
IAIK

IAIK

Application Layer
Computer Organization and Networks 2019

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

IAIK

● HTTP Basics

 Request Types

 HTTP/2

● Advanced communication

 AJAX

 WebSockets

 HTML5 postMessage

● DNS

 Protocol

 Resource Recrods

Outline
Application

Transport

Link layer
(Ethernet, WLAN, LTE…)

TCP / IP Model

HTTP TLS / SSL

Network

FTP

Telnet SSH

...

DNS

IAIK

● Service provisioned to higher layers through ports

 Port 80 for HTTP, 443 for HTTPS / TLS, 21 for FTP, …

● Session: Communication client / server via socket pair

 TCP: Established after fulfilling a handshake

Connection-oriented

Reliable error detection, flow & congestion control

 UDP: Identified on higher layer, e.g. using session cookies

Connection-less

Unreliable sender does not know if destination reached

No congestion control

Review: TCP / UDP

HTTP!

IAIK

Basics
● Used by browsers to fetch data from web servers

● Simple (stateless) request / response protocol

 Client opens TCP connection, requests document

 Server responds with document

 Client closes TCP connection

● Multiple versions

 1991: HTTP 0.9

 1996: HTTP 1.0 (RFC 1945)

 1999: HTTP 1.1 (RFC 7230)

 2015: HTTP/2 (RFC 7540)

HTTP Introduction

IAIK

● Pure ASCII protocol over TCP/IP link

 Still supported by popular webservers, e.g. Apache, nginx due to simplicity!

● Designed to transfer hypertext documents (HTML)

● Connection between server / client closed after every request

HTTP 0.9
telnet testserver.com 80

Connected to 129.27.10.20

GET /news

RKN is great via HTTP 0.9!

(connection closed)

GET method + ASCII string
Terminated by carriage return (CRLF)

No header or other metadata!

IAIK

 New features also: Content encoding, character sets, authorization, caching, date formats, etc.

HTTP 1.0
telnet testserver.com 80

Connected to 129.27.10.20

GET /news.html HTTP/1.0

User-Agent: libwww-perl/5.805

HTTP/1.0 200 OK

Content-Type: text/html; charset=utf-8

Content-Length: 15824

Last-Modified: Wed, 1 May 2016 12:55:25 GMT

Server: Apache 1.3.10

RKN is great via HTTP 1.0!

(connection closed)

Request with HTTP version + headers
 (Multiple) newline-separated fields

Response status + headers
 Response no longer limited to hypertext,

different content (media) types
 Still ASCII transfer, regardless of media

IAIK

Most notable changes:
● Connection kept-alive by default
● Chunked data transfer

 New features: Language negotiation,
caching directives, transfer encoding, …

HTTP 1.1
telnet testserver.com 80

Connected to 129.27.10.20

GET /news.html HTTP/1.1

Host: realserver.com

Accept-Language: de,en-US,q=0.8

Accept-Charset: de,en-US;q=0.7,*;q=0.3

...

HTTP/1.1 200 OK

Connection: keep-alive

Transfer-Encoding: chunked

Expires: Wed, 1 May 2016 12:55:25 GMT

100

<!doctype html> ...

Request with HTTP version + headers
 (Multiple) newline-separated fields

Chunked response for HTML request

IAIK

Enables server to „stream“ content in
chunks to client
 Useful e.g. if server has not yet processed
or generated the data it sends

Standardized with HTTP 1.1

 Transfer-Encoding: chunked

 No Content-Length header

Structure
● Every chunk prefixed with number of bytes that follow in hexadecimal format

● Followed by actual chunk

● 0 = End of chunk stream subsequent request may follow

Chunked Encoding
HTTP/1.1 200 OK

Connection: keep-alive

Transfer-Encoding: chunked

Expires: Wed, 1 May 2016 12:55:25 GMT

100

<!doctype html>...

