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1 Introduction

Despite recent successes in improving the empirical performance of dynamic stochastic gen-

eral equilibrium (DSGE) models, e.g., Smets and Wouters (2003), even large-scale DSGE

models suffer to some extent from misspecification (see Del Negro, Schorfheide, Smets, and

Wouters 2004). In this paper misspecification means that the DSGE model potentially

imposes invalid cross-coefficient restrictions on the moving-average representation of the

macroeconomic time series that it aims to explain. As a consequence, one typically observes

that the forecasting performance of DSGE models is worse than that of vector autoregres-

sions (VARs) estimated with well-calibrated shrinkage methods. On the other hand, DSGE

models have the advantage that one can explicitly assess the effect of policy regime changes

on expectation formation and decision rules of private agents. Thus, policy analysis with

DSGE models is robust to the Lucas critique and potentially more reliable than conclusions

drawn from VARs. This trade-off poses a challenge to policymakers who want to use DSGE

models in practice.

Del Negro and Schorfheide (2004a) proposed a framework that combines VARs and

DSGE models, extending earlier work by Ingram and Whiteman (1994). In this framework

DSGE model restrictions are neither completely ignored as in the unrestricted estimation

of VARs, nor are they dogmatically imposed as in the direct estimation of DSGE models.

Instead the VAR estimates are tilted toward the restrictions implied by the DSGE model,

where the degree of tilting is determined by a Bayesian data-driven procedure that trades

off model fit against complexity. Del Negro, Schorfheide, Smets, and Wouters (2004) show

that priors arising from the same model used in this paper improve both the in-sample

and out-of-sample fit of a VAR and lead to more accurate predictions than those directly

obtained from the DSGE model.

In this paper we build upon our earlier work and further develop procedures that are

suitable to study the effects of rare regime shifts with potentially misspecified DSGE models.

These procedures can be viewed as a Bayesian alternative to the robust control and mini-

max approaches that recently have been proposed to cope with model misspecification, e.g.,

Hansen and Sargent (2000) and Onatsky and Stock (2002). One advantage of Bayesian pro-

cedures is that the policymaker can learn from existing data about the extent of the DSGE

model’s misspecification, and consequently adjust her policies. While a companion paper

(Del Negro and Schorfheide, 2004b) applies these procedures to a simple three-equation

New Keynesian model, the present paper studies policy experiments in the context of a
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large-scale model with capital accumulation as well as various nominal and real frictions.

The DSGE model is based on work by Altig, Christiano, Eichenbaum, and Linde (2002),

Christiano, Eichenbaum, and Evans (2004), and Smets and Wouters (2003). We show that

conclusions about the effects of changing the response to inflation are to some extent sen-

sitive to assumptions about the policy invariance of observed discrepancies between model

and reality.

The paper is organized as follows. The DSGE model is presented in Section 2. In Sec-

tion 3 we introduce our framework for policy analysis with potentially misspecified models.

Section 4 describes the data set, Section 5 discusses our empirical findings, and Section 6

concludes.

2 Model

This section describes the DSGE model, which is a slightly modified version of the DSGE

model developed and estimated for the Euro area in Smets and Wouters (2003). In particu-

lar, we introduce stochastic trends into the model, so that it can be fitted to unfiltered time

series observations. The DSGE model, largely based on the work of Christiano, Eichen-

baum, and Evans (2004), contains a large number of nominal and real frictions. Next, we

describe each of the agents that populate the model economy and the decision problems

they face.

2.1 Final goods producers

The final good Yt is a composite made of a continuum of intermediate goods Yt(i), indexed

by i ∈ [0, 1]:

Yt =

[∫ 1

0

Yt(i)
1

1+λf,t di

]1+λf,t
. (1)

λf,t ∈ (0,∞) follows the exogenous process:

lnλf,t = lnλf + σλ,f ελ,t, (2)

where ελ,t is an exogenous shock with unit variance. The final goods producers are perfectly

competitive firms that buy intermediate goods, combine them to the final product Yt, and

resell the final good to consumers. The firms maximize profits

PtYt −
∫
Pt(i)Yt(i)di
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subject to (1). Here Pt denotes the price of the final good and Pt(i) is the price of inter-

mediate good i. From their first order conditions and the zero-profit condition we obtain

that:

Yt(i) =

(
Pt(i)

Pt

)
−
1+λf,t
λf,t

Yt and Pt =

[∫ 1

0

Pt(i)
1

λf,t di

]λf,t
. (3)

2.2 Intermediate goods producers

Good i is made using the technology:

Yt(i) = max

{
Z1−α
t Kt(i)

αLt(i)
1−α − ZtF , 0

}
, (4)

where the technology shock Zt (common across all firms) follows a unit root process,

and where F represent fixed costs faced by the firm. We define technology growth zt =

log(Zt/Zt−1) and assume that zt follows the autoregressive process:

(zt − γ) = ρz(zt−1 − γ) + σzεz,t. (5)

All firms face the same prices for their inputs, labor and capital. Hence profit’s maximization

implies that the capital/labor ratio is the same for all firms, and equal to:

Kt

Lt
=

α

1− α
Wt

Rkt
., (6)

where Wt is the nominal wage and Rkt is the rental rate of capital. Following Calvo (1983)

we assume that in every period a fraction of firms ζp is unable to re-optimize their prices

Pt(i). These firms adjust their prices mechanically according to

Pt(i) = (πt−1)
ιp(π∗)1−ιp , (7)

where πt = Pt/Pt−1 and π∗ is the steady state inflation rate of the final good. In our

empirical analysis we will restrict ιp to be either zero or one. Those firms that are able to

re-optimize prices choose the price level P̃t(i) that solves:

maxP̃t(i) IEt
∑

∞

s=0 ζ
s
pβ

sΞpt+s

(
P̃t(i)

(
Πsl=1π

ιp
t+l−1π

1−ιp
∗

)
−MCt+s

)
Yt+s(i)

s.t. Yt+s(i) =



P̃t(i)

(
Πsl=1π

ιp
t+l−1π

1−ιp
∗

)

Pt+s




−
1+λf,t
λf,t

Yt+s, MCt+s =
α−αW 1−α

t+s R
k α
t+s

(1−α)(1−α)Z1−αt+s

.

