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Abstract

We derive a framework for asymptotically valid inference in stable vector autoregressive

(VAR) models with conditional heteroskedasticity of unknown form. We prove a joint central

limit theorem for the VAR slope parameter and innovation covariance parameter estimators

and address bootstrap inference as well. Our results are important for correct inference on

VAR statistics that depend both on the VAR slope and the variance parameters as e.g. in

structural impulse response functions (IRFs). We also show that wild and pairwise bootstrap

schemes fail in the presence of conditional heteroskedasticity if inference on (functions) of

the unconditional variance parameters is of interest because they do not correctly replicate

the relevant fourth moments’ structure of the error terms. In contrast, the residual-based

moving block bootstrap results in asymptotically valid inference. We illustrate the prac-

tical implications of our theoretical results by providing simulation evidence on the finite

sample properties of different inference methods for IRFs. Our results point out that estima-

tion uncertainty may increase dramatically in the presence of conditional heteroskedasticity.

Moreover, most inference methods are likely to understate the true estimation uncertainty

substantially in finite samples.
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1 Introduction

Many financial and macroeconomic time series exhibit evidence of heteroskedasticity. Examples

include e.g. daily financial time series of asset returns but also macroeconomic time series as the

monthly growth rates in industrial production, money, exchange rates, interest or inflation rates.

Conditional heteroskedasticity patterns have been documented in many empirical examples in

the literature, see for instance Gonçalves & Kilian (2004). Moreover, these time series are often

analyzed within vector autoregressive (VAR) models. VAR models are a popular econometric

tool to summarize the dynamic interaction between the variables included in the VAR system.

Many applications in applied macroeconomics and finance (see e.g. Sims (1992), Bernanke &

Blinder (1992), Christiano, Eichenbaum & Evans (1999), Kim & Roubini (2000), Brüggemann,

Härdle, Mungo & Trenkler (2008), Alter & Schüler (2012)) use VARs and conclusions are based

on statistics obtained from the estimated VAR model. These statistics include e.g. Wald tests

for Granger-causality, impulse response functions (IRFs) and forecast error variance decompo-

sitions (FEVDs). Inference on these statistics is typically based either on first order asymptotic

approximations or on different bootstrap methods. The presence of heteroskedasticity invali-

dates a number of standard inference procedures for the quantities of interest, such that the

application of these methods may lead to conclusions that are not in line with the true underly-

ing dynamics. Therefore, in many VAR applications there is a need for inference methods that

are valid even in the presence of heteroskedasticity.

In the time series context the existing literature makes some suggestions for valid inference

under conditional heteroskedasticity. For instance, Gonçalves & Kilian (2004, 2007) consider

inference on autoregressive (AR) parameters in univariate autoregressions with conditional het-

eroskedasticity. They show that wild and pairwise bootstrap approaches are asymptotically

valid (under suitable assumptions) and may be used to set up t-tests and confidence intervals

for individual parameters. In addition, they also document that in finite samples the bootstrap

methods are typically more accurate than the usual first-order asymptotic approximations based

on robust standard errors. Hafner & Herwartz (2009) focus on Wald tests for Granger-causality

within VAR models. They use both heteroskedasticity-consistent asymptotic inference as well as

wild bootstrap methods, and find that especially the bootstrap methods provide more reliable

inference.

Although the presence of heteroskedasticity in time series data has been exploited in the

VAR context for structural identification of shocks, see e.g. Rigobon (2003), Normandin & Pha-

neuf (2004) and Herwartz & Lütkepohl (2014), the implications for inference e.g. on structural

impulse responses have not been analyzed in detail yet. To be more precise, the theoretical

results for models with conditional heteroskedasticity available in the literature so far do not

cover inference on a number of VAR statistics that are also functions of the residual covariance

matrix. Examples include popular statistics like responses to orthogonalized shocks, forecast

error variance decompositions and tests for instantaneous causality, see e.g. Lütkepohl (2005,

Chapter 2). Inference on these statistics is more complicated as it requires to consider the joint

asymptotic behavior of estimators for both VAR slope parameters and the parameters of the

VAR innovation covariance matrix. While the joint distribution is well explored in the case
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of i.i.d. innovations, see e.g. Lütkepohl (2005, Chapter 3), there is a gap in the econometric

literature for the case of conditional heteroskedastic VAR innovations.

To fill this gap in the literature, we analyze how the introduction of conditional heteroskedas-

ticity into stable VAR models affects the limiting properties of estimators of both the VAR slope

parameters and the unconditional innovation covariance matrix. In the following we refer to the

vector autogressive slope parameter matrices simply as the ‘VAR parameters’, while the uncon-

ditional innovation covariance matrix is referred to as ‘variance parameters’. We provide results

for conventional least squares (LS) as well as bootstrap estimators. Thereby, our analysis pro-

vides a framework for asymptotically valid inference in stable VAR models with conditional het-

eroskedasticity of unknown form. In fact, our asymptotic results suggest important differences

compared to a set-up with i.i.d. errors as well as to situations with conditional heteroskedasticity

in which only inference on the VAR parameters is conducted.

We derive the joint limiting distribution of the LS estimators of the VAR and variance

parameters in case the innovation vector forms a martingale difference sequence (mds) and

satisfy certain mixing and moment conditions. Thereby, we complement Hafner & Herwartz

(2009) by providing a complete proof for the asymptotic results in the VAR case. In contrast

to an i.i.d. error term set-up which leads to a block-diagonal asymptotic covariance matrix,

see Lütkepohl (2005, Chapter 3), it turns out that the estimators of the mean and variance

parameters are asymptotically correlated in general. A result corresponding to ours has been

found by Ling & McAleer (2003) and Francq & Zaköıan (2004) for (vector) autoregressive

moving average ((V)ARMA) models with generalized autoregressive conditional heteroscedastic

(GARCH) innovations in terms of the estimators of the (V)ARMA and GARCH parameters.

We also analyze the theoretical properties of different bootstrap approaches commonly used

in the VAR context. We find that the recursive- and fixed-design wild bootstrap as well as the

pairwise bootstrap that have been considered by Gonçalves & Kilian (2004, 2007) and Hafner

& Herwartz (2009) turn out to lead to asymptotically invalid inference on (functions of) the

innovation covariance matrix in the presence of conditional heteroskedasticity. The same holds

true for the blockwise wild bootstrap that was recently proposed by Shao (2011). In detail, these

bootstrap approaches fail in replicating the asymptotic variance of the innovation covariance

estimator, which is a function of the fourth moments’ structure of the innovations. Moreover,

the wild bootstrap turns out to be inappropriate even in case of i.i.d. errors.

As an alternative to the asymptotically invalid bootstrap methods mentioned above, we

suggest to use a residual-based moving block bootstrap. The idea of the block bootstrap has

been proposed by Künsch (1989) and Liu & Singh (1992) to extend the seminal bootstrap

idea of Efron (1979) to dependent data. This and related approaches that resample blocks

of time series data have been studied extensively in the literature, see e.g. Lahiri (2003) for

an overview. In this paper, we prove that the residual-based moving block bootstrap (MBB)

results in asymptotically valid joint inference on the VAR and variance parameters if suitable

mixing and moment assumptions are imposed. Since the block length in the MBB is assumed to

grow to infinity with the sample size (at an appropriate rate), the MBB is capable of capturing

the higher moment structure of the innovation process asymptotically. Therefore, the MBB is
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indeed able to correctly replicate the limiting covariance matrix of the innovation covariance

estimator.

We illustrate the importance and implications of the theoretical results by studying infer-

ence on IRFs that are functions of both the VAR parameters and the innovation covariance

parameters. This type of IRFs are of major importance in typical applied VAR studies. We

provide simulation evidence on the finite-sample properties of corresponding first-order asymp-

totic approximations and of various bootstrap approaches. We draw two main lessons from our

simulation study. First, applied researchers have to be aware that estimation uncertainty may

dramatically increase if conditional heteroskedasticity is present. Second, in many situations the

true sampling variation of the IRF estimators is understated by most of the inference procedures.

This, in turn, leads to (bootstrap) confidence intervals for impulse response coefficients being

too narrow. Accordingly, applied researchers should interpret their results with caution.

The remainder of the paper is structured as follows. Section 2 provides the modeling frame-

work while the asymptotic results for the LS estimators of the VAR and unconditional variance

parameters are discussed in Section 3. We show the invalidity of the wild and pairwise bootstrap

schemes in Section 4 and present the residual-based MBB scheme and its asymptotic proper-

ties in Section 5. Section 6 contains a discussion on structural impulse response analysis and

presents the simulation results. Finally, Section 7 concludes. The proofs and calculations related

to the data generating process (DGP) used in Section 6 are deferred to Appendices A and B,

respectively.

2 Modeling Framework

2.1 Notation and preliminaries

Let (ut, t ∈ Z) be a K-dimensional sequence of martingale differences defined on a proba-

bility space (Ω,F , P ) such that each ut = (u1t, . . . , uKt)
′ is assumed to be measurable with

respect to Ft, where (Ft) is a sequence of increasing σ-fields of F . We observe a data sample

(y−p+1, . . . , y0, y1, . . . , yT ) of sample size T plus p pre-sample values from the following DGP for

the K-dimensional time series yt = (y1t, . . . , yKt)
′,

yt = ν +A1yt−1 + · · ·+Apyt−p + ut, t ∈ Z, (2.1)

or A(L)yt = ν + ut in compact representation. Here, A(L) = IK − A1L − A2L
2 − · · · − ApLp,

Ap 6= 0, L is the lag operator such that Lyt = yt−1, the lag order p is finite and known, and

det(A(z)) is assumed to have all roots outside the unit circle. Hence, we are dealing with a

stable (invertible and causal) VAR model of order p.

In order to simplify the exposition we assume a zero intercept vector ν = 0 throughout

this paper and focus on estimators for the VAR parameters A1, . . . , Ap and the unconditional

innovation covariance matrix Σu = E(utu
′
t). Our results can be generalized to a set-up with a

non-zero intercept vector. We will make some remarks in this respect later on. We introduce the

following notation, where the dimensions of the defined quantities are also given in parentheses:
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y = vec(y1, . . . , yT ) (KT × 1)

Zt = vec(yt, . . . , yt−p+1) (Kp× 1)

Z = (Z0, . . . , ZT−1) (Kp× T ) (2.2)

β = vec(A1, . . . , Ap) (K2p× 1)

u = vec(u1, . . . , uT ) (KT × 1),

where the vec-operator stacks the columns of a matrix below each other. The parameter of

interest is β which is estimated by β̂ = vec(Â1, . . . , Âp) via multivariate LS using observations

y1, . . . , yT . Hence, we have, see e.g. Lütkepohl (2005, p. 71),

β̂ = ((ZZ ′)−1Z ⊗ IK)y, (2.3)

and y = (Z ′ ⊗ IK)β + u leads to

β̂ − β = ((ZZ ′)−1Z ⊗ IK)u. (2.4)

Here, A⊗B = (aijB)ij denotes the Kronecker product of matrices A = (aij) and B = (bij) and

IK is the K-dimensional identity matrix. Since the process (yt, t ∈ Z) is stable, yt has a vector

moving-average (VMA) representation

yt =

∞∑
j=0

Φjut−j , t ∈ Z, (2.5)

where Φj , j ∈ N0, is a sequence of (exponentially fast decaying) (K × K) coefficient matrices

with Φ0 = IK and Φi =
∑i

j=1 Φi−jAj , i = 1, 2, . . .. Further, we define (Kp × K) matrices

Cj = (Φ′j−1, . . . ,Φ
′
j−p)

′ and the (Kp×Kp) matrix Γ =
∑∞

j=1CjΣuC
′
j . The standard estimator

of Σu is

Σ̂u =
1

T

T∑
t=1

ûtû
′
t, (2.6)

where ût = yt − Â1yt−1 − · · · − Âpyt−p are the residuals obtained from the estimated VAR(p)

model. We set σ = vech(Σu) and σ̂ = vech(Σ̂u). The vech-operator is defined to stack column-

wise the elements on and below the main diagonal of a square matrix below each other.

2.2 Assumptions

For the theory established in this paper we need the following assumptions on the process

(yt, t ∈ Z) in addition to the stability condition for the DGP (2.1).

Assumption 2.1 (mds innovations).

(i) It holds E(ut|Ft−1) = 0 almost surely, where Ft−1 = σ(ut−1, ut−2, . . .) is the σ-field gen-
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erated by (ut−1, ut−2, . . .).

(ii) The (K ×K) innovation covariance matrix Σu = E(utu
′
t) exists and is positive definite.

(iii) It holds limT→∞
1
T

∑T
t=1E(utu

′
t|Ft−1) = Σu in probability.

(iv) For a, b, c ∈ Z define (K2 ×K2) matrices

τ0,a,b,c = E
(
vec(utu

′
t−a) vec(ut−bu

′
t−c)

′) (2.7)

and assume that (the entries of) τ0,r,0,s are uniformly bounded for all r, s ≥ 1 as well as

positive definiteness of LKτ0,r,0,rL
′
K for all r ≥ 1. Here LK is the

(
K(K + 1)/2×K2

)
elimination matrix which is defined such that vech(A) = LK vec(A) holds for a (K ×K)

matrix A, see e.g. Lütkepohl (2005, Sect. A.12.2).

(v) It holds limT→∞
1
T

∑T
t=1E(vec(utu

′
t−r) vec(utu

′
t−s)

′|Ft−1) = τ0,r,0,s in probability for all

r, s ≥ 1.

(vi) For some r > 1, we have that E|ut|4r4r is uniformly bounded, where |A|p = (
∑

i,j |aij |p)1/p

for some matrix A = (aij).

Here, the common i.i.d. assumption for the innovation process (ut, t ∈ Z) is replaced by the

less restrictive mds condition in Assumption 2.1. In particular, 2.1(i) and 2.1(ii) cover a large

class of dependent, but uncorrelated second-order stationary innovation processes and allow

for conditional heteroskedasticity. For τ0,a,b,c being well-defined in 2.1(iv) it is assumed that

E
(
vec(utu

′
t−a) vec(ut−bu

′
t−c)

′) is independent of t This is implied by fourth-order stationarity of

(ut, t ∈ Z), but is somewhat weaker. As the inverse of Γ =
∑∞

j=1CjΣuC
′
j occurs in the following,

we assume Σu to be positive definite, which together with the stability condition of the DGP

leads also to invertibility of Γ. Non-singularity of LKτ0,r,0,rL
′
K and the moment condition in

2.1(iv) is required for the central limit theorem (CLT) for mds that is used to prove asymptotic

normality of β̂ in Theorem 3.1(i) below.

Assumption 2.1 is a vector-valued analogue to Gonçalves & Kilian (2004, Assumption A). In

comparison to Hafner & Herwartz (2009) we do not require ut to be mixing in order to derive

the limiting distribution of β̂. Rather, we impose the following mixing condition for obtaining

the joint limiting results for β̂ and σ̂.

Assumption 2.2 (mixing innovations).

(i) The innovations process (ut, t ∈ Z) is strictly stationary.