(256 bytes in total = 100 in hex)

94

...</html>

(148 bytes in total = 94 in hex)

0

IAIK

HTTP Request
GET Request

Request Headers

Client sends no body
here… only CRLF

Server status code

Server response Response body:
gzipped content

IAIK

First line of HTTP response is status number…

For more codes, see https://goo.gl/G43lii

HTTP Status Codes

Number Reason

101 Switching protocols WebSockets

200 OK Standard response for successful HTTP request

201 Created Request fulfilled, new resource created

202 Accepted Request ok but not yet processed

301 Moved permanently Redirect requests to given URL

400 Bad Request Malformed request syntax

401 Unauthorized Client should authenticate

403 Forbidden Request was valid but access denied

404 Not Found Resource not found

500 Internal Server Error Generic error message

502 Bad Gateway Server got no servable response

2xx Success

4xx Client Error

3xx Redirect

1xx Information

5xx Server Error

https://goo.gl/G43lii

IAIK

● Safe methods: GET, HEAD, OPTIONS, TRACE

 Never change resource representation

 Cacheable, Pre-fetchable

● Unsafe methods: POST, PUT, DELETE, PATCH

 Change resource representation

Usage depends on desired action…
● Read https://iaik.tugraz.at GET

● Login to https://www.facebook.com POST

● Write to REST API PUT, DELETE

● Connect via HTTP Proxy CONNECT

HTTP Requests

https://teaching.iaik.tugraz.at/
https://www.facebook.com/

IAIK

Retrieves information
from requested URI (but
does not change the
resource!)

 Idempotent!

HTTP GET
telnet test.iaik.tugraz.at 80

GET / HTTP/1.1

Host: test.iaik.tugraz.at

User-Agent: Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:46.0) Gecko/20100101 Firefox/46.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: de,en-US;q=0.7,en;q=0.3

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Connection: keep-alive

Cache-Control: max-age=0

Keep-Alive: 115

HTTP/1.1 200 OK

Date: Thu, 19 May 2016 12:42:13 GMT

Server: Jetty(6.1.22)

X-Cache: HIT from localhost

ETag: "mShMvdHTUFOHQjPRrcLD2w=="

Content-Length: 105920

Content-Type: text/html; charset=utf-8

Cache-Control: max-age=0

Expires: Thu, 19 May 2016 12:42:13 GMT

Accept-Ranges: none

Connection: close

IAIK

POST: Not idempotent
● Updates, creates, adds resources

 Sending request again would re-trigger same action

PUT: Idempotent
● Creates or replaces resources (e.g. PUT /addinvoice/1)

HTTP POST / PUT

telnet test.iaik.tugraz.at 80

POST /newentry.php HTTP/1.1

Host: test.iaik.tugraz.at

User-Agent: Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:46.0) Gecko/20100101 Firefox/46.0

Cookie: sessionId=123452515afasfdaf

Content-Type: application/x-www-form-urlencoded

Name=RKN+Demo&institute=IAIK&lecture=42&secret=1+%2B+1+%3D+2

Name: RKN Demo
institute: IAIK
lecture: 42
secret: 1+1=2

IAIK

● Retrieves headers only

● Equal to GET but
without body

Useful, e.g. to get
● Meta-information stored

in headers, e.g. session
information

● Check if URL is
servicable / link exists

● Check if cached content
should be redownloaded

HTTP HEAD
telnet test.iaik.tugraz.at 80

HEAD / HTTP/1.1

Host: test.iaik.tugraz.at

User-Agent: Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:46.0) Gecko/20100101 Firefox/46.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: de,en-US;q=0.7,en;q=0.3

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Connection: keep-alive

Cache-Control: max-age=0

Keep-Alive: 115

HTTP/1.1 200 OK

Date: Thu, 19 May 2016 12:42:23 GMT

Server: Jetty(6.1.22)

X-Cache: HIT from localhost

ETag: "sXjgIafhHToGNe+8P/X20Q=="

Content-Length: 0

Content-Type: text/html; charset=utf-8

Cache-Control: max-age=0

Expires: Thu, 19 May 2016 12:42:13 GMT

Accept-Ranges: none

Connection: close

IAIK

Return methods a server
provides for some
resource

HTTP OPTIONS
telnet test.iaik.tugraz.at 80

OPTIONS / HTTP/1.1

Host: test.iaik.tugraz.at

User-Agent: Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:46.0) Gecko/20100101 Firefox/46.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: de,en-US;q=0.7,en;q=0.3

