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Abstract: We consider two approaches to giving semantics to first-order log-
ics of probability. The first approach puts a probability on the domain, and is
appropriate for giving semantics to formulas involving statistical information
such as “The probability that a randomly chosen bird flies is greater than
9.7 The second approach puts a probability on possible worlds, and is ap-
propriate for giving semantics to formulas describing degrees of belief, such as
“The probability that Tweety (a particular bird) flies is greater than .9.” We
show that the two approaches can be easily combined, allowing us to reason
in a straightforward way about statistical information and degrees of belief.
We then consider axiomatizing these logics. In general, it can be shown that
no complete axiomatization is possible. We provide axiom systems that are
sound and complete in cases where a complete axiomatization is possible,
showing that they do allow us to capture a great deal of interesting reasoning
about probability.

*This is a revised and expanded version of a paper that received the Publisher’s Prize in in IJCAI
89. This version is essentially the same as one that appears in Artificial Intelligence 46, pp. 311-350.



1 Introduction

Consider the two statements “The probability that a randomly chosen bird will fly is
greater than .9” and “The probability that Tweety (a particular bird) flies is greater
than .9.” It is quite straightforward to capture the second statement by using a possible-
world semantics along the lines of that used in [FH94, FHM90, Nil86]. Namely, we
can imagine a number of possible worlds such that the predicate Flies has a different
extension in each one. Thus, Flies(Tweety) would hold in some possible worlds, and not
in others. We then put a probability distribution on this set of possible worlds, and check
if the set of possible worlds where Flies(Tweety) holds has probability greater than .9.

However, as pointed out by Bacchus [Bac90, Bac88|, this particular possible worlds
approach runs into difficulties when trying to represent the first statement, which we may
believe as a result of statistical information of the form “More than 90% of all birds fly.”
What is the formula that should hold at a set of worlds whose probability is greater than
.97 The most obvious candidate is perhaps Va(Bird(z) = Flies(z)). However, it might
very well be the case that in each of the worlds we consider possible, there is at least
one bird that doesn’t fly. Hence, the statement Va(Bird(z) = Flies(z)) holds in none of
the worlds (and so has probability 0). Thus it cannot be used to represent the statistical
information. As Bacchus shows, other straightforward approaches do not work either.

There seems to be a fundamental difference between these two statements. The first
can be viewed as a statement about what Hacking calls a chance setup [Hac65], that
is, about what one might expect as the result of performing some experiment or trial
in a given situation. It can also be viewed as capturing statistical information about
the world, since given some statistical information (say, that 90% of the individuals in a
population have property P), then we can imagine a chance setup in which a randomly
chosen individual has probability .9 of having property P. On the other hand, the second
statement captures what has been called a degree of belief [Bac90, Kyb88]. The first
statement seems to assume only one possible world (the “real” world), and in this world,
some probability distribution over the set of birds. It is saying that if we consider a bird
chosen at random, then with probability greater than .9 it will fly. The second statement
implicitly assumes the existence of a number of possibilities (in some of which Tweety
flies, while in others Tweety doesn’t), with some probability over these possibilities.

Bacchus [Bac90] provides a syntax and semantics for a first-order logic for reasoning
about chance setups, where the probability is placed on the domain. This approach
has difficulties dealing with degrees of belief. For example, if there is only one fixed
world, in this world either Tweety flies or he doesn’t, so F'lies(Tweety) holds with either
probability 1 or probability 0. In particular, a statement such as “The probability that
Tweety flies is between .9 and .95” is guaranteed to be false! Recognizing this difficulty,
Bacchus moves beyond the syntax of his logic to define the notion of a belief function,
which lets us talk about the degree of belief in the formula « given a knowledge base
f3. However, it would clearly be useful to be able to capture reasoning about degrees of
belief within a logic, rather than moving outside the logic to do so.



In this paper, we describe two first-order logics, one for capturing reasoning about
chance setups (and hence statistical information) and another for reasoning about degrees
of belief. We then show how the two can be easily combined in one framework, allowing
us to simultaneously reason about statistical information and degrees of belief.

We go on to consider issues of axiomatizability. Bacchus is able to provide a complete
axiomatization for his language because he allows probabilities to take on nonstandard
values in arbitrary ordered fields. Results of a companion paper [AH94] show that if we
require probabilities to be real-valued (as we do here), we cannot in general hope to have
a complete axiomatization for our language. We give sound axiom systems here which we
show are complete for certain restricted settings. This suggests that our axiom systems
are sufficiently rich to capture a great deal of interesting reasoning about probability.