(8)

where βsΞpt+s is today’s value of a future dollar for the consumers andMCt reflects marginal

costs. We consider only the symmetric equilibrium where all firms will choose the same P̃t(i).

Hence from (3) we obtain the following law of motion for the aggregate price level:

Pt = [(1− ζp)P̃
1

λf,t

t + ζp(π
ιp
t−1π

1−ιp
∗ Pt−1)

1
λf,t ]λf,t . (9)
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2.3 Labor packers

There is a continuum of households, indexed by j ∈ [0, 1], each supplying a differentiated

form of labor, L(j). The “labor packers” are perfectly competitive firms that hire labor

from the households and combine it to labor services Lt that are offered to the intermediate

goods producers:

Lt =

[∫ 1

0

Lt(j)
1

1+λw di

]1+λw
, (10)

where λw ∈ (0,∞). From first-order and zero-profit conditions of the labor packers we obtain

the labor demand function and an expression for the price of aggregated labor services Lt:

Lt(j) =

(
Wt(j)

Wt

)
−
1+λw
λw

Lt and Wt =

[∫ 1

0

Wt(j)
1
λw di

]λw
. (11)

2.4 Households

The objective function for household j is given by:

IEt

∞∑

s=0

βsbt+s

[
log(Ct+s(j)− hCt+s−1(j))−

ϕt+s
1 + νl

Lt+s(j)
1+νl +

χ

1− νm

(
Mt+s(j)

Zt+sPt+s

)1−νm
]

(12)

where Ct(j) is consumption, Lt(j) is labor supply, and Mt(j) are money holdings. House-

hold’s preferences display habit-presistence. We depart from Smets and Wouters (2003) in

assuming separability in the utility function for a reason that will be discussed later. The

preference shifters ϕt, which affects the marginal utility of leisure, and bt, which scales the

overall period utility, are exogenous processes common to all households that evolve as:

lnϕt = (1− ρϕ) lnϕ+ ρϕ lnϕt−1 + σϕεϕ,t, (13)

ln bt = ρb ln bt−1 + σbεb,t. (14)

Real money balances enter the utility function deflated by the (stochastic) trend growth of

the economy, so to make real money demand stationary.

The household’s budget constraint written in nominal terms is given by:

Pt+sCt+s(j) + Pt+sIt+s(j) +Bt+s(j) +Mt+s(j) ≤ Rt+sBt+s−1(j) +Mt+s−1(j)

+ Πt+s +Wt+s(j)Lt+s(j) +
(
Rkt+sut+s(j)K̄t+s−1(j)− Pt+sa(ut+s(j))K̄t+s−1(j)

)
,

(15)

where It(j) is investment, Bt(j) is holdings of government bonds, Rt is the gross nominal

interest rate paid on government bonds, Πt is the per-capita profit the household gets from

owning firms (households pool their firm shares, and they all receive the same profit), and
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Wt(j) is the nominal wage earned by household j. The term within parenthesis represents

the return to owning K̄t(j) units of capital. Households choose the utilization rate of their

own capital, ut(j). Households rent to firms in period t an amount of “effective” capital

equal to:

Kt(j) = ut(j)K̄t−1(j), (16)

and receive Rkt ut(j)K̄t−1(j) in return. They however have to pay a cost of utilization in

terms of the consumption good equal to a(ut(j))K̄t−1(j). Households accumulate capital

according to the equation:

K̄t(j) = (1− δ)K̄t−1(j) + µt

(
1− S

(
It(j)

It−1(j)

))
It(j), (17)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S′(·) > 0, S′′(·) > 0. The term µt is a stochastic disturbance to the price of investment

relative to consumption, which follows the exogenous process:

lnµt = (1− ρµ) lnµ+ ρµ lnµt−1 + σµεµ,t. (18)

The households’ wage setting is subject to nominal rigidities á la Calvo (1983). In

each period a fraction ζw of households is unable to re-adjust wages. For these households,

the wage Wt(j) will increase at a geometrically weighted average of the steady state rate

increase in wages (equal to steady state inflation π∗ times the growth rate of the economy

eγ) and of last period’s inflation times last period’s productivity (πt−1e
zt−1). The weights

are 1 − ιw and ιw, respectively. Those households that are able to re-optimize their wage

solve the problem:

maxW̃t(j)
IEt
∑

∞

s=0(ζwβ)
sbt+s

[
− ϕt+s
νl + 1Lt+s(j)

νl+1
]

s.t. (15) for s = 0, . . . ,∞, (11a), and

Wt+s(j) =
(
Πsl=1(π∗e

γ)1−ιw(πt+l−1e
z∗t+l−1)ιw

)
W̃t(j).

(19)

We again consider only the symmetric equilibrium in which all agents solving (19) will

choose the same W̃t(j). From (11b) it follows that:

Wt = [(1− ζw)W̃
1
λw

t + ζw((π∗e
γ)1−ιw(πt−1e

z∗t−1)ιwWt−1)
1
λw ]λw . (20)

Finally, we assume there is a complete set of state contingent securities in nominal

terms, which implies that the Lagrange multiplier Ξpt (j) associated with (15) must be the

same for all households in all periods and across all states of nature. This in turn implies

that in equilibrium households will make the same choice of consumption, money demand,
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investment and capital utilization. Since the amount of leisure will differ across households

due to the wage rigidity, separability between labor and consumption in the utility function

is key for this result.

2.5 Government policies

The central bank follows a nominal interest rate rule by adjusting its instrument in response

to deviations of inflation and output from their respective target levels:

Rt
R∗

=

(
Rt−1

R∗

)ρR [( πt
π∗

)ψ1 ( Yt
eγYt−1

)ψ2]1−ρR
σRe

εR,t , (21)

where R∗ is the steady state nominal rate, Y st is the target level of output, and the parameter

ρR determines the degree of interest rate smoothing. In our formulation of the policy rule,

the central bank responds to output growth rather than some measure of the output gap.