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Connection: keep-alive

Cache-Control: max-age=0

Keep-Alive: 115

HTTP/1.1 200 OK

Allow: OPTIONS, TRACE, GET, HEAD

Date: Thu, 19 May 2016 12:42:33 GMT

Server: Jetty(6.1.22)

X-Cache: HIT from localhost

ETag: "sXjgIafhHToGNe+8P/X20Q=="

Content-Length: 0

Public: OPTIONS, TRACE, GET, HEAD, POST

Allow = Permitted methods
on given resource

Public = Like allow but
available for anyone

IAIK

● Intended for
debugging echoes
back received request

● Useful for detecting
changes that
intermediate servers
made, e.g. proxy

Considered insecure
 can help to bypass
security controls during
attack (cookie stealing)!

HTTP TRACE
telnet test.iaik.tugraz.at 80

TRACE / HTTP/1.1

Host: test.iaik.tugraz.at

Accept: *

Cookie: sessionId=123452515afasfdaf

HTTP/1.1 200 OK

Content-Type: text/plain

Date: Thu, 19 May 2016 12:42:43 GMT

Content-length: 414

Via: 1.1 secretserver.iaik.tugraz.at

TRACE / HTTP/1.1

Host: test.iaik.tugraz.at

Accept: *

Cookie: sessionId=123452515afasfdaf

Via: 1.1 secretserver.iaik.tugraz.at

IAIK

Used for proxies to tunnel TLS connections
● Standard way for clients behind HTTP proxy to access HTTPS websites

Workflow
1. Client requests HTTP proxy server

 Request includes destination and port (google.at:443)
Proxy creates connection on behalf of client

2. Proxy then forwards encrypted traffic

 Traffic readable by proxy?
No! Would have to fake certificates, user would be alerted

= TLS MITM attack

HTTP CONNECT

telnet proxy.iaik.tugraz.at 80

CONNECT google.at:443 HTTP/1.1

IAIK

Representational State Transfer
● Systems conforming to REST: „RESTful“

● Use RESTful APIs

 Base URI, e.g. https://api.iaik.tugraz.at/

 Media type, e.g. XML, JSON, ATOM, …

 Resources represented as URIs, e.g.

Single person: https://api.iaik.tugraz.at/persons/123

All persons: https://api.iaik.tugraz.at/persons/

● Using standard HTTP methods, operations are performed on resources, e.g.
create, modify, delete resources (here: persons)

REST

https://api.iaik.tugraz.at/
https://api.iaik.tugraz.at/persons/123
https://api.iaik.tugraz.at/courses/

IAIK

Example: Retrieve single person

RESTful API

GET /persons/123

More examples:
● List all persons: GET /persons

● Replace all persons: PUT /persons

● Create new person: POST /persons

 URL of new entry is returned

● Delete all persons: DELETE /persons

● Replace or create person: PUT /person/123

● Delete single person: DELETE /person/123

Source: https://goo.gl/cm9GRs

https://goo.gl/cm9GRs

IAIK

= Semantics of HTTP/1.1 but optimized for low-latency transmission (speed)

Ideas
● Reuse core concept of HTTP (methods, status codes, header fields, etc.) but

format (frame) the data more efficiently
 Transfer binary data instead of text

● Address deficiencies of HTTP 1.1

● Web pages use more and more resources (images, scripts, stylesheets)
 Huge overhead due to multiple (sometimes parallel) requests

HTTP/2 RFC 7540

IAIK

Because HTTP 1.x has performance problems…

● Limited parallelism

 Request pipelining barely works in practice

 Competing TCP flows and spurious retransmissions

● Head-of-line blocking

● High protocol overhead

 ~800 bytes of header + cookies

 No compression of HTTP metadata

HTTP/2 – Why?

Source: https://goo.gl/T1NJbY

See: https://goo.gl/YxgBOJ

https://goo.gl/T1NJbY
https://goo.gl/YxgBOJ

● Only one TCP connection for multiple requests

 Responses can be out of order reduces head-of-line blocking

● Requests become streams encapsulating headers and data frames

 Client can prioritize streams

 Multiplexing
 send streams in parallel

● Header compression

● Server Push
= Server sends resources the
client has not yet requested

HTTP/2 – Features

Source: http://goo.gl/neMBSY

http://goo.gl/neMBSY

IAIK

● Multiplexing by splitting streams into frames

 E.g. HEADERS, DATA, etc.

