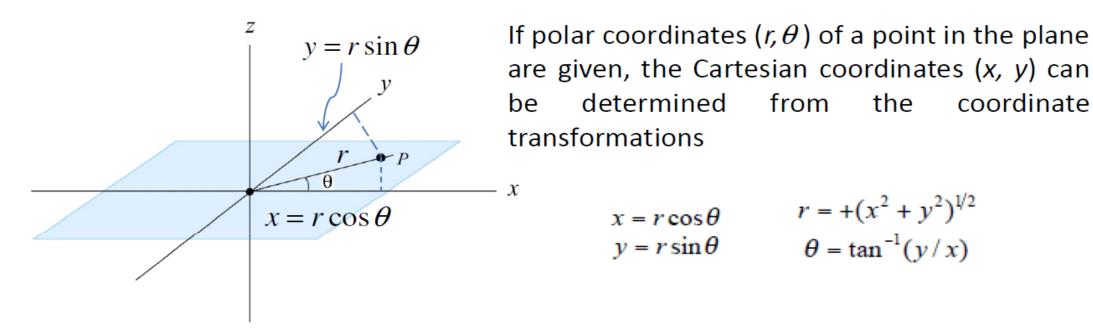
Polar Coordinates

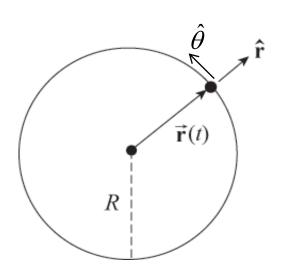
Polar and Cartesian coordinates:



Note: $r \ge 0$ so take the positive square root only.

Since $\tan \theta = \tan(\theta + \pi)$ For $0 \le \theta \le \pi/2$ $x \ge 0$ and $y \ge 0$ For (-x, -y) take $\theta + \pi$

Unit Vectors in Polar coordinates



The position vector \vec{r} in polar
coordinate is given by : $\vec{r} = r\hat{r}$ In Cartesian coordinate: $\vec{r} = x\hat{i} + y\hat{j}$ By coordinate transformations: $\begin{aligned} x = r\cos\theta \\ y = r\sin\theta \end{aligned}$

Therefore:
$$\vec{r} = r \cos \theta \hat{i} + r \sin \theta \hat{j}$$

e defined as : $\hat{r} = \frac{\partial \vec{r} / \partial r}{|\partial \vec{r} / \partial r|} = \cos \theta \hat{i} + \sin \theta \hat{j}$

The unit vectors are defined as :

$$\hat{r} \times \hat{\theta} = \hat{k}$$

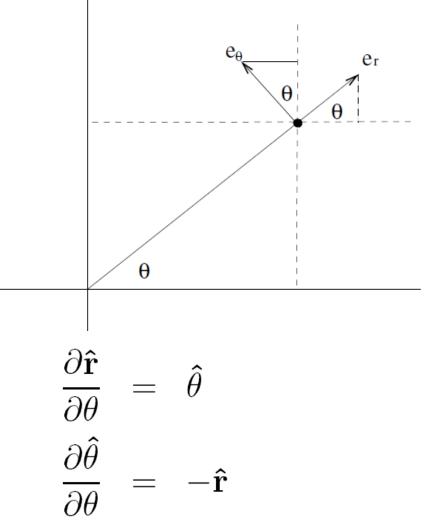
Unit Vectors in Polar coordinates

Define at each point, a set of two unit vectors $\hat{\mathbf{r}}$ and $\hat{\theta}$ as shown in the figure.

$$\hat{\mathbf{r}} = \mathbf{i}\cos\theta + \mathbf{j}\sin\theta$$
$$\hat{\theta} = -\mathbf{i}\sin\theta + \mathbf{j}\cos\theta$$

Unit vectors only depend on $\boldsymbol{\theta}$

unit vectors are functions of the polar coordinates



Motion in Plane Polar Coordinates

Velocity and acceleration in polar coordinates

Velocity in polar coordinate:

The position vector \vec{r} in polar coordinate is given by : $\vec{r} = r\hat{r}$

And the unit vectors are: $\hat{r} = \cos\theta \hat{i} + \sin\theta \hat{j} \& \hat{\theta} = -\sin\theta \hat{i} + \cos\theta \hat{j}$

Since the unit vectors are not constant and changes with time, they should have finite time derivatives:

$$\dot{\hat{r}} = \dot{\theta} \left(-\sin\theta \hat{i} + \cos\theta \hat{j} \right) = \dot{\theta} \hat{\theta}$$
 and $\dot{\hat{\theta}} = \dot{\theta} \left(-\cos\theta \hat{i} - \sin\theta \hat{j} \right) = -\dot{\theta} \hat{r}$

