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Abstract 

The worldwide economy has experienced several changes in energy and nonenergy 

prices. This has motivated academics, investors, and policymakers to analyze the 

relationships between energy and nonenergy commodity markets. In this study, a 

novel approach of quantile coherency is used to examine the dependence structure 

between energy and nonenergy commodity pairs at different frequencies and 

quantiles in their joint return distribution over the period 1960:M1–2019:M10. 

Overall, the empirical findings illustrate evidence of low significant dependency 

between energy and nonenergy commodity markets across different frequencies and 

quantiles. In addition, our findings show that some nonenergy commodity markets 

have a neutral relationship with global energy commodity markets. 
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1. Introduction 

The commodity prices have strong influence on economic indicators (Bhar and Hamori, 

2008; Clarida et al. 1998; Holtemöller and Mallick, 2016; Mallick and Sousa, 2013; Stock and 

Watson, 2003; Zhang et al., 2019), as well as on portfolio formation. Clarida et al. (1998) 

document the significant impact of commodity prices on inflation, interest rate and economic 

output. Similar findings are vindicated by (Stock and Watson, 2003). Later, Bhar and Hamori 

(2008) have reported the significance of commodity prices in monetary policy. Mallick and 

Sousa (2013) and Holtemöller and Mallick (2016) formed a dynamic model which validated the 

role of commodity prices shocks, which tends to surge the inflation rate and demand. To keep 

this in mind, central bank modify the inflation stabilization strategy.  Zhang et al. (2019) 

suggests that liquidity effects can penetrate through and spill over across commodity sector 

boundaries.  

Besides the economic implication of commodity prices, portfolio managers use the recent 

trends, interconnectedness and spillover of commodity prices while shaping the optimal portfolio 

strategies which helps to minimize the investment risks. The inception of classic portfolio theory 

has been associated with an increased interest in the analysis of the interrelationships between 

assets and financial markets. As lower correlations among asset returns have been shown to 

reduce overall portfolio risk, several portfolio options, such as international and sectoral 

diversification, have traditionally been analyzed (Pal and Mitra, 2019). Though, it seems clear 

that the connection between energy and nonenergy may enhance the discount factor. López 

Cabrera and Schulz (2016) found a synchronization between energy and commodities over the 

peak and trough business cycles. However, the synchronization among energy and nonenergy 

postulates the transmission of shocks are evident in own market and over the markets, which 

confirms the shock spillover phenomena between energy and nonenergy markets. Portfolio 

applications aside, the study of connectedness in financial markets has been further explored in 

the strand of literature on contagion and spillovers between financial markets. In a notable paper 

on the topic, Forbes and Rigobon (2002) explored the heteroskedasticity bias of correlation 

coefficients. They provided a distinction between interdependence, that is, general comovement 

between markets that are increasing, and contagion, which they defined as an increase in 

comovement following a shock in one country. Hence, contagion refers to an increase in 

interdependence during market downturns.   
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In this context, the motivation for our study stems from the interest in capturing 

comovement relevant to both application areas addressed in previous research and contributes to 

the literature on comovement in financial markets by examining the interrelationships of 

commodities while exploring their cross-quantile dependencies. Instead of focusing on 

international diversification, we investigate the links between energy and nonenergy commodity 

indices. 

The quantile cross-spectral analysis is a novel approach (Barunik and Kley, 2019) and 

still not widely used in economic and financial studies. It outperforms several econometric 

methods, such as the causality-in-quantile (Jeong et al., 2012) and quantile-on-quantile (Sim and 

Zhou, 2015). The quantile cross-spectral analysis investigates the dynamics of the connectedness 

between two markets at different quantiles of the joint distribution and also at various frequency 

business cycles. However, the main advantages of this framework is its ability to examine the 

connectedness between commodity markets at normal, bull and bear market events, as well as at 

several frequency time horizons (short-, medium-, and long-term). 

The major contribution of this study to the growing strand of literature lies in the 

following: (i) the key novelty is to revisit the dynamics of the dependence between energy 

(global energy index) and nonenergy (nonfuel, agriculture, food, beverages, oil and meals, 

grains, raw materials, fertilizers, metals and minerals, precious metals) commodities using the 

quantile cross-spectral analysis. (ii) So, we attempted to examine the quantile dependence 

structure for the majority of the global nonenergy commodity indexes versus the global energy 

commodity index, which provides a general and clear overview about the connectedness between 

global commodity indexes to the investors, policymakers, and research scholars. (iii) In 

comparison to the earlier empirical researches, the novelty of this study is that we used a large 

monthly dataset dating back to 1960 to provide new and accurate dynamic dependence for the 

energy-nonenergy commodity market pairs. 

The focus on energy-related commodities stems from the importance these commodities 

have in different phases of the economic cycle, with spikes and troughs directly related to current 

and expected levels of general economic activity. While the supply-side factors are to some 

degree exogenous, in the sense that much control lies in the hands of producers such as OPEC, 

the demand side is to no small degree affected by the economic outlook. In this respect, the last 
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decades have brought numerous global economic disruptions, such as the global financial crisis 

during 2007–2008, followed by the European sovereign debt crisis and Greek government debt 

crisis in 2010–2015, all of which started in the financial sector but then profoundly affected the 

real economy. 

Apart from the indirect effects, energy commodities have also exhibited high intrinsic 

volatility. Oil, for example, experienced marked declines in the 2014–2016 period, recovering 

only in 2018. Oversupply in North America, disagreements among the largest oil producers and 

the economic slowdown in China have contributed to the unprecedented market downturn. 

In this paper, we explore the interrelationships of energy and nonenergy commodity 

indices. Previous literature on correlations in commodity returns provides very diverse hedging 

implications (Albulescu et al., 2020; Lucotte, 2016; Mensi et al., 2020; Kristoufek, 2015;  Tiwari 

et al., 2018). As the results on comovement of energy and nonenergy commodity prices are not 

entirely clear, we take a different approach and explore the cross-quantile dependencies between 

commodity market indices using the framework of Baruník and Kley (2019).  