Although work relating first-order logic and probability goes back to Carnap [Car50],
there has been relatively little work on providing formal first-order logics for reasoning
about probability. Besides the work of Bacchus mentioned above, the approaches closest
in spirit to that of the current paper are perhaps those of [Fel84, FH84, Fen67, Gai64,
Kei85, Los63, SK66]. Gaifman [Gai64] and Scott and Krauss [SK66] considered the prob-
lem of associating probabilities with classical first-order statements (which, as pointed
out in [Bac88], essentially corresponds to putting probabilities on possible worlds). Los
and Fenstad studied this problem as well, but allowed values for free variables to be
chosen according to a probability on the domain [Lo$63, Fen67]. Keisler [Kei85] inves-
tigated an infinitary logic with a measure on the domain, and obtained completeness
and compactness results. Feldman and Harel [FH84, Fel84] considered a probabilistic
dynamic logic, which extends first-order dynamic logic by adding probability. There are
commonalities between the program-free fragment of Feldman and Harel’s logic and our
logics, but since their interest is in reasoning about probabilistic programs, their formal-
ism is significantly more complex than ours, and they focus on proving that their logic
is complete relative to its program-free fragment.

The rest of this paper is organized as follows. In the next section, we present a logic
for reasoning about situations where we have probabilities on the domain. Our syntax
here is essentially identical to that of Bacchus [Bac90]; our semantics follows similar lines,
with some subtle, yet important, technical differences. In Section 3 we present a logic for
reasoning about situations where there are probabilities on possible worlds. In Section 4
we show that these approaches can be combined in a straightforward way. In Section 5
we consider the question of finding complete axiomatizations.

2 Probabilities on the domain

We assume that we have a first-order language for reasoning about some domain. We
take this language to consist of a collection ® of predicate symbols and function symbols
of various arities (as usual, we can identify constant symbols with functions symbols of
arity 0). Given a formula ¢ in the logic, we also allow formulas of the form w,(¢) > 1/2,



which can be interpreted as “the probability that a randomly chosen x in the domain
satisfies o is greater than or equal to 1/2”. We actually extend this to allow arbitrary
sequences of distinct variables in the subscript. To understand the intuition behind this,
suppose the formula Son(z,y) says that z is the son of y. Now consider the three terms
we(Son(x,y)), wy(Son(z,y)), and w .y (Son(z,y)). The first describes the probability
that a randomly chosen z is the son of y; the second describes the probability that =
is the son of a randomly chosen y; the third describes the probability that a randomly
chosen pair (z,y) will have the property that z is the son of y.

We formalize these ideas by using a two-sorted language. The first sort consists of the
function symbols and predicate symbols in @, together with a countable family of object
variables x°,y°,.... Terms of the first sort describe elements of the domain we want to
reason about. Terms of the second sort represent real numbers, typically probabilities,
which we want to be able to add and multiply. In order to accommodate this, the second
sort consists of the binary function symbols + and x, which represent addition and
multiplication, constant symbols 0 and 1, representing the real numbers 0 and 1, binary
relation symbols > and =, and a countable family of field variables x/,y’, ..., which are
intended to range over the real numbers. (We drop the superscripts on the variables
when it is clear from context what sort they are.)

We now define object terms, field terms, and formulas simultaneously by induction.
We form object terms, which range over the domain of the first-order language, by starting
with object variables and closing off under function application, so that it f is an n-ary
function symbol in ® and ¢4,...,t, are object terms, then f(t1,...,t,) is an object term.
We form field terms, which range over the reals, by starting with 0, 1, and probability
terms of the form wz(¢), where ¢ is an arbitrary formula and 7 is a sequence (z1,. .., z,)
of distinct object variables, and then closing off under 4+ and x, so that ¢; +1¢5 and ¢; x ¢,
are field terms if ¢; and ¢, are. We form formulas in the standard way. We start with
atomic formulas: if P is an n-ary predicate symbol in ®, and ¢;,...,¢, are object terms,
then P(ty,...,t,) is an atomic formula, while if ¢; and ¢y are field terms, then #; = ¢,
and £; > ¢y are atomic formulas. We sometimes also consider the situation where there
is an equality symbol for object terms; in this case, if ¢; and ¢, are object terms, then
t; = ty 1s also an atomic formula. We then close off under conjunction, negation, and
universal quantification, so that if @1 and ¢y are formulas and z is a (field or object)
variable, then @1 A @2, —¢1, and Yz, are all formulas. We call the resulting language
L1(®); if it includes equality between object terms, we call it LT ().