Therefore the velocity is given by:
$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{r}\hat{r} + r\dot{\hat{r}} = \dot{r}\hat{r} + r\dot{ heta}\hat{ heta}$$

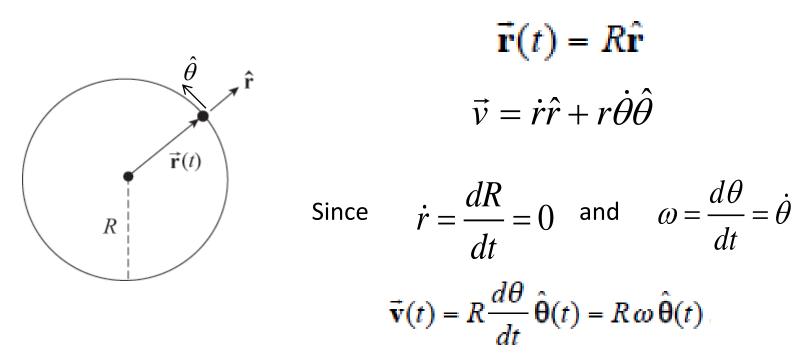
=

Radial velocity + tangential velocity = $\frac{dx}{dt} \mathbf{i} + \frac{dy}{dt} \mathbf{j}$

In Cartesian coordinates

 $\widehat{\boldsymbol{\theta}}$

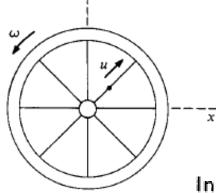
Example-1: Uniform Circular Motion



Since \vec{v} is along $\hat{\theta}$ it must be perpendicular to the radius vector \vec{r} and it can be shown easily

$$R^{2} = \vec{\mathbf{r}} \cdot \vec{\mathbf{r}} \qquad \qquad \frac{d}{dt} R^{2} = \frac{d}{dt} (\vec{\mathbf{r}} \cdot \vec{\mathbf{r}}) = 2\vec{\mathbf{r}} \cdot \vec{\mathbf{v}} = 0, \qquad \qquad \vec{\mathbf{r}} \perp \vec{\mathbf{v}}$$

Why polar coordinates?Fxample-2:Velocity of a Bead on a Spoke



y.

A bead moves along the spoke of a wheel at constant speed u meters per second. The wheel rotates with uniform angular velocity $\dot{\theta} = \omega$ radians per second about an axis fixed in space. At t = 0 the spoke is along the x axis, and the bead is at the origin. Find the velocity at time t

In polar coordinates : $r = ut, \dot{r} = u, \dot{\theta} = \omega$. Hence

 $\mathbf{v} = \dot{r}\hat{\mathbf{r}} + r\theta\hat{\mathbf{\theta}} = u\hat{\mathbf{r}} + ut\omega\hat{\mathbf{\theta}}.$

To specify the velocity completely, we need to know the direction of $\hat{\mathbf{r}}$ and $\hat{\mathbf{\theta}}$. This is obtained from $\mathbf{r} = (r, \theta) = (ut, \omega t)$.

In cartesian coordinates. : $v_x = v_r \cos \theta - v_\theta \sin \theta$ $v_y = v_r \sin \theta + v_\theta \cos \theta$.

Since $v_r = u$, $v_{\theta} = r\omega = ut\omega$, $\theta = \omega t$,

 $\mathbf{v} = (u \cos \omega t - ut\omega \sin \omega t)\mathbf{i} + (u \sin \omega t + ut\omega \cos \omega t)\mathbf{j}$

Note how much simpler the result is in plane polar coordinates.

Symmetry is important.

Acceleration in Polar coordinate:

$$\mathbf{a} = \frac{d}{dt}\mathbf{v}$$

$$= \frac{d}{dt}(\dot{r}\hat{\mathbf{r}} + r\theta\hat{\mathbf{\theta}})$$

$$= \ddot{r}\hat{\mathbf{r}} + \dot{r}\frac{d}{dt}\hat{\mathbf{r}} + \dot{r}\theta\hat{\mathbf{\theta}} + r\theta\hat{\mathbf{\theta}} + r\theta\hat{\mathbf{\theta}}^{2}\hat{\mathbf{r}}$$

$$= \ddot{r}\hat{\mathbf{r}} + \dot{r}\frac{d}{dt}\hat{\mathbf{r}} + \dot{r}\theta\hat{\mathbf{\theta}} + r\theta\hat{\mathbf{\theta}} + r\theta\hat{\mathbf{\theta}} + r\theta\frac{d}{dt}\hat{\mathbf{\theta}}.$$

$$\mathbf{a} = \ddot{r}\hat{\mathbf{r}} + \dot{r}\theta\hat{\mathbf{\theta}} + \dot{r}\theta\hat{\mathbf{\theta}} + r\theta\hat{\mathbf{\theta}} - r\theta^{2}\hat{\mathbf{r}}$$