● Frames can be prioritized and flow-controlled

 E.g. client says „Please send script.js with priority 1, style.css with priority 5“

● Client can request one resource and gets multiple data „pushed“ by server

HTTP/2 – Data Flow

Source: http://goo.gl/neMBSY

http://goo.gl/neMBSY

Advanced
Communication

IAIK

 Common concept in 1990s:
Retrieve complete HTML website, user reads information, follows links, all over

Problem:
Very inefficient: Bandwith consumption, delay, all information has to be present

Remedy
● AJAX: Asynchronous JavaScript and XML

 Needs polling to get new information from server

● COMET: AJAX with long polling

 Request remains open, server answers when data available

● WebSockets: Bi-direction communication

 „Upgrades“ HTTP connection to negotiate a WebSocket

Overview

IAIK

Problem
- We want to reload only parts of a web page

- Asynchronously because otherwise the UI
would block while loading

Evolution
● 1995: Java Applets (luckily banned from almost all browsers)

● 1996: iFrames in Internet Explorer

● 1999: ActiveX controls (XMLHTTP) by Microsoft

 Later realized in JavaScript as XMLHttpRequest

AJAX

IAIK

Asynchronous JavaScript and XML

- Use JavaScript to asynchronously get data from
a web server via XMLHttpRequest

- Content retrieved in background GUI does not block

Formats
Plain text, XML, HTTP, JSON, … basically anything that is part of HTML

Concept
● Use data to directly modify client‘s DOM (Document Object Model)

 DOM = XML or HTML document allows accessing and manipulating objects

● Store the data for further processing

AJAX

IAIK

Enabled complex web applications running in the browser…

● Widely known: Gmail (2004) and Google Maps (2005)

● Nowadays most websites and applications rely on AJAX

 Almost every „login dialog“, live ticker, self-refreshing page, etc.

● Became a core technology on the web

AJAX – Usability

Google DocsGoogle Maps

IAIK

AJAX

Try it yourself (and activate Wireshark!): https://goo.gl/Z4TRd2

https://goo.gl/Z4TRd2

IAIK

AJAX
We are just looking for this:

Wireshark (without / with gzip):

<p>This content was requested using the GET method.</p>

<p>Requested at: 3/6/2016 3:46:37 PM</p>

IAIK

AJAX
● Preceding TCP build-up / teardown

● HTTP 1.1 GET Request

Problems
● Client still needs to poll server for updates periodically

● New TCP/IP connections for AJAX HTTP requests (HTTP is stateless)

● Protocol overhead

IAIK

COMET – Long Polling
Similar to XMLHTTPRequest but request remains open until data available

Source: http://goo.gl/uZnMRR

AJAX
Polling

Long Polling

http://goo.gl/uZnMRR

IAIK

Long-lived TCP connection between server and client

● Advantages

 Enables bi-directional communication

 When data is sent much less overhead, no HTTP protocol headers needed

 Server can send („push“) data to client without waiting for poll request from client

● Protocol Handshake: Client upgrades HTTP connection to WebSocket

URI Schemes
● For plain-text communication: ws://example.com/socket

● For encrypted channel (TCP+TLS): wss://example.com/socket

WebSockets RFC 6455

IAIK

Comparison

Source: http://goo.gl/cF5tL8

AJAX
Polling

WebSockets

http://goo.gl/cF5tL8

IAIK

● Starts with protocol handshake

 HTTP GET request on port 80 or 443

 Client upgrades HTTP connection to WebSocket

Structure

WebSockets

Client Request

Tell server to upgrade
connection to websocket
protocol

Request source
(web application)

Auto-generated
„challenge token“

Supported Sub-protocols

IAIK

● Server completes handshake with „Switching Protocols“

 Status code 101

 Confirms selected options, advertised by client

 Now, connection can be used as two-way communication channel (no more HTTP)

Structure

WebSockets

Server Response

Tell client to upgrade connection
to websocket protocol

Sub-protocol
selected by server

Signed key value proving
protocol support

IAIK

Status quo
● AJAX, COMET and WebSockets can only access resources on locations with

same protocol (e.g. https), port (e.g. 443), and domain

Communication

Web Server A

Web
Application A

???