(ii) The process (ut, t ∈ Z) is α-mixing and satisfies

∞∑
m=1

(αu(m))δ/(2+δ) <∞,

where F t−∞ = σ(. . . , ut−2, ut−1, ut), F∞t+m = σ(ut+m, ut+m+1, . . .) and

αu(m) = sup
t∈Z

sup
A∈Ft

−∞,B∈F∞t+m

|P (A ∩B)− P (A)P (B)|.
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(iii) It holds that
∑∞

h=−∞ LK{τ0,0,h,h − vec(Σu) vec(Σu)′}L′K exists and is positive definite.

The strict stationarity and mixing conditions imposed on (ut, t ∈ Z) in Assumption 2.2 are

required to prove a joint CLT for β̂ and σ̂ in Theorem 3.1(ii). Note that a CLT for mds is not

applicable here. This is due to the fact that σ̂ − σ includes vech(utu
′
t) whereas β̂ − β contains

only terms of the form vech(utu
′
t−j) with j ≥ 1 and, therefore, σ̂−σ is not an mds. Further, the

summability condition in Assumption 2.2(ii) together with the moment condition in Assumption

2.1(vi) is sufficient for
∑∞

h=−∞{τ0,0,h,h−vec(Σu) vec(Σu)′} to exist which can be shown with the

help of Corollary 14.3 in Davidson (1994).

3 Asymptotic Inference

In this section, we give two unconditional CLTs in Theorem 3.1. The first CLT is for the

VAR parameter estimator β̂ as defined in (2.3) under the mds-type Assumption 2.1. Under

the additional mixing condition in Assumption 2.2, the second CLT is concerned with joint

asymptotic normality of β̂ and σ̂.

Theorem 3.1 (Unconditional CLTs).

(i) Under Assumption 2.1, we have

√
T
(
β̂ − β

)
D→ N (0, V (1,1)),

where
D→ denotes convergence in distribution.

V (1,1) = (Γ−1 ⊗ IK)

 ∞∑
i,j=1

(Ci ⊗ IK)τ0,i,0,j(Cj ⊗ IK)′

 (Γ−1 ⊗ IK)′. (3.1)

(ii) Under Assumptions 2.1 and 2.2, we have

√
T

(
β̂ − β
σ̂ − σ

)
D→ N (0, V ),

where

V =

(
V (1,1) V (1,2)

V (2,1) V (2,2)

)

with V (2,2) =
∑∞

h=−∞ LK {τ0,0,h,h − vec(Σu) vec(Σu)′}L′K , V (2,1) = V (1,2)′ and

V (2,1) =
∞∑
j=1

∞∑
h=0

LKτ0,0,h,h+j(Cj ⊗ IK)′(Γ−1 ⊗ IK)′. (3.2)

The proof of Theorem 3.1 is provided in Appendix A.
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Remark 3.1. The result on V in part (ii) of Theorem 3.1 is a generalization of the case where

ut ∼ i.i.d.(0,Σu) that is discussed e.g. in Lütkepohl (2005, Chapter 3).1 Note in particular that

block-diagonality of V is generally lost if ut is conditionally heteroskedastic. A corresponding

finding has been obtained by Francq & Zaköıan (2004) and Ling & McAleer (2003) in relation

to (vector) ARMA-GARCH processes.

In Francq & Zaköıan (2004) a univariate framework is considered in which the error term

is expressed as ut = σtεt, where εt ∼ i.i.d.(0, 1) and σ2
t has a strictly stationary GARCH(m,n)

representation. In this set-up the estimators of the ARMA and of the GARCH parameters

are asymptotically correlated in general. However, if εt has a symmetric distribution, then the

joint asymptotic covariance matrix of the estimators is block-diagonal. This finding extends

to the vector ARMA-GARCH case if a corresponding vector version of εt follows a spherically

symmetric distribution, see Ling & McAleer (2003) and Hafner (2004, Lemma 1). The spherical

symmetry assumption assures that all mixed N -th order moments E
[
ΠN
j=1ε

sj
j

]
are zero if at

least one sj is odd.2

Hence, if ut in (2.1) follows e.g. a stable vector GARCH(m,n) process with εt having a

spherically symmetric distribution, then V (2,1) = 0 since τ0,0,h,h+j = 0 for all h ≥ 0 and j ≥ 1,

compare Francq & Zaköıan (2004, Lemma 4.1). Two comments are in order. First, a spherical

symmetry assumption on the distribution of εt is stronger than necessary to obtain a block-

diagonal covariance matrix structure. In fact, symmetry assures that all mixed ‘odd-moments’

of ut behave as those of an independent sequence, compare Deo (2000, Condition A.(vii)) and

its interpretation therein. Second, the set-up of a block-diagonal covariance matrix still differs

from a situation with ut ∼ i.i.d.(0,Σu) since V (1,1) and V (2,2) are also affected by the presence

of conditional heteroskedasticity.

Remark 3.2. Defining u2
t = vech(utu

′
t) one can also write

V (2,2) = Var(u2
t ) +

∞∑
h=−∞
h6=0

Cov
(
u2
t ,u

2
t−h
)
.

Hence, V (2,2) has a long-run variance representation in terms of u2
t that captures the (linear)

dependence structure in the sequence (u2
t ). If the error terms are i.i.d., we obviously have

V (2,2) = Var(u2
t ) = LKτ0,0,0,0L

′
K − σσ′.

Remark 3.3. Implementing asymptotic inference based on Theorem 3.1 requires estimation of

V . The blocks V (1,1) and V (2,2) may be estimated consistently by a White-type estimator as

in Hafner & Herwartz (2009) and a VARHAC approach of Den Haan & Levin (1996) for u2
t ,

respectively. Estimation of V (1,2) is less straightforward and needs to be investigated in future

research that is beyond the scope of the current paper. Against this background, a bootstrap

approach as discussed below may be useful as it avoids estimating V (1,2) directly.

1The joint limiting result in Lütkepohl (2005, Proposition 3.4) is based on additionally assuming that ut

is normally distributed. The normality assumption only affects the asymptotic variance of σ̂ since τ0,0,0,0 =
3 vec(Σu) vec(Σu)′ in this case. Also compare Remark 3.2 below in this respect.

2The standard multivariate normal and t-distributions belong e.g. to the class of spherical distributions. The
result on the mixed N -th order moments is also obtained for elliptically symmetric distributions with a mean
equal to zero, compare Berkane & Bentler (1986).
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Remark 3.4. For the theory provided in Theorem 3.1, we assume that the intercept term in

(2.1) is known and equals zero, i.e. ν = 0 such that µ = E(yt) = 0 holds. This is in order to

simplify the exposition. However, we remark that it is straightforward to allow for arbitrary

intercepts and to include the sample mean y = 1
T

∑T
t=1 yt into the analysis. Joint normality

for
√
T (y − µ, β̂ − β, σ̂ − σ) can be derived by similar arguments. In view of the generally

non-vanishing covariance structure of V (2,1), it can be observed that this property remains true

in the limit also for T Cov(y − µ, β̂ − β) and T Cov(y − µ, σ̂ − σ). According to the findings

summarized in Remark 3.1, a spherical symmetry assumption implies the asymptotic covariance

matrix of
√
T (y − µ, β̂ − β, σ̂ − σ) to be block diagonal.

4 Asymptotic Invalidity of the Wild and Pairwise Bootstraps

Since the finite sample properties of asymptotic-based VAR inference approaches can be rather

poor, the use of bootstrap methods is often advocated, see e.g. Kilian (1998b,a, 1999) in relation

to impulse response analysis. The results of Gonçalves & Kilian (2004) for univariate autoregres-

sions and of Hafner & Herwartz (2009) for Wald-tests in VARs indicate that bootstrap methods

can also be very beneficial in case of conditional heteroskedasticity. In our set-up, the use of

bootstrap methods additionally avoids the cumbersome estimation of the asymptotic covariance

matrix V , compare Remark 3.3.

In order to obtain valid bootstrap approximations for statistics that are only functions of

the VAR parameters in β, it suffices for a certain bootstrap procedure to mimic the CLT in

Theorem 3.1(i). This would apply e.g. to forecast error impulse responses (FEIRs) or restriction

tests on the VAR parameters as considered e.g. in Hafner & Herwartz (2009). However, to get

valid bootstrap approximations for statistics that depend on parameters both in β and σ, as e.g.

in the case of structural impulse responses, we need a bootstrap scheme capable of mimicking

the CLT in Theorem 3.1(ii). In view of the papers by Gonçalves & Kilian (2004, 2007) on the

univariate case, it is clear that an i.i.d. resampling of the residuals does not work in general.

Due to their results, it seems obvious to check the following schemes applied to the residuals

obtained from fitting a VAR(p) model to the data:

(a) recursive-design wild bootstrap

(b) fixed-design wild bootstrap

(c) pairwise bootstrap

(d) blockwise wild bootstrap

In Gonçalves & Kilian (2004, 2007) the bootstrap schemes (a)-(c) are particularly used under an

mds assumptions for the innovations. Bootstrap (d) has been recently proposed by Shao (2011)

to white noise testing and applied in the context of unit root testing by Smeekes & Urbain (2014).

We will show in this section that all procedures (a), (b), (c), and (d) actually fail to mimic the

proper distribution in Theorem 3.1(ii). To show this, it suffices to consider the notationally

simpler univariate case K = 1 and
√
T (σ̂2

u − σ2
u), where σ2

u = E(u2
t ) and σ̂2

u = 1
T

∑T
t=1 û

2
t .
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Furthermore, these bootstrap schemes will not be able to replicate the covariance block V (1,2)

either.

As shown in Hafner & Herwartz (2009), the fixed-design wild bootstrap correctly mimics the

CLT in Theorem 3.1(i) by making appropriate non-i.i.d. error term assumptions. Corresponding

results are obtained for the bootstrap schemes (a) and (c) by extending the results of Gonçalves

& Kilian (2004) to the multivariate case. Hence, they are asymptotically valid for inference that

only refers to the VAR parameters, including the case of FEIRs.

4.1 Recursive-design and fixed-design wild bootstrap

As the recursive- and fixed-design wild bootstrap schemes rely on the same set of residuals

ût = yt − Â1yt−1 − · · · − Âpyt−p, t = 1, . . . , T,

and as the estimator σ̂2
u is computed from those residuals exclusively, both approaches coincide

here and yield the same bootstrap estimator σ̂2∗
WB = 1

T

∑T
t=1 û

∗2
t to be discussed further. For the

wild bootstrap, we set û∗t = ûtηt, where (ηt, t ∈ Z) are i.i.d. random variables with E∗(ηt) = 0,

E∗(η2
t ) = 1 and E∗(η4

t ) <∞. From E∗(η2
t ) = 1, we get E∗(

√
T (σ̂2∗

WB − σ̂2
u)) = 0 and

E∗
(√

T
(
σ̂2∗
WB − σ̂2

u

))2
=

1

T

T∑
t=1

E∗
(
û∗4t
)

+
1

T

T∑
t1,t2=1

t1 6=t2

E∗
(
û∗2t1
)
E∗
(
û∗2t2
)
− 1

T

T∑
t1,t2=1

û2
t1 û

2
t2

=
1

T

T∑
t=1

û4
t

(
E∗
(
η4
t

)
− 1
)
.

Replacing ût by ut above does not affect the asymptotics such that the last right-hand side

converges in probability to

V
(2,2)
WB := E(u4

t )
{
E∗
(
η4
t

)
− 1
}

= τ0,0,0,0

{
E∗
(
η4
t

)
− 1
}
6=

∞∑
h=−∞

{
τ0,0,h,h − σ4

u

}
= V (2,2),

which indicates the invalidity of the wild bootstrap for the estimator of the innovation variance.

Note that even if ut ∼ i.i.d.(0, σ2
u), the wild bootstrap would be invalid since τ0,0,0,0

{
E∗
(
η4
t

)
− 1
}
6=

τ0,0,0,0 − σ4
u, compare Remark 3.2. The latter has been already observed in Kreiss (1997) for

linear processes. Similarly, one can show that in general V
(2,1)
WB = 0 6= V (2,1) holds, that is,

the wild bootstrap estimates the potentially non-zero limiting covariances always as being zero.

Further, it is worth noting that the more natural approach of using re-calculated residualŝ̂u∗t := y∗t − Â∗1y∗t−1− · · ·− Â∗py∗t−p for the bootstrap estimator does not alter the asymptotics and

this leads to the same invalidity results as shown above.

4.2 Pairwise bootstrap

Let
{

(y∗t , Y
∗′
t−1) := (y∗t , . . . , y

∗
t−p), t = 1, . . . , T

}
be a bootstrap sample drawn independently from{

(yt, Y
′
t−1) := (yt, . . . , yt−p), t = 1, . . . , T

}
. Based on these bootstrap tupels, we define bootstrap
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residuals

û∗∗t = y∗t −
(
Â∗1, . . . , Â

∗
p

)
Y ∗t−1 =: (1,−B̂∗)

(
y∗t

Y ∗t−1

)
, t = 1, . . . , T.

By standard arguments, it is valid to replace B̂∗ by B̂ = (Â1, . . . , Âp) and to consider corre-

sponding residuals û∗1, . . . , û
∗
T and the bootstrap estimator σ̂2∗

PB = 1
T

∑T
t=1 û

∗2
t in the following.

Due to i.i.d. resampling we get E∗(
√
T (σ̂2∗

PB − σ̂2
u)) = 0 and

E∗
(√

T
(
σ̂2∗
PB − σ̂2

u

))2
=

1

T

T∑
t=1

E∗(û∗4t ) +
1

T

T∑
t1,t2=1

t1 6=t2

E∗(û∗2t1 û
∗2
t2 )− 1

T

T∑
t1,t2=1

û2
t1 û

2
t2

=
1

T

T∑
t=1

1

T

T∑
s=1

û4
s +

1

T

T∑
t1,t2=1

t1 6=t2

(
1

T

T∑
s=1

û2
s

)2

− T

(
1

T

T∑
t=1

û2
t

)2

=
1

T

T∑
s=1

û4
s −

(
1

T

T∑
s=1

û2
s

)2

.

Again replacing ût by ut above does not affect the asymptotics and the last right-hand side

converges in probability to

V
(2,2)
PB := E(u4

t )− σ4
u = τ0,0,0,0 − σ4 6=

∞∑
h=−∞

{
τ0,0,h,h − σ4

u

}
= V (2,2),

which also proves also the general inconsistency of the pairwise bootstrap. Observe here that

the pairwise bootstrap is equivalent to an i.i.d. bootstrap applied to the residuals. Similarly,

one can show that

V
(2,1)
PB =

∞∑
j=1

τ0,0,0,j(Cj ⊗ IK)′(Γ−1 ⊗ IK)′ 6=
∞∑
j=1

∞∑
h=0

τ0,0,h,h+j(Cj ⊗ IK)′(Γ−1 ⊗ IK)′ = V (2,1)

holds. That is, in comparison to the wild bootstrap, the pairwise bootstrap does not estimate

the limiting covariances as being zero. Yet, the limiting covariances are not correctly estimated

in general if the innovations are not i.i.d.. However, the pairwise bootstrap will asymptotically

be valid if ut ∼ i.i.d.(0, σu) in contrast to the wild bootstrap approaches.

