むことができるように2段式のアイン ツェルレンズを採用した。SIMION での シミュレーションの結果から、アインツ ェルレンズのサイズおよび形状を図4(a) のように決定した。今回のシミュレーシ ョンには Xe²⁶⁺を用いた。図4(b)は、小型 EBIT に装着してビームの集束を行って いる図である。

図 4(a). アインツェルレンズの形状決定。黒い線がイオンビーム、赤い線が等電位線。

			-			
	名称	印加電圧[V]			名称	印加電圧[V]
1	DT1	500		6	電極1	0
2	DT2	470		\bigcirc	電極 2	700
3	DT3	500		8	電極 3	0
4	電子コレクタ	-100		9	電極 4	700
5	エクストラクタ	-500		10	電極 5	0

図 4(b). ビームが集束している様子。左の表は小型 EBIT、右の表はアインツェルレンズの各電極に印加 する電圧。

実際には、中心の電極にイオンの軌道 のずれを修正するためのディフレクター を設置する予定である。その全体図を図5 に示す。

図 5. アインツェルレンズの図面。

3.2 ウィーンフィルター

ウィーンフィルターについては実際に 製作し、動作試験を行った。今回は強磁 場磁石(中心磁場:1319Gauss)を用いて一 定磁場をかけ、電極に印加する電圧を変 えて実験を行った。図6に装置図を示す。 イオン銃で発生したイオンビームの軌道 がウィーンフィルターを通過することで 変化し、価数が分別される。直進したイ オンの電流を電流計で検知した。

図 6. ウィーンフィルターの動作チェックのための 装置。

今回はAr、Kr、Nのガスを用い、以下 のような測定条件で動作試験を行った。

真空度	$\sim 10^{-7} \mathrm{Pa}$		
中心磁場	1319 Gauss		
イオンの加速電圧	5 kV		

得られた結果を図7に示す。それぞれの ピークについて、計算との比較から価数 を同定した。

図 7. 各元素についての価数分析の結果。

4. まとめ

・小型多価イオン源用ビームラインの開 発のために、静電レンズと価数分析器の シミュレーションおよび設計を行った。

・SIMION でのシミュレーションから、
静電レンズにはアインツェルレンズを、
価数分析器にはウィーンフィルターを採用した。

・ウィーンフィルターを実際に製作して 動作実験を行った。

・得られた結果について、それぞれ価数 の同定を行った。

5. **今後の展望**

アインツェルレンズについてはまだサ イズ・形状を決定した段階であるので、 これも製作したのちにウィーンフィルタ ー共々小型 EBIT に取り付け、多価イオ ンを引き出せるかどうかの最終チェック を行い、将来的には小型 EBIT でも衝突 実験を可能にしたい。