The government budget constraint is of the form

PtGt +Rt−1Bt−1 +Mt−1 = Tt +Mt +Bt, (22)

where Tt are nominal lump-sum taxes (or subsidies) that also appear in household’s budget

constraint. Government spending is given by:

Gt = (1− 1/gt)Yt, (23)

where gt follows the process:

ln gt = (1− ρg) ln g + ρg ln gt−1 + σgεg,t (24)

2.6 Resource constraint

The aggregate resource constraint:

Ct + It + a(ut)K̄t−1 =
1

gt
Yt. (25)

can be derived by integrating the budget constraint (15) across households, and combining

it with the government budget constraint (22) and the zero profit conditions of both labor

packers and final good producers.
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2.7 Model solution and State-Space Representation

As in Altig, Christiano, Eichenbaum, and Linde (2002) our model economy evolves along

stochastic growth path. Output Yt, consumption Ct, investment It, the real wage Wt/Pt,

physical capital Kt and effective capital K̄t all grow at the rate Zt. Nominal interest

rates, inflation, and hours worked are stationary. The model can be rewritten in terms

of detrended variables. We find the steady states for the detrended variables and use the

method in Sims (2002) to construct a log-linear approximation of the model around the

steady state.

Our empirical analysis is based on data on nominal interest rates (annualized), inflation

rates (annualized), and quarterly output growth rates. Hence, let yt = [Rat , π
a
t ,∆lnYt]

′.

The relationships between the steady-state deviations R̃t, π̃t, Ỹt and the observables are

given by the following measurement equations:

y1,t = ln r∗a + lnπ∗a + 4R̃t, (26)

y2,t =


 lnπ∗a + 4π̃t

ln γ +∆x̃t + z̃t


 .

Here, y1,t denotes the policymaker’s instrument (the interest rate), and y2,t is a vector that

includes the remaining two endogenous variables. We collect all the DSGE model parameters

in the vector θ and stack the structural shocks in the vector εt.

3 Setup and Inference

In the subsequent analysis it is assumed that the DSGE model generates a covariance-

stationary distribution of the sequence {yt} for all θ ∈ Θ. Expectations under this dis-

tribution are denoted by IEDθ [·]. We will derive an (approximate) vector autoregressive

representation for the DSGE model and introduce model misspecifications as deviations

from this representation. Finally, a prior distribution for these model misspecifications is

specified and posterior inference and policy analysis are discussed.

3.1 A VAR Representation of the DSGE Model

Let us rewrite Eq. (21), which describes the policymaker’s behavior, in more general form

as:

y1,t = x′tM1β1(θ) + y′2,tM2β2(θ) + ε1,t, (27)
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where yt = [y1,t, y
′

2,t]
′ and the k× 1 vector xt = [y′t−1, . . . , y

′

t−p, 1]
′ is composed of the first p

lags of yt and an intercept. The shock ε1,t corresponds to the monetary policy shock σRεR,t

in the DSGE model. The matricesM1 andM2 select the appropriate elements of xt and y2,t

to generate the policy rule. In our application the vector M1 selects the intercept and the

lagged nominal interest rate and the matrix M2 extracts inflation, and output growth. The

functions β1(θ) and β2(θ) can be easily derived from (21) and the measurement equation (26)

for Rt.

The remainder of the system for yt is given by the following reduced form equations:

y′2,t = x′tΨ
∗(θ) + u′2,t. (28)

In general, the VAR representation (28) is not exact if the number of lags p is finite. We

define ΓXX(θ) = IEDθ [xtx
′

t] and ΓXY2(θ) = IEDθ [xty
′

2,t] and let

Ψ∗(θ) = Γ−1
XX(θ)ΓXY2(θ). (29)

Since the system is covariance stationary, the VAR approximation of the autocovariance

sequence of y2,t can be made arbitrarily precise by increasing the number of lags p. If

in addition, the moving-average (MA) representation of the DSGE model in terms of the

structural shocks εt is invertible, then u2,t can also be expressed as a function of εt for large

p.

The equation for the policy instrument (27) can be rewritten by replacing y2,t with

expression (28):

y1,t = x′tM1β1(θ) + x′tΨ
∗(θ)M2β2(θ) + u1,t, (30)

where u1,t = u′2,tM2β2(θ) + ε1,t. Define u′t = [u1,t, u
′

2,t], B1(θ) = [M1β1(θ), 0k×(n−1)],

B2(θ) = [M2β2(θ), I(n−1)×(n−1)], and let

Φ∗(θ) = B1(θ) + Ψ∗(θ)B2(θ). (31)

Hence, we obtain a restricted VAR for yt

y′t = x′tΦ+ u′t, IE[utu
′

t] = Σ∗(θ) (32)

with

Φ = Φ∗(θ), Σ = Σ∗(θ) = ΓY Y (θ)− ΓY X(θ)Γ−1
XX(θ)ΓXY (θ).

Here the population covariance matrices are ΓY Y (θ) = IEDθ [yty
′

t] and ΓXY (θ) = Γ′Y X(θ) =

IEDθ [xty
′

t]. The following Lemma will be useful for the subsequent analysis and can be

verified by straightforward matrix manipulations. Let IEV ARΨ,Σ [·] denote expectations under

the probability distribution generated by (32).
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Lemma 1 (i) The VAR coefficient matrix Φ∗(θ) = Γ−1
XX(θ)ΓXY (θ). (ii) IE

V AR
Ψ∗(θ),Σ∗(θ)[xtx

′

t] =

IEDθ [xtx
′

t] = ΓXX(θ).

Since the monetary policy rule (21) in the DSGE model is specified so that it can be

exactly reproduced by the VAR, see Eq. (27), Φ∗(θ) equals the population least squares

coefficients associated with (32), and the covariance matrix of xt under the DSGE model

and its VAR approximation are identical. For the ease of exposition we will subsequently

ignore the error made by approximating the state space representation of the DSGE model

with the finite-order VAR or, in other words, treat (32) as the structural model that imposes

potentially misspecified restrictions on the matrices Φ and Σ.

3.2 Misspecification and Bayesian Inference

We make the following assumptions about misspecification of the DSGE model. There is

a vector θ and matrices Ψ∆ and Σ∆ such that the data are generated from the VAR in

Eq. (32)

Φ = B1(θ) + (Ψ∗(θ) + Ψ∆)B2(θ), Σ = Σ∗(θ) + Σ∆. (33)

and there does not exist a θ̃ ∈ Θ such that

Φ = B1(θ̃) + Ψ∗(θ̃)B2(θ̃), Σ = Σ∗(θ̃).