4.3 Blockwise wild bootstrap

For notational convenience, suppose that T = N`, where ` ∈ N denotes the block length and N

the number of blocks. For the blockwise wild bootstrap, let η1, . . . , ηN be i.i.d. random variables

with E∗(ηt) = 0, E∗(η2
t ) = 1 and E∗(η4

t ) < ∞ and define û∗t = ûtηdt/`e. In other words, we

cut û1, . . . , ûT in N blocks of length ` and multiply the jth block with ηj to get the bootstrap

sample û1, . . . , ûT and the corresponding estimator σ̂2∗
BWB = 1

T

∑T
t=1 û

∗2
t . From E∗(η2

t ) = 1, we

have E∗(
√
T (σ̂2∗

BWB − σ̂2
u)) = 0 and
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E∗
(√

T
(
σ̂2∗
BWB − σ̂2

u

))2
=

1

T

N∑
r1,r2=1

∑̀
s1,s2=1

E∗(û∗2s1+(r1−1)`û
∗2
s2+(r2−1)`)−

1

T

T∑
t1,t2=1

û2
t1 û

2
t2

=
1

T

N∑
r=1

∑̀
s1,s2=1

û2
s1+(r−1)`û

2
s2+(r−1)`E

∗(η4
r )−

1

T

T∑
t1,t2=1

û2
t1 û

2
t2

+
1

T

N∑
r1,r2=1

r1 6=r2

∑̀
s1,s2=1

û2
s1+(r1−1)`û

2
s2+(r2−1)`E

∗(η2
r1)E∗(η2

r2)

=

 1

T

N∑
r=1

∑̀
s1,s2=1

û2
s1+(r−1)`û

2
s2+(r−1)`

(E∗(η4
r )− 1

)
.

Interestingly, it turns out that the first factor on the last right-hand side above is of order OP (`)

and diverges for `→∞. This can be seen by the following calculation. We get

1

T

N∑
r=1

∑̀
s1,s2=1

û2
s1+(r−1)`û

2
s2+(r−1)`

=
1

T

N∑
r=1

∑̀
s1,s2=1

(û2
s1+(r−1)` − E(û2

s1+(r−1)`))(û
2
s2+(r−1)` − E(û2

s2+(r−1)`))

+
1

T

N∑
r=1

∑̀
s1,s2=1

E(û2
s1+(r−1)`)E(û2

s2+(r−1)`)

= OP (1) + `E2(û2
1) = OP (`).

The latter result indicates that the blockwise wild bootstrap is not only unable to mimic the

proper limiting variance but also that the conditional variance of σ̂2∗
BWB is not even finite in the

limit if ` → ∞ as T → ∞. Consequently, the blockwise wild bootstrap fails drastically here.

Therefore, we do not consider this bootstrap scheme any further in the paper.

4.4 Numerical evaluation of asymptotic bias

We have numerically evaluated the bias when replacing the asymptotic covariance matrix V (2,2)

by the variance expressions obtained from the wild or pairwise bootstrap. To this end, we again

focus on the univariate case and consider a simple GARCH(1,1) model for ut:

ut = σtεt, σ2
t = a0 + a1u

2
t−1 + b1σ

2
t−1, with a0 = 1− a1 − b1 and εt ∼ i.i.d. N(0, 1). (4.1)

In line with Remark 3.2 we write for the univariate case V (2,2) = Var(u2
t ) + 2

∑∞
h=1 γu2(h),

where γu2(h) = Cov(u2
t , u

2
t−h). From Francq & Zaköıan (2010, Chapter 2) and using some

algebra we get

V (2,2) = Var(u2
t ) + 2 Var(u2

t )ρu2(1)
1

1− a1 − b1
,
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Table 1: Moments for GARCH(1,1) model (4.1)

Case a1 b1 Var(u2
t ) 2

∑∞
h=1 γu2(h) V (2,2) V

(2,2)
WB V

(2,2)
PB

G0 0.00 0.00 2 0 2 6 2

G1 0.05 0.94 3.007 93.154 96.161 8.013 3.007

G2 0.05 0.90 2.162 6.270 8.432 6.324 2.162

G3 0.50 0.00 8.000 16.000 24.000 18.000 8.000

G4 0.30 0.60 56.000 552.00 608.00 114.000 56.000

G5 0.20 0.75 15.714 262.86 278.57 33.429 15.714

Note: The results for V
(2,2)
WB are based on ηt ∼ i.i.d.N(0, 1).

where the first-order autocorrelation of u2
t is given by

ρu2(1) =
a1{1− b1(a1 + b1)}

1− 2a1b1 − b21
.

Moreover, Var(u2
t ) = E(u4

t ) − σ4
u. Since σ4

u = 1 in our case we obtain from Francq & Zaköıan

(2010, Chapter 2)

E(u4
t ) =

1− (a1 + b1)2

1− (a1 + b1)2 − a2
1(κε − 1)

κε,

where κε = E(ε4
t ) = 3.

From the previous subsections we have for the pairwise bootstrap V
(2,2)
PB = V ar(u2

t ). For

the wild bootstraps we get V
(2,2)
WB = E(u4

t )(E
∗(η4

t ) − 1). Typical choices for the distribution of

ηt are the standard normal or the Rademacher distribution. In case of ηt ∼ i.i.d.N(0, 1) one

has E∗(η4
t ) = 3 such that V

(2,2)
WB = 2E(u4

t ). In contrast, the Rademacher distribution implies

E∗(η4
t ) = 1 such that V

(2,2)
WB = 0 independent of the conditional variance model for ut. Therefore,

we do not consider the Rademacher distribution any further in the paper.

Table 1 summarizes the results for different values of the GARCH parameters a1 and b1.

The choices are mainly motivated by the parameters considered in Gonçalves & Kilian (2004).

Obviously, the asymptotic bias with respect to V (2,2) can be tremendous. Nevertheless, the

absolute but also the relative bias depend quite importantly on a1 and b1. E.g. in Cases G2 and

G3 V
(2,2)
WB are relatively close to V (2,2). Both bootstrap variants always underestimate the correct

asymptotic variance since the sum of the covariances dominate. However, in a multivariate set-

up the asymptotic variance of the estimator of interest are linear combinations of the matrix

version of V (2,2) such that the relevant variance may be even overestimated. Finally, note the

potential dramatic increase in the asymptotic variance V (2,2) when switching from the i.i.d. case

G0 to a GARCH set-up.

5 Residual-Based Moving Block Bootstrap

Block bootstrap methods have been used for several purposes in time series econometrics. In

the literature, the block bootstrap has been applied to suitably defined residuals that are ob-

tained after fitting a certain model or differencing the data. For instance, Paparoditis & Politis

(2001) and Paparoditis & Politis (2003) apply the MBB to unit root testing and prove bootstrap

consistency, where Jentsch, Paparoditis & Politis (2014) provide theory for residual-based block
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bootstraps in multivariate integrated and co-integrated models. In this section, we propose to

use the moving block bootstrap techniques for the residuals obtained from a fitted VAR(p) model

to approximate the proper distribution of
√
T ((β̂ − β)′, (σ̂ − σ)′)′ derived in Theorem 3.1(ii),

which leads to bootstrap consistency in Theorem 5.1 below.

Bootstrap Scheme I

Step 1. Fit a VAR(p) model to the data to get Â1, . . . , Âp and compute the residuals ût =

yt − Â1yt−1 − · · · − Âpyt−p, t = 1, . . . , T .

Step 2. Choose a block length ` < T and let N = dT/`e be the number of blocks needed such

that `N ≥ T . Define (K×`)-dimensional blocks Bi,` = (ûi+1, . . . , ûi+`), i = 0, . . . , T−` and

let i0, . . . , iN−1 be i.i.d. random variables uniformly distributed on the set {0, 1, 2, . . . , T −
`}. Lay blocks Bi0,`, . . . , BiN−1,` end-to-end together and discard the last N` − T values

to get bootstrap residuals û∗1, . . . , û
∗
T .

Step 3. Center û∗1, . . . , û
∗
T according to the rule

u∗j`+s = û∗j`+s − E∗(û∗j`+s) = û∗j`+s −
1

T − `+ 1

T−∑̀
r=0

ûs+r (5.1)

for s = 1, 2, . . . , ` and j = 0, 1, 2, . . . , N − 1 to get E∗(u∗t ) = 0 for all t = 1, . . . , T .

Step 4. Set bootstrap pre-sample values y∗−p+1, . . . , y
∗
0 equal to zero and generate the bootstrap

sample y∗1, . . . , y
∗
T according to

y∗t = Â1y
∗
t−1 + · · ·+ Âpy

∗
t−p + u∗t .

Step 5. Compute the bootstrap estimator

β̂∗ = vec(Â∗1, . . . , Â
∗
p) = ((Z∗Z∗′)−1Z∗ ⊗ IK)y∗, (5.2)

where Z∗ and y∗ are defined analogously to Z and y in (2.2), respectively, but based on

y∗−p+1, . . . , y
∗
0, y
∗
1, . . . , y

∗
T . Further, we define the bootstrap analogue of Σ̂u as

Σ̂∗u =
1

T

T∑
t=1

û∗t û
∗′
t , (5.3)

where û∗t = y∗t − Â∗1y
∗
t−1 − · · · − Â∗py

∗
t−p are the bootstrap residuals obtained from the

VAR(p) fit. We set σ̂∗ = vech(Σ̂∗u).

Remark 5.1. Contrary to a bootstrap scheme that uses i.i.d. resampling of the residuals, the

standard centering ût = ũt − 1
T

∑T
s=1 ũs, t = 1, . . . , T , does in general lead to E∗(u∗t ) 6= 0 when

a MBB is applied to resample the residuals. To get properly centered residuals, the centering as

described in Step 3. has to be executed. Note that (5.1) is tailor-made for the MBB and adjusted

13



centering has to be applied for other approaches as e.g. non-overlapping block bootstrap, cyclical

block bootstrap or stationary bootstrap. However, the effect of not properly centered residuals

vanishes asymptotically and we expect only a slight loss in performance in practice.

Remark 5.2. In Bootstrap Scheme I we rely on pre-whitening the data which should be much

more efficient than drawing from blocks of yt. As for the wild bootstrap approach one may

also consider a fixed-design MBB rather than relying on the recursive structure in Step 4. As

discussed in Gonçalves & Kilian (2004), the fixed-design wild bootstrap requires weaker assump-

tions on the error terms than a recursive version. To prove asymptotic validity of the MBB,

however, we require stronger assumptions than needed for an appropriate wild bootstrap frame-

work such that the use of a fixed-design MBB would not simplify the setting here. Therefore,

we do not consider this bootstrap scheme in the following.

We make the following assumption.

Assumption 5.1 (cumulants). The K-dimensional innovation process (ut, t ∈ Z) has abso-

lutely summable cumulants up to order eight. More precisely, we have for all j = 2, . . . , 8 and

a1, . . . , aj ∈ {1, . . . ,K}, a = (a1, . . . , aj) that

∞∑
h2,...,hj=−∞

|cuma(0, h2, . . . , hj)| <∞ (5.4)

holds, where cuma(0, h2, . . . , hj) denotes the jth joint cumulant of u0,a1 , uh2,a2 , . . . , uhj ,aj , see

e.g. Brillinger (1981). In particular, this condition includes the existence of eight moments of

(ut, t ∈ Z).

Such a condition has been imposed e.g. by Gonçalves & Kilian (2007) to prove consistency

of wild and pairwise bootstrap methods applied to univariate AR(∞) processes. In terms of

α-mixing conditions, Assumption 5.1 is implied by

∞∑
m=1

mn−2(αu(m))δ/(2n−2+δ) <∞

for n = 8 if all moments up to order eight of (ut, t ∈ Z) exist, see Künsch (1989). For example,

GARCH processes are known to be geometrically strong mixing under mild assumptions on the

conditional distribution. This result goes back to Boussama (1998), compare also the discussion

in Lindner (2009). Hence, one can focus on verifying whether the 8-th moment of a GARCH

process exists for given GARCH parameters and the conditional distribution, compare Ling &

McAleer (2002), Lindner (2009).

Now, we can state

Theorem 5.1 (Residual-based MBB consistency).

Under Assumptions 2.1, 2.2 and 5.1 and if `→∞ such that `3/T → 0 as T →∞, we have

sup
x∈RK̄

∣∣∣∣P ∗(√T ((β̂∗ − β̂)′, (σ̂∗ − σ̂)′
)′
≤ x

)
−P

(√
T
(

(β̂ − β)′, (σ̂ − σ)′
)′
≤ x

)∣∣∣∣→ 0
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in probability, where P ∗ denotes the probability measure induced by the residual-based MBB and

K̄ = K2p+ (K2 +K)/2. The short-hand x ≤ y for some x, y ∈ Rd is used to denote xi ≤ yi for

all i = 1, . . . , d.

Remark 5.3. The proof of bootstrap consistency in Theorem 5.1 is provided in Appendix A.

It is not restricted to innovation processes (ut, t ∈ Z) being martingale difference sequences and

can be achieved under suitable mixing and moment conditions alone. However, by dropping

the mds condition the covariance matrix V will differ in general to that derived in Theorem 3.1

where the mds structure is heavily exploited.

6 Inference on Impulse Response Functions

The theoretical results derived above are important if inference is done on quantities that depend

on both the VAR parameters and the innovation covariance matrix. This is e.g. the case if

inference on structural impulse responses is of interest. Since these impulse responses are very

often used in empirical VAR studies, we illustrate the implication of our results in the context of

structural impulse responses. Inference based on asymptotic theory for an i.i.d. error term set-up

is discussed e.g. in Lütkepohl (1990) while bootstrap methods for impulse response inference are

considered e.g. by Runkle (1987), Fachin & Bravetti (1996), Kilian (1998b), Benkwitz, Lütkepohl

& Wolters (2001), and Benkwitz, Lütkepohl & Neumann (2000). The properties of bootstrap

confidence intervals for this type of IRFs in the case of non-i.i.d. innovations have also been

investigated by Monte Carlo simulations in Kilian (1998a, 1999).

In this section, we first obtain the asymptotic distribution of the impulse response estimators

under conditional heteroskedasticity by relying on the Delta method. Following this, we adapt

the MBB bootstrap scheme in order to obtain confidence intervals for the impulse response

coefficients. Third, we present a simulation study on the finite sample properties of various

bootstrap and asymptotic confidence intervals.