HTTP

AJAX Long Polling WebSockets

Browser
Browser Window A

Web
Application B

Browser Window B

Web Server B

HTTP

AJAX Long Polling WebSockets

But how can we send
something from one
browser window to another
(cross-domain)?

IAIK

Communication

Web Server A

Web
Application A

HTML5
postMessage

HTTP

AJAX Long Polling WebSockets

Browser
Browser Window A

Web
Application B

Browser Window B

Web Server B

HTTP

AJAX Long Polling WebSockets

otherWindow.postMessage(message, targetOrigin);

IAIK

Allows for sending data between two windows / frames across domains securely
Great reference: https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

Why is it needed?
● Enables to send plain text messages from one window to another
 Imagine page with chat application in iframe

● Frames run separated in their own browser window / sandbox

 Want to address other frames in same sender window

 Windows opened by JavaScript calls

● Prior to HTML5, cross-domain scripting was not possible due to SOP
 Still to consider security aspects!

HTML5 postMessage

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

IAIK

Example
We want a document A on tugraz.at to talk to document B on iaik.at in iframe

HTML5 postMessage

var o = document.getElementsByTagName('iframe')[0];

o.contentWindow.postMessage('Hello CON', 'https://iaik.at/dest.php');

Window A has sent a message, how to receive it in window B (securely)?

● Receiver gets 3 message fields

 Data: The content of the incoming message

 Origin: Window that sent the message in the format scheme://host:port, e.g.
https://tugraz.at

 Source: Reference to source window. Can i.e. used to answer back to this window

Security?
● Client: Do not specify * as target origin

 Malicious site could change location of window intercept your message!

● Receiver: Always check the sender‘s origin!

 Any window can send messages to other windows could be malicious message!

HTML5 postMessage

https://teaching.iaik.tugraz.at/

IAIK

In our example…

HTML5 postMessage

if (event.origin !== ‘tugraz.at’) {

return;

}

alert(origin.data);

DNS

IAIK

Basic problem
● Users want to reach servers at www.tugraz.at

 Hostnames independent of server location in network

● Domains could map to multiple addresses

 E.g., www.amazon.com points to at least 3 IP addresses

 Load balancing, latency reduction

 Different destination based on location / device / identity

 Or assign both IPv4 and IPv6 addresses to domains

● Want to reuse 1 IP address for multiple domain names

 E.g., tu4u.tugraz.at + tugraz.at both point to same IP

Introduction

http://www.tugraz.at/
http://www.amazon.com/
http://www.tugraz.at/
tugraz.at

IAIK

Once upon a time…
● All host addresses mapped in a local file named hosts.txt

 Flat namespace without structure

 Central administrator (NIC) kept master copy for entire network (later INTERnet)
Add/remove/update mapping send email to global admin

Clients had to re-fetch the file recurringly

● Practical today? No!
 Some names change mappings every few days, e.g. dynamic IP addresses

 Single Point of Failure

History

129.27.2.244 tugraz.at

129.27.142.148 teaching.iaik.tugraz.at

...

/etc/hosts
still exists!

IAIK

for a world-wide DNS system

● Scalability

 Must handle large number of (new) records

 Must sustain high update frequency and lookup load

● Distributed control

 People want to control their own domain names
 decentralized management needed

● Fault Tolerance

 Robust against attacks

 Minimize lookup failures and duplicate names

Goals

IAIK

Tree Structure
● Top-Level domains (TLDs) at the top

● Depth of the tree is arbitrary (limit: 128 entries)

● Domains are subtrees

 E.g. at, tugraz.at, a-sit.at
● Name collisions avoided

 E.g. tugraz.at and tugraz.org can co-exist

Introduction

at de com org net gov

tugraz

iaik cgv

a-sit

Domain Name Service (DNS)

teaching

RFC 1035

IAIK

● Hierarchical namespace broken into zones
 Zone = Administrative authority responsible

for some portion of the hierarchy

 Parent zone tells how to find servers for subdomain

 Zones separately managed („Delegation“)

