Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago

April 25, 2011

Raquel Urtasun and Tamir Hazan (TTI-C)

- Today we are going to see an alternative implementation of the same insight as VE.
- We define a set of factors Φ over a set of variables X, where each factor φ_i has a scope X_i.
- The set of factors defines the unnormalized distribution

$$\hat{P}_{\Phi}(\mathcal{X}) = \prod_{\phi_i \in \Phi} \phi_i(\mathbf{X}_i)$$

- In BN the factors are CPD and the distribution is normalized.
- In BN when dealing with evidence $\mathbf{E} = \mathbf{e}$, the probability is $\hat{P}_{\Phi}(\mathcal{X}) = P_{\mathcal{B}}(\mathcal{X}, \mathbf{e}).$
- For a Markov network, then $\hat{P}_{\Phi}(\mathcal{X}) = \hat{P}_{\Phi}$, the unnormalized Gibbs measure.

- For VE, we multiply factors to get ψ_i , and we sum the to get a new factor τ_i .
- Different view of this process, where
 - A factor ψ_i is a computational data structure,
 - which takes messages τ_j generated by other factors ψ_j ,
 - and generates messages τ_i ,
 - which are used by another factor ψ_I .

Cluster Graphs and Family Preserving Property

- A **cluster graph** is a data structure that provides a graphical flowchart of the process of manipulating the factors.
- Each node in the cluster graph is a **cluster**, which is associated with a subset of variables.
- The graph contains undirected edges that connect clusters which scopes have non-empty intersections.
- Def: A cluster graph U for a set of factors Φ over X is an undirected graph, with nodes i associated with a subset C_i ⊆ X. A cluster graph must be family preserving, each factor φ ∈ Φ must be associated with a cluster C, denoted α(φ), such that Scope(φ) ⊆ C_i. Each edge between a pair of clusters C_i and C_j is associated with a sepset S_{i,j} = C_i ∩ C_j.

- An execution of VE defines a cluster graph.
- A cluster for each factor ψ_i, which is associated with the set of variables
 C_i = Scope(ψ_i).
- There is an edge between C_i and C_j if the "message" τ_i produced by eliminating a variable in ψ_i is used in the computation of τ_j .

Example

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	C	$\phi_C(C), \phi_D(D, C)$	C, D	$\tau_1(D)$
2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
3	Ι	$\phi_I(I), \phi_S(S,I), \tau_2(G,I)$	G, S, I	$\tau_3(G, S)$
4	H	$\phi_H(H,G,J)$	H, G, J	$\tau_4(G, J)$
5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	G, J, L, S	$\tau_5(J, L, S)$
6	S	$\tau_5(J, L, S), \phi_J(J, L, S)$	J, L, S	$\tau_6(J,L)$
7	L	$\tau_6(J,L)$	J, L	$\tau_7(J)$

(P(J))

The cluster graph of VE has certain properties:

- The cluster graph induced by the execution of VE is a tree, as it uses each intermediate factor τ_i at most once.
- The same for ϕ_i , it is used once to create ψ_j and removed from the set of factors Φ .
- The cluster graph is defined to be undirected, however an execution of VE gives directionality.
- The messages induced a directed tree, with all the messages flowing towards a single cluster where the final result is computed.
- This cluster is called the **root** of the directed tree.
- If C_i is on the path of C_j to the root, then C_i is upstream from C_j and C_j is downstream from C_i.

Def: Let \mathcal{T} be a cluster tree over Φ , with $\mathcal{V}_{\mathcal{T}}$ its vertices and $\mathcal{E}_{\mathcal{T}}$ its edges. \mathcal{T} has the **running intersection** property if, whenever $X \in \mathbf{C}_i$ and $X \in \mathbf{C}_j$, then X is also in every cluster in the (unique) path in \mathcal{T} between \mathbf{C}_i and \mathbf{C}_j .