6.1 Asymptotic distribution of impulse response functions

In what follows, we use structural impulse responses obtained from recursive VAR systems that

imply a Wold causal ordering. These recursive VARs are popular in empirical work in macroe-

conomics and finance, see e.g. Sims (1992), Bernanke & Blinder (1992), Christiano et al. (1999),

Breitung, Brüggemann & Lütkepohl (2004), Kilian (2009). In recursive VARs the structural

shocks wt are identified by using the Choleski decomposition Σu = PP ′, where P is lower-

triangular with positive diagonal elements. The shocks are wt = P−1ut, t = 1, 2, . . . , with

wt ∼ (0, IK). In this framework the structural IRFs are given by Θi = ΦiP , i = 0, 1, 2, . . .,

see e.g. Lütkepohl (2005, Section 2.3). In the following we refer to the parameters Θi simply

as IRFs. Clearly, the impulse responses in Θi are continuously differentiable functions of the

parameters in β and σ. The estimators of the VMA coefficient matrices, Φ̂i, i = 0, 1, 2, . . ., are

obtained from the LS estimators of the VAR parameters in β. Applying the Choleski decom-

position to Σ̂u provides us with the estimator P̂ such that the IRFs estimators are Θ̂i = Φ̂iP̂ ,
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i = 0, 1, 2, . . .. Consequently, their limiting distribution is easily obtained via the Delta method.

Following Lütkepohl (2005, Proposition 3.6) on the i.i.d. set-up, one can deduce the following

corollary from Theorem 3.1

Corollary 6.1 (CLT for Structural IRFs).

Under Assumptions 2.1 and 2.2 we have

√
T vec

(
Θ̂i −Θi

)
D→ N

(
0,Σ

Θ̂i

)
, i = 0, 1, 2, . . . ,

where

Σ
Θ̂i

= Ci,βV
(1,1)C ′i,β + Ci,σV

(2,2)C ′i,σ + Ci,βV
(1,2)C ′i,σ + Ci,σV

(1,2)′C ′i,β (6.1)

with C0,β = 0, Ci,β =
∂ vec(Θi)

∂β′
= (P ′ ⊗ IK)Gi, i = 1, 2, . . ., Ci,σ =

∂ vec(Θi)

∂σ′
= (IK ⊗ Φi)H,

i = 0, 1, . . ., Gi =
∂ vec(Φi)

∂β′
=
∑i−1

m=0 J(A′)i−1−m ⊗Φm, i = 0, 1, . . ., where J = (IK , 0, . . . , 0) is

a (K ×Kp) matrix, A is the companion matrix of the VAR process defined in Appendix B, and

H =
∂ vec(P )

∂σ′
.

Compared to an i.i.d. error term set-up, different limiting covariance matrices V (1,1) and

V (2,2) as well as two additional terms occur in Σ
Θ̂i

. These are the last two terms in (6.1) that

are present whenever the off-diagonal blocks in V are non-zero, compare Remark 3.1.

6.2 Bootstrap inference on impulse response functions

The implementation of the asymptotic approximation in Corollary 6.1 for inference on the

impulse response coefficients can be rather cumbersome since it requires estimation of V (2,2)

and V (1,2). As a valid alternative we consider the residual-based MBB for inference.

Let θjk,i be the response of the j-th variable to the k-th structural shock that occurred i

periods ago, j, k = 1, . . . ,K, i = 0, 1, . . . with j ≤ k if i = 0. To simplify notation we suppress

the subscripts in the following and simply use θ and θ̂ to represent a specific structural impulse

response coefficient and its estimator, respectively. Bootstrap confidence intervals for θ can be

obtained by the following scheme that relies on Hall’s percentile intervals, compare e.g. Hall

(1992) and Lütkepohl (2005, Appendix D).

Bootstrap Scheme II

Step 1. Fit a VAR(p) model to the data in order to obtain the estimator θ̂ as a function of β̂

and σ̂.

Step 2. Apply the Bootstrap Scheme I as described in Section 5 B times, where B is large, in

order to obtain B bootstrap versions of β̂∗ and σ̂∗.

Step 3. Compute θ̂∗ using β̂∗ and σ̂∗ for each of the B bootstrap versions corresponding to θ̂.

Obtain the γ/2- and (1−γ/2)-quantiles of [θ̂∗− θ̂], γ ∈ (0, 1), labelled as c∗γ/2 and c∗(1−γ/2),

respectively.
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Step 4. Determine Hall’s percentile interval by[
θ̂ − c∗(1−γ/2); θ̂ − c

∗
γ/2

]
.

Since Θi, i = 0, 1, 2, . . ., are continuously differentiable functions of β and σ, the asymptotic

validity of the Bootstrap Scheme II follows from Theorem 5.1 corresponding to arguments in

Kilian (1998b). We summarize this result in the following corollary.

Corollary 6.2 (Asymptotic Validity of Bootstrap SIRs).

Under Assumptions 2.1, 2.2 and 5.1 and if `→∞ such that `3/T → 0 as T →∞, we have

sup
x∈R

∣∣∣∣P ∗(√T (θ̂∗ − θ̂)′ ≤ x)− P (√T (θ̂ − θ)′ ≤ x)∣∣∣∣→ 0

in probability.

Bootstrap Scheme II can be easily adopted to other interval types like e.g. the standard

percentile intervals of Efron & Tibshirani (1993). However, in relative terms the simulation

results were similar to the case of Hall’s percentile intervals. Therefore, we focus on the latter

ones.

6.3 Asymptotic results and simulation evidence

In this section we compare the coverage properties of different bootstrap and asymptotic confi-

dence intervals for impulse responses. For this purpose, we explain the structure of our DGP in

Section 6.3.1. We then determine the asymptotic distortion of the wild and pairwise bootstrap

approaches in Section 6.3.2 for this DGP before presenting more detailed finite sample results

in Section 6.3.3.

6.3.1 Data generating processes

The asymptotic results and the simulation evidence are obtained for a bivariate VAR in form of

(2.1) and letting p = 2, ν = 0 and

A1 =

(
0.4 0.6

−0.1 1.2

)
, A2 =

(
−0.2 0

−0.2 −0.1

)
.

These DGP parameters lead to typical hump shaped impulse responses often observed in em-

pirical applications. The moduli of the roots in the characteristic VAR polynomial are 0.717

and 0.197 which implies moderate persistence in the VAR dynamics. To control the GARCH

structure in the innovation process, let εt = (ε1t, ε2t)
′ ∼ i.i.d. N(0, I2) and define wit = σitεit

with σ2
it = a0 + a1w

2
it + b1σ

2
i,t−1, i = 1, 2, and a0 = 1 − a1 − b1. Hence, w1t and w2t are two

independent univariate GARCH(1,1) processes with E(w2
1t) = E(w2

2t) = 1. The VAR innovation

17



Table 2: Asymptotic Variances of Elements in Θ̂0 and Coverage Probabilities of Corresponding
Confidence Intervals

Case a1 b1 Delta Method Wild Bootstrap Pairwise Bootstrap

θ̂11,0 θ̂21,0 θ̂11,0 θ̂21,0 θ̂11,0 θ̂21,0

G0 0.00 0.00
asymptotic variances 0.500 0.875 1.500 1.875 0.500 0.875
coverage probabilities 0.900 0.900 0.996 0.984 0.900 0.900

G1 0.05 0.94
asymptotic variances 24.04 6.760 2.003 2.001 0.752 0.938
coverage probabilities 0.900 0.900 0.365 0.629 0.229 0.460

G2 0.05 0.90
asymptotic variances 2.108 1.277 1.581 1.895 0.541 0.885
coverage probabilities 0.900 0.900 0.846 0.955 0.595 0.829

G3 0.50 0.00
asymptotic variances 6.000 2.250 4.500 2.625 2.000 1.250
coverage probabilities 0.900 0.900 0.846 0.924 0.658 0.780

G4 0.30 0.60
asymptotic variances 152.0 38.75 28.50 8.625 14.00 4.250
coverage probabilities 0.900 0.900 0.524 0.562 0.382 0.414

G5 0.20 0.75
asymptotic variances 69.64 18.16 8.357 3.589 3.929 1.732
coverage probabilities 0.900 0.900 0.431 0.535 0.304 0.389

Note: The entries in the columns associated with Delta method refer to the quantities obtained from the
asymptotically correct covariance matrix ΣΘ̂0

given in Corollary 6.1. The columns headed by Wild Bootstrap

and Pairwise Bootstrap show the corresponding entries for the asymptotic quantities when using ΣPB
Θ̂i

and

ΣWB
Θ̂i

, respectively. The wild bootstrap is based on ηt ∼ i.i.d.N(0, 1).

ut is then defined to be a linear combination (LC) of these two processes given by

ut =

(
u1t

u2t

)
= P

(
w1t

w2t

)
, where P =

(
1 0

ρ
√

1− ρ2

)
such that Σu = PP ′ =

(
1 ρ

ρ 1

)
.

Thus, ρ describes the correlation between the two components in ut and we choose ρ = 0.5 here to

impose moderately large correlation among the two innovation processes. We label our GARCH

specification as ‘LC-GARCH(1,1)’ in the following. It is a special case of a bivariate BEKK-

GARCH(1,1,2) model, see e.g. Bauwens, Laurent & Rombouts (2006). It does not only permit to

easily control the properties of ut but also to derive asymptotic expressions of interest in a rather

straightforward way. Furthermore note that due to the normality of εt the estimators of the

VAR parameters A1 and A2 and of the variance parameters Σu are asymptotically uncorrelated.

Hence, V (1,2) = 0 such that V is block-diagonal, compare Remark 3.1.

6.3.2 Asymptotic distortions of wild and pairwise bootstrap confidence intervals

In order to simplify the interpretation of the distortions caused by the wild and pairwise boot-

strap we have derived the asymptotic coverage probabilities of the corresponding bootstrap

confidence intervals for the DGP introduced above. For this purpose, we compute the asymp-

totic covariance matrices Σ
Θ̂i

using the Delta method and exploiting that V (1,2) = 0 in our DGP.

Moreover, we derive the corresponding pairwise and wild bootstrap covariance matrices ΣPB
Θ̂i
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Figure 1: Asymptotic coverage probabilities of pairwise and wild bootstrap impulse response
intervals. DGP: VAR(2) with LC-GARCH(1,1) innovations G1 and G2 as in Table 1.

and ΣWB
Θ̂i

, respectively, by extending the univariate results of Section 4.4. As described there,

we only consider the wild bootstrap in relation to ηt ∼ i.i.d.N(0, 1). To evaluate the asymptotic

coverage of the boostrap methods, it is assumed that the pairwise (wild) bootstrap estimators of

Θi are consistent and asymptotically normally distributed with variances ΣPB
Θ̂0

(ΣWB
Θ̂i

). Details

of the derivations are given in Appendix B.

Note from Table 2 that for the i.i.d. set-up (Case G0) the pairwise bootstrap correctly

replicates the asymptotic variances as mentioned in Section 4.2. Hence, the asymptotic cover-

age probabilities of the corresponding confidence intervals are equal to the nominal level. In

contrast, the wild bootstrap overestimates the asymptotic variance such that the coverage prob-

abilities are above the nominal level. In the presence of heteroskedasticity (Cases G1 to G5),

we first note that the asymptotic variances of the estimators of the elements in Θ0 = P increase

substantially. Hence, a correct confidence interval for impulse response coefficients can be ex-

pected to be much wider in case of conditional heteroskedasticity compared to an i.i.d. set-up.

Moreover, we observe that both bootstrap methods typically underestimate the true asymptotic

variances. As a consequence the bootstrap confidence intervals are typically too narrow and

the coverage probabilities are often very low. We also note in some cases, in which the sum

of the autocovariances of u2
t is not too large (Case G2 and G3), that the wild bootstrap may

overestimate the variances.

To get a more informative picture, we also report asymptotic coverage probabilities of pair-

wise and wild bootstrap IRF intervals at higher response horizons for DGPs G1 and G2 in

Figure 1. Interestingly, we typically observe the most severe problems related to interval cov-

erage rates for Θ0, i.e. for the period where the shock occurs. At larger horizons i the actual

asymptotic coverage converges to the nominal one. This may be explained by the fact that the
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IRF variance Σ
Θ̂i

depends on the VAR slope parameters in β for i > 0. The relevant covariance

matrix block V (1,1), however, is correctly replicated by the pairwise and wild bootstraps. More-

over, the estimation uncertainty regarding the variance parameters in σ becomes less important

rather quickly as i increases. This follows from the fact that Ci,σ in (6.1) depends on the VMA

parameter matrices Φi that converge exponentially fast to zero as i increases. In contrast, Ci,β

may even grow for small response horizons before it decreases with a slower rate than Ci,σ for

increasing responses horizons.

Due to the factor {E∗
(
η4
t

)
−1} = 2 in V

(2,2)
WB , compare Section 4.1, the coverage probabilities

of the wild bootstrap intervals are slightly higher than those of the pairwise bootstrap. This

behavior may even lead to wild bootstrap intervals with a coverage above the nominal level as

in Case G2. Also note, that the asymptotic coverage is generally much closer to the nominal

level for Case G2 than for Case G1. Thus, a small reduction in the GARCH coefficient b1, and

hence in GARCH persistence, strongly reduces the error in coverage probability.

6.3.3 Simulation results on impulse response interval coverage

We compare the properties of the different impulse response intervals using one DGP variant with

i.i.d. errors (i.e. Case G0 with a1 = 0 and b1 = 0) and two variants with GARCH innovations

with a1 = 0.05 and b1 = 0.94 (Case G1) and a1 = 0.05 and b1 = 0.90 (Case G2) in order

to mimic typical empirical GARCH patterns.3 These GARCH parameters, together with the

normality assumption on εt, guarantee that Assumption 5.1 is satisfied. For each DGP we

generate M = 5000 sets of time series data of length T = 500 and T = 5000 and construct

bootstrap impulse response intervals using the standard (i.i.d.) Hall’s percentile method as well

as recursive- and fixed-design wild bootstrap, pairwise bootstrap and MBB versions of Hall’s

percentile intervals. The MBB intervals are obtained according to Bootstrap Scheme II presented

in Section 6.2. We use different block lengths as described below. The nominal coverage is 90%

and we use B = 999 bootstrap draws to construct Hall’s percentile intervals. For comparison, we

also report results of the Delta method confidence intervals based on Corollary 6.1. To simplify

the implementation we impose that V (1,2) is zero in our set-up. As mentioned in Remark 3.3,

V (2,2) is estimated by applying the VARHAC approach of Den Haan & Levin (1996) using the

Akaike Information Criterion (AIC) with a maximum lag order pmax.

We present some typical results in Figures 2 and 3 in order to highlight our main findings.

We focus on the coverage for θ21,i and θ22,i since the findings for θ11,i and θ12,i do not give further

insights.

Results for T = 500 in Panel A an B indicate that the introduction of a persistent GARCH

structure reduces the empirical coverage of all considered methods substantially. The i.i.d- and

pairwise bootstrap methods are affected most strongly: the empirical coverage on impact may

drop down to just above 20%. At the same time the coverage rates of both wild bootstrap

variants also drop substantially. Note that both asymptotically correct methods, the residual-

based MBB and the Delta method approach, also produce intervals with coverage substantially

below nominal level. Although in some cases and at low horizons the MBB seems to outperform

3Other parameter constellations have been used for robustness checks, which are discussed later.
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Figure 2: Empirical coverage rates of bootstrap and asymptotic impulse response intervals.
Moving block bootstrap (MBB) block length and VARHAC lag order: ` = 50 and pmax = 8
(T = 500) and ` = 200 and pmax = 16 (T = 5000), DGP: VAR(2) with GARCH innovations G1
as in Table 1.

the other approaches marginally, even for moderately large samples the MBB intervals do not

entirely solve the coverage problems induced by the persistent GARCH innovation structure.