There are several advantages to performing the analysis on the quantiles instead of 

focusing on the mean. First, according to the literature on contagion, some relationships between 

commodities may manifest specifically in times of market downturns. Here, focusing on the left 

tail of the return distribution might allow us to identify relationships that would otherwise remain 

undetected. To test for this phenomenon, we perform our analysis on multiple different quantiles, 

including the median. Second, in the portfolio diversification context, a global market downturn 

may represent the gravest potential situation, in which portfolio managers must rely heavily on 

the diversification effect. Information on (possibly significant and positive) relationships in the 

lower quantiles of the joint return distributions might provide critical information for portfolio 

construction. Third, separating different quantiles, such as those in the lower and upper tails, 

offers separate information on the joint behavior in bad and good times, opening a path for 

directional strategies. By focusing on quantile behavior, we follow the studies of Baumöhl 

(2019) on comovements among cryptocurrencies and forex, Baumöhl and Shahzad (2019) on 

stock markets, Maghyereh and Abdoh (2020) on gold and Islamic securities and Wu (2020) on 

global crude oil and China’s commodity sectors. 
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The rest of the paper is structured as follows. An overview of the related literature is 

presented in section 2. In section 3, we display the econometric specification used in the study. 

Section 4 describes the dataset and variables and introduces the summary statistics. The 

discussion of the empirical results is provided in section 5, and section 6 concludes the paper. 

 

2. Review of the relevant literature 

The literature on the connectedness between energy and nonenergy commodities has 

attracted great empirical attention over the last decade. However, energy prices have experienced 

several shocks due to political turmoil, civil strife, international wars, and terrorism attacks. 

Examples of such episodes are, among others, the Arab Spring; the Syrian and Libyan war in 

2011; the Syrian civil war escalation from 2012 to the present; the ISIS escalation in Iraq in 

2013–2017; the Paris attacks in 2015; the war in Yemen from 2012 to the present; and the North 

Korea–US crisis in 2017–2018. Accordingly, these negative and violent events affected energy 

and nonenergy market prices, which in turn exerted an influence on the global economy. These 

dynamics are of great importance for understanding the connectedness between energy and 

nonenergy commodity prices. 

Recently, some empirical studies have examined the connectedness between energy and 

nonenergy commodities. In this regard,  Liu et al. (2020) studied the energy-water relationship 

and stated that nonenergy commodities determine worldwide water use. Wei Su et al. (2019) 

investigated the causal effects between energy and agricultural commodity prices. Their 

empirical findings (based on the rolling window approach) showed a time-varying bidirectional 

relationship between the two markets. In this vein, other academic researchers have studied the 

interconnectedness between energy market prices and agricultural commodity prices. The related 

empirical studies are Kang et al. (2019), Fowowe (2016), Fasanya and Akinbowale (2019), Dahl 

et al. (2019), Mokni and Ben-Salha (2020), Nazlioglu (2011), Gardebroek and Hernandez 

(2013), Reboredo (2012), and Pal and Mitra (2019). Using a time-frequency and network 

analysis, Kang et al. (2019) examined the frequency domain spillover effects between energy 

prices and the agricultural commodity market. The empirical findings demonstrated an 

asymmetric and bidirectional interplay between the two markets. Further, agricultural 

commodities are beneficial for short-term portfolio diversification. In the same context, Fowowe 
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(2016) found no causal relationship between agricultural commodity prices in South Africa and 

global energy prices. His findings exhibited a neutral connection between the energy–agricultural 

commodity price pair. Considering the same economy, Shiferaw (2019) examined the time-

varying dependence structure between energy prices and agricultural commodity prices by 

implementing a Bayesian multivariate GARCH approach. His findings—namely, that in South 

Africa, agricultural commodity prices were strongly and significantly connected with energy 

prices—were the opposite of those uncovered by Fowowe (2016). Employing the methods of 

Diebold and Yilmaz (2012) and Diebold and Yilmaz (2009), Fasanya and Akinbowale (2019), 

and Dahl et al. (2019) documented significant spillovers in the transmission mechanism between 

the energy market and agricultural commodity markets. Their empirical findings were beneficial 

for different economic agents, such as policymakers, investors, regulators, and portfolio 

managers. Mokni and Ben-Salha (2020) implemented a causality-in-quantiles framework to 

study the nexus between the energy price and the world food price. The authors used monthly 

data for the long period of 1960–2019 and found a bidirectional Granger-causal link between the 

focal markets. The causal effects of energy prices on food prices appear under all food market 

conditions, whereas in the context of bearish and bullish market events, food prices Granger-

cause energy prices. Nazlioglu (2011) examined the nonlinear causal dependence structure 

between the world oil price and agricultural commodity prices of corn, soybeans, and wheat and 

confirmed the hypothesis of a neutral relationship between oil and agricultural commodities. 

Reboredo (2012) and Gardebroek and Hernandez (2013) examined comovement between energy 

prices and some agricultural commodities. These studies used different econometric frameworks, 

such as multivariate GARCH and copulas. The empirical findings documented the neutral 

feedback of agricultural commodity prices to oil price spreads. A few other studies—for 

instance, those of Albulescu et al. (2020) and Ji et al. (2018)—used copula functions to explore 

comovement and the dependence structure between energy markets and nonenergy commodity 

markets. Albulescu et al. (2020) documented asymmetric connectedness between energy, 

agriculture and metal commodity markets under bull and bear market conditions. Ji et al. (2018) 

employed a novel dependence-switching copula technique to analyze time-varying risk spillovers 

between energy and nonenergy commodities. The authors stated that the energy price displays 

stronger tail dependence on bearish market events than on bullish market event. However, risk 
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spillovers between energy and nonenergy commodity prices are more significant in a bearish 

regime. 

More recently, the studies of Barbaglia et al. (2020) and  Liu et al. (2021) revealed the 

existence of significant causal effects between energy and nonenergy commodities. Barbaglia et 

al. (2020) employed a rolling window and network analysis based on the VAR model and 

concluded that there is evidence of bidirectional volatility spillover transmission between energy 

and agricultural commodity prices as well as between energy and biofuel commodities.  Liu et al. 

(2021) examined the features of energy, metal and agriculture commodity price information 

based on a complex network and transfer entropy. The findings revealed that price information 

network transmission varies across time scales with several levels of intensity. 

The aforementioned review demonstrates that the majority of the econometric 

frameworks used are vector autoregressive models, multivariate GARCH models, copula 

functions, Granger causality tests, time-frequency analyses, and network analyses, among others. 