We define V, =, and J, in terms of A, =, and V as usual. In addition, if ¢{; and ¢, are
two field terms, we use other standard abbreviations such as #; < 13 for ¢t > 1, 11 > t,
for t; >ty Vg =1y, ¢ty > 1/2 for (1 +1) x ¢ > 1, and so on.

The only differences between our syntax and that of Bacchus is that we write wz(y)
rather than [p]z, we do not consider what Bacchus calls measuring functions (functions
which map object terms into field terms), and the only field functions we allow are + and
x. The language is still quite rich, allowing us to express conditional probabilities, notions
of independence, and statistical notions; we refer the reader to [Bac90] for examples.



We define a type 1 probability structure to be a tuple (D, 7, ), where D is a domain,
7 assigns to the predicate and function symbols in ® predicates and functions of the right
arity over D (so that (D, r) is just a standard first-order structure), and p is a discrete
probability function on D. That is, we take p to be a mapping from D to the real interval
[0,1] such that 3 ,cp pu(d) = 1. For any A C D, we define p(A) = 3 404 p(d).! Given
a probability function p, we can then define a discrete probability function g™ on the
product domain D" consisting of all n-tuples of elements of D by taking p"(d1,...,d,) =
p(di) x ... x p(d,). Define a valuation to be a function mapping each object variable
into an element of D and each field variable into an element of IR (the reals). Given a
type 1 probability structure M and valuation v, we proceed by induction to associate
with every object (resp. field) term ¢ an element [t](as,,) of D (resp. IR), and with every
formula ¢ a truth value, writing (M,v) = ¢ if the value true is associated with ¢ by
(M,v). The definitions follow the lines of first-order logic, so we just give a few clauses
of the definition here, leaving the remainder to the reader:

o (M,v) |t =1L il [li]ar) = [La] )
o (M,v) = Vap iff (M,v[z°/d]) = ¢ for all d € D, where v[z°/d] is the valuation

which is identical to v except that it maps z° to d

o [t ey (P rw) = 0" ({(drs o dn) (M o[2a /s o 2nfdn]) 1= 0})-

The major difference between our semantics and that of Bacchus is that Bacchus
allows nonstandard probability functions, which take values in arbitrary ordered fields,
and are only finitely additive, not necessarily countably additive. Our probability func-
tions are standard: they are real-valued and countably additive. (Bacchus allows such
nonstandard probability functions in order to obtain a complete axiomatization for his
language. We return to this point later.)

We write M | ¢ if (M,v) | ¢ for all valuations v, and write |=1 ¢, and say that ¢
is valid with respect to type 1 structures, it M |= ¢ for all type 1 probability structures
M.

As an example, suppose the language has only one predicate, the binary predicate
Son, and we have a structure M = ({a,b,c},w, p) such that n(Son) consists of only

1The restriction to discrete probability functions is made here for ease of exposition only. We discuss
below how we can allow arbitrary probability functions on the domain. It might seem that for practical
applications we should further restrict to uniform probability functions, i.e., ones that assign equal
probability to all domain elements. Although we allow uniform probability functions, and the language
is expressive enough to allow us to say that the probability on the domain is uniform (using the formula
VaVy(w,(z = z) = w,(y = z))) we do not require them. There are a number of reasons for this. For one
thing, there are no uniform probability functions in countable domains. (Such a probability function
would have to assign probability 0 to each individual element in the domain, which means by countable
additivity it would have to assign probability 0 to the whole domain.) And even if we restrict attention
to finite domains, we can construct two-stage processes (where, for example, one of three urns is chosen
at random, and then some ball in the chosen urn is chosen at random) where the most natural way to
assign probabilities would not assign equal probability to every ball [Car55].
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the pair (a,b), p(a) = 1/3, u(b) = 1/2, and p(c¢) = 1/6. Thus, the structure M can
be viewed as describing a chance setup—a particular experimental situation—where the
probability of picking a is 1/3, the probability of picking b is 1/2, and the probability
of picking ¢ is 1/6. Let v be a valuation such that v(z) = @ and v(y) = ¢. Then
it is easy to check that we have [w,(Son(z,y))|mw = 0, [wy(Son(z,y)) e = 1/2,
and [w . (Son(z,y))|mw) = 1/6. Thus, if we pick an z at random from the domain
(according to the chance setup described by M) and fix y to be ¢, the probability that z
is a son of y is 0: no member of the domain is a son of ¢. If we fix z to be a and pick a y
at random from the domain, the probability that = is a son of y is 1/2, which is exactly
the probability that y = b. Finally, if we pick pairs at random (by choosing the first
element of the pair, replacing it, and then choosing the second element) the probability
of picking a pair (z,y) such that z is a son of y is 1/6.