We also observe that the coverage at later horizons increase towards nominal coverage for all

methods.

As a reference, we also report corresponding coverage rates for a DGP with i.i.d. innovations

(Case G0) in Panel E. In this case the i.i.d.- and pairwise bootstrap procedures lead to intervals

with empirical coverage rates very close to the nominal level of 90%. In contrast, both the

recursive- and fixed-design wild bootstrap lead to intervals with coverage rates above the nominal

level. Note that these simulation results nicely line up with those discussed in Table 2 and Figure

1. In addition we find that the MBB intervals show coverage somewhat below nominal level,

which indicates a loss of efficiency as the block bootstrap is not needed in this case.

As expected, with T = 5000 observations (see Panels B and C of Figure 2), the inconsistent

methods still produce intervals with very low coverage. In contrast, the coverage of intervals

from the consistent MBB and the Delta method increase substantially. Nevertheless, the required

21



Figure 3: Empirical coverage rates of bootstrap and asymptotic impulse response intervals.
T = 5000. Panels A and B: Moving block bootstrap block length and VARHAC lag order:
` = 50 and pmax = 8, DGP: VAR(2) with GARCH innovations G1 and G2 as in Table 1.

sample size for making the MBB work reasonably well in practice seems to be fairly large if the

GARCH structure is very persistent. Similar comments apply to the Delta method approach.

The reason for the finite sample distortions is the downward bias of the estimators of Σ
Θ̂i

. As

a consequence, the confidence intervals are too narrow such that their coverage falls below the

nominal level. This is illustrated in Panel F of Figure 2, where we show the different average

interval lengths for G1 and T = 5000 together with the length of the asymptotically correct

confidence intervals derived from Corollary 6.1. Obviously, the higher empirical coverage of

the MBB and the Delta method intervals is due to their larger width. The wide intervals

reflect the tremendous increase in estimation uncertainty when comparing Case G1 with a

situation of i.i.d. innovations. Clearly, the MBB and the asymptotic Delta method approach still

underestimate the true sampling variation. However, the associated variance estimates converge

to the correct ones as T increases although the convergence seems to be rather slow.

We conduct a number of additional simulation experiments to address further issues and

briefly summarize our findings. First, we considered Case G2 for which the GARCH parameter

b1 is reduced from 0.94 to 0.90. Panels A and B of Figure 3, which correspond to Panels A and B

of Figure 2, show the empirical coverage for some of the approaches and T = 500. Obviously, all

approaches result in much more appropriate empirical coverages compared to Case G1. Hence, a

small reduction in the persistence of the GARCH process also strongly reduces the finite sample

error in coverage probabilities. Nevertheless, the empirical coverage rates can still be somewhat

below (or above) the nominal level on impact. In this respect, the moving block bootstrap

performs reasonably well.

Panels C and D of Figure 3 demonstrate the effects of varying the block length ` for the MBB

and the maximal lag order pmax used in the VARHAC approach for estimating V (2,2). Our results
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suggests that a longer block length or larger values of pmax lead to comparably higher coverage

rates in larger samples. For instance, using pmax = 32 instead of pmax = 16 increases coverage

of the confidence interval for θ22,0 by about 15 percentage points for Case G1 if T = 5000 (see

Panel D of Figure 3). We generally find that the residual-based MBB leads to better empirical

coverage at impact and early response horizons than the Delta method approach. Nevertheless,

there are also situations in which the latter approach marginally dominates, in particular if the

response horizon increases. Potentially, the Delta method may benefit from imposing V (1,2) = 0

in our simulations.

We have conduct further experiments but for the sake of brevity we only summarize the

findings without reporting detailed results. First, we try different residual correlations and look

at coverage results for ρ = 0.1 and ρ = 0.9. We find that the strongest impact is on the cross-

responses θ21,i. The larger the contemporaneous correlation, the lower is the empirical coverage

for the response coefficients θ21,i. Second, we consider different alternative GARCH and VAR

specifications. For the VAR part, we also use the bivariate VAR(1) of Kilian (1998b,a, 1999)

and a bivariate VAR(5) model estimated from US-Euro interest rate spread data. Alternative

GARCH specifications include various GARCH parameter combinations and conditional distri-

butions for our LC-GARCH(1,1) and a bivariate BEKK(1,1,1) specification estimated from an

interest rate spread system. We also allow εt to follow an asymmetric distribution, like e.g. a

mixed-normal distribution that leads to a non-zero covariance matrix V (1,2). While we again

find that the reduction in coverage rates is stronger the more persistent the GARCH equations

and the more heavy-tailed the innovation distributions are, none of our alternative GARCH and

VAR specifications affect the relative performance of the considered approaches in any important

way.

Overall, our results highlight that the i.i.d.- and pairwise bootstrap procedures are not appro-

priate tools for inference on IRFs if very persistent GARCH effects are present. It is important

to note that this is not merely a small sample phenomenon but also persists in very large sam-

ples. Despite being asymptotically invalid the wild bootstrap, however, performs reasonably

well in moderately large samples. In the presence of conditional heteroskedasticity, using the

residual-based MBB is asymptotically correct. Nevertheless, our simulation experiments suggest

that the MBB as well as the asymptotic Delta method procedure work reasonably well only in

fairly large samples. However, in case of less persistent GARCH effects that may be observed

for weekly or monthly financial market or macroeconomic data, finite sample inference is more

reliable. In any case, practitioners have to be aware of the increased estimation uncertainty

that should be reflected in wider confidence intervals compared to the case of i.i.d. innovations.

Essentially, the reported intervals may not fully reflect the underlying estimation uncertainty.

7 Conclusions

Our paper provides theoretical results for inference in VAR models in the presence of condi-

tional heteroskedasticity of unknown form. We derive the joint asymptotic distribution of the

LS estimators of both the VAR parameters as well as of the unconditional innovation vari-
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ance parameters in the presence of conditional heteroskedasticity. The results are important

for inference on quantities that are functions of both VAR and innovation covariance variance

parameters, as e.g. in the case of impulse responses to orthogonalized shocks. We show that un-

der appropriate assumptions the residual-based moving block bootstrap leads to asymptotically

valid inference in this set-up while the commonly applied wild and pairwise bootstrap schemes

fail in this respect.

We illustrate the performance of asymptotic and bootstrap inference under heteroskedasticity

in the context of impulse responses that depend on the VAR and the innovation covariance pa-

rameter estimates. The results of our simulation study indicate that the estimation uncertainty

can be rather high in case of conditional heteroskedasticity when compared to an i.i.d. set-up.

Importantly, this is not merely a finite sample issue but is rather due to the asymptotic proper-

ties as can be seen from numerical evaluations of the relevant asymptotic variance expressions.

Moreover, the asymptotically valid Delta method and bootstrap approaches often underestimate

the true sampling variation. Furthermore, it turns out that the bootstrap schemes which are

asymptotically invalid do not need to perform worse than the MBB if the sample size is small.

Our results have important implications for practical work using IRFs on time series with

heteroskedasticity patterns. Practitioners should be aware of the fact that reported IRF intervals

may understate the actual estimation uncertainty substantially. Therefore, interpreting the

confidence intervals for IRFs should be done cautiously against this background.

An interesting extension of our framework is to consider cointegrated VAR models for vari-

ables that are integrated of order 1. One may expect that appropriate asymptotic results can

also be obtained for such a set-up given the results in Cavaliere, Rahbek & Taylor (2010) and

Jentsch et al. (2014). To be precise, a joint central limit theorem on the relevant estimators

corresponding to Theorem 3.1 as well as a proof of the asymptotic validity of the MBB applied

to residuals obtained from an estimated vector error correction model is required. This is left

for future research.
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Künsch, H. (1989), ‘The jackknife and the bootstrap for general stationary observations’, The

Annals of Statistics 17(3), 1217–1241.

Lahiri, S. (2003), Resampling Methods for Dependent Data, New York: Springer.

Lindner, A. M. (2009), Stationarity, mixing, distributional properties and moments of

GARCH(p,q)-processes, in T. Andersen, R. Davis, J.-P. Kreiss & T. Mikosch, eds, ‘Hand-

book of Financial Time Series’, Berlin: Springer-Verlag, pp. 43–69.

26



Ling, S. & McAleer, M. (2002), ‘Stationarity and the existence of moments of a family of GARCH

processes’, Journal of Econometrics 106(1), 109–117.

Ling, S. & McAleer, M. (2003), ‘Asymptotic theory for a Vector ARMA-GARCH model’, Econo-

metric Theory 19(2), 280–310.

Liu, R. Y. & Singh, K. (1992), Moving blocks jackknife and bootstrap capture weak dependence,

in R. LePage & L. Billard, eds, ‘Exploring the Limits of Bootstrap’, New York: Wiley, pp. 225–

248.

Lütkepohl, H. (1990), ‘Asymptotic distributions of impulse response functions and forecast er-

ror variance decompositions of vector autoregressive models’, The Review of Economics and

Statistics 72, 116–125.

Lütkepohl, H. (2005), New Introduction to Multiple Time Series Analysis, Berlin: Springer-

Verlag.

Normandin, M. & Phaneuf, L. (2004), ‘Monetary policy shocks:: Testing identification conditions

under time-varying conditional volatility’, Journal of Monetary Economics 51(6), 1217–1243.

Paparoditis, E. & Politis, D. N. (2001), Unit root testing via the continuous-path block boot-

strap, Discussion Paper 2001-06, Department of Economics, University of California-San Diego

(UCSD).

Paparoditis, E. & Politis, D. N. (2003), ‘Residual-based block bootstrap for unit root testing’,

Econometrica 71(3), 813–855.

Rigobon, R. (2003), ‘Identification through heteroskedasticity’, Review of Economics and Statis-

tics 85, 777–792.

Runkle, D. E. (1987), ‘Vector autoregressions and reality’, Journal of Business and Economic

Statistics 5(4), 437–454.

Shao, X. (2011), ‘A bootstrap-assisted spectral test of white noise under unknown dependence’,

Journal of Econometrics 162(2), 213–224.

Sims, C. (1992), ‘Interpreting the macroeconomic time series facts: the effects of monetary

policy’, European Economic Review 36, 975–1011.

Smeekes, S. & Urbain, J.-P. (2014), A multivariate invariance principle for modified wild boot-

strap methods with an application to unit root testing, Research Memoranda RM/14/008,

Maastricht University.

27



A Proofs

A.1 Proof of Theorem 3.1

We consider only the more sophisticated part (ii) as (i) can be treated as a special case. We

define σ̃ = vech(Σ̃u), where Σ̃u = 1
T

∑T
t=1 utu

′
t and due to

√
T (σ̂ − σ̃) = oP (1) by standard

arguments, we can replace σ̂ by σ̃ in the following calculations. Furthermore, by using

Zt−1 =


yt−1

...

yt−p

 =

∞∑
j=0


Φjut−1−j

...

Φjut−p−j

 =

∞∑
j=1


Φj−1ut−j

...

Φj−put−j

 =

∞∑
j=1

Cjut−j , (A.1)

it can be shown that

√
T

(
β̂ − β
σ̃ − σ

)
=

 {
( 1
T ZZ

′)−1 ⊗ IK
}∑∞

j=1(Cj ⊗ IK) 1√
T

∑T
t=1

{
vec(utu

′
t−j)

}(
1√
T

∑T
t=1 LK {vec(utu

′
t)− vec(Σu)}

)  (A.2)

= Am + (A−Am),

where LK is the elimination matrix defined in Assumption 2.1(iv), A denotes the righthand-side

of (A.2) and Am is the same expression, but with
∑∞

j=1 replaced by
∑m

j=1 for some m ∈ N. In

the following, we make use of Proposition 6.3.9 of Brockwell & Davis (1991) and it suffices to

show

(a) Am
D→ N (0, Vm) as T →∞

(b) Vm → V as m→∞

(c) ∀ δ > 0 : lim
m→∞

lim sup
T→∞

P (|A−Am|1 > δ) = 0.

To prove (a), setting K̃ = K(K + 1)/2, we can write

Am =

(
( 1
T ZZ

′)−1 ⊗ IK O
K2p×K̃

O
K̃×K2p

I
K̃

)(
C1 ⊗ IK · · · Cm ⊗ IK O

K2p×K̃

O
K̃×K2 · · · O

K̃×K2 I
K̃

)

× 1√
T

T∑
t=1


vec(utu

′
t−1)

...

vec(utu
′
t−m)

LK {vec(utu
′
t)− vec(Σu)}


= Q̂TRm

1√
T

T∑
t=1

Wt,m

with an obvious notation for the (K2p+ K̃ ×K2p+ K̃) matrix Q̂T , the (K2p+ K̃ ×K2m+ K̃)

matrix Rm and the K2m+ K̃-dimensional vector Wt,m. By Lemma A.2, we have that Q̂T → Q

in probability, where Q = diag(Γ−1 ⊗ IK , IK̃). Now, the CLT required for part (a) follows from
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Lemma A.1 with

Vm =

(
V

(1,1)
m V

(1,2)
m

V
(2,1)
m V (2,2)

)
= QRmΩmR

′
mQ
′,

which leads to V (2,2) = Ω(2,2) defined in (A.3), V
(2,1)
m = V

(1,2)′
m and

V (2,1)
m =

m∑
j=1

∞∑
h=0

LKτ0,0,h,h+j(Cj ⊗ IK)′(Γ−1 ⊗ IK)′,

V (1,1)
m = (Γ−1 ⊗ IK)

 m∑
i,j=1

(Ci ⊗ IK)τ0,i,0,j(Cj ⊗ IK)′

 (Γ−1 ⊗ IK)′.

Part (b) follows from the dominated convergence theorem as Γ is invertible and τ0,i,0,j is bounded

by Assumptions 2.1(ii) and 2.1(iv), respectively, and due to
∑∞

i=1 ‖Ci ⊗ IK‖ < ∞. Now, we

consider (c). The second part of A−Am in (A.2) is zero and it suffices to show (c) for the first

part ignoring the factor Q̂T . Let λ ∈ RK2p and δ > 0, then (c) follows with Markov inequality

from

P

∣∣∣∣∣∣
∞∑

j=m+1

λ′(Cj ⊗ IK)
1√
T

T∑
t=1

vec(utu
′
t−j)

∣∣∣∣∣∣ > δ


≤ 1

δ2T
E

∣∣∣∣∣∣
∞∑

j=m+1

λ′(Cj ⊗ IK)
T∑
t=1

vec(utu
′
t−j)

∣∣∣∣∣∣
2

=
1

δ2

∞∑
j1,j2=m+1

λ′(Cj1 ⊗ IK)

 1

T

T∑
t1,t2=1

E
(
vec(ut1u

′
t1−j1) vec(ut2u

′
t2−j2)′

) (Cj2 ⊗ IK)′λ

=
1

δ2

∞∑
j1,j2=m+1

λ′(Cj1 ⊗ IK)τ0,j1,0,j2(Cj2 ⊗ IK)′λ

→
m→∞

0

because of E
(

vec(ut1u
′
t1−j1) vec(ut2u

′
t2−j2)′

)
= τ0,j1,0,j21(t1 = t2) by Assumption 2.1(ii) and by

‖V (1,1)‖ <∞. �

Lemma A.1 (CLTs for innovations).