The applications of these methods mostly focused on the time-varying dependence structure 

between energy and nonenergy commodity markets without considering connectedness in the 

transmission mechanism across quantiles of the whole distribution (except the few recent studies 

which used copulas). Therefore, the novel econometric cross-quantile-based approach developed 

by Baruník and Kley (2019) seems appropriate for addressing this gap. Few recent research 

studies have focused on the cross-quantile dependencies of market pairs and, more specifically, 

on the cross-quantile dependence between commodity markets. In this context, the study of Su et 

al. (2017) is the only study to have addressed the cross-quantile connectedness of commodity 

markets, documenting significant interdependence of energy market prices across several 

quantiles of the conditional distribution. 

To the best of our knowledge, the current empirical research is the first in the literature to 

investigate cross-quantile dependencies between the energy market index and nonenergy 

commodity market indices. Overall, vast empirical research has focused on the mean-to-mean 

connectedness of energy and nonenergy commodity markets without considering information 

transmission in the dependence structure across various quantiles of the overall distribution 

functions. In other words, this branch of literature has paid less attention to the dependence 

structure between commodity markets over different quantiles of the conditional distributions. 
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On the other hand, a very thin empirical literature has shed some light on the interplay of causal 

effects between energy and nonenergy commodities using the cross-quantile dependence 

framework. While previous studies ignored quantile dependencies across commodity markets, in 

this empirical research, we are interested in the dynamics of the interplay between energy and 

nonenergy commodity markets and how they spill over across different quantiles of the overall 

distribution functions. 

Table 1. Relevant literature on the connectedness between energy and nonenergy commodities. 

Author Energy/Nonenergy 

commodities 

Sample period Methodology 

Adhikari and Putnam 

(2020) 

Energy (Crude Oil, West 

Texas Intermediate [WTI], 

Gasoline, Heating Oil, 

Natural Gas), Grains 

(Corn, Oats, Soybeans, 

Wheat), Livestock (Live 

Cattle, Feeder Cattle, Lean 

Hogs) 

September 30, 1992–

December 31, 2017; Daily 

Frequency 

Linear Factor Model, 

Copulas 

Ur Rehman et al. (2019) Energy (Crude Oil, Gas, 

Coal), Nonenergy (Gold, 

Silver, Copper, Platinum, 

Palladium, Wheat) 

January 2010-June 2018; 

Weekly Frequency 

Non-linear ARDL 

(NARDL), Non-linear 

Causality-in-Quantile 

Wu (2020) Non-ferrous metals, 

Energy, Petrochemicals, 

Cereal, Oil & Fats, Softs, 

WTI 

September 2004-June 

2020; Weekly Frequency 

GO-GARCH, Quantile-on-

Quantile, Quantile 

Coherency 

Yahya et al. (2020) S&P Global Clean Energy 

Index, Non-ferrous metals, 

WilderHill Clean Energy 

Index, NYSE ARCA 

Technology Index 

November 2003-May 

2019; Daily Frequency 

Cross-Quantilogram, 

Granger-Causality in 

Quantiles, Time-varying 

Copulas (DCC-Student-t-

Copula) 

Pal and Mitra (2019) WTI, Corn, Soybeans, 

Oats, Wheat 

January 3, 2000–January 

4, 2018; Daily Frequency 

DCC, ADCC, GO-

GARCH 

Awasthi et al. (2020) Total Return Index of 

S&P, Goldman Sachs 

March 22, 2011–February 

25, 2020; Weekly 

Quantile Cointegration, 

Granger Causality in 
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Commodity Index (GSCI), 

Crude Oil, Gold, Silver, 

WTI 

Frequency Quantiles 

 Liu (2014) WTI, Cushing Oklahoma, 

Corn, Soybeans, Oats, 

Wheat 

January 3, 1994– 

December 31, 2012; Daily 

Frequency 

Detrended Cross-

Correlation Analysis 

(DCCA) 

Lucotte (2016) Cereals, Dairy, Meat, 

Sugar, Vegetable Oils, 

Composite Food Index, 

Crude Oil Index (WTI, 

Brent, Dubai) 

January 1990–May 2015; 

Monthly Frequency 

VAR Analysis 

de Nicola et al. (2016) Energy (Coal, Crude Oil, 

Natural Gas), Agricultural 

Crops (Barley, Maize, 

Rice, Sorghum, Soybean 

Oil, Wheat), Food (Coffee, 

Sugar) 

January 1970–May 2013; 

Monthly Frequency 

VAR Analysis 

Ji and Fan (2012) Energy: Commodity 

Research Bureau (CRB) 

Index (Crude Oil, Heating 

Oil, Gasoline, Natural 

Gas), Agriculture Crops 

(Soybean, Wheat, Corn, 

Cotton, Orange Juice, 

Sugar, Cocoa, Coffee, 

Live Cattle, Lean Hogs), 

Metals (Gold, Silver, 

Copper, Aluminum, 

and Nickel) 

July 7, 2006–June 30, 

2010; Daily Frequency 

Asymmetric Bivariate 

EGARCH 

Barbaglia et al. (2016) Energy (Crude Oil, 

Natural Gas), Agriculture 

(Corn, Soy Oil, Sugar, 

Wheat, Cotton), Metals 

(Aluminum, Copper, Lead, 

Nickel, Zinc, Gold, Silver) 

November 1, 2013–

November 2, 2015; Daily 

Frequency 

Sparse Multiclass VAR, 

Network Analysis 

Tiwari et al. (2018) Energy (Crude Oil), 

Agricultural Crops 

January 1980–May 2017: 

Monthly Frequency 

Wavelet Coherence 

Analysis, Wavelet 
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(Bananas, Barley, Coal, 

Cocoa Beans, Coffee, 

Cotton, Fishmeal, 

Groundnuts, Maize, 

Oranges, Swine, Poultry, 

Rice, Rubber, Fish, Tea, 

Wheat, Wool) 

Multiple Cross-correlation, 

Linear Causality, 

Nonlinear Causality 

Yoon et al. (2019) Energy (WTI); Metal 

(Gold) 

December 2, 1999–June 

11, 2018 

VAR-GVD, Network 

Topology 

Zhang and Broadstock 

(2020) 

Energy (WTI), Nonenergy 

(Beverage, Fertilizers, 

Food, Metals, Precious 

Metals, Raw Materials) 

January 1982–June 2017; 

Monthly Frequency 

VAR, Forecast Error 

Variance Decomposition 

(FEVD) 