This example shows that the syntax and semantics of this logic are well suited for
reasoning about chance setups. We can construct similar examples to show that it is ap-
propriate for reasoning about statistical information in large domains. But, as discussed
in the introduction, the logic is not well suited for making statements about degrees of
belief about properties of particular individuals. For example, although in this logic it
is consistent that the probability that a randomly chosen bird flies is between .9 and
.95, 1t is inconsistent that the probability that Tweety flies is between .9 and .95. To
make this more formal, note that in a formula such as w,(¢) > .9, the w, binds the free
occurrences of = in ¢ just as the Vz binds all free occurences of = in ¢ in the formula
Vze. We define a formula to be closed if no variables in the formula are free. Just as
for first-order logic, we can show that the truth of a formula depends only on the values
assigned by the valuation to the free variables. In particular, it follows that the truth of
a closed formula is independent of the valuation.

Proposition 2.1: Suppose ¢ is a formula in L1(®) all of whose free variables are con-
tained in the set X. Let M be a type 1 probability structure and let v1 and vy be two
valuations that agree on X (so that vi(y) = va(y) for all y € X ). Then (M,v1) E ¢ iff
(Mv 02) |: ¥©-

Proof: By a straightforward induction on the structure of , much as in the case of the
corresponding result for first-order logic. We leave details to the reader. 1

If ¢ is a closed formula, then by definition it has no free variables. In this case, notice
that if we take X in the preceding proposition to be the empty set, then all valuations
agree on X. It follows that the truth of a closed formula is independent of the valuation.

Corollary 2.2: If ¢ is a closed formula, then for all valuations vy and vy, we have

(Mvvl) |: ¥ Zﬁ (M,’Ug) |: ¥©-

It follows from Corollary 2.2 that if ¢ is a closed formula, then either M = ¢ or
M = = for each type 1 probability structure M. This means that in a type 1 probability



structure M, a closed formula is true for all choices of random variable z or for none of
them. Thus we get

Lemma 2.3: [Bac90, Lemma 5.1] If ¢ is a closed formula, then for any vector & of
distinct object variables, =1 (wz(@) = 0V wz(p) = 1).

As we mentioned above, our restriction to discrete probability functions on the domain
is not essential. We can allow arbitrary probability functions by associating with the prob-
ability function its domain, that is the o-algebra of subsets of D to which the probability
function assigns a probability. (A o-algebra is a set of subsets that contains the empty
set and is closed under complementation and countable union.) Thus, a type 1 probabil-
ity structure would become a tuple of the form (D, 7, X, y), where X is a o-algebra of
subsets of D and p is a probability function on X. We can define a o-algebra X™ on D"
and a product measure " on D" in a straightforward way [Hal50]. The only problem
that arises is that we might need to take the probability of a nonmeasurable set, i.e., one
not in the o-algebra. For example, suppose we consider the structure M = (D, x, X, u).
We earlier defined [w.(¢(2))](mw) as (D), where D, = {d € D : (M,v[z/d]) |= ¢}.
However, there is now no reason to believe that D, € X, so that u(D,) may not be
well defined. We can get around this problem by requiring that all definable sets be
measurable; this is the solution taken in [Bac90]. Alternatively, we can interpret w, as
an inner measure rather than a probability; see [FH91, FHM90] for further details.

3 Probabilities on possible worlds

Lemma 2.3 shows that in a precise sense type 1 probability structures are inappropri-
ate for reasoning about degrees of belief. In practice, it might well be the case that
the way we derive our degrees of belief is from the statistical information at our dis-
posal. Suppose we know that the probability that a randomly chosen bird flies is
greater than .9. We can express this in £;({Flies, Bird}) by the conditional prob-
ability statement w,(Flies(x)| Bird(z)) > .9, which we view as an abbreviation for
wy(Flies(z) A Bird(z)) > .9w,(Bird(x)).? If we know that Tweety is a bird, then
we might conclude that the probability that Tweety flies at least .9. Thus, if we take