We refer to the resulting specification as DSGE-VAR. Our econometric analysis is casted in

a Bayesian framework in which initial beliefs about the DSGE model parameter θ and the

model misspecification matrices Ψ∆ and Σ∆ are summarized in a prior distribution. We

will subsequently motivate this prior distribution with a thought experiment.

For now, we assume that Σ∆ = 0 and condition on the DSGE model parameter vector

θ. The goal is to assign low prior density to large values of Ψ∆, reflecting the belief that the

DSGE model provides a good albeit not perfect approximation of reality. By large, we mean

discrepancies that are easily detectable with likelihood ratios. Suppose that a sample of λT

observations is generated from (32), where Φ is given by (33). We will construct a prior

that has the property that its density is proportional to the expected likelihood ratio of Ψ

evaluated at its (misspecified) restricted value Ψ∗(θ) versus the true value Ψ = Ψ∗(θ)+Ψ∆.

Since the likelihood ratio is decreasing in the number of observations λT for fixed Ψ∆, the

misspecification is re-scaled as follows. Let

Ψ∆ =
1√
λT

Ψ̃∆.
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The log-likelihood ratio is

ln

[ L(Ψ∗,Σ∗, θ|Y,X)

L(Ψ∗ +Ψ∆,Σ∗, θ|Y,X)

]
= −1

2
tr

[
Σ∗−1

(
B′

2Ψ
∗
′

X ′XΨ∗B2 − 2B′

2Ψ
∗
′

X ′(Y −XB1)

−B′

2(Ψ
∗ + (λT )−1/2Ψ̃∆)′X ′X(Ψ∗ + (λT )−1/2Ψ̃∆)B2

+2B′

2(Ψ
∗ + (λT )−1/2Ψ̃∆)′X ′(Y −XB1)

)]
.

Here Y denotes the λT × n matrix with rows y′t and Xt is the λT × k matrix with rows x′t.

After replacing Y by X(B1 + (Ψ∗ +Ψ∆)B2) + U the log likelihood ratio simplifies to

ln

[ L(Ψ∗,Σ∗, θ|Y,X)

L(Ψ∗ +Ψ∆,Σ∗, θ|Y,X)

]
(34)

= −1

2
tr

[
Σ∗−1

(
B′

2Ψ̃
∆′

(λT )−1X ′XΨ̃∆B2 − 2B′

2Ψ̃
∆′

(λT )−1/2X ′U

)]

Taking expectations over X and U using the distribution induced by the data generating

process yields (minus) the Kullback-Leibler distance between the data generating process

and the DSGE model:

IEV ARΨ∗+Ψ∆,Σ∗

[
ln

L(Ψ∗,Σ∗, θ|Y,X)

L(Ψ∗ +Ψ∆,Σ∗, θ|Y,X)

]
= −1

2
tr

[
Σ∗−1

(
B′

2Ψ̃
∆′

ΓXXΨ̃∆B2

)]
+O((λT )−1/2).

(35)

Here we have used Lemma 1(ii). The O((λT )−1/2) arises because

Φ = B1(θ) +

(
Ψ∗(θ) +

1√
λT

Ψ̃∆

)
B2(θ) = Φ∗(θ) +

1√
λT

Ψ̃∆B2(θ).

We now choose a prior density that is proportional (∝) to the Kullback-Leibler discrepancy:

p(Ψ̃∆|Σ∗, θ) ∝ exp

{
− 1

2
tr

[
Σ∗−1

(
B′

2Ψ̃
∆′

ΓXXΨ̃∆B2

)]}
(36)

For computational reasons it is convenient to transform this prior into a prior for Ψ. Using

standard arguments we deduce that this prior is multivariate normal

Ψ|Σ∗, θ ∼ N
(
Ψ∗(θ),

1

λT

[
(B2(θ)Σ

∗−1B2(θ)
′)⊗ ΓXX(θ)

]
−1
)
. (37)

The hyperparameter λ, which determines the length of the hypothetical sample as a multiple

of the actual sample size T , scales the variance of the distribution that generates Ψ̃∆ and

Ψ. If λ is close to zero, the prior variance of the discrepancy Ψ̃∆ is large. Large values

of λ, on the other hand, correspond to small model misspecification and for λ = ∞ the

misspecification disappears.

In practice we also have to take potential misspecification of the covariance matrix

Σ∗(θ) into account. Hence, we will use the following, slightly modified, prior distribution
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conditional on θ in the empirical analysis:

Ψ|Σ, θ ∼ N
(
Ψ∗(θ),

1

λT

[
(B2(θ)Σ

−1B2(θ)
′)⊗ ΓXX(θ)

]
−1
)

(38)

Σ|θ ∼ IW
(
λTΣ∗(θ), λT − k, n

)
, (39)

where IW denotes the inverted Wishart distribution. The latter induces a distribution for

the discrepancy Σ∆ = Σ− Σ∗.

The Appendix provides a characterization of the following conditional posterior densi-

ties:

p(Ψ|Σ, θ, Y ), p(Σ|Ψ, θ, Y ), and p(θ|Ψ,Σ, Y ).

Unfortunately, it is not possible to give a characterization of all conditional distributions

in terms of well-known probability distributions. To implement the Gibbs sampler we have

to introduce two Metropolis steps that generate draws from the conditional distributions

p(Σ|Ψ, θ, Y ) and p(θ|Ψ,Σ, Y ). The resulting Markov-Chain-Monte-Carlo (MCMC) algo-

rithm is known as Metropolis-within-Gibbs sampler and allows us to generate draws from

the joint posterior distribution of θ, Ψ, and Σ. In addition to the posterior distribution of

the parameters we are also interested in evaluating marginal data densities of the form

p(Y ) =

∫
p(Y |θ,Σ,Φ)pλ(θ,Σ,Φ)d(θ,Σ,Φ) (40)

for various choices of the hyperparameter λ and restrictions on the parameter space of the

DSGE model. Based on the marginal data densities we can compute Bayes factors and

posterior probabilities for the various specifications of our model. Under the assumption of

equal prior probabilities, ratios of marginal likelihoods can be interpreted as model odds.