Shahzad et al. (2019) Energy (WTI), Nonenergy 

(Gold, Silver, Titanium, 

Palladium, Platinum) 

July 1, 1996–June 29, 

2016; Daily Frequency 

VAR for VaR Approach, 

Cross-quantilogram 

Method 

 

3. The quantile cross-spectral framework 

To examine the connectedness across different distribution quantiles and frequencies for 

energy and nonenergy commodity indices, we use the econometric approach recently developed 

by Baruník and Kley (2019): quantile coherency. The method quantifies the dynamic 

dependence between two stationary time series. The main advantage of Baruník and Kley's 

(2019) approach is that the measure was designed to detect any general type of dependence 

structure across different frequencies and quantiles – as opposed to methodologies focusing on 

the average states (e.g., Diebold and Yilmaz, 2009, 2012). In this respect, copulas present useful 

tool to address dependencies across different quantiles, even though they applications usually do 

not primarily focus on the frequency domain. On the other hand, while Baruník and Křehlík’s 

(2018) frequency-domain spillover index is an extension of Diebold-Yilmaz methodology 

focusing on frequencies, it is still fitted to mean-to-mean analysis of spillovers.  

Following  Baruník and Kley (2019), let 𝑋𝑡,𝐸 and 𝑋𝑡,𝑁, 𝑡 ∈ ℤ be the two stationary 

processes of the energy and nonenergy commodity price indices, and 𝑞𝑋𝐸(𝜏1) and 𝑞𝑋𝑁(𝜏1) be their 
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𝜏1-quantiles, respectively. Let 𝐼{𝐴} be the indicator function for event A, taking values of 1 when event 

A occurs and zero otherwise. 

The quantities  

𝛾𝑘
𝑗1,𝑗2(𝜏1, 𝜏2):= 𝐶𝑜𝑣 (𝐼 {𝑋𝑡+𝑘,𝑗1 ≤ 𝑞𝑋𝑗1

(𝜏1)} , 𝐼 {𝑋𝑡,𝑗2 ≤ 𝑞𝑋𝑗2
(𝜏2)}) (1) 

for 𝑘 ∈ ℤ, 𝜏1, 𝜏2 ∈ [0,1] and 𝑗1, 𝑗2 ∈ {𝐸,𝑁} are used to construct the matrix of quantile cross-covariance 

kernels 

Γ𝑘(𝜏1, 𝜏2):= (𝛾𝑘
𝑗1,𝑗2(𝜏1, 𝜏2))

𝑗1,𝑗2∈{𝐸,𝑁}
 (2) 

Further, define the rank-based copula cross-periodograms using 

𝑑𝑛,𝑅
𝑗 (𝜔, 𝜏) ≔ ∑𝐼{�̂�𝑛,𝑗(𝑋𝑡,𝑗) ≤ 𝜏}𝑒−𝑖𝜔𝑡

𝑛−1

𝑡=0

 

(3) 

where 𝜔 ∈ ℝ, 𝑗 ∈ {𝐸,𝑁} and �̂�𝑛,𝑗(𝑥) is the empirical distribution function of 𝑋𝑡,𝑗 within a sample 

of length 𝑛 ∈ ℕ. Consequently, the estimator of quantile cross-spectral density becomes 

𝐼𝑛,𝑅
𝑗1,𝑗2(𝜔, 𝜏1, 𝜏2) ≔

1

2πn
𝑑𝑛,𝑅
𝑗1 (𝜔, 𝜏1)𝑑𝑛,𝑅

𝑗2 (𝜔, 𝜏2) 
(4) 

To estimate rank-based copula cross-periodograms consistently, the values are smoothed across 

frequencies: 

�̂�𝑛,𝑅
𝑗1,𝑗2(𝜔, 𝜏1, 𝜏2) ≔

2𝜋

n
∑𝑊𝑛 (𝜔 −

2𝜋𝑠

𝑛
)

𝑛−1

𝑠=1

𝐼𝑛,𝑅
𝑗1,𝑗2 (

2𝜋𝑠

𝑛
, 𝜏1, 𝜏2) 

(5) 

where the weights 𝑊𝑛 are taken from Baruník and Kley (2019). Finally, the estimator of quantile 

coherency is calculated as  

�̂�𝑛,𝑅
𝑗1,𝑗2(𝜔, 𝜏1, 𝜏2) ≔

�̂�𝑛,𝑅
𝑗1,𝑗2(𝜔, 𝜏1, 𝜏2)

√�̂�𝑛,𝑅
𝑗1,𝑗1(𝜔, 𝜏1, 𝜏1)�̂�𝑛,𝑅

𝑗2,𝑗2(𝜔, 𝜏2, 𝜏2)

 
(6) 

for 𝜏1, 𝜏2 ∈ [0,1],𝜔 ∈ ℝ and 𝑗1, 𝑗2 ∈ {𝐸,𝑁}. 

 

4. Dataset and preliminary analysis 

Our study is based on monthly data covering the period 1960:M1 to 2019:M10. We 

collect our dataset from the World Bank. Each energy and nonenergy commodity index is 

measured as the average of the relevant components with base year 2010. We display the full 
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descriptions and details of the commodity index prices in Table 2. All the details and definitions 

are extracted from the World Bank definitions of commodity indices. Certain descriptive 

statistics for the commodity index returns are reported in Table 3. It is shown that the data 

encompass 718 observations. Compared to the return of the nonenergy commodity indices 

(except the index for fertilizers), the energy commodity index return is more volatile in terms of 

standard deviation. This may indicate that the energy commodity index is riskier than the 

nonenergy indices. Further, except for the commodity indices for grains and raw materials, the 

nonenergy commodity indices and the energy commodity index display negative skewness, 

suggesting a long left tail in their distributions. We also emphasize the high kurtosis coefficients 

on all the commodity indices, suggesting that the return commodity series exhibit peaks (extreme 

returns) in comparison to the normal distribution. Regarding the Jarque-Bera statistic, we 

highlight that the energy and nonenergy commodity return series are not normally distributed. 

On the other hand, when referring to the autoregressive conditional heteroskedasticity (ARCH)-

Lagrange multiplier (LM) test statistic, we reject the null hypothesis of no ARCH effect for all 

the return series. In the Appendix (Figures A.1–ؘA.2), we plot the evolution of the commodity 

indices prices in terms of levels and returns, respectively. 