2This is a more appropriate way of formalizing the fact that most birds fly than w,(Bird(z) =
Flies(z)) > .9. The formula Bird(z) = Flies(z) is equivalent to = Bird(z)V Flies(z), so the implication
would hold with high probability even if no bird in the domain flew, as long as less than 10% of the
domain consisted of birds. (I’d like to thank Fahiem Bacchus for pointing this out to me.) Also note
that the representation of conditional probability used here is somewhat nonstandard. The conditional
probability of A given B is typically taken to be the probability of AN B divided by the probability of B.
We have cleared the denominator here to avoid having to deal with the difficulty of dividing by 0 should
the probability of B be 0. This results in some anamolous interpretations of formulas. For example,
w(a|f) = r is taken as an abbreviation for w(a A 8) = rw(B). If w(B) = 0, then w(a A F) = 0, so
w(a|f) = r is true for all values of r. On the other hand, for similar reasons, w(«|f) < r and w(«|8) > r
are both false for all values of r if w(3) = 0.



w(Tweety) to represent the probability that Tweety flies, we might take as a default
assumption a statement like

Bird(Tweety) A w,(Flies(x) | Bird(z)) > .9 = w(Flies(Tweety)) > .9.

As pointed out by Bacchus and others, this type of reasoning is fraught with difficulties.
It is quite clear that this default assumption is not sound in general. In particular, if we
have more specific information about Tweety, such as the fact that Tweety is a penguin,
then we no longer want to draw the conclusion that the probability that Tweety flies is
at least .9. Bacchus provides some heuristics for deriving such degrees of belief [Bac90]
While this is a very interesting topic to pursue, it seems useful to have a formal model that
allows us to directly capture degrees of belief. Such a formal model can be constructed
in a straightforward way using possible worlds, as we now show.

The syntax for a logic for reasoning about possible worlds is essentially the same as
the syntax used in the previous section. Starting with a set ® of function and predicate
symbols, we form more complicated formulas and terms as before except that instead
of allowing probability terms of the form wz(y), where # is some vector of distinct
object variables, we only allow probability terms of the form w(y), interpreted as “the
probability of ¢”. Since we are no longer going to put a probability distribution on the
domain, it does not make sense to talk about the probability that a random choice for
Z will satisfy ¢. For example, in the term w(Flies(Tweely)) considered above, it would
not really make sense to consider the probability that a randomly chosen z satisfies the
property that Tweety flies. It does make sense to talk about the probability of ¢ though:
this will be the probability of the set of possible worlds where ¢ is true. We call the
resulting language Lo(®); if it includes equality between object terms, we call it L5 (®).

More formally, a type 2 probability structure is a tuple (D,S,x,u), where D is a
domain, S is a set of states or possible worlds, for each state s € S, 7(s) assigns to the
predicate and function symbols in ® predicates and functions of the right arity over D,
and p is a discrete probability function on S. Note the key difference between type 1 and
type 2 probability structures: in type 1 probability structures, the probability is taken
over the domain 1), while in type 2 probability structures, the probability is taken over
S, the set of states. Given a type 2 probability structure M, a state s, and valuation v,
we can associate with every object (resp. field) term ¢ an element [t](as,s.) of D (resp.
IR), and with every formula ¢ a truth value, writing (M, s,v) |= ¢ if the value true is
associated with ¢ by (M, s,v). Note that we now need the state to provide meanings for
the predicate and function symbols; they might have different meanings in each state.
Again, we just give a few clauses of the definition here, which should suffice to indicate
the similarities and differences between type 1 and type 2 probability structures:

o (M,s,v) |E Plx)iff v(z) € n(s)(P)
o (M,s,v) =ty =ty i [th](ar,s,0) = [L2)(M,5,0)

o (M,s,v) | Valpiff (M,s,v[z°/d]) E ¢ for all d € D
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o [w(P)sm = p({s' € 5: (M, 5", 0) = ¢}).

We say M | ¢ if (M, s,v) = ¢ for all states s in M and all valuations v, and say
@ 1s valid with respect to lype 2 structures, and write =9 @, if M = ¢ for all type 2
probability structures M.

As expected, in type 2 probability structures, it is completely consistent for the prob-
ability that Tweety flies to be between .9 and .95. Lemma 2.3 does not hold for type
2 probability structures. A sentence such as .9 < w(Flies(Tweety)) < .95 is true in a
structure M (independent of the state s) precisely if the set of states where Flies(Tweety)
is true has probability between .9 and .95. However, there is no straightforward way to
capture statistical information using £,.?

Possible extensions: We have made a number of simplifying assumptions in our pre-
sentation of type 2 probability structures. We now briefly discuss how they might be
dropped.

1. As in the case of type 1 probability structures, we can allow arbitrary probability
functions, not just discrete ones, by associating with the probability function the
o-algebra of subsets of S which forms its domain.