Intuition: This holds in cluster trees induced by VE because a variable appears in every factor from the moment it is introduced until it is eliminated.

Running intersection property

Theorem: Let \mathcal{T} be a cluster tree induced by VE over Φ . Then \mathcal{T} satisfies the running intersection property.

- Proof: Let **C** and **C**' be two clusters containing X, and let **C**_X the cluster where X is eliminated.
- We need to prove that X must be in every cluster on the path from C to C_X (and the same for C').
- The computation of **C**_X is later in the algorithm than **C**, as after elimination there is no more factor containing that variable.
- By assumption X is in the domain of C, and X is not eliminated in C.
- Therefore the message computed in **C** must have X in its domain.
- By definition the neighbors upstream in the tree of **C** multiply in the message from **C**, so it's in the scope.
- We can apply the same argument to traverse upstream until **C**_X where the node is eliminated.
- Thus **X** appears in all the cliques between **C** (**C**') and **C**_X.

Theorem: Let **C** and **C**' be two clusters containing X, and let **C**_i and **C**_j be two neighboring clusters, such that **C**_i passes the message τ_i to **C**_j. Then $Scope(\tau_i) = \mathbf{S}_{i,j}$.

- Similar argument as the previous theorem.
- A cluster tree that satisfies the running intersection property is very useful for exact inference in graphical models.

Def: Let Φ be a set of factors over \mathcal{X} . A cluster tree over Φ that satisfies the running intersection property is called a **clique tree**. In the case of a clique tree, the clusters are called **cliques**.

- Remember that by definition a cluster tree satisfy the family preserving property: each factor is associated with a **C**_i and each edge between **C**_i and **C**_j is associated with the sepset **S**_{i,j}.
- This definition is equivalent to say that \mathcal{T} is a clique tree for Φ iff it is a clique tree for a chordal graph containing \mathcal{H}_{Φ} .
- These properties are true iff the clique tree admits VE by message passing over the tree.

- Running intersection property implies independence.
- Let \mathcal{T} be a cluster tree over Φ , and let \mathcal{H}_{Φ} be the undirected graph associated with this factors.
- **Theorem:** \mathcal{T} satisfies the running intersection property iff, for every sepset $S_{i,j}$ we have that $W_{<(i,j)}$ and $W_{<,(j,i)}$ are separated in \mathcal{H}_{Φ} given $S_{i,j}$.
- Moreover, each node in T corresponds to a clique in a chordal graph H' containing H, and each maximal clique in H' is represented in T.

- Given an clique tree, it can be used as the basis for many different VE executions.
- Provides a structure for catching computations, so that multiple executions of variable elimination can be performed more efficiently than doing each one separately.
- Given a clique tree \mathcal{T} , it is guaranteed to satisfy the family preservation and running intersection property.
- This is because it's a cluster graph, and we prove the running intersection property for clique trees.
- If clique C' requires a message from C, then C' must wait until C performs the computation and sends the message.

- ${\cal T}$ satisfies the family preservation and the running intersection property.
- We have specified the assignment α of the initial factors to cliques.
- We might have more than one choice.
- First task is to compute the initial potentials ψ_i(C_i) by multiplying the initial factors assigned to the clique C_i.
- P(J)?

Message propagations

- The operations could also have been done in another order.
- The only constraint is that a clique gets all of its incoming messages from its downstream neighbors before it sends its outgoing messages to the upstream neighbor.
- A clique is ready when it has received all of its incoming messages.
- Is $\{C_1, C_4, C_2, C_3, C_5\}$ legal? And $\{C_2, C_1, C_4, C_3, C_5\}$?

- The choice of root is not fully determined.
- To derive P(J) we could have chosen C_4 as the root.
- What would be the execution?

- What if we want to compute P(G)?
- What are the possible roots?
- Choose one where the variable appears, doesn't matter which one.
- To compute marginals of different variables we are reusing computation, e.g., **C**₁ and **C**₂.