3.3 Policy Analysis

At time t = T the policymaker seeks to replace the existing policy rule with one that

minimizes the following loss function1

L(θp, θs,Ψ
∆,Σ∆) = min

{
B, IE

[
(1− δ)

∞∑

t=T

δt−T (yt − ȳ)′W(yt − ȳ)
]}

, (41)

1We make the simplifying assumption that the public believes the new policy to be in place indefinitely

after being announced credibly. This assumption is a short-cut to a more realistic scenario in which there

are two types of policy shifts - normal policy making and rare regime shifts (using the terminology of Sims,

1982). In addition we assume that the expectation in (41) is unconditional. The policymaker does not

exploit the fact that the public has formed its time T − 1 expectations based on the T − 1 policy rule.
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where δ is a discount factor, θ is partitioned into policy rule parameters θp and taste-

and-technology parameters θs, and B is a positive constant that ensures that the loss is

bounded even if the VAR coefficients imply non-stationary or explosive behavior of the

endogenous variables. The loss function encompasses popular ad-hoc loss functions that

penalize inflation, output, and interest rate variability.

The policymaker minimizes the loss L(θp, θs,Ψ
∆,Σ∆) as a function of the policy pa-

rameter θp. She has imperfect knowledge about: (i) the policy invariant private sectors’

taste and technology parameters θs; and (ii) the degree of model misspecification captured

by λ, Ψ∆ and Σ∆. The uncertainty is summarized in the posterior distribution.

We consider four different scenarios for the policy invariance of the misspecification ma-

trices Φ∆ and Σ∆. Then we calculate the posterior expected loss associated with different

policies according to each scenario. If the DSGE model does not suffer from serious mis-

specification all scenarios collapse to Scenario 1. At this point we have no theory that lets

us determine which of the scenarios will provide the most accurate prediction of the policy

effects. The goal of the subsequent empirical analysis is to illustrate the sensitivity of policy

predictions to assumptions on model misspecification.

Scenario 1: The DSGE model is estimated directly and its potential misspecification is

ignored. The policymaker does, however, take the uncertainty with respect to the non-policy

parameters into account when calculating the expected loss. This scenario dates back at

least to Brainard (1967) and serves as a benchmark. More recent examples in the context

of DSGE models include Laforte (2003) and Onatski and Williams (2004).

Scenario 2: The policymaker believes that the sample (hence the posterior) provides

no information about potential misspecification after a regime shift has been implemented.

This scepticism about the relevance of sample information is shared by the robust control

approaches of Hansen and Sargent (2000) and Onatski and Stock (2002). Here, instead

of using a minimax argument, our Bayesian policymaker relies on her prior distribution

p(Ψ∆,Σ∆|θ, λ) to cope with uncertainty about model misspecification. She still uses the

sample to learn about θs and λ, however.

Scenario 3: Ψ∆ and Σ∆ are invariant to changes in policy. The sample information

is used to learn about the model misspecification via the posterior distribution. Looking

forward, the information is used to adjust the policy predictions derived from the DSGE

model, Ψ∗(θ̃) and Σ∗(θ̃). Here θ̃ denotes the vector of structural parameters that is obtained

when θp is replaced by a new set of policy parameters θ̃p.
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Scenario 4: Nature generates a new set of draws from the posterior distribution of Ψ∆

and Σ∆ conditional on the post-intervention DSGE model parameters θ̃ instead of the pre-

intervention parameters as in Scenario 3. For small values of λ the conditional posterior

distribution of Ψ∗(θ) + Ψ∆ and Σ∗(θ) + Σ∆ given θ is effectively insensitive to θ. In this

case Scenario 4 corresponds to analyzing policy effects with a VAR by simply changing the

coefficients in the policy rule.

4 The Data

In our empirical analysis we use observations on interest rates, inflation, and output growth.

All data are obtained from Haver analytics (Haver mnemonics are in italics). Real output is

obtained by dividing the nominal series (GDP) by population 16 years and older (LF+LH),

and deflating using the chained-price GDP deflator (JGDP). Growth rates are computed

using log-differences from quarter to quarter, and are in percent. Inflation is computed

using log-differences of the GDP delflator, in percent. The nominal rate corresponds to the

effective Federal Funds rate (FFED), also in percent. The results reported subsequently are

based on a sample from 1983:Q3 to 2004:Q1.

5 Empirical Application

Since we estimate the DSGE-VARs based on only three variables we set most shocks equal

to zero, except for the technology growth shock εz,t, the monetary policy shock εR,t, and

the government spending shock εg,t. Since the model is to some extent able to endogenously

generate persistence in real variables, we impose that technology growth shocks are seri-

ally uncorrelated, that is, ρz = 0. In Del Negro, Schorfheide, Smets and Wouters (2004),

henceforth DSSW, we did not find evidence in favor of price indexation. Therefore, we let

ιp = ιw = 0. Moreover, we set the fixed costs F = 0. Unlike in DSSW, we do not use

observations on consumption and investment, which makes it difficult to identify the capital

share and the depreciation rate. Therefore, we let α = 0.25 and δ = 0.025. Since we are

not extracting information from wage and money data we fix the wage-markup parameter

λw = 0.3, and the money demand elasticity νm = 2. In a log-linear approximation the

Calvo parameter is typically not separately identifiable from the price markup parameter

λf , which we fix at 0.3.
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We begin with a direct estimation of the DSGE model using Bayesian techniques de-

scribed in Schorfheide (2000). Table 1 reports prior mean and standard deviations, as well

as posterior means and 90% probability intervals for the structural parameters. The esti-

mates for the inflation and output growth coefficients in the monetary policy rule are 1.43

and 0.36, respectively. Our estimate of the smoothing coefficient is fairly high compared to

estimates reported elsewhere in the literature: ρ̂r = 0.83. The Calvo parameters for wages

and prices are 0.72, and 0.79, respectively. Thus, agents change their prices on average

every 4 quarters. We estimate a large degree of habit persistence, whereas the data seem to

be fairly uninformative with respect to the labor supply elasticity µl and the cost of capital

utilization a”.