Table 2. Commodity indices and description. 
Commodity 

index 
Label Commodity description 

Energy ENERGY 

Coal (Australia), from January 2015, port thermal, free on board (FOB) Newcastle, 6,000 kcal/kg spot price. 

2002–2014, thermal GAR, FOB piers, Newcastle/Port Kembla, 6,300 kcal/kg (11,340 btu/lb), less than 0.8%, 

sulfur 13% ash; previously 6,667 kcal/kg (12,000 btu/lb), less than 1.0% sulfur, 14% ash 
Coal (Colombia), thermal GAR, FOB Bolivar, 6,450 kcal/kg, (11,200 btu/lb), less than 1.0%, sulfur 16% ash 

from August 2005 onwards; during years 2002–July 2005, 11,600 btu/lb, less than .8% sulfur, 9% ash, 180 

days forward delivery 
Coal (South Africa), from January 2015, FOB Richards Bay, net as received (NAR), 6,000 kcal/kg, sulfur less 

than 1%, forward month 1; from February 13, 2017 to December 2017, thermal NAR netback assessment 

FOB Richards Bay 6,000 kcal/kg; during 2006–February 10, 2017, thermal NAR; during 2002–2005, 6,200 
kcal/kg (11,200 btu/lb), less than 1.0%, sulfur 16% ash; years 1990–2001 6390 kcal/kg (11,500 btu/lb) 

Crude oil, average spot price of Brent, Dubai and WTI, equally weighted 

Crude oil, UK Brent 38` API 
Crude oil, Dubai Fateh 32` API for years 1985–present; 1960–84 refer to Saudi Arabian Light, 34` API. 

Crude oil, US, WTI 40` API 

Natural gas index (Laspeyres), average of Europe, US and Japan (liquefied natural gas [LNG]), weights based 
on 5-year average consumption volumes, updated every 5 years, except for the 11-year period of 1960–70 

Natural gas (Europe), from April 2015, Netherlands Title Transfer Facility (TTF), April 2010–March 2015, 

average import border price and a spot price component, including UK; for June 2000–March 2010, prices 
exclude UK 

Natural gas (US), spot price at Henry Hub, Louisiana 

LNG (Japan), import price, cost, insurance, and freight (CIF) ; most recent two months' averages are estimates 

Nonfuel NONFUEL A composite of the agriculture, fertilizers, and metals and minerals indices 

Agriculture AGRICLTR A composite of the beverages, food and raw materials indices 

Beverages BEVERGS 

- Cocoa (ICCO), International Cocoa Organization daily price, average of the first three positions on the 

terminal markets of New York and London, nearest three future trading months 
- Coffee (ICO), International Coffee Organization indicator price, other mild Arabicas, average New York and 

Bremen/Hamburg markets, ex-dock 

- Coffee (ICO), International Coffee Organization indicator price, Robustas, average New York and Le 
Havre/Marseilles markets, ex-dock 
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- Tea, average three auctions, arithmetic average of quotations at Calcutta, Colombo and Mombasa/Nairobi 

- Tea (Colombo auctions), Sri Lankan origin, all tea, arithmetic average of weekly quotes 
- Tea (Calcutta auctions), leaf, include excise duty, arithmetic average of weekly quotes 

- Tea (Mombasa/Nairobi auctions), African origin, all tea, arithmetic average of weekly quotes 

Food FOOD 

Oil and meals, grains and other food 

Bananas (Central and South America), major brands, free on truck (FOT) Southern Europe, including duties; 
prior to October 2006, FOT Hamburg 

Bananas (Central and South America), major brands, US import price, FOT US Gulf ports 

Meat, beef (Australia/New Zealand), mixed trimmings 85%, East Coast, 7–45 day deferred delivery, FOB port 
of entry, beginning January 1995; previously cow forequarters 

Meat, chicken (US), Urner Barry North East weighted average for broiler/fryer, whole birds, 2.5 to 3.5 

pounds, USDA grade A from 2013 onwards; 1980–2012, Georgia Dock weighted average, 2.5 to 3 pounds, 
wholesale; previously World Bank estimates 

Meat, sheep (New Zealand), frozen whole carcasses Prime Medium (PM) wholesale, Smithfield, London 

beginning January 2006; previously Prime Light (PL) 

Oranges (Mediterranean exporters) navel, European Union indicative import price, CIF Paris 

Shrimp, (US), brown, shell on, headless, in frozen blocks, source Gulf of Mexico, 26 to 30 count per pound, 

wholesale US beginning 2004; previously New York 
Sugar (EU), European Union negotiated import price for raw unpackaged sugar from African, Caribbean and 

Pacific (ACP) under Lomé Conventions, CIF European ports 

Sugar (US), nearby futures contract, CIF 
Sugar (World), International Sugar Agreement (ISA) daily price, raw, FOB and stowed at greater Caribbean 

ports 

Oil and Meals OILS_MLS 

Coconut oil (Philippines/Indonesia), from January 1999, crude, CIF NW Europe; previously, bulk, CIF 
Rotterdam 

Copra (Philippines/Indonesia), bulk, CIF NW Europe 

Fishmeal, German, 64% protein, EXW Hamburg beginning January 1999 
Groundnuts (US), Runners 40/50, cost and freight (CFR) NW Europe. Europe beginning January 1999; 

previously (US), Runners 40/50 shelled basis, CIF Rotterdam 

Groundnut oil, US crude, FOB South-East beginning January 1999; previously any origin, CIF Rotterdam 
Palm oil (Malaysia), RBD, CIF Rotterdam beginning December 2001; previously Malaysia 5%, CIF NW 

Europe, bulk, nearest forward 

Palm kernel oil (Indonesia/Malaysia), crude, CIF NW Europe beginning August 2001; previously Malaysian, 
nearest forward 

Soybean meal, Brazilian pellets 48% protein, CIF Rotterdam beginning January 1999; for 1990–1998, 45/46% 

CIF Rotterdam, nearest forward; previously US origin 44% 
Soybean oil, Dutch crude degummed, FOB NW Europe beginning January 1999; previously crude, FOB ex-

mill Netherlands, nearest forward 

Soybeans, US No. 2 yellow meal, CIF Rotterdam beginning December 2007; previously US origin, nearest 
forward 

Grains GRAINS 

Barley (US) feed, No. 2, spot, 20 days to arrive, delivered Minneapolis from May 2012 onwards; for 1980– 