● Typically zones are replicated to multiple servers,
e.g. ns1.dnszone.at, ns2.dnszone.at

Introduction

at de com org net gov

tugraz

iaik cgv

a-sit

Domain Name Service (DNS)

teaching

RFC 1035

DNS Messages

IAIK

Very simple!
● Only two message types in same format: Query & Reply
● For transport, DNS uses primarily UDP, servers run on well-known port 53

Message format
 Always 5 sections in DNS message

Protocol

Header

Answer

Additional

Authority

Question

Specifies whether query or reply, number of questions,
answers, …

Contains „Resource Records“ (RR) answering the question

RR pointing towards an authority („zone managers“) and
additional RRs, e.g. IP addresses of authorities

IAIK

= Basic information element in DNS system

Example

TTL (Time-to-live)
Maximum time a RR can be cached / reused by non-authoritative server

Resource Records

RR format: (Class, Name, Value, Type, TTL)

Name TTL Class Type Data

orf.at. 86400 IN A 194.232.104.139

orf.at. 86400 IN A 194.232.104.141

orf.at. 86400 IN AAAA 2a01:468:1000:9::149

orf.at. 86400 IN MX 10 orfmx01.t-systems.at.

orf.at. 86400 IN NS ns1.apa.net

orf.at. 86400 IN NS ns2.apa.net

IAIK

Mostly used…

For more codes, see https://goo.gl/AJIPEd

Resource Records

Type Code Description Function

A 1 Address record 32-bit IPv4 address associated with host

AAAA 28 IPv6 address record 128-bit IPv6 address

CNAME 5 Canonical name record Alias of one domain name to another

MX 15 Mail exchange record Domain name of mail server for this domain

NS 2 Name server record
Delegates DNS zone to use the given
authoritative name servers

PTR 12 Pointer record Pointer to a CNAME entry

SOA 6
Start of [a zone of]
authority record

Authoritative information about DNS zone:
Primary name server, email of the domain
admin, domain serial number, …

TXT 16 Text record Plain text info

https://goo.gl/AJIPEd

IAIK

Wireshark Example

DNS Query

IAIK

DNS Reply Wireshark Example

DNS Components

IAIK

Hierarchy of DNS servers (= „Name servers“)
● Root servers

● Top-Level Domain (TLD) servers

 Controls everything within .at, .de, … namespace

● Authoritative DNS servers

 Manage individual zones consisting of one or many
domains & subdomains

 Responsibility for administration „delegated“
from parent zone

How to resolve domain names?
● Local DNS servers

● Resolver software

DNS Architecture

at

tugraz

iaik

teaching

.

IAIK

● Responsible for the root domain

 Return authoritative name servers for specific TLDs

 With a single root DNS server, all other DNS info could be discovered recursively

 13 logical name servers: a.root-servers.net, …, m.root-servers.net

Root Servers

M Tokyo (WIDE)

I Stockholm (Netnod)

K London (RIPE)
A Dulles, VA (Verisign)
C Herndon, VA (Cogent)
D College Park, MD
(UM)
G Vienna, VA (US DoD)
H Aberdeen, MD (ARL)
J Dulles, VA (Verisign)

B Marina del Rey, CA (USC-ISI)
E Mt. View, CA (NASA)
F Palo Alto, CA (ISC)
L Los Angeles, CA (ICANN)

IAIK

Only 13 physical servers? No!

Replication using Anycasting (see IPv4 slides)

Root Servers

Source: https://goo.gl/hYGgQE

Source: http://goo.gl/tnXKV3

https://goo.gl/hYGgQE
http://goo.gl/tnXKV3

IAIK

How do local servers find root servers?
● Reachable at a.root-servers.net, b.root-servers.net, …

 Get their IP addresses via DNS lookup? Not feasible obviously…

● DNS servers configured with „root hints file“

 For bootstrapping DNS resolution

 Can be updated periodically by admin, e.g. upon restart of service

 Contains root name servers + their IP addresses

Root Servers

. 3600000 NS a.root-servers.net.

a.root-servers.net. 3600000 A 198.41.0.4

a.root-servers.net. 3600000 AAAA 2001:503:ba3e::2:30

...
Source: https://goo.gl/8lvccy

https://goo.gl/8lvccy

IAIK

= Domains at highest level of DNS system

Multiple types
● Generic domains (gTLD)

 Unsponsered TLDs: com, info, net, org
 Sponsered TLDs: Intended for specific community, e.g. ethnic, geographic, ...