2. We have assumed that all functions and predicates are flexible, 1.e., they may take
on different meanings at each state. We can easily designate some functions and
predicates to be rigid, so that they take on the same meaning at all states.

3. We have assumed that there is only one domain. There are a number of ways to
extend the model to allow each state to have associated with it a different domain.
The situation is analogous to the problem of extending standard first-order modal
logic to allowing different domains. In particular we have to explain the semantics
of formulas such as Jz(w(p(x) = 1/2) (this is known as the problem of quantifying
in). If we take this formula to be true at a state s if, roughly speaking, there is
some d in the domain of s such that w(¢(d) = 1/2), we may have a problem if d
is not in the domain of all other states. The interested reader can consult [Gar77]

3We remark that there is a sense in which we can translate back and forth between domain-based
probability and possible-world-based probability. For example, there is an effective translation that maps
a formula ¢ in LT to a formula ¢’ in language £5, and a translation that maps a type 1 structure M
to a type 2 structure M’ such that M | ¢ iff M’ = ¢’. Similar mappings exist in the other direction.
The key step in the translation from ¢ to ¢’ is to replace a probability term such as wg((z)) in ¢ by
wy(1(a)), where a is a fresh constant symbol. Given a type 1 structure M = (D, m, u) over a domain D,
we construct a corresponding type 2 structure M’ = (D, S, #’, u’) over the same domain D, such that for
each d € D, there is a nonempty set of states Sg = {s' : #'(s)(a) = d} such that p/(Sq) = p(d). For the
translation in the other direction, we replace a predicate P(z1,...,2,) in a L3 formula by a predicate
Play, ... zp, s), where intuitively, s ranges over states. Thus, the dependence of the predicate P on the
state is explicitly encoded in P*. Further details can be found in [AH94]. Despite the existence of these
translations, we would still argue that £; is not the right language for reasoning about probability over
possible worlds, while L2 is not the right language for reasoning about probability over the domain.



for a number of approaches to dealing with this problem; all these approaches can
be modified to apply to our situation.

4. We have assumed that there is only one probability measure p on the set of states.
We may want to allow uncertainty about the probability functions. We can achieve
this by associating with each state a (possibly different) probability function on
the set of states (cf. [FH94, Hal91]). Thus a structure would now consist of a tuple
(D, S, 7, {p® : s € S}); in order to evaluate the value of the (field) term w(yp) in a
state s, we use the probability function p*.

4 Probabilities on the domain and on possible worlds

In the previous sections we have presented structures to capture two different modes
of probabilistic reasoning. We do not want to say that one mode is more “right” than
another; they both have their place. Clearly there might be situations where we want to
do both modes of reasoning simultaneously. We consider three examples here.

Example 4.1: Consider the statement “the probability that Tweety files is greater

7

than the probability that a randomly chosen bird flies.’
formula

This can be captured by the
w(Flies(Tweety)) > wy(Flies(z)).

Example 4.2: For a more complicated example, consider two statements like “The
probability that a randomly chosen bird flies is greater than .99” and “The probability
that a randomly chosen bird flies is greater than .9.” An agent might consider the first
statement rather unlikely to be true, and so take it to hold with probability less than
.2, while he might consider the second statement exceedingly likely to be true, and so
take it to hold with probability greater than .95. We can capture this by combining the
syntax of the previous two sections to get:

w(w,(Flies(x) | Bird(z)) > .99) < .2) A w(w,(Flies(z) | Bird(x)) > .90) > .95).

Example 4.3: The connection between probabilities on the domain and degrees of
belief is an important one, that needs further investigation. Perhaps the most obvious
connection we can expect to hold between an agent’s degree of belief in ¢(a), for a par-
ticular constant a, and the probability that ¢(z) holds for a randomly chosen individual
x is equality, as characterized by the following equation:

w(p(a)) = wa(p(2)). (*)

Another connection is provided by what has been called Miller’s principle (see [Mil66,
Sky80b]), can be viewed as saying that for any real number rq, the conditional probability



of p(a), given that the probability that a randomly chosen z satisfies @ is rg, is itself rq.
Assuming that the real variable r does not appear free in ¢, we can express (this instance
of) Miller’s principle in our notation as

Vrlw(p(a) [ (wa(p(2)) = 1)) = r].

We examine the connection between Miller’s principle and () after we define our formal
semantics.