(i) Let W
(1)
t,m = (vec(utu

′
t−1)′, . . . , vec(utu

′
t−m)′)′. Under Assumption 2.1, it holds

1√
T

T∑
t=1

W
(1)
t,m

D→ N (0,Ω(1,1)
m ),

where Ω
(1,1)
m = (τ0,i,0,j)i,j=1,...,K2m is a block matrix and τ0,i,0,j is defined in (2.7).

(ii) Let W
(2)
t,m = LK{vec(utu

′
t)−vec(Σu)} = vech(utu

′
t)−vech(Σu) and define Wt,m = (W

(1)′
t,m ,W

(2)′
t,m )′.
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If Assumptions 2.1 and 2.2 hold, we have

1√
T

T∑
t=1

Wt,m
D→ N (0,Ωm),

where Ωm is a (K2m+ K̃ ×K2m+ K̃) block matrix

Ωm =

(
Ω

(1,1)
m Ω

(1,2)
m

Ω
(2,1)
m Ω(2,2)

)

with the (K̃ × K̃) and (K̃ ×K2m) matrices

Ω(2,2) =

∞∑
h=−∞

LK
{
τ0,0,h,h − vec(Σu) vec(Σu)′

}
L′K , (A.3)

Ω(2,1)
m =

∞∑
h=0

LK (τ0,0,h,h+1, . . . , τ0,0,h,h+m) , (A.4)

respectively.

Proof.

(i) Let λ ∈ RK2m such that λ′λ = 1, define V
(1)
t,m = λ′W

(1)
t,m and by Cramér-Wold device, it suffices

to show that

1√
T

T∑
t=1

V
(1)
t,m

D→ N (0, λ′Ω(1,1)
m λ).

Noting that {V (1)
t,m,Ft} is an m.d.s., we have to check e.g. the conditions of Theorem 24.3 in

Davidson (1994), i.e.

(a) 1
T

∑n
t=1

{(
V

(1)
t,m

)2
− E

(
(V

(1)
t,m)2

)}
= 1

T

∑n
t=1

{(
V

(1)
t,m

)2
− λ′Ω(1,1)

m λ

}
P→ 0

(b) 1√
T

maxt=1,...,T |V (1)
t,m|

P→ 0

Representing the expression in (a) above as

1

T

n∑
t=1

{(
V

(1)
t,m

)2
− E

(
(V

(1)
t,m)2|Ft−1

)}
+

1

T

n∑
t=1

{
E
(

(V
(1)
t,m)2|Ft−1

)
− λ′Ω(1,1)

m λ
}

= A1 +A2,

we can show that
(
V

(1)
t,m

)2
− E

(
(V

(1)
t,m)2|Ft−1

)
is an L1-mixingale. This follows from

E

∣∣∣∣E{(V (1)
t,m

)2
− E

[
(V

(1)
t,m)2|Ft−1

]∣∣∣Ft−k}∣∣∣∣ =


E

∣∣∣∣(V (1)
t,m

)2
− E

[
(V

(1)
t,m)2|Ft−1

]∣∣∣∣ , k = 0

0, k ≥ 1

≤ ctψk,
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with ct = E

∣∣∣∣(V (1)
t,m

)2
− E

[
(V

(1)
t,m)2|Ft−1

]∣∣∣∣ and ψ0 = 1 and ψk = 0 for k ≥ 1, from

E

∣∣∣∣(V (1)
t,m

)2
− E

[
(V

(1)
t,m)2|Ft−1

]
− E

[(
V

(1)
t,m

)2
− E

[
(V

(1)
t,m)2|Ft−1

]∣∣∣∣Ft+k]∣∣∣∣ = 0

and due to ψk, ct ≥ 0 for all k, t ≥ 0 and ψk → 0 as k →∞. To apply the LLN in Theorem 1(a)

of Andrews (1988), we have to show uniform integrability and limT→∞
1
T

∑T
t=1 ct <∞. The first

condition follows due to Proposition 7.7(a) in Hamilton (1994) from

E

∣∣∣∣(V (1)
t,m

)2
− E

(
(V

(1)
t,m)2|Ft−1

)∣∣∣∣ ≤ 2E
(
V

(1)
t,m

)2

and, by applications of Minkowski and Cauchy-Schwarz inequalities, for some r > 1, from

E
(
V

(1)
t,m

)2r
= E

∣∣∣λ′W (1)
t,m

∣∣∣2r = E

∣∣∣∣∣∣
K2m∑
j=1

λjW
(1)
t,m,j

∣∣∣∣∣∣
2r =


E

∣∣∣∣∣∣
K2m∑
j=1

λjW
(1)
t,m,j

∣∣∣∣∣∣
2r

1
2r


2r

=

∥∥∥∥∥∥
K2m∑
j=1

λjW
(1)
t,m,j

∥∥∥∥∥∥
2r

2r

≤

K2m∑
j=1

|λj |
∥∥∥W (1)

t,m,j

∥∥∥
2r

2r

≤

K2m∑
j=1

|λj |
∥∥∥W (1)

t,m,j

∥∥∥
2r

2r

≤


K2m∑

j=1

|λj |2
K2m∑

j=1

∥∥∥W (1)
t,m,j

∥∥∥
2r


r

≤ (Km2)r sup
j

∥∥∥W (1)
t,m,j

∥∥∥2r

2r

< ∞, (A.5)

by Assumption 2.1(vi), where similar arguments yield also the second condition. In the above,

we use the notation ‖A‖p = (E(|A|pp))1/p. Together this leads to A1 → 0 and for A2, we get

A2 = λ′

{
1

T

n∑
t=1

E
(
W

(1)
t,mW

(1)′
t,m |Ft−1

)
−Ω(1,1)

m

}
λ

P→ 0

because the (K2m × K2m) matrix in parentheses above converges to zero in probability by

Assumption 2.1(v). Finally, part (b) follows by Markov inequality from

P

(
1√
T

max
1≤t≤T

|V (1)
t,m| > δ

)
≤

T∑
t=1

P
(
|V (1)
t,m| > δ

√
T
)
≤ 1

δ2rT r−1

(
1

T

T∑
t=1

E|V (1)
t,m|2r

)

= O

(
1

T r−1

)
= o(1)

for any δ > 0 and by the uniform boundedness in (A.5) for some r > 1.

(ii) To prove the CLT for the sequence (Wt,m, t ∈ Z) under strict stationarity and α-mixing

assumptions on the innovations process (ut, t ∈ Z), we use Theorem A.8 in Lahiri (2003). Sim-

ilar to the proof of part (i), let λ ∈ RK2m+K̃ such that λ′λ = 1 and define Vt,m = λ′Wt,m. By

Assumption 2.2(i), the (univariate) process (Vt,m, t ∈ Z) is strictly stationary for all m ∈ N such

that E(Vt,m)2+δ < ∞ holds for some δ > 0 due to Assumption 2.1(vi). Furthermore, Assump-
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tion 2.2(ii) together with Theorem 14.3 in Davidson (1994) imply that its α-mixing coefficients

(αV,m(n), n ∈ N) decay at the same rate as (αu(n), n ∈ N) of the process (ut, t ∈ Z). That

is, we have
∑∞

n=1(αW,m(n))δ/(2+δ) < ∞, which together with Assumption 2.2(iii) matches the

requirements for Theorem A.8 in Lahiri (2003). It remains to evaluate the limiting variance

of 1√
T

∑T
t=1Wt,m and to derive the asymptotics. The variance corresponding to the first part

W
(1)
t,m has already been established above and it remains to check the variance of W

(2)
t,m and the

covariance between these two. For the variance, we have

Var(W
(2)
t,m) = LK

T−1∑
h=−(T−1)

1

T

min(T,T+h)∑
t=max(1,1+h)

Cov
(
vec(utu

′
t), vec(ut−hu

′
t−h)

)
L′K

→
∞∑

h=−∞
LK Cov

(
vec(utu

′
t), vec(ut−hu

′
t−h)

)
L′K as T →∞

=
∞∑

h=−∞
LK

{
τ0,0,h,h − vec(Σu) vec(Σu)′

}
L′K

and, similarly, for the covariances, we get

Cov(W
(2)
t,m,W

(1)
t,m)

=
T−1∑

h=−(T−1)

1

T

min(T,T+h)∑
t=max(1,1+h)

LK Cov
(
vec(utu

′
t), (vec(ut−hut−h−1)′, . . . , vec(ut−hu

′
t−h−m)′)′

)
→

∞∑
h=−∞

LK Cov
(
vec(utu

′
t), (vec(ut−hut−h−1)′, . . . , vec(ut−hu

′
t−h−m)′)′

)
as T →∞

=

∞∑
h=0

LK (τ0,0,h,h+1, · · · , τ0,0,h,h+m) ,

where we have used E(vec(ut−hut−h−j)
′) = 0 for all j ≥ 1 and τ0,0,h,h+j = 0 for all h < 0 and

j ≥ 0. �

Lemma A.2 (Convergence of 1
T ZZ

′).

Under Assumption 2.1, it holds 1
T ZZ

′ → Γ in probability. In particular, we have ( 1
T ZZ

′)−1 ⊗
IK → Γ−1 ⊗ IK as well as Q̂T → Q in probability, respectively.

Proof.

It holds

1

T
ZZ ′ =

1

T

T∑
t=1

Zt−1Z
′
t−1 =

1

T

T∑
t=1

∞∑
j1,j2=1

Cj1ut−j1u
′
t−j2C

′
j2

with mean
∑∞

j=1CjΣuC
′
j <∞. By arguments similar to those used in the proof of Lemma A.1 to

show uniform integrable L1-mixingales, we get the claimed result from Assumption 2.1. Compare

also the proof of Theorem 3.1 in Gonçalves & Kilian (2004) for details in the univariate setup.

As Γ is non-singular by positive definiteness of Σu and by the stability condition det(A(z)) 6= 0

for all z ∈ C with |z| ≤ 1, we also get ( 1
T ZZ

′)−1 ⊗ IK → Γ−1 ⊗ IK and Q̂T → Q in probability,

respectively. �
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A.2 Proof of Theorem 5.1

By Polya’s Theorem and by Lemma A.3, it suffices to show that
√
T ((β̃∗ − β̃)′, (σ̃∗ − σ̃)′)′

converges in distribution w.r.t. measure P ∗ to N (0, V ) as obtained in Theorem 3.1, where

β̃∗− β̃ := ((Z̃∗Z̃∗′)−1Z̃∗⊗ IK)ũ∗ and σ̃∗ = vech(Σ̃∗u) with Σ̃∗u = 1
T

∑T
t=1 ũ

∗
t ũ
∗′
t . Here, pre-sample

values ỹ∗−p+1, . . . , ỹ
∗
0 are set to zero and ỹ∗1, . . . , ỹ

∗
T is generated according to

ỹ∗t = A1ỹ
∗
t−1 + · · ·+Apỹ

∗
t−p + ũ∗t ,

where ũ∗1, . . . , ũ
∗
T is an analogously drawn version of u∗1, . . . , u

∗
T as described in Steps 2. and 3.

of the bootstrap procedure in Section 5, but from u1, . . . , uT instead of û1, . . . , ûT . Further, we

use the notation

Z̃∗t = vec(ỹ∗t , . . . , ỹ
∗
t−p+1) (Kp× 1)

Z̃∗ = (Z̃∗0 , . . . , Z̃
∗
T−1) (Kp× T )

ũ∗ = vec(ũ∗1, . . . , ũ
∗
T ) (KT × 1).

We get analogue to (A.2) the representation

√
T

(
β̃∗ − β̃
σ̃∗ − σ̃

)
=

{( 1
T Z̃
∗Z̃∗′)−1 ⊗ IK

}
1√
T

∑T
t=1

∑t−1
j=1(Cj ⊗ IK)

{
vec(ũ∗t ũ

∗′
t−j)

}(
1√
T

∑T
t=1 LK {vec(ũ∗t ũ

∗′
t )− vec(utu

′
t)}
) 

=

{( 1
T Z̃
∗Z̃∗′)−1 ⊗ IK

}
1√
T

∑T−1
j=1 (Cj ⊗ IK)

∑T
t=j+1

{
vec(ũ∗t ũ

∗′
t−j)

}(
1√
T

∑T
t=1 LK {vec(ũ∗t ũ

∗′
t )− vec(utu

′
t)}
)  (A.6)

= A∗m + (A∗ −A∗m),

where A∗ denotes the right-hand side of (A.6) and A∗m is the same expression, but with
∑T−1

j=1

replaced by
∑m

j=1 for some fixed m ∈ N. In the following, we make use of Proposition 6.3.9 of

Brockwell & Davis (1991) and it suffices to show

(a) A∗m
D→ N (0, Vm) in probability as T →∞

(b) Vm → V as m→∞

(c) ∀ δ > 0 : lim
m→∞

lim sup
T→∞

P ∗(|A∗ −A∗m|1 > δ) = 0 in probability.

To prove (a), we can write

A∗m =

(
( 1
T Z̃
∗Z̃∗′)−1 ⊗ IK O

K2p×K̃

O
K̃×K2p

I
K̃

)(
C1 ⊗ IK · · · Cm ⊗ IK O

K2p×K̃

O
K̃×K2 · · · O

K̃×K2 I
K̃

)

× 1√
T

T∑
t=1


vec(ũ∗t ũ

∗′
t−1)

...

vec(ũ∗t ũ
∗′
t−m)

LK {vec(ũ∗t ũ
∗′
t )− vec(utu

′
t)}


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= Q̃∗TRm
1√
T

T∑
t=1

W̃ ∗t,m

as u∗t := 0 for t < 0 and with an obvious notation for the (K2p+ K̃ ×K2p+ K̃) matrix Q̃∗T , the

(K2p + K̃ ×K2m + K̃) matrix Rm and the (K2m + K̃)-dimensional vector W̃ ∗t,m. By Lemma

A.4, we have that Q̃∗T → Q with respect to P ∗ and from Lemma A.5, we get the CLT required

for part (a). As (b) follows exactly as in the proof of Theorem 3.1, it remains to show part (c),

where the factor Q̃∗T can be ignored and the second part of A∗ −A∗m is zero. Let λ ∈ RK2p and

δ > 0, then we get by the Markov inequality

P ∗

∣∣∣∣∣∣
T−1∑

j=m+1

λ′(Cj ⊗ IK)
1√
T

T∑
t=1

vec(ũ∗t ũ
∗′
t−j)

∣∣∣∣∣∣ > δ


≤ 1

δ2

T−1∑
j1,j2=m+1

λ′(Cj1 ⊗ IK)

 1

T

T∑
t1,t2=1

E∗
(
vec(ũ∗t1 ũ

∗′
t1−j1) vec(ũ∗t2 ũ

∗′
t2−j2)′

) (Cj2 ⊗ IK)′λ

=: Rm,T

and by assuming absolute summability for the cumulants of the innovations up to order eight

in Assumption 5.1, it is straightforward, but tedious to show that

E (Rm,T ) →
T→∞

1
δ2

∑∞
j1,j2=m+1 λ

′(Cj1 ⊗ IK)τ0,j1,0,j2(Cj2 ⊗ IK)′λ

as well as E
(
|Rm,T − E (Rm,T ) |22

)
= o(1), such that

1

δ2

∞∑
j1,j2=m+1

λ′(Cj1 ⊗ IK)τ0,j1,0,j2(Cj2 ⊗ IK)′λ −→
m→∞

0

proves part (c), which concludes the proof. �

Lemma A.3 (Equivalence of bootstrap estimators).