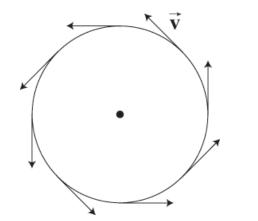
$$= (\ddot{r} - r\theta^{2})\hat{\mathbf{r}} + (r\ddot{\theta} + 2\dot{r}\theta)\hat{\mathbf{\theta}}.$$

The term $\tilde{r}\hat{\mathbf{r}}$ is a linear acceleration in the radial direction due to change in radial speed. Similarly, $r\tilde{\theta}\hat{\theta}$ is a linear acceleration in the tangential direction due to change in the magnitude of the angular velocity.

The term $-r\dot{\theta}^2 \hat{\mathbf{r}}$ is the centripetal acceleration Finally, the Coriolis acceleration $2\dot{r}\dot{ heta}\hat{ heta}$

Usually, Coriolis force appears as a fictitious force in a rotating coordinate system. However, the Coriolis acceleration we are discussing here is a real acceleration and which is present when r and θ both change with time.

Example-1: Circular motion



 $\vec{a} = a_r \hat{r} + a_\theta \hat{\theta}$ $a_r = \vec{r} - r\dot{\theta}^2, \quad a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta}$ For a circular motion, r = R, the radius of the circle. Hence, $\dot{r} = \ddot{r} = 0$ So, $a_\theta = R\ddot{\theta}$ and $a_r = -R\dot{\theta}^2$

For uniform circular motion, $\dot{\theta} = \omega = \text{constant}$. Hence, $a_{\theta} = R \frac{d\omega}{dt} = 0$

For non-uniform circular motion, ω is function of time. Hence, $a_{\theta} = R \frac{d\omega}{dt} = R\alpha$,

where $\alpha = \frac{d\omega}{dt}$ is the angular acceleration. However, the radial acceleration is always $a_r = -R\dot{\theta}^2 = -R\omega^2$

Therefore, an object traveling in a circular orbit with a constant speed is always accelerating towards the center. Though the magnitude of the velocity is a constant, the direction of it is constantly varying. Because the velocity changes direction, the object has a nonzero acceleration.

Example-2: Acceleration of a Bead on a Spoke

A bead moves outward with constant speed u along the spoke of a wheel. It starts from the center at t = 0. The angular position of the spoke is given by $\theta = \omega t$, where ω is a constant. Find the velocity and acceleration.

$$\mathbf{v} = \dot{r}\hat{\mathbf{r}} + r\dot{\theta}\hat{\mathbf{0}}$$

We are given that $\dot{r} = u$ and $\dot{\theta} = \omega$. The radial position is given by r = ut, and we have

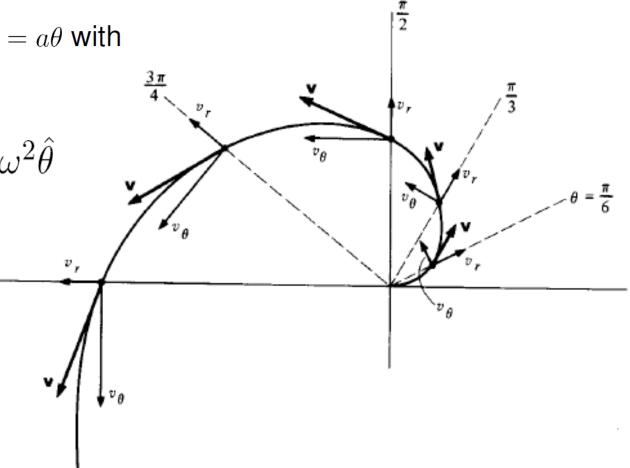
$$\mathbf{v} = u\hat{\mathbf{r}} + ut\omega\hat{\mathbf{\theta}}.$$

The acceleration is

$$\mathbf{a} = (\ddot{r} - r\dot{\theta}^2)\mathbf{\hat{r}} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\mathbf{\hat{\theta}}$$
$$= -ut\omega^2\mathbf{\hat{r}} + 2u\omega\mathbf{\hat{\theta}}.$$

Consider a particle moving on a spiral given by $r = a\theta$ with a uniform angular speed ω . Then $\dot{r} = a\dot{\theta} = a\omega$.

$$\mathbf{v} = a\omega\hat{\mathbf{r}} + a\omega^2 t\hat{\theta}$$
 and $\mathbf{a} = -a\omega^3 t\hat{\mathbf{r}} + 2a\omega^2\hat{\theta}$



The velocity is shown in the sketch for several different positions of the wheel. Note that the radial velocity is constant. The tangential acceler-ation is also constant—can you visualize this?