April 2012 Canadian, feed, Western No. 1, Winnipeg Commodity Exchange, spot, wholesale farmers' price 
Maize (US), No. 2, yellow, FOB US Gulf ports 

Rice (Thailand), 5% broken, white rice (WR), milled, indicative price based on weekly surveys of export 

transactions, government standard, FOB Bangkok 
Rice (Thailand), 25% broken, WR, milled indicative survey price, government standard, FOB Bangkok 

Rice (Thailand), 100% broken, A-1 Super from 2006 onwards, government standard, FOB Bangkok; prior to 

2006, A-1 Special, a slightly lower grade than A-1 Super 

Rice (Vietnam), 5% broken, WR, milled, weekly indicative survey price, minimum export price, FOB Hanoi 

Sorghum (US), No. 2 milo yellow, Texas export bids for grain delivered to export elevators, rail-truck, FOB 

Gulf ports 
Wheat (Canada), No. 1, Western Red Spring (CWRS), in store, St. Lawrence, export price 

Wheat (US), No. 1, hard red winter, ordinary protein, export price delivered at the US Gulf port for prompt or 

30-day shipment 
Wheat (US), No. 2, soft red winter, export price delivered at the US Gulf port for prompt or 30-day shipment 

Raw 

Materials 
RAW_MTR 

Timber: 

Logs (Africa), sapele, high quality (loyal and marchand), 80 centimeters or more, FOB Douala, Cameroon 
beginning January 1996; previously of unspecified dimension 

Logs (Southeast Asia), meranti, Sarawak, sale price charged by importers, Tokyo beginning February 1993; 

previously average of Sabah and Sarawak weighted by Japanese import volumes 
Plywood (Africa and Southeast Asia), Lauan, 3-ply, extra, 91 centimeters x 182 centimeters x 4 millimeters, 

wholesale price, spot Tokyo 

Sawnwood (Africa), sapele, width 6 inches or more, length 6 feet or more, firsts and seconds (FAS) 
Cameroonian ports 

Sawnwood (Southeast Asia), dark red seraya/meranti, select and better quality, average 7 to 8 inches; length 

average 12 to 14 inches; thickness 1 to 2 inch(es); kiln dry, CFR UK ports, with 5% agent’s commission, 
including premium for products of certified sustainable forest beginning January 2005; previously excluding 

premium 

Woodpulp (Sweden), softwood, sulfate, bleached, air-dry weight, CIF North Sea ports 
Other Raw Materials: 
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Cotton (Cotton Outlook "Cotlook A index"), middling 1-3/32 inch, traded in Far East, CFR beginning 2006; 

previously Northern Europe, CIF 
Cotton (US), Memphis/Eastern, middling 1-3/32 inch, Far East, C/F beginning October 2008; previously CIF 

Northern Europe 

Rubber (Asia), ribbed smoked sheet (RSS) No. 3 grade, Singapore Commodity Exchange Ltd. (SICOM) 
nearby contract beginning 2004; for 2000–2003, Singapore RSS No. 1; previously Malaysia RSS No. 1 

Rubber (any origin), RSS No. 1, in bales, Rubber Traders Association (RTA), spot, New York 

Rubber (Asia), technically specified rubber (TSR) 20, SGX/SICOM nearby futures contract 
Tobacco (any origin), unmanufactured, general import, CIF, US 

Fertilizers FERTIL 

Diammonium phosphate (DAP), spot, FOB US Gulf 

Phosphate rock, FOB North Africa 

Potassium chloride (muriate of potash), FOB Vancouver 
Triple superphosphate (TSP), spot, import US Gulf 

Urea, (Ukraine), FOB Black Sea 

Metals and 

Minerals 
MET_MIN 

Aluminum (LME) London Metal Exchange, unalloyed primary ingots, high grade, minimum 99.7% purity, 

settlement price beginning 2005; previously cash price 

Copper (LME), grade A, minimum 99.9935% purity, cathodes and wire bar shapes, settlement price 

Iron ore, spot in US dollars/dry ton and contract in US cents/dry metric ton units (dmtu). For December 2008–
present, spot, (any origin) fines, 62% Fe, CFR China; for 2006–2008 (November) spot, 63.5% Fe. Earlier data 

refer to annual contract prices (Brazil for Europe), VALE Carajas mines sinter feed, FOB Ponta da Madeira 

for years 1987–2009; Itabira mines FOB Tubarão for years 1960–86. Dmtu, i.e., 1% Fe-unit. 
Iron ore (any origin) fines, spot price, CFR China, 62% Fe beginning December 2008; previously 63.5% 

Lead (LME), refined, 99.97% purity, settlement price 

Nickel (LME), cathodes, minimum 99.8% purity, settlement price beginning 2005; previously cash price 
Steel products index 

Steel, Cold-rolled coil/sheet (Japan) producers' export contracts (3- to 12-month terms) FOB mainly to Asia 

Steel, Hot-rolled coil/sheet (Japan) producers' export contracts (3- to 12-month terms) FOB mainly to Asia 
Steel, Rebar (concrete reinforcing bars) (Japan) producers' export contracts (3- to 12-month terms) FOB 

mainly to Asia 

Steel, Wire ord (Japan) producers' export contracts (3- to 12-month terms) FOB mainly to Asia 
Tin (LME), refined, 99.85% purity, settlement price 

Zinc (LME), high grade, minimum 99.95% purity, settlement price beginning April 1990; previously special 

high grade, minimum 99.995%, cash price 

Precious 

Metals 
PRECS_MET 

Gold (UK), 99.5% fine, London afternoon fixing, average of daily rates 

Platinum (UK), 99.9% refined, London afternoon fixing 

Silver (UK), 99.9% refined, London afternoon fixing; prior to July 1976 Handy & Harman. Grade prior to 
1962 unrefined silver 

Source: World Bank. 
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Table 3. Descriptive statistics for the return time series (monthly data). 