E.g. .aero, .asia, .cat, .gov, .mil, .jobs, .mobi, .museum, .tel, .travel, …
● Country domains (ccTLD)

 .at, .de, .au, .fr, .it, .pt, .ua, …
● Special domains: .arpa, .example, .invalid, .localhost, .test, …

Note: Depending on TLD, one or multiple registrars for each TLD
E.g., all .at domains are ultimately registered at www.nic.at

Top-Level Domains (TLDs)

http://www.nic.at/

IAIK

= Server that provides domain name resolution <-> IP

Authoritative server
● Responsible for a zone, e.g. .at or .iaik.tugraz.at
● At least one server / zone („primary name server“) usually redundant

cluster with identical zone files on multiple servers

Non-authoritative server
● Gets information about domains from other servers recursively or iteratively

● Responses often stored in local cache until time-to-live (TTL) value reached
 Enables faster responses, no need to go through all servers in tree!

Name Servers

IAIK

How do they get information from other servers?

● Delegation

 Parts of domains are often moved to other name servers in subdomains

E.g., a.root-servers.net says: to obtain the IP address of iaik.tugraz.at, ask d.ns.at

 Q: Now, how do you find d.ns.at?
A: The parent zone has „glue records“ with the IP address(es) of d.ns.at

● Forwarding

 If requested name space is outside of own domain
 forward query to another configured server

● Resolution via Root Servers

 If request cannot be forwarded ultimately ask at highest level

Name Servers

iaik.tugraz.at

IAIK

Example: A host wants the IP address of iaik.tugraz.at

How?
● Host sends DNS request (UDP, port 53) to local name server

● What does the nameserver if it does not know the requested domain?
 Send request to further name server („recursive query“)

● Each name server knows about higher-level name servers

● Only lowest level server (local resolver) gives answer to host!

Address Resolution

Local DNS resolver,
e.g., 8.8.4.4

Request to resolve
iaik.tugraz.at

Answer 129.27.142.124

teaching.iaik.tugraz.at
teaching.iaik.tugraz.at

IAIK

Address Resolution

Local DNS resolver,
e.g. 8.8.4.4

Request: Resolve
iaik.tugraz.at

Answer: 129.27.142.124

Request: Resolve
iaik.tugraz.at

Root name server,
e.g. a.root-servers.net

Answer: All IP addresses of
authoritative NS for TLD .at

1

2

3

Request: Resolve iaik.tugraz.at

Name server,
e.g. d.ns.at

4

Answer: All IP addresses of
authoritative NS for tugraz.at

Request: Resolve iaik.tugraz.at

Answer: All IP addresses of iaik.tugraz.at
and authoritative NS for iaik.tugraz.at

5

6

7

8

Name server,
e.g. ns1.tu-graz.ac.at

IAIK

Client asks local DNS resolver 8.8.4.4

 Client sends a „recursive query“ to 8.8.4.4

● Ask server to get answer for you

● 8.4.4.4 is not authoritative for iaik.tugraz.at needs to get IP from other NS

Address Resolution

dig iaik.tugraz.at @8.8.4.4

;; QUESTION SECTION:

;iaik.tugraz.at. IN A

;; ANSWER SECTION:

iaik.tugraz.at. 3599 IN A 129.27.142.24

;; Query time: 13 msec

;; SERVER: 8.8.4.4#53(8.8.4.4)

IAIK

DNS resolver queries
root DNS server

Resolver sends iterative
queries to remote servers

● Ask servers which NS
to ask next

● Cache results
aggressively

Address Resolution
dig +norec iaik.tugraz.at @a.root-servers.net

;; QUESTION SECTION:

;iaik.tugraz.at. IN A

;; AUTHORITY SECTION:

at. 172800 IN NS d.ns.at.

at. 172800 IN NS j.ns.at.

at. 172800 IN NS n.ns.at.

at. 172800 IN NS r.ns.at.

at. 172800 IN NS u.ns.at.

at. 172800 IN NS ns1.univie.ac.at.

at. 172800 IN NS ns2.univie.ac.at.

at. 172800 IN NS ns9.univie.ac.at.