Under the assumptions of Theorem 5.1, we have

√
T
(

(β̂∗ − β̂)− (β̃∗ − β̃)
)

= oP ∗(1) and
√
T ((σ̂∗ − σ̂)− (σ̃∗ − σ̃)) = oP ∗(1).

Proof.

For simplicity, we assume throughout the proof that T = N` holds and we show only the more

complicated claim
√
T ((β̂∗− β̂)− (β̃∗− β̃)) = oP ∗(1). The second assertion then follows by the

same arguments as well. First, we have

√
T
(

(β̂∗ − β̂)− (β̃∗ − β̃)
)

=

(
(

1

T
Z∗Z∗′)−1 ⊗ IK

)
1√
T

{
(Z∗ ⊗ IK)u∗ − (Z̃∗ ⊗ IK)ũ∗

}
+

({
(

1

T
Z∗Z∗′)−1 − (

1

T
Z̃∗Z̃∗′)−1

}
⊗ IK

)
1√
T

(Z̃∗ ⊗ IK)ũ∗

=

(
(

1

T
Z∗Z∗′)−1 ⊗ IK

)
A∗1 +A∗2

1√
T

(Z̃∗ ⊗ IK)ũ∗
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with an obvious notation for A∗1 and A∗2. As A∗2 = oP ∗(1), boundedness in probability of(
( 1
T Z
∗Z∗′)−1 ⊗ IK

)
and of 1√

T
(Z̃∗ ⊗ IK)ũ∗ follows by very similar arguments, we focus only on

the proof of A∗1 = oP ∗(1) in the following. Similar to (A.1), we will make use of

Z∗t−1 =


y∗t−1

...

y∗t−p

 =


∑t−1+1

j=0 Φ̂ju
∗
t−1−j

...∑t−p+1
j=0 Φ̂ju

∗
t−p−j

 =


∑t−1

j=1 Φ̂j−1u
∗
t−j

...∑t−1
j=p Φ̂j−pu

∗
t−j



=


∑t−1

j=1 Φ̂j−1u
∗
t−j

...∑t−1
j=1 Φ̂j−pu

∗
t−j

 =
t−1∑
j=1

Ĉju
∗
t−j , (A.7)

where y∗t =
∑t−1

j=0 Φ̂ju
∗
t−j , t = 1, . . . , T with y∗p−1, . . . , y

∗
0 = 0 and Φ̂0 = 1, Φ̂j = 0 for j < 0 as

well as Φ̂j =
∑min(j,p)

i=1 ÂiΦ̂j−i for j ∈ N. Analogously, we have Z̃∗t−1 =
∑t−1

j=1Cj ũ
∗
t−j . Further,

we get

A∗1 =
1√
T

(Z∗ ⊗ IK) {u∗ − ũ∗}+
1√
T

({
Z∗ − Z̃∗

}
⊗ IK

)
ũ∗ = A∗11 +A∗12

and, by omitting the details for A∗11 and continuing with the slightly more complicated expression

A∗12, we get

A∗12 =
T−1∑
j=1

(
Ĉj ⊗ IK

) 1√
T

T∑
t=1

vec(ũ∗t
{
u∗′t−j − ũ∗′t−j

}
)

+

T−1∑
j=1

({
Ĉj − Cj

}
⊗ IK

) 1√
T

T∑
t=1

vec(ũ∗t ũ
∗′
t−j)

= A∗121 +A∗122.

Now, we consider A∗122 first. By splitting-up the sums over j and t corresponding to the bootstrap

blocks, we get

E∗(A∗122A
∗′
122)

=
1

T

N∑
r1,r2=1

∑̀
s1,s2=1

N∑
v1,v2=0

min(s1+v1`−1,T−1)∑
w1=max(s1+(v1−1)`,1)

min(s2+v2`−1,T−1)∑
w2=max(s2+(v2−1)`,1)

({
Ĉw1 − Cw1

}
⊗ IK

)
×E∗

(
vec(ũ∗s1+(r1−1)`ũ

∗′
s1+(r1−1)`−w1

) vec(ũ∗s2+(r2−1)`ũ
∗′
s2+(r2−1)`−w2

)′
)({

Ĉw2 − Cw2

}
⊗ IK

)′
,

where the conditional expectation on the last right-hand side does not vanish for the three cases

(i) r1 = r2, v1 = v2 = 0 (all in one block), (ii) r1 = r2, v1 = v2 ≥ 1 (first and third and second

and fourth in the same block, respectively), (iii) r1 6= r2, v1 = v2 = 0 (first and second and third

and fourth in the same block, respectively). By taking the Frobenius norm of E∗(A∗122A
∗′
122) and

using the triangle inequality, case (i) can be bounded by
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K2 1

`

l∑
s1,s2=1

s1∑
w1=1

s2∑
w2=1

|Ĉw1 − Cw1 |2|Ĉw2 − Cw2 |2

× 1

T − `+ 1

T−∑̀
t=0

| vec(uct+s1u
c′
t+s1−w1

) vec(uct+s2u
c′
t+s2−w2

)′|2

= OP

(
1

T

)

×

1

`

∑̀
s1,s2=1

s1∑
w1=1

s2∑
w2=1

d−w1−w2
1

T − `+ 1

T−∑̀
t=0

| vec(uct+s1u
c′
t+s1−w1

) vec(uct+s2u
c′
t+s2−w2

)′|2


= oP (1),

where `3/T → 0 and uct+s := ut+s− 1
T−l+1

∑T−l
τ=0 uτ+s, E| vec(uct+s1u

c′
t+s1−w1

) vec(uct+s2u
c′
t+s2−w2

)′|2 ≤
∆ <∞ by Assumption 5.1 have been used and that there exists a constant d > 1 such that

√
T sup
j∈N

dj |Ĉj − Cj |2 = OP (1)

holds, cf. Kreiss & Franke (1992) for a proof of the univariate case. Cases (ii) and (iii) can be

treated exactly the same. Now turn to A∗121. Similar to the above, we get

E∗(A∗121A
∗′
121) =

1

T

N∑
r1,r2=1

∑̀
s1,s2=1

N∑
v1,v2=0

min(s1+v1`−1,T−1)∑
w1=max(s1+(v1−1)`,1)

min(s2+v2`−1,T−1)∑
w2=max(s2+(v2−1)`,1)

(Ĉw1 ⊗ IK)

×E∗
(

vec(ũ∗s1+(r1−1)`(u
∗
s1+(r1−1)`−w1

− ũ∗s1+(r1−1)`−w1
)′)

× vec(ũ∗s2+(r2−1)`(u
∗
s2+(r2−1)`−w2

− ũ∗s2+(r2−1)`−w2
)′)′
)

(Ĉw2 ⊗ IK)′,

and again the three cases (i) – (iii) as described above do not vanish exactly. By using ût−ut =

(A1 − Â1)yt−1 + · · ·+ (Ap − Âp)yt−p =: (B − B̂)Zt−1 and
√
T (B − B̂) = OP (1), we get that the

(Frobenius) norm of case (i) can be bounded by

K4|B − B̂|22
1

`

∑̀
s1,s2=1

s1∑
w1=1

s2∑
w2=1

|Ĉw1 |2|Ĉw2 |2

× 1

T − `+ 1

T−∑̀
t=0

| vec(uct+s1Z
c′
t+s1−w1−1) vec(uct+s2Z

c′
t+s2−w2−1)′|2

= oP (1),

where Zct+s−1 := Zt+s−1− 1
T−`+1

∑T−`
τ=0 Zτ+s−1 and by similar arguments as used above for show-

ing A∗122 = oP ∗(1). �

Lemma A.4 (Convergence of 1
T Z̃
∗Z̃∗′).

Under the assumptions of Theorem 5.1, it holds 1
T Z̃
∗Z̃∗′→Γin probability w.r.t. P ∗. In particular,

we have ( 1
T Z̃
∗Z̃∗′)−1⊗IK→Γ−1⊗IK as well as Q̃∗T→Q in probability with respect to P ∗.
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Proof.

Insertion of Z̃∗t−1 =
∑t−1

j=1Cj ũ
∗
t−j leads to

1

T
Z̃∗Z̃∗′ =

1

T

T∑
t=1

Z̃∗t−1Z̃
∗′
t−1 =

1

T

T∑
t=1

t−1∑
j1,j2=1

Cj1 ũ
∗
t−j1 ũ

∗′
t−j2C

′
j2

=
1

T

T∑
t=1

t−2∑
h=−(t−2)

min(t−1,t−1−h)∑
s=max(1,1−h)

Cs+hũ
∗
t−(s+h)ũ

∗′
t−sC

′
s

=
1

T

T∑
t=1

t−2∑
h=1

t−1−h∑
s=1

Cs+hũ
∗
t−(s+h)ũ

∗′
t−sC

′
s +

1

T

T∑
t=1

t−1∑
s=1

Csũ
∗
t−sũ

∗′
t−sC

′
s

+
1

T

T∑
t=1

−1∑
h=−(t−2)

t−1∑
s=1−h

Cs+hũ
∗
t−(s+h)ũ

∗′
t−sC

′
s

= A∗1 +A∗2 +A∗3

with an obvious notation for A∗1, A
∗
2 and A∗3. In the following, we show that (a) A∗2 → Γ and (b)

A∗1 → 0 and A∗3 → 0 with respect to P ∗, respectively. By using Proposition 6.3.9 in Brockwell

& Davis (1991), we consider A∗2 first which, for some fixed m ∈ N, can be expressed as

A∗2 =
T−1∑
s=1

1

T

T∑
t=s+1

Csũ
∗
t−sũ

∗′
t−sC

′
s

=

m−1∑
s=1

Cs

(
1

T

T∑
t=s+1

ũ∗t−sũ
∗′
t−s

)
C ′s +

T−1∑
s=m

Cs

(
1

T

T∑
t=s+1

ũ∗t−sũ
∗′
t−s

)
C ′s

= A∗m2 + (A∗m2 −A∗2).

Under the imposed summability conditions for the cumulants in Assumption 5.1, it is straight-

forward to show that 1
T

∑T
t=s+1 ũ

∗
t−sũ

∗′
t−s → Σu for all s = 1, . . . ,m and this leads to A∗m2 →

Γm =
∑m−1

s=1 CsΣuC
′
s with respect to P ∗, respectively, as T →∞ and also to Γm → Γ as m→∞.

Further, we have

E∗ (|A∗m2 −A∗2|1) ≤
T−1∑
j=m

Kp∑
r,s=1

K∑
f,g=1

|Cj(r, f)|

 1

T

T∑
t=j+1

E∗
(
|ũ∗t−j,f ũ∗t−j,g|

) |Cj(s, g)|

≤
T−1∑
j=m

Kp∑
r,s=1

K∑
f,g=1

|Cj(r, f)|

(
1

T

T∑
t=1

E∗
(
|ũ∗t,f ũ∗t,g|

))
|Cj(s, g)|

≤

T−1∑
j=m

|Cj |21

 1

T

T∑
t=1

K∑
f=1

E∗
(
ũ∗2t,f
)

due to |u∗t,fu∗t,g| ≤
1
2

(
u∗2t,f + u∗2t,g

)
≤
∑K

f=1 u
∗2
t,f . Again from Assumption 5.1, we get easily that

the second factor on the last right-hand side is bounded in probability and this leads to

E∗ (|A∗m2 −A∗2|1) ≤

 ∞∑
j=m

|Cj |21

OP (1)→ 0
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as m → ∞, which completes the proof of A∗2 → Γ. For proving (b), it suffices to consider A∗1

only and A∗3 can be treated completely analogue. Similar arguments as employed for part (a),

lead to

A∗1 =
T−2∑
h=1

T−1−h∑
s=1

Cs+h

(
1

T

T∑
t=h+1+s

ũ∗t−(s+h)ũ
∗′
t−s

)
C ′s

=
m−2∑
h=1

m−1−h∑
s=1

Cs+h

(
1

T

T∑
t=h+1+s

ũ∗t−(s+h)ũ
∗′
t−s

)
C ′s

+

(
T−2∑
h=1

T−1−h∑
s=1

−
m−2∑
h=1

m−1−h∑
s=1

)
Cs+h

(
1

T

T∑
t=h+1+s

ũ∗t−(s+h)ũ
∗′
t−s

)
C ′s

= A∗m1 + (A∗m1 −A∗1)

for some fixed m ∈ N. Now, it is straightforward to show that 1
T

∑T
t=h+1+s u

∗
t−(s+h)u

∗′
t−s → 0

w.r.t. P ∗ for all h = 1, . . . ,m− 2 and for all s = 1, . . . ,m− 1− h, which leads also to A∗m1 → 0

w.r.t. P ∗. To conclude the proof of part (b), we can split-up A∗m1 −A∗1 to get

A∗m1 −A∗1 =
m−2∑
h=1

T−1−h∑
s=m−h

Ĉs+h

(
1

T

T∑
t=h+1+s

u∗t−(s+h)u
∗′
t−s

)
Ĉ ′s

+

T−1∑
h=m−1

T−1−h∑
s=1

Ĉs+h

(
1

T

T∑
t=h+1+s

u∗t−(s+h)u
∗′
t−s

)
Ĉ ′s

= ∆∗m1 + ∆∗m2 .

Similar to the computations for part (a) above, we get for the first one

E∗[|∆∗m1 |1] ≤

(
m−2∑
h=1

T−1−h∑
s=m−h

|Cs+h|1|Cs|1

) 1

T

T∑
t=1

K∑
f=1

E∗
(
ũ∗2t,f
)

≤

( ∞∑
s=m

|Cs|1

)( ∞∑
h=2

|Ch|1

)
OP (1)

= oP (1)

as m→∞ and analogue arguments lead to the same result for ∆∗m2 . �

Lemma A.5 (CLT for bootstrap innovations).

Let m ∈ N fixed and define W̃ ∗t,m = (vec(ũ∗t ũ
∗′
t−1)′, . . . , vec(ũ∗t ũ

∗′
t−m)′, LK{vec(ũ∗t ũ

∗′
t )′−vec(utu

′
t)
′})′.