Variable Obs Min Quartile_1 Quartile_3 Max Mean Std Dev Skew Kurtosis J-B statistic p-value ARCH-LM p-value 

ENERGY 718 -31.4858 -0.4305 0.9486 16.8742 0.0959 3.7103 -1.8160 14.5909 6798.9772 0.000 155.3894
*** 

0.000 

NONFUEL 718 -17.5127 -0.5126 0.7011 7.9309 0.0860 1.7300 -1.5314 18.4855 10556.6727 0.000 11.5520
* 

0.072 

AGRICLTR 718 -14.2983 -0.6093 0.7378 8.0357 0.0844 1.7455 -0.4397 9.0783 2503.7376 0.000 21.4270
**

 0.018 

BEVERGS 718 -13.0555 -1.1596 1.2127 22.5453 0.0706 3.2593 1.1896 8.5376 2363.9463 0.000 18.9698
** 

0.040 

FOOD 718 -17.5398 -0.8558 0.8997 12.1938 0.0908 2.2788 -0.3397 8.5198 2198.8152 0.000 35.6666
*** 

0.000 

OILS_MLS 718 -21.6289 -1.1413 1.2143 17.7196 0.0759 3.3131 -0.3594 8.7679 2329.4573 0.000 142.8902
*** 

0.000 

GRAINS 718 -23.4114 -1.1816 1.1011 21.0628 0.0900 3.1352 0.3288 9.9671 3002.5117 0.000 17.2710
* 

0.068 

RAW_MTR 718 -9.3674 -0.4215 0.6278 9.7542 0.0760 1.5525 0.1630 8.4811 2168.4058 0.000 214.6949
*** 

0.000 

FERTIL 718 -61.5161 -0.4680 0.6618 45.2952 0.0904 5.3915 -0.0967 45.2919 61651.4620 0.000 59.9221
*** 

0.000 

MET_MIN 718 -25.7286 -0.6773 0.8929 13.4686 0.0886 2.7624 -1.2884 15.4567 7384.3793 0.000 11.4933
* 

0.074 

PRECS_MET 718 -17.2504 -0.4416 0.6370 29.8386 0.1535 2.7057 1.6131 25.9801 20602.8414 0.000 9.1956
* 

0.056 

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 
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5. Results 

We begin our analysis by looking at the standard Pearson correlations, as visualized in 

Figure 1. Energy commodities exhibit rather low correlations with their nonenergy counterparts, 

ranging from 0.07 (Grains) to 0.36 (Fertilizers). These preliminary findings are in sharp contrast 

with the results of Shiferaw (2019), who found that agricultural commodities were strongly and 

significantly connected with energy prices. Of course, one can find a relationship in a Granger-

causal sense (e.g., Nazlioglu, 2011), although the overall effect of this dependence is rather low. 

Averages, however, are not sufficient to reveal the full picture of dependence among the time 

series. 

 
Figure 1. Correlations among energy and nonenergy commodities. 

 

5.1. Commodity dependence during booms and busts 

We present our results of the quantile dependence analysis in the form of networks, 

where the node size represents betweenness centrality and the edge labels (and color scale) 

depict the estimated quantile coherencies. Our focus is on three frequencies, 2 months, 6 months, 
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and 12 months, capturing mutual dependencies among energy and nonenergy commodities from 

the short-, mid-, and long-term perspectives. More detailed results are available upon request. 

 

 
 

Figure 2. Quantile dependence from a short-term perspective. 
Note: The upper left panel depicts the 5

th
-to-5

th
 quantile dependence (extreme negative returns); the upper right 

panel depicts the 50
th

-to-50
th

 quantile dependence; and the bottom panel depicts the 95
th

-to-95
th

 quantile dependence 

(extreme positive returns). 

 

From the short-term perspective, when we look at the extreme negative tail of commodity 

returns (i.e., the 5
th

-to-5
th

 quantile dependence), energy commodities are isolated in our network 

representation (see the left panel of Figure 2). This simply means that none of the estimated 

quantile coherency was statistically significant at the 5% level. The result is slightly different at 
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the (0.5|0.5) quantiles, where energy commodities are significantly linked to beverages (0.359), 

and at the (0.95|0.95) quantiles, where energy is positively associated with fertilizers (0.305) but 

negatively associated with oils and meals (–0.297). It is clear that the relationships among energy 

and nonenergy commodities are distinct across different quantiles of their joint return 

distribution (in line with the findings of Albulescu et al., 2020). For example, metals and 

minerals are negatively associated with fertilizers and oils and meals at lower quantiles 

(0.05|0.05) and with food as a whole category at the median (0.5|0.5) and are totally independent 

when we look at the extreme positive tail of returns (0.95|0.95). Precious metals exhibit very 

similar behavior, and extreme positive returns are not associated with comovements of any other 

commodity. Extreme negative returns of precious metals are, however, linked to raw materials 

(0.271) and oils and meals (0.318). 

From the medium- and long-term perspectives, energy commodities are linked to 

nonenergy commodities to a greater extent, especially when we consider extreme negative 

comovements. This is a well-documented stylized fact about returns (Baruník and Kley, 2019). It 

shows that returns are more dependent during business cycle downturns or market turmoil than 

during upturns or bull markets. The same applies with energy commodities. In the long term, 

energy is connected to nonenergy commodities (0.247), agriculture (0.226), food (0.297), oils 

and meals (0.226), raw materials (0.166), and metals and minerals (0.291). Extreme positive 

returns of energy commodities are associated in the long term only with beverages (–0.174) and 

fertilizers (0.152). Note that in Figure 3 and Figure 4, every node has at least one connection, 

meaning that at least one statistically significant coherency is found for each commodity 

considered in our study. 
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Figure 3. Quantile dependence from a medium-term perspective. 
Note: The upper left panel depicts the 5

th
-to-5

th
 quantile dependence (extreme negative returns); the upper right 

panel depicts the 50
th

-to-50
th

 quantile dependence; and the bottom panel depicts the 95
th

-to-95
th

 quantile dependence 

(extreme positive returns). 
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Figure 4. Quantile dependence from a long-term perspective. 
Note: The upper left panel depicts the 5

th
-to-5

th
 quantile dependence (extreme negative returns); the upper right 

panel depicts the 50
th

-to-50
th

 quantile dependence; and the bottom panel depicts the 95
th

-to-95
th

 quantile dependence 

(extreme positive returns). 

 

5.2. Asymmetric commodity dependence 

Using a quantile coherency measure, we can track down dependence at any quantile of 

the joint return distribution across different frequencies. In addition to our previous results, we 

show in this section how connected commodity returns are when we consider the relationship 

between extreme negative returns on one commodity and extreme positive returns on another (of 

course, this relationship might be from the opposite perspective – not (0.05|0.95) but rather 

(0.95|0.05); however, these results are basically identical). 