Given a set @ of function and predicate symbols let £3(®) be the language that results
by allowing probability terms both of the form wz(¢), where  is a vector of distinct object
variables, and of the form w(p); we take L5 (®) to be the extension of L3(®) that includes
equality between object terms. To give semantics to formulas in L5(®) (resp. L5(®)), we
will clearly need probability functions over both the set of states and over the domain.
Let a type 3 probability structure be a tuple of the form (D, S, x, up,ps), where D, S,
and 7 are as for type 2 probability structures, pp is a discrete probability function on D
and pg 1s a discrete probability function on S. Intuitively, type 3 structures are obtained
by combining type 1 and type 2 structures.

Given a type 3 probability structure M, a state s, and valuation v, we can give
semantics to terms and formulas along much the same lines as in type 1 and type 2
structures. For example, we have:

o [w<T17~~~7Tn>(SO)](M,S,’U) = N%({(dlv RS dn) : (Mv S v[wl/dlv cee 7$n/dn]) l: 99})
o [w(Q)]se = ns({s' €5:(M,s',v) = p}).

It is now easy to construct a structure M where the formulain Example 4.2 is satisfied.
We can take Bird to be a rigid designator in M, so that the same domain elements are
birds in all the states of M. On the other hand, Flies will not be rigid. In most of the
states in M (i.e., in a set of states of probability greater than .95), the extension of Flies
will be such that more than 90% of the domain elements that satisfy Bird also satisfy
Flies. However, there will only be a few states (i.e., a set of states of probability less
than .2) where it will be the case that more than 99% of birds fly.

The assumption that Flies is not rigid is crucial here. Since we have assumed that
in a given type 3 probability structure we have one fixed probability function on the
domain, it is easy to see that if all the predicate and function symbols that appear in ¢
are tigid, then the truth of a formula such as w,(¢(x)) = r is independent of the state;
it 1s either true in all states or false in all states.

Lemma 4.4: If M s a type 3 structure such that all the predicate and function symbols
appearing in @ are rigid, then

(a) for all r with 0 < r <1, if (M,s,v) E wi(p(x)) =r for some state s in M, then
(M, s, v) |E w(p(x)) =r for all states s" in M.
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(b) for all r with 0 < r <1, if (M,s,v) = we(p(x)) =r for some state s in M, then
(M, s, v) Fwe(p(x)) =r for all states s" in M.

(¢) M = Vr{(w(w.(p(z)) = 1) = 1) V (w(w:(p(z)) = r) = 0)].

Note the analogy between this result and Lemma 2.3.

Of course, we can easily extend type 3 structures to allow the probability function on
the domain to be a function on the state. Thus at each state s we would have a (possibly
different) probability function p3, on the domain. When computing the value of a field
term such as w,(¢(x)) at state s, we use the function p3,. Other extensions of type 3
structures, along the lines discussed for type 1 and type 2 structures, are possible as well.

As we discussed above, it is not clear how to go from statistical information to degrees
of belief. One connection is suggested by Miller’s Principle, and another is suggested by
(*). As the following theorem shows, in type 3 structures as we have defined them, there
is a close connection between Miller’s principle and ().

Theorem 4.5: If M is a type 3 structure such that all the predicate and function symbols
in @ are rigid except for the constant symbol a, then

M = [w(p(a)) = wa(p(2))] = Vrlw(e(a) | (walp(e)) = 1)) = r].

Proof: Suppose that M = (D, S, 7, up, pp) and all predicate and functions symbols in
@ are rigid in M except for a. For the = direction, suppose that (M, s,v) | w(p(a)) =
w;(p(x)) for some state s € S and valuation v. We want to show that (M,s,v) |
Vr[w(p(a) | (wz(e(z)) = r)) = r]. Choose a real number ro. There are now two cases
to consider. If (M, s,v[r/ro]) E wz(p(z)) = r, then by assumption (M, s,v[r/ro]) E
w(p(a)) = r. By Lemma 4.4, we have (M, s, v[r/ro]) E w.(p(z)) = r for all s € S. This
has two consequences: (1) (M, s',v[r/ro]) E ¢(a) A (w(p(z)) = r) iff (M, s, v[r/r]) E
e(a) and (2) (M,s',v[r/ro]) E w(wz(p(z)) = r) = 1. From (1) and the fact that
(M, 5,0 ra]) | w(@(a)) = 1, we gel (M, s, olr/ro]) I= w(p(a) A (,(9(z)) = r)) = r
Unwinding the definition of conditional probability, it easily follows that (M, s, v[r/ro])
w(p(a) | (wy(p(x)) = r)) = r. For the second case, suppose that (M,s,v[r/ro])
ws(p(x)) = r. By Lemma 4.4, we have (M, s v[r/ro]) = w(p(z)) = r for all s" € S.
Thus ps({s" € S : (M,s",v[r/ro]) E (wz(p(x)) = r) Ap(a))}) = 0. It again easily
follows that (M, s,v[r/ro]) E w(p(a)|(w:(p(z)) = r)) = r. Thus we get (M,s,v) =
Vrlw(e(a) | (wa(p(z)) =r)) = rl.