We proceed by estimating DSGE-VARs for values of λ between 0.25, i.e., large prior

variance of the misspecification matrices Ψ∆ and Σ∆, and 5, i.e., small potential misspec-

ification. The subsequent results are based on p = 4 lags. Table 2 describes the posterior

of the misspecification parameter λ. The table reports log marginal data densities for the

directly estimated DSGE model and DSGE-VARs based on different values of λ. Differences

of log marginal densities across model specifications can be interpreted as log posterior odds,

under the assumption that the prior odds are equal to one. The odds reported in the last col-

umn of Table 2 are relative to λ = 0.75, which is the specification with the largest marginal

data density and, according to this likelihood-based criterion, the best fit. The posterior

of λ has an inverted U -shape. There is little variation in the marginal data densities for

λ values between 0.5 and 2, whereas values outside of this interval lead to a substantial

deterioration in fit. We conclude that over the range of the historical sample the DSGE

model is strongly dominated by DSGE-VARs with intermediate values of λ indicating that

the structural model is to some extent misspecified and that its policy predictions should

be interpreted with care.

Table 3 compares the posterior means of the structural parameters obtained from the

estimation of DSGE-VAR specifications for various values of λ. The DSGE-VAR generates

Bayesian instrumental variable estimates of the policy rule parameters ψ1, ψ2, and ρR.

For large values of λ the instruments are very similar to the scores of the DSGE models’

likelihood function. For values of λ near zero the instruments essentially correspond to

lagged values of interest rates, inflation, and output growth. While the estimates of ψ2 and

ρR are fairly insensitive to the choice of λ, the estimate of the inflation coefficient rises from

1.43 to 1.99 as the prior variance of the discrepancies Ψ∆ and Σ∆ increases. As shown in

Del Negro and Schorfheide (2004a) the estimates of the remaining DSGE model coefficients
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can be interpreted as minimum distance estimates, in which the estimator of Ψ is projected

onto the restricted subspace generated by Ψ∗(θ).

Based on the parameter estimates we calculate expected policy losses. The loss is

based on Eq. (41) where the weighting matrix W is diagonal with elements 1
4 (interest

rates, annualized), 1 (inflation, annualized), and 1
4 (output growth, quarter-to-quarter). Our

weight on output growth is somewhat larger than in Woodford (2003, Table 6.1) reflecting

a larger estimate of κ. Moreover, we place considerable weight on the nominal interest rate,

which could be justified by a large interest elasticity of money demand and an important role

of real money balances for transactions. The upper bound B of the loss is set to 20, which

is about 5 times larger than the weighted sample variance of the three series. We evaluate

the expected loss as a function of ψ1, the central bank’s response to inflation. The other

two parameters of the policy rule are set approximately to their respective posterior mean

estimates for λ = 0.75: ψ2 = 0.25, ρR = 0.85. The results are summarized in Figure 1, which

depicts expected loss differentials relative to the benchmark ψ1 = 1.8. Negative differentials

indicate an improvement relative to the benchmark.

In Scenario 1 the policymaker calculates the policy loss with the DSGE model, ignoring

misspecification. It is well known that as the response to inflation increases, inflation vari-

ability drops and the loss decreases. The inference about the misspecification parameter λ

in Table 2 casts some doubts on the reliability of DSGE model predictions, however.

In Scenario 2 the policymaker still uses the DSGE model to compute the mean response

of the endogenous variables to the change in ψ1, but recognizes that nature may be injecting

noise around these mean responses using the prior distribution. Dark shades of grey in Fig-

ure 1 correspond to large values of λ, whereas light shades of grey are associated with small

values of the hyperparameter. Not surprisingly for larger values of λ (low misspecification)

the shape of the loss does not change relative to Scenario 1. For smaller values of λ (high

misspecification) the loss profile becomes flatter. A decomposition of the loss into its three

components indicates that for small values of λ the interest rate variability actually rise as

the central bank responds more strongly to inflation. However, this rise is off-set by the

drop in inflation variability.

In Scenario 3 the policymaker uses sample information to learn about the size of the

discrepancies, unlike in the previous scenarios. More specifically, she believes that the

historically observed discrepancies Ψ∆ and Σ∆ are policy invariant. For λ = 1 the loss is

still a decreasing function of ψ1, as in the Scenario 1, but for values of λ less than 1 the

slope switches sign around ψ1 = 2.
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Finally, under Scenario 4 the policymaker again uses sample information to learn about

potential model misspecification. Unlike in Scenario 3, the policymaker now asks the ques-

tion: what is the estimate of the discrepancy if the new policy had been in place during

the sample period. For small values of λ inflation and output growth are essentially being

forecasted using an unrestricted VAR as changes of agents’ decision rules derived from the

DSGE models are deemed unreliable. Only the policy equation reflects the change in ψ1,

thereby generating a higher interest rate volatility which leads to the slight positive slope

of the loss functions depicted in the fourth panel of Figure 1. However, as λ is increased the

loss differentials become more and more similar to the profile calculated under Scenario 1.

At this point we have no theory that lets us determine which of the scenarios will

provide the most accurate prediction of the policy effects. We show that the results of

the policy analysis to some extent depend on: (i) whether the policymaker relies on the

data to assess the degree of misspecifications, i.e., learns about λ; and (ii) the assumption

she makes on the process driving the discrepancies between the DSGE model and the data

in the aftermath of the policy intervention. According to our analysis, values of ψ1 less

than 1.5 are undesirable regardless of the assumptions about model misspecification and its

invariance to policy interventions. Whether ψ1 should be raised, say to 2.5, is questionable.

Under the DSGE model a stronger response to inflation movements leads to a reduction of

the expected loss. On the other hand, the DSGE-VAR analysis with the optimal value of λ

suggests under Scenarios 3 and 4 that the loss will increase.

