Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago

April 25, 2011

Clique Trees

- Today we are going to see an alternative implementation of the same insight as VE.
- We define a set of factors Φ over a set of variables \mathcal{X}, where each factor ϕ_{i} has a scope \mathbf{X}_{i}.
- The set of factors defines the unnormalized distribution

$$
\hat{P}_{\Phi}(\mathcal{X})=\prod_{\phi_{i} \in \Phi} \phi_{i}\left(\mathbf{X}_{i}\right)
$$

- In BN the factors are CPD and the distribution is normalized.
- In BN when dealing with evidence $\mathbf{E}=\mathbf{e}$, the probability is $\hat{P}_{\Phi}(\mathcal{X})=P_{\mathcal{B}}(\mathcal{X}, \mathbf{e})$.
- For a Markov network, then $\hat{P}_{\Phi}(\mathcal{X})=\hat{P}_{\Phi}$, the unnormalized Gibbs measure.

VE and Clique Trees

- For VE, we multiply factors to get ψ_{i}, and we sum the to get a new factor τ_{i}.
- Different view of this process, where
- A factor ψ_{i} is a computational data structure,
- which takes messages τ_{j} generated by other factors ψ_{j},
- and generates messages τ_{i},
- which are used by another factor ψ_{l}.

Cluster Graphs and Family Preserving Property

- A cluster graph is a data structure that provides a graphical flowchart of the process of manipulating the factors.
- Each node in the cluster graph is a cluster, which is associated with a subset of variables.
- The graph contains undirected edges that connect clusters which scopes have non-empty intersections.
- Def: A cluster graph \mathcal{U} for a set of factors Φ over \mathcal{X} is an undirected graph, with nodes i associated with a subset $\mathbf{C}_{i} \subseteq \mathcal{X}$. A cluster graph must be family preserving, each factor $\phi \in \Phi$ must be associated with a cluster \mathbf{C}, denoted $\alpha(\phi)$, such that $\operatorname{Scope}(\phi) \subseteq \mathbf{C}_{i}$. Each edge between a pair of clusters \mathbf{C}_{i} and \mathbf{C}_{j} is associated with a sepset $\mathbf{S}_{i, j}=\mathbf{C}_{i} \cap \mathbf{C}_{j}$.

Cluster graphs and VE

- An execution of VE defines a cluster graph.
- A cluster for each factor ψ_{i}, which is associated with the set of variables $\mathbf{C}_{i}=\operatorname{Scope}\left(\psi_{i}\right)$.
- There is an edge between \mathbf{C}_{i} and \mathbf{C}_{j} if the "message" τ_{i} produced by eliminating a variable in ψ_{i} is used in the computation of τ_{j}.

Example

Properties of VE Cluster Graph

The cluster graph of VE has certain properties:

- The cluster graph induced by the execution of VE is a tree, as it uses each intermediate factor τ_{i} at most once.
- The same for ϕ_{i}, it is used once to create ψ_{j} and removed from the set of factors ϕ.
- The cluster graph is defined to be undirected, however an execution of VE gives directionality.
- The messages induced a directed tree, with all the messages flowing towards a single cluster where the final result is computed.
- This cluster is called the root of the directed tree.
- If \mathbf{C}_{i} is on the path of \mathbf{C}_{j} to the root, then \mathbf{C}_{i} is upstream from \mathbf{C}_{j} and C_{j} is downstream from \mathbf{C}_{i}.

Running intersection property

Def: Let \mathcal{T} be a cluster tree over Φ, with $\mathcal{V}_{\mathcal{T}}$ its vertices and $\mathcal{E}_{\mathcal{T}}$ its edges. \mathcal{T} has the running intersection property if, whenever $X \in \mathbf{C}_{i}$ and $X \in \mathbf{C}_{j}$, then X is also in every cluster in the (unique) path in \mathcal{T} between \mathbf{C}_{i} and \mathbf{C}_{j}.

Intuition: This holds in cluster trees induced by VE because a variable appears in every factor from the moment it is introduced until it is eliminated.

Running intersection property

Theorem: Let \mathcal{T} be a cluster tree induced by VE over Φ. Then \mathcal{T} satisfies the running intersection property.