Though the magnitude of radial velocity is constant there is a radial acceleration.

Motion: Kinematics in 1D

The motion of the particle is described specifying the position as a function of time, say, x(t).

The instantaneous velocity is defined as

(1)
$$v(t) = \frac{dx}{dt}$$

(2)
$$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

1D Motion Position Velocity Acceleration

Example

If
$$x(t) = \sin(t)$$
, then $v(t) = \cos(t)$ and $a(t) = -\sin(t)$.

- Usually the x(t) is not known in advance!
- But the acceleration a(t) is known and at some given time, say t_0 , position $x(t_0)$ and velocity $v(t_0)$ are known.
- The formal solution to this problem is

$$v(t) = v(t_0) + \int_{t_0}^t a(t') dt'$$

$$x(t) = x(t_0) + \int_{t_0}^t v(t') dt'$$

Let the acceleration of a particle be a_0 , a constant at all times. If, at t = 0 velocity of the particle is v_0 , then

$$v(t) = v_0 + \int_0^t a_0 dt$$
$$= v_0 + a_0 t$$

And if the position at t = 0 is x_0 ,

$$x(t) = x_0 + v_0 t + \frac{1}{2}a_0 t^2$$

More complex situations may arise, where an acceleration is specified as a function of position, velocity and time. $a(x, \dot{x}, t)$. In this case, we need to solve a differential equation

$$\frac{d^2x}{dt^2} = a\left(x, \dot{x}, t\right)$$

Suppose a ball is falling under gravity in air, resistance of which is proportional to the velocity of the ball.

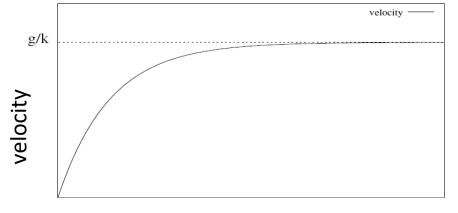
Example

which may or may not be simple.

$$a\left(\dot{y}\right) = -g - k\dot{y}$$

If the ball was just dropped, velocity of the ball after time then

$$v(t) = -\frac{g}{k} \left(1 - e^{-kt} \right)$$



Kinematics in 2D

The instantaneous velocity vector is defined as

$$\mathbf{v}(t) = \frac{d}{dt}\mathbf{r}$$

$$= \lim_{dt \to 0} \frac{\mathbf{r}(t+dt) - \mathbf{r}(t)}{dt}$$

$$= \lim_{dt \to 0} \frac{x(t+dt) - x(t)}{dt}\mathbf{i} + \lim_{dt \to 0} \frac{y(t+dt) - y(t)}{dt}\mathbf{j}$$

$$= \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j}$$

The instantaneous acceleration is given by:

$$\mathbf{a}(t) = \frac{d^2x}{dt^2}\mathbf{i} + \frac{d^2y}{dt^2}\mathbf{j}$$

Kinematics in 2D

In this case, we have to solve two differential equations

$$\frac{d^2x}{dt^2} = a_x$$
$$\frac{d^2y}{dt^2} = a_y$$

A ball is projected at an angle θ with a speed u. The net acceleration is in downward direction. Then $a_x = 0$ and $a_y = -g$. The equations are

$$\frac{d^2x}{dt^2} = 0$$
$$\frac{d^2y}{dt^2} = -g$$

Charge particle in a magnetic field

A particle has a velocity v in XY plane. Magnetic field is in z direction The acceleration is given by $\frac{q}{m}\mathbf{v} \times \mathbf{B}$

$$\frac{d^2x}{dt^2} = \frac{qB}{m}v_y$$
$$\frac{d^2y}{dt^2} = -\frac{qB}{m}v_x$$

Solution is rather simple, that is circular motion in xy plane.

Equation of motion of a chain

A uniform chain of length 'a' is placed on a horizontal frictionless table, so that a length 'b' of the chain dangles over the side. How long will it take for the chain to slide off the table?