;; ADDITIONAL SECTION:

d.ns.at. 172800 IN A 81.91.161.98

d.ns.at. 172800 IN AAAA 2a02:568:20:1::d

j.ns.at. 172800 IN A 194.146.106.50

...

IAIK

DNS resolver asks d.ns.at
● Resolver learned that d.ns.at is responsible for .at domains

● Answer contains reference to servers managing tugraz.at

 ns1.tu-graz.ac.at, ns2.tu-graz.ac.at, ns5.univie.ac.at

Address Resolution
dig +norec iaik.tugraz.at @d.ns.at

;; QUESTION SECTION:

;iaik.tugraz.at. IN A

;; AUTHORITY SECTION:

tugraz.at. 10800 IN NS ns1.tu-graz.ac.at.

tugraz.at. 10800 IN NS ns2.tu-graz.ac.at.

tugraz.at. 10800 IN NS ns5.univie.ac.at.

;; Query time: 4 msec

;; SERVER: 2a02:568:20:1::d#53(2a02:568:20:1::d)

IAIK

Why?
In order to ask ns1.tu-graz.ac.at, we need to know its IP addresses!

Address Resolution
dig +norec ns1.tu-graz.ac.at @d.ns.at

;; QUESTION SECTION:

;ns1.tu-graz.ac.at. IN A

;; AUTHORITY SECTION:

tu-graz.ac.at. 10800 IN NS ns10.univie.ac.at.

tu-graz.ac.at. 10800 IN NS ns5.univie.ac.at.

tu-graz.ac.at. 10800 IN NS ns1.tu-graz.ac.at.

tu-graz.ac.at. 10800 IN NS ns2.tu-graz.ac.at.

;; ADDITIONAL SECTION:

ns1.tu-graz.ac.at. 10800 IN A 129.27.2.3

...

;; Query time: 3 msec

;; SERVER: 2a02:568:20:1::d#53(2a02:568:20:1::d)

IAIK

DNS resolver finally asks
ns1.tu-graz.ac.at

● Indicates IP address
of iaik.tugraz.at

● Returns authoritative
name server for zone
iaik.tugraz.at

The used DNS resolver
8.8.4.4 can now reply the
IP address of iaik.tugraz.at
to the client: 129.27.142.24

Address Resolution
dig +norec iaik.tugraz.at @ns1.tu-graz.ac.at

;; QUESTION SECTION:

;iaik.tugraz.at. IN A

;; ANSWER SECTION:

iaik.tugraz.at. 3600 IN A 129.27.142.24

;; AUTHORITY SECTION:

iaik.tugraz.at. 3600 IN NS ns1.tu-graz.ac.at.

iaik.tugraz.at. 3600 IN NS ns2.tu-graz.ac.at.

iaik.tugraz.at. 3600 IN NS ns.iaik.tugraz.at.

;; ADDITIONAL SECTION:

ns.iaik.tugraz.at. 3600 IN A 129.27.142.23

ns1.tu-graz.ac.at. 3600 IN A 129.27.2.3

ns2.tu-graz.ac.at. 3600 IN A 129.27.3.3

;; Query time: 1 msec

;; SERVER: 129.27.2.3#53(129.27.2.3)

IAIK

Problem: All these queries take a long time!

● Contacting root, then TLD, zone, lower-level zone name servers, …

● Always querying root servers would impose extreme load on them!

● Latency happens even before any communication with target webserver

Solution: Record Caching
● Top-level servers change very rarely, popular sites visited often

 DNS resolvers cache DNS records for many users

How long?
● Authoritative service tells you in TTL entry (seconds, minutes, hours, ...)
● Resolver deletes record from cache after TTL expires

DNS Caching

IAIK

Multitasking

Pipelining

Speculation

Caches

Multiple Core Systems

Privilege Levels

MMU

TEE

…