6 Conclusion

Current DSGE models are to some extent misspecified, even large-scale models such as

the one in Smets and Wouters (2003). While they allow policymakers to assess the effects

of rare policy changes on the expectation formation and decision rules of private agents,

their fit is typically worse than the fit of alternative econometric models, such as VARs

estimated with well-calibrated shrinkage methods. The DSGE-VARs studied in Del Negro

and Schorfheide (2004a) and Del Negro, Schorfheide, Smets, and Wouters (2004) provide a

framework that allows researchers to account for model misspecification. In this paper we

developed techniques to conduct policy analysis with potentially misspecified DSGE models

and applied them to a New Keynesian DSGE model with capital accumulation and several

real and nominal frictions. We studied the effect of changing the response to inflation under

an ad-hoc loss function that penalizes inflation, output growth, and interest rate variability.
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We view our framework as an attractive alternative to robust control approaches to model

misspecification that deserves to be explored in future research.
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A Implementation of the Posterior Simulation

A.1 Draws from the Posterior

We adopt the notation that Ỹ (θ) = Y −XB1(θ) which leads to the definitions

ΓỸ Ỹ = ΓY Y − ΓY XB1(θ)−B1(θ)
′ΓXY −B1(θ)

′ΓXXB1(θ), ΓXỸ = ΓXY − ΓXXB1(θ).

Let etr[A] = exp[− 1
2 tr[A]]. The likelihood function for the VAR representation is given by

p(Y |Ψ,Σ, θ) (A.1)

∝ |Σ|−T/2etr
[
Σ−1

(
Y −X(B1(θ) + ΨB2(θ))

)
′
(
Y −X(B1(θ) + ΨB2(θ))

)]
.

Using Lemma 1(i) we can rewrite the prior mean of Ψ as

Ψ∗(θ) = Ψ̄(Σ, θ) = Γ−1
XX(θ)ΓXỸ (θ)Σ

−1B′

2(θ)[B2(θ)Σ
−1B′

2(θ)]
−1.

The prior density for Ψ conditional on Σ is of the form

p(Ψ|Σ, θ) ∝ etr

[
Σ−1λT

(
− 2B′

2Ψ
′ΓXỸ (θ) +B′

2Ψ
′ΓXX(θ)ΨB2

)]
. (A.2)

The prior density for Σ is given by

p(Σ|θ) ∝ |Σ|− 12 (λT−k+n+1)etr

[
Σ−1λTΣ∗(θ))

]
(A.3)

To simplify notation the (θ)-argument of the functions B1, B2, Ỹ , ΓXY , ΓXX , and ΓY Y is

omitted.

Conditional Posterior of Ψ: Combining the the prior density (A.2) with the likelihood

function (A.1) yields

p(Ψ|Σ, θ, Y )

∝ p(Y |Ψ,Σ, θ)p(Ψ|Σ, θ) (A.4)

∝ etr

[
Σ−1λT

(
ΓY Y − 2B′

2Ψ
′ΓXỸ +B′

2Ψ
′ΓXX(θ)ΨB2

)
+ (Ỹ −XΨB2)

′(Ỹ −XΨB2)

]

∝ etr

[
Σ−1

(
− 2B′

2Ψ
′(λTΓXỸ +X ′Ỹ ) +B′

2Ψ
′(λTΓXX +X ′X)ΨB2

)]

Define

Ψ̃(Σ, θ) = (λTΓXX +X ′X)−1(λTΓXỸ +X ′Ỹ )Σ−1B′

2(B2Σ
−1B′

2)
−1.

The previous calculations show that

Ψ|Σ, θ, Y ∼ N
(
Ψ̃(Σ, θ),

[
(B2Σ

−1B′

2)⊗ (λTΓXX +X ′X)

]
−1)

. (A.5)
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Conditional Posterior of Σ: Combining the the prior densities (A.2) and (A.3) with the

likelihood function (A.1) yields

p(Σ|Ψ, θ, Y ) ∝ p(Y |Ψ,Σ, θ)p(Ψ|Σ, θ)p(Σ|θ) (A.6)

∝ |Σ|− 12 ((λ+1)T−k+n+1)|(B2Σ
−1B′

2)
−1|− k

2

etr

[
Σ−1

(
λT (ΓỸ Ỹ − ΓỸ XΓ−1

XXΓXỸ ) + (Ỹ −XΨB2)
′(Ỹ −XΨB2)

)

+λT (B2Σ
−1B′

2)(Ψ− Ψ̄)′ΓXX(Ψ− Ψ̄)

]
.

Using the definition of Ψ̄, the last term can be manipulated as follows

etr

[
λTB2Σ

−1B′

2(Ψ− Ψ̄)′ΓXX(Ψ− Ψ̄)

]

= etr

[
λTΣ−1

(
B′

2Ψ
′ΓXXΨB2 − 2B′

2Ψ
′ΓXỸ

)

+λTΣ−1B′

2(B2Σ
−1B′

2)
−1B2Σ

−1Γ′
XỸ

Γ−1
XXΓXỸ

]

Hence,

p(Σ|Ψ, θ, Y ) ∝ |Σ|− 12 ((λ+1)T−k+n+1)|(B2Σ
−1B′

2)
−1|− k

2 (A.7)

× etr

[
Σ−1

(
λTΓỸ Ỹ + Ỹ ′Ỹ − 2B′

2Ψ
′(λTΓXỸ +X ′Ỹ )

+B′

2Ψ
′(λTΓXX +X ′X)ΨB2

)]

× etr

[
λT (Σ−1B′

2(B2Σ
−1B′

2)
−1B2Σ

−1 − Σ−1)Γ′
XỸ

Γ−1
XXΓXỸ

]
.

If the DSGE model satisfies Eq. (27) and the error u1,t is orthogonal to xt then

ΓXỸ = ΓXXΨ0(θ)B2

and

(Σ−1B′

2(B2Σ
−1B′

2)
−1B2Σ

−1 − Σ−1)Γ′
XỸ

Γ−1
XXΓXỸ = 0. (A.8)

While the conditional posterior distribution of Σ given our prior distribution is not of

the IW form use an IW distribution as proposal distribution in a Metropolis-Hastings step.

Define

S̃(Ψ, θ) = λTΓỸ Ỹ + Ỹ ′Ỹ − (λTΓXỸ +X ′Ỹ )′ΨB2 −B′

2Ψ
′(λTΓXỸ +X ′Ỹ ) (A.9)

+B′

2Ψ
′(λTΓXX +X ′X)ΨB2

Our proposal distribution for Σ is

IW(S̃(Ψ, θ), (λ+ 1)T, n).