21 
 

Figure 5 shows the existence of asymmetric commodity dependence, similar to the 

finding of Albulescu et al. (2020). From a short-term perspective, energy commodities are still 

isolated, as shown in Figure 2. From the medium-term perspective, energy is linked to beverages 

(0.226) and, in the long term, to nonenergy (0.214), agriculture (0.149), oils and meals (0.186), 

and raw materials (0.17). 

 

 

Figure 5. Dependence at 5
th

-to-95
th

 quantiles. 

Note: The upper left panel depicts the short-term dependence; the upper right panel depicts the medium-

term dependence; and the bottom panel depicts the long-term dependence. 

 

The results can be comprehended in bearish, normal and bullish markets;  for bearish 

market, we report the higher dependence of energy commodity with nonenergy, compared with 

bullish trend which confirm the findings of (Albulescu et al., 2020; Yahya et al., 2019), which 
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report that energy market is more connected with the other markets in financial crises. Similar 

trend of higher dependence is validated in normal market scenario, as reported in 0.5|0.5 

quantiles, where energy commodity has dependence with beverage, precious metal, fertilizer, 

metal & minerals, raw material, grains and oil mills. During the bullish trend, the dependence of 

energy with nonenergy commodities are confirmed with oil mills, fertilizer, raw material and 

beverage, which urge to not use these assets to form the portfolio.  

In view of portfolio construction, we report the findings in light of bearish, normal and 

bullish trend, the results are mentioned in Table A.1. While focusing on bearish trend, the 

portfolio managers and investors have to use grains, fertilizer and precious metals to minimize 

the portfolio risk. For normal market scenario, nonfuel, agriculture and food assets are best 

options for portfolio construction. In view of bullish market, nonfuel, agriculture, food, grains, 

metal & minerals and precious metals are best choices. However, one can see that the investors 

and portfolio managers have more option in bullish market than bearish market. The results 

compel that investors should be more careful in portfolio construction during the bearish market 

(Awasthi et al., 2020; Shahzad et al., 2019). 

 

6. Conclusions 

This research assessed the empirical evidence on the connectedness between energy and 

nonenergy commodity index prices using monthly time series data for the period spanning 

1960:M1 to 2019:M10. The energy commodity index price includes coal, crude oil, and natural 

gas, whereas nonenergy commodity indices encompass metals, agriculture, and fertilizer 

commodities. In this empirical investigation, we conducted a quantile cross-spectral analysis for 

the energy-nonenergy pairs by employing the method of Baruník and Kley (2019), which 

enabled us to quantify the strength of the connectedness between commodity markets at several 

quantiles and frequency bands at the same time. 

We summarize our main findings as follows. First, at the short-term horizon, it is 

noteworthy that the connectedness between energy and nonenergy commodity market index 

prices is distinct across quantiles of the conditional distribution. This result is in line with the 

results of Albulescu et al. (2020). This may suggest that at short-term horizon policymakers 

should adopt novel strategies at the extreme bearish market states in order to face with the low 
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(absence) connectedness between global energy commodity index and the global nonenergy 

commodity indexes. Furthermore, at the shortest horizon it is important for authorities to not pay 

further attention to the bad extreme negative and positive event effects on the global energy and 

nonenergy commodity indexes. For instance, it is found that the global energy index is not 

associated with all the global nonenergy commodity indexes at 0.05|0.05 quantiles, positively 

connected only with beverages at the intermediate quantiles (0.50|0.50), positively associated 

with fertilizers and negatively linked to oils and meals at 0.95|0.95 quantiles. Second, from the 

medium- and long-term perspectives, the energy commodity index is significantly connected to 

nonenergy commodity indices to a great extent, especially when we consider extreme negative 

comovements. At the medium-term horizon, policymakers should pay further attention in 

particular at bearish market states than at normal and bullish market conditions. In fact, the 

connectedness between commodity markets is more pronounced at 0.05|0.05 quantiles for the 

joint distribution of energy and nonenergy commodities. This may be due to the already 

mentioned stylized fact that returns are more dependent during business cycle downturns or 

market turmoil than during upturns or bull markets. Furthermore, investors and portfolio 

managers should learn from the quantile dependence structure between the global energy 

commodity market and nonenergy commodity markets when constructing their optimal 

portfolios of commodities. For instance. The global energy commodity index significantly and 

positively affects raw materials, beverages and agriculture indexes (at bearish market state), 

fertilizers and precious metals indexes (at normal market state), and raw materials index (at 

bullish market state). This may indicate that extreme lower, normal and extreme upper energy 

price shocks lead to and increase in beverages, agriculture, raw materials, fertilizers and precious 

metals prices. Therefore, the global energy commodity index may offer less diversification 

profits when combined with beverages, agriculture, raw materials, fertilizers or precious metals 

global indexes. However, international investors and portfolio managers can base their 

investment strategies in other commodities in order to make further benefits. In the long-term 

horizon, the global energy commodity market significantly and positively affects the majority of 

the global nonenergy commodities at the different kind of market states. However, investors, 

portfolio managers and policymakers should pay more attention to the connectedness between 

commodity markets in the longer horizon in particular at bearish market states. Third, our results 

reveal the presence of an asymmetric dependence structure between energy and nonenergy 
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commodity markets. The asymmetry in the connectedness between the global commodity 

markets is more pronounced at the extreme upper quantiles (bullish market state). Fourth, our 

results have important crucial policy implications for investors and policymakers.  

In a nutshell, from the investor’s point of view, it is beneficial to adapt one’s strategies 

when constructing portfolios of energy and nonenergy commodity assets based on the dynamics 

of the connectedness across quantile and frequency domains to mitigate risks and maximize 

benefits. From policymakers’ standpoint, it is important to be more cautious to develop optimal 

strategies at short-, medium-, and long-term horizons. 
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Appendix 

 

Figure A.1. Level series of commodity price indices.  
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Figure A.2. Return series of commodity price indices. 
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Table A.1. Asset selection with energy in bearish, normal and bullish markets 

Bearish Normal Bullish 

Grains 

Fertilizer 

Precious metal 

Non fuel 

Agriculture 

Food 

Non fuel 

Agriculture 

Food 

Grains 

Metal & Minerals 

Precious metal 

 