- Proof: Let \mathbf{C} and \mathbf{C}^{\prime} be two clusters containing X, and let \mathbf{C}_{X} the cluster where X is eliminated.
- We need to prove that X must be in every cluster on the path from \mathbf{C} to \mathbf{C}_{X} (and the same for \mathbf{C}^{\prime}).
- The computation of \mathbf{C}_{X} is later in the algorithm than \mathbf{C}, as after elimination there is no more factor containing that variable.
- By assumption X is in the domain of \mathbf{C}, and X is not eliminated in \mathbf{C}.
- Therefore the message computed in \mathbf{C} must have X in its domain.
- By definition the neighbors upstream in the tree of \mathbf{C} multiply in the message from C, so it's in the scope.
- We can apply the same argument to traverse upstream until \mathbf{C}_{X} where the node is eliminated.
- Thus \mathbf{X} appears in all the cliques between $\mathbf{C}\left(\mathbf{C}^{\prime}\right)$ and \mathbf{C}_{X}.

More on Running intersection property

Theorem: Let \mathbf{C} and \mathbf{C}^{\prime} be two clusters containing X, and let \mathbf{C}_{i} and \mathbf{C}_{j} be two neighboring clusters, such that \mathbf{C}_{i} passes the message τ_{i} to \mathbf{C}_{j}. Then $\operatorname{Scope}\left(\tau_{i}\right)=\mathbf{S}_{i, j}$.

- Similar argument as the previous theorem.
- A cluster tree that satisfies the running intersection property is very useful for exact inference in graphical models.

Even more on Running intersection property

Def: Let Φ be a set of factors over \mathcal{X}. A cluster tree over Φ that satisfies the running intersection property is called a clique tree. In the case of a clique tree, the clusters are called cliques.

- Remember that by definition a cluster tree satisfy the family preserving property: each factor is associated with a \mathbf{C}_{i} and each edge between \mathbf{C}_{i} and \mathbf{C}_{j} is associated with the sepset $\mathbf{S}_{i, j}$.
- This definition is equivalent to say that \mathcal{T} is a clique tree for Φ iff it is a clique tree for a chordal graph containing \mathcal{H}_{Φ}.
- These properties are true iff the clique tree admits VE by message passing over the tree.

Clique Tree and Separation set

- Running intersection property implies independence.
- Let \mathcal{T} be a cluster tree over Φ, and let \mathcal{H}_{Φ} be the undirected graph associated with this factors.
- Theorem: \mathcal{T} satisfies the running intersection property iff, for every sepset $\mathbf{S}_{i, j}$ we have that $\mathbf{W}_{<(i, j)}$ and $\mathbf{W}_{<,(j, i)}$ are separated in \mathcal{H}_{Φ} given $\mathbf{S}_{i, j}$.
- Moreover, each node in \mathcal{T} corresponds to a clique in a chordal graph \mathcal{H}^{\prime} containing \mathcal{H}, and each maximal clique in \mathcal{H}^{\prime} is represented in \mathcal{T}.

Message passing: Sum product

- Given an clique tree, it can be used as the basis for many different VE executions.
- Provides a structure for catching computations, so that multiple executions of variable elimination can be performed more efficiently than doing each one separately.
- Given a clique tree \mathcal{T}, it is guaranteed to satisfy the family preservation and running intersection property.
- This is because it's a cluster graph, and we prove the running intersection property for clique trees.
- If clique \mathbf{C}^{\prime} requires a message from \mathbf{C}, then \mathbf{C}^{\prime} must wait until \mathbf{C} performs the computation and sends the message.

Example

- \mathcal{T} satisfies the family preservation and the running intersection property.
- We have specified the assignment α of the initial factors to cliques.
- We might have more than one choice.
- First task is to compute the initial potentials $\psi_{i}\left(\mathbf{C}_{i}\right)$ by multiplying the initial factors assigned to the clique \mathbf{C}_{i}.
- $P(J)$?

Message propagations

(\mathbf{C}_{5} is the root)

- The operations could also have been done in another order.
- The only constraint is that a clique gets all of its incoming messages from its downstream neighbors before it sends its outgoing messages to the upstream neighbor.
- A clique is ready when it has received all of its incoming messages.
- Is $\left\{\mathbf{C}_{1}, \mathbf{C}_{4}, \mathbf{C}_{2}, \mathbf{C}_{3}, \mathbf{C}_{5}\right\}$ legal? And $\left\{\mathbf{C}_{2}, \mathbf{C}_{1}, \mathbf{C}_{4}, \mathbf{C}_{3}, \mathbf{C}_{5}\right\}$?

Choice of root

(\mathbf{C}_{5} is the root)

- The choice of root is not fully determined.
- To derive $P(J)$ we could have chosen C_{4} as the root.
- What would be the execution?

Other variables

- What if we want to compute $P(G)$?
- What are the possible roots?
- Choose one where the variable appears, doesn't matter which one.
- To compute marginals of different variables we are reusing computation, e.g., \mathbf{C}_{1} and \mathbf{C}_{2}.