Under the assumptions of Theorem 5.1, it holds

1√
T

T∑
t=1

W̃ ∗t,m
D→ N (0,Ωm)

in probability, where Ωm is defined in Lemma A.1.

Proof.

We consider Ŵ ∗t,m = (LK{vec(ũ∗t ũ
∗′
t )′ − vec(utu

′
t)
′}, vec(ũ∗t ũ

∗′
t−1)′, . . . , vec(ũ∗t ũ

∗′
t−m)′)′, which is

just a suitably permuted version of W̃ ∗t,m, for notational convenience only in the sequel. Further,
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let T be sufficiently large such that ` > m. Then, the summation can be split up corresponding

to the bootstrap blocking and with respect to summands with ũ∗s and ũ∗s−q lying in the same or

in different blocks, respectively. By using the notation

(Ŵ ∗t,m)q+1 =

LK{vec(ũ∗t ũ
∗′
t )′ − vec(utu

′
t)
′}, q = 0

vec(ũ∗t ũ
∗′
t−q)

′, q ≥ 1

(Û∗t,m)q+1 =

LK vec(ũ∗t ũ
∗′
t ), q = 0

vec(ũ∗t ũ
∗′
t−q), q ≥ 1

,

this leads to

1√
T

T∑
t=1

Ŵ ∗t,m =
1√
N

N∑
r=1

 1√
`

r∑̀
s=(r−1)`+1

Ŵ ∗s,m


=

1√
N

N∑
r=1

 1√
`


(r−1)`+q∑
s=(r−1)`+1

(Ŵ ∗s,m)q+1 +
r∑̀

s=(r−1)`+q+1

(Ŵs,m∗)q+1


q=0,...,m


=

1√
N

N∑
r=1

 1√
`


(r−1)`+q∑
s=(r−1)`+1

(Û∗s,m)q+1


q=0,...,m


+

N∑
r=1

 1√
T


r∑̀

s=(r−1)`+q+1

(Û∗s,m)q+1 − E∗
(

(Û∗s,m)q+1

)
q=0,...,m


+

1√
N

N∑
r=1

 1√
`


r∑̀

s=(r−1)`+q+1

E∗
(

(Ŵ ∗s,m)q+1

)
q=0,...,m


= A∗1 +A∗2 +A3

with an obvious notation for A∗1, A
∗
2 and A3. In the following, we prove (a) A∗1 → 0 w.r.t P ∗,

(b) A∗2
D→ N (0,Ωm) in probability and (c) A3 → 0 in probability. First, we consider (a), where

the summation is over the empty set for q = 0 and it suffices to show

1√
N

N∑
r=1

1√
`

(r−1)`+q∑
s=(r−1)`+1

ũ∗s,f ũ
∗
s−q,g → 0

in probability w.r.t P ∗ for q ∈ {1, . . . ,m} and f, g ∈ {1, . . . ,K}. By construction of the sum-

mation over s its conditional mean is zero as ũ∗s,f and ũ∗s−q,g lie always in different blocks, and

by taking its conditional second moment, we get

1

N

N∑
r1,r2=1

1

`

(r1−1)`+q∑
s1=(r1−1)`+1

(r1−1)`+q∑
s2=(r1−1)`+1

E∗(ũ∗s1,f ũ
∗
s1−q,gũ

∗
s2,f ũ

∗
s2−q,g)

=
1

N

N∑
r=1

1

`

q∑
s1,s2=1

E∗(ũ∗s1+(r−1)`,f ũ
∗
s2+(r−1)`,f )E∗(ũ∗s1+(r−1)`−q,gũ

∗
s2+(r−1)`−q,g)

39



=
1

`

q∑
s1,s2=1

(
1

T − `+ 1

T−∑̀
t=0

uct+s1,fu
c
t+s2,f

)(
1

T − `+ 1

T−∑̀
t=0

uct+s1−q,gu
c
t+s2−q,g

)
= OP (`−1) = oP (1),

by `→∞ as T →∞, which proves part (a). Next we show part (c). For q = 0, we have

1√
N

N∑
r=1

1√
`

r∑̀
s=(r−1)`+1

(
E∗
(
ũ∗s,f ũ

∗
s,g

)
− us,fus,g

)
=

1√
N

N∑
r=1

1√
`

∑̀
s=1

(
1

T − `+ 1

T−∑̀
t=0

uct+s,fu
c
t+s,g − us+(r−1)`,fus+(r−1)`,g

)

for all f, g ∈ {1, . . . ,K}, f ≥ g and mean and variance of the last right-hand side are of order

O(T−1/2) and O(T−1), respectively, which shows (c). To prove part (b), let λ ∈ RK2(m+1) and

the summands of A∗2 are denoted by X∗r,T . We use a CLT for triangular arrays of independent

random variables, cf. Theorem 27.3 in Billingsley (1995), and as E∗(X∗r,T ) = 0 by construction,

we have to show that the following conditions are satisfied:

(i)

N∑
r=1

E∗(X∗r,TX
∗′
r,T )→ Ωm in probability

(ii)

∑N
r=1E

∗
(
|λ′X∗r,T |2+δ

)
(∑N

r=1E
∗
(

(λ′X∗r,T )2
))(2+δ)/2

→ 0 as T →∞ for some δ > 0.

To show (i), we can restrict ourselves to one entry of X∗r,TX
∗′
r,T and we obtain

N∑
r=1

1

T

r∑̀
s1,s2=(r−1)`+q+1

E∗
(
ũ∗s1,f1

ũ∗s1−q1,g1
ũ∗s2,f2

ũ∗s2−q2,g2

)
−E∗

(
ũ∗s1,f1

ũ∗s1−q1,g1

)
E∗
(
ũ∗s2,f2

ũ∗s2−q2,g2

)
=

1

`

∑̀
s1,s2=q+1

(
1

T − `+ 1

T−∑̀
t=0

uct+s1,f1
uct+s1−q1,g1

uct+s2,f2
uct+s2−q2,g2

(A.8)

−

(
1

T − `+ 1

T−∑̀
t=0

uct+s1,f1
uct+s1−q1,g1

)(
1

T − `+ 1

T−∑̀
t=0

uct+s2,f2
uct+s2−q2,g2

))
.

For q1, q2 ≥ 1, the leading term of the last expression is

1

`

∑̀
s1,s2=q+1

(
1

T − `+ 1

T−∑̀
t=0

ut+s1,f1ut+s1−q1,g1ut+s2,f2ut+s2−q2,g2

)
.

Due to the mds assumption imposed on the innovation process, its mean computes to

E(ut,f1ut−q1,g1ut,f2ut−q2,g2) and its variance vanishes asymptotically. As all other summands

of (A.8) are of lower order, this leads to the corresponding entry of τ0,q1,0,q2 in Ω
(1,1)
m . Similarly,

for q1 = 0, q2 ≥ 1 and for q1 = q2 = 0, we get the corresponding entries of Ω
(2,1)
m and of Ω(2,2),

respectively. To conclude the proof of the CLT, we show the Liapunov condition (ii) for δ = 2
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and as the denominator is bounded, it suffices to consider the numerator only. For one entry,

we get

N∑
r=1

1

T 2

r∑̀
s1,s2,s3,s4=(r−1)`+q+1

(
E∗
(
ũ∗s1,f1

ũ∗s1−q1,g1
ũ∗s2,f2

ũ∗s2−q2,g2
ũ∗s3,f3

ũ∗s3−q3,g3
ũ∗s4,f4

ũ∗s4−q4,g4

)
− E∗

(
ũ∗s1,f1

ũ∗s1−q1,g1
ũ∗s2,f2

ũ∗s2−q2,g2

)
E∗
(
ũ∗s3,f3

ũ∗s3−q3,g3
ũ∗s4,f4

ũ∗s4−q4,g4

))
and by the moment condition of Assumption 5.1, the last expression can be shown to be of order

OP (`3/T ) = oP (1) under the assumptions. �

B Derivation of Asymptotic Coverage Probabilities of Boot-

strap Confidence Intervals

This appendix describes the derivation of the asymptotic coverage probabilities of the pairwise

and wild bootstrap confidence intervals for the impulse response coefficients. The coverage

probabilities have been determined for the bivariate VAR(2)-LC-GARCH(1,1) specification in-

troduced in Section 6.3.1.

First, we introduce some general notation. Let

A :=



A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0

0 IK . . . 0 0
...

...
. . .

...
...

0 0 . . . IK 0


(Kp×Kp) and Ut :=


ut

0
...

0

 (Kp× 1)

be the parameter matrix and error term vector of the companion form of a K-dimensional

VAR(p) process, respectively, and define ΣU = E(UtU
′
t). For the bivariate VAR(2)-LC-GARCH(1,1)

specification we obtain the specific expression

Θ0 := P =

(
(σ2
u,1)1/2 0

σu,12(σ2
u,1)−1/2

(
σ2
u,2 − σ2

u,12(σ2
u,1)−1

)1/2
)

with Σu =

(
σ2
u,1 σu,12

σu,12 σ2
u,2

)
. (B.1)

Finally, let wt = (w1t, w2t)
′.

We start with deriving the asymptotic covariance matrix Σ
Θ̂i

of the estimators of Θi, i =

0, 1, 2, . . . , given in (6.1). The limit variance V (1,1) is defined in (3.1). Since the mean of yt is

assumed to be zero in our case, we have vec(Γ) =
(
I(Kp)2 −A⊗A

)−1
vec(ΣU ) from Lütkepohl

(2005, Eq. (2.1.39)). In our set-up, Cj = (Φ′j−1,Φ
′
j−2)′, j = 1, 2, . . . , with C−1 = 0. Moreover, we

have τ0,i,0,j = (P⊗P )τw0,i,0,j(P
′⊗P ′) with τw0,i,0,j = E

(
vec(wtw

′
t−i) vec(wtw

′
t−j)

′
)

, i, j ≥ 1. Since

we assume εt ∼ i.i.d. N(0, I2), τw0,i,0,j = 0 if i 6= j, see Francq & Zaköıan (2004, Lemma 4.1).

Hence, the middle term in V (1,1) simplifies to
∑∞

i=1(Cr ⊗ IK)(P ⊗ P )τw0,i,0,i(P
′ ⊗ P ′)(Cr ⊗ IK)′.
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We further have

τw0,i,0,i =


γw2

1
(i) + 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 γw2
2
(i) + 1

 ,

where γw2
k
(i) = Cov(w2

t,k, w
2
t−i,k), k = 1, 2 and i = 1, 2, . . ., by generalizing the univariate results

of Section 4.4. The expressions derived there can also be used to explicitly determine γw2
i
(r) as

a function of the GARCH parameters a1 and b1. The infinite summation in the middle term

can be safely approximated by considering the first 100 summands. Finally, Ci,β is obtained by

pre-multiplying the specific version of Gi =
∑i−1

m=0 J(A′)i−1−m⊗Φm, i = 1, 2, . . ., with (P ′⊗I2),

where the relevant version of P is given in (B.1). Putting the foregoing expressions together one

obtains the specific version of Ci,βV
(1,1)C ′i,β.

Next, we have V (2,2) = L2(P ⊗ P )V
(2,2)
w (P ′ ⊗ P ′)L′2, where V

(2,2)
w = Σw2,0 + 2

∑∞
h=1 Σw2,h

with

Σw2,h = E
(

vec
{(
wtw

′
t

)
− E

(
wtw

′
t

)}
vec
{(
wt−hw

′
t−h
)
− E

(
wt−hw

′
t−h
)}′)

=


γw2

1
(h) 0 0 0

0 γw1,w2(h) γw1,w2(h) 0

0 γw1,w2(h) γw1,w2(h) 0

0 0 0 γw2
2
(h)

 , (B.2)

γw1,w2(0) = 1, and γw1,w2(h) = 0 for h > 0. (B.2) is obtained again by generalizing the

univariate results of Section 4.4. Then, one can combine all relevant specific expressions to get

C0,σV
(2,2)C ′0,σ what, finally, leads to

Σ
Θ̂i

= Ci,βV
(1,1)C ′i,β + C0,σV

(2,2)C ′0,σ, i = 0, 1, 2, . . . , (B.3)

since V (1,2) = 0 in our set-up. Hence, we can determine Σ
Θ̂i

depending on the VAR parameters

in A1 and A2, the correlation parameter ρ, and the GARCH parameters a1 and b1.

Let us now turn to the pairwise and wild bootstrap counterparts of Σ
Θ̂i

, i = 0, 1, 2, . . .,

labelled as ΣPB
Θ̂i

and ΣWB
Θ̂i

, respectively. Since the bootstrap schemes correctly replicate V (1,1)

it is sufficient to consider the corresponding versions of V (2,2), i.e. V
(2,2)
PB and V

(2,2)
WB . It is easy to

see that V
(2,2)
PB = L2(P ⊗ P )Σw2,0(P ′ ⊗ P ′)L′2. Note that an i.i.d. bootstrap scheme would lead

to the same asymptotic variance expression.

For the wild bootstrap, one has V
(2,2)
WB = L2(P ⊗ P )τw0,0,0,0(P ′ ⊗ P ′)L′2

{
E∗(η4

t )− 1
}

with

E∗(η4
t ) = 3 for ηt ∼ i.i.d. N(0, 1) and

τw0,0,0,0 = E
[
vec
(
wtw

′
t

)
vec
(
wtw

′
t

)′]
= Σw2

0
+ vec(Σw) vec(Σw)′ = Σw2

0
+


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 ,
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where Σw = E(wtw
′
t) = I2 in our case. Accordingly, one would get V

(2,2)
WB = 0 for the Rademacher

distribution. Note again that the recursive- and fixed-design schemes are asymptotically equiv-

alent. Replacing V (2,2) in (B.3) with V
(2,2)
PB or V

(2,2)
WB results in ΣPB

Θ̂i
and ΣWB

Θ̂i
, respectively.

Finally, the asymptotic coverage probabilities of the pairwise and wild bootstrap confidence

intervals are obtained as follows. It is assumed that the bootstrap estimators of Θ̂i, i = 0, 1, 2, . . .,

are consistent and asymptotically normally distributed with variances ΣPB
Θ̂i

and ΣWB
Θ̂i

, respec-

tively. Hence, both the asymptotically correct intervals and the bootstrap intervals are centered

at the same value. Let σ
θ̂

be the correct asymptotic standard deviation of the estimator of a

particular impulse response coefficient θ taken from the relevant Σ
Θ̂i

, i = 0, 1, 2, . . .. Let σB
θ̂

be the corresponding asymptotic bootstrap standard deviation taken from either ΣPB
Θ̂i

or ΣWB
Θ̂i

.

Then, the asymptotic coverage probability of the corresponding bootstrap interval can be simply

obtained by

P (−σr · z1−α/2 ≤ X ≤ σr · z1−α/2),

where X is standard normally distributed, z1−α/2 is the (1 − α/2)-quantile of the standard

normal distribution, and σr = σB
θ̂
/σ

θ̂
.
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