21

Conditional Posterior of θ: The posterior distribution of θ is irregular. Its density is

proportional to the joint density of Y , Ψ, Σ, and θ, which we can evaluate numerically since

the normalization constants for p(Ψ|Σ, θ) and p(Σ|θ) are readily available.

p(θ|Ψ,Σ, Y ) ∝ p(Y,Ψ,Σ, θ) = p(Y |Ψ,Σ, θ)p(Ψ|Σ, θ)p(Σ|θ)p(θ). (A.10)

To obtain a proposal density for p(θ|Ψ,Σ, Y ) we (i) maximize the posterior density of the

DSGE model with respect to θ and (ii) calculate the inverse Hessian at the mode, denoted

by Vθ̄,DSGE . (iii) We then use a random-walk Metropolis step with proposal density

N (θ(s−1), cVθ̄,DSGE)

where θ(s−1) is the value of θ drawn in iteration s − 1 of the MCMC algorithm, and c is a

scaling factor that can be used to control the rejection rate in the Metropolis step.
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Table 1: DSGE Model – Parameter Estimation Results

Parameter Prior Posterior

Mean Stdd Mean 90% Interval

ψ1 1.500 0.250 1.433 1.131 1.770

ψ2 0.125 0.100 0.361 0.102 0.596

ρr 0.500 0.200 0.834 0.800 0.869

r∗a 1.000 1.000 0.577 0.000 1.298

π∗a 3.000 2.000 4.602 3.085 6.073

γa 2.000 1.000 1.945 1.358 2.518

h 0.800 0.100 0.987 0.979 0.997

νl 2.000 0.750 2.464 1.131 3.684

ζw 0.750 0.100 0.721 0.538 0.957

ζp 0.750 0.100 0.794 0.725 0.868

s′ 4.000 1.500 6.274 3.734 8.725

a′ ′ 0.200 0.075 0.225 0.109 0.332

g∗ 0.150 0.050 0.131 0.057 0.200

ρg 0.800 0.050 0.904 0.867 0.943

σz 0.400 2.000 2.086 1.234 2.958

σg 0.300 2.000 0.551 0.470 0.634

σr 0.200 2.000 0.142 0.121 0.162

Notes: The table reports prior means and standard deviations, and posterior means and

90 percent probability intervals for the estimated parameters. See Section 2 for a definition

of the DSGE model’s parameters, and Section 4 for a description of the data. We are

reporting annualized values for π∗, r∗, and γ (a-subscript). The following parameters were

fixed: α = 0.25, δ = 0.025, ιp = ιw = 0, F = 0, λf = λw = 0.3, χ = 0, νm = 2, ρz = 0. All

shocks other than εz, εR, εg are equal to zero.
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Table 2: Log Marginal Data Densities and Posterior Odds

Specification ln p(Y ) Post Odds

DSGE Model -313.58 4E-11

DSGE-VAR, λ = 5.0 -297.01 6E-04

DSGE-VAR, λ = 2.0 -293.96 0.012

DSGE-VAR, λ = 1.5 -292.83 0.039

DSGE-VAR, λ = 1.0 -290.88 0.270

DSGE-VAR, λ = .75 -289.58 1.000

DSGE-VAR, λ = .50 -289.78 0.816

DSGE-VAR, λ = .25 -298.50 1E-04

Notes: The marginal data densities are obtained by integrating the likelihood function with

respect to the model parameters, weighted by the prior density conditional on λ. The

difference of log marginal data densities can be interpreted as log posterior odds under the

assumption of that the two specifications have equal prior probabilities.
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Table 3: DSGE-VAR – Parameter Estimation Results

Parameter Prior Mean Posterior Mean (λ)

0.25 0.5 0.75 1.0 1.5 2.0 5.0 DSGE

ψ1 1.500 1.990 1.788 1.774 1.714 1.824 1.669 1.650 1.433

ψ2 0.125 0.275 0.278 0.263 0.259 0.285 0.296 0.315 0.361

ρr 0.500 0.836 0.845 0.849 0.857 0.861 0.855 0.856 0.834

r∗a 1.000 0.537 0.378 0.346 0.378 0.498 0.419 0.515 0.577

π∗a 3.000 3.596 3.392 3.442 3.431 3.782 3.704 3.980 4.602

γa 2.000 1.925 1.879 2.081 1.943 2.214 2.044 2.218 1.945

h 0.800 0.944 0.882 0.919 0.970 0.982 0.984 0.987 0.987

νl 2.000 2.043 2.161 2.097 2.245 2.326 2.501 2.451 2.464

ζw 0.750 0.726 0.728 0.732 0.755 0.727 0.739 0.745 0.721

ζp 0.750 0.699 0.618 0.640 0.688 0.739 0.746 0.773 0.794

a′ ′ 0.200 0.204 0.203 0.220 0.207 0.197 0.214 0.208 0.225

s′ 4.000 4.296 4.429 4.503 4.565 4.540 4.500 5.091 6.274

g∗ 0.150 0.149 0.158 0.139 0.142 0.141 0.142 0.136 0.131

ρg 0.800 0.813 0.823 0.822 0.826 0.823 0.831 0.836 0.904

σz 0.400 0.956 0.912 1.033 1.322 1.689 1.837 2.139 2.086

σg 0.300 0.303 0.339 0.365 0.369 0.376 0.390 0.424 0.551

σr 0.200 0.123 0.129 0.132 0.128 0.132 0.134 0.137 0.142

Notes: The table reports prior and posterior means for the DSGE-VAR as a function of λ

and the DSGE model. See Section 2 for a definition of the DSGE model’s parameters, and

Section 4 for a description of the data. We are reporting annualized values for π∗, r∗, and

γ (a-subscript). The following parameters were fixed: α = 0.25, δ = 0.025, ιp = ιw = 0,

F = 0, λf = λw = 0.3, χ = 0, νm = 2, ρz = 0. All shocks other than εz, εR, εg are equal to

zero.
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Figure 1: Expected Policy Loss Differentials
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Notes: Mean policy loss differentials relative to baseline policy rule ψ1 = 1.8, ψ2 = 0.25,

ρR = 0.85: DSGE model (black), large values of λ (dark grey), and small values of λ (light

grey). Negative differentials signify an improvement relative to baseline rule.