For the converse, suppose (M, s,v) = Vr[w(e(a) | (w.(p(x)) = r)) = r]. Choose rq
such that (M, s,v[r/ro]) = w.(¢(x)) = r. By Miller’s Principle we have (M, s, v[r/ro]) E
wlp(a) Nwz(p(z)) = r] = r xwlw.(e(x)) = r]. By Lemma 4.4, we have (M, s, v[r/ro]) E
wlw,(e(x)) =r] = 1. Thus, (M, s,v[r/r]) E w(p(a)) = r. It follows that (M, s, v[r/re]) =
w(p(a)) = wz(p(x)). Since r does not appear free in ¢ (by assumption), we get
(M, 5,0) = w(p(a)) = wa(p(2)).

11



We have just shown that

(M, s,0) |= [w(p(a)) = wa(p(2))] = Vr{w(p(a) | (walp(z)) = 1)) = r].
Since we chose s and v arbitrarily, the theorem follows. 1I

While this result does not begin to settle the issue of how to connect statistical
information with degrees of belief, it does show that type 3 structures provide a useful
framework in which to discuss the issue.

We remark that the idea of there being two types of probability has arisen in the
literature before. The most prominent example is perhaps the work of Carnap [Car50],
who talks about probability; and probability,. Probability,; corresponds to relative fre-
quence or statistical information; probability; corresponds to what Carnap calls degree of
confirmation. This is not quite the same as our type 2; degree of confirmation considers
to what extent a body of evidence supports or confirms a belief. However, there is some
commonality in spirit. Skyrms [Sky80a] talks about first- and second-order probabilities,
where first-order probabilities represent propensities or frequency—essentially statisti-
cal information—while second-order probabilities represent degrees of belief. These are
called first- and second-order probabilities since typically one has a degree of belief about
statistical information (this is the case in our second example above). Although L3(®)
allows arbitrary alternation of the two types of probability, the semantics does support
the intuition that these really are two fundamentally different types of probability.

5 On obtaining complete axiomatizations

In order to guide (and perhaps help us automate) our reasoning about probabilities, it
would be nice to have a complete deductive system. Unfortunately, results of [AH94]
show that in general we will not be able to obtain such a system. We briefly review the
relevant results here, and then show that we can obtain complete axiomatizations for
important special cases.

5.1 Decidability and undecidability results

All the results in this subsection are taken from [AH94]. The first result is positive:

Theorem 5.1: If & consists only of unary predicates, then the validity problem for L1(®)
with respect to type 1 probability structures is decidable.

The restrictions made in the previous result (to a language with only unary predicates,
without equality between object terms) are both necessary. Once we allow equality in
the language, the validity problem is no longer decidable, even if ® is empty. In fact, the
set of valid formulas is not even recursively enumerable (r.e.). And a binary predicate in
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® is enough to guarantee that the set of valid formulas is not r.e., even without equality
between object terms.

Theorem 5.2:

1. For all ®, the set of LT(®) formulas valid with respect to type 1 structures is not
r.e.

2. If ® contains at least one predicate of arity greater than or equal to two, then the
set of L1(®) formulas valid with respect to type 1 probabilily structures is not r.e.

Once we move to L4, the situation is even worse. Even with only one unary predicates
in @, the set of valid L£5(®) formulas is not r.e. If we have equality, then the set of
valid formulas is not r.e. as long as ® has at least one constant symbol. (Note that
© = (w(p) = 1) is valid if ¢ contains no nonlogical symbols—that is, ¢ does not contain
any function or predicate symbols, other than equality—so we cannot make any nontrivial
probability statements if ® is empty.)

Theorem 5.3:

1. If ® contains at least one predicate of arity greater than or equal to one, then the
set of Lo(P) formulas valid with respect to type 2 probability structures is not r.e.

2. If ® is nonemply, then the set of L3(P) formulas valid with respect to type 2
probability structures is not r.e.

These results paint a rather discouraging picture as far as complete axiomatizations
go. If a logic is to have a complete recursive axiomatization, then the set of valid formulas
must be r.e. (we can enumerate them by just carrying out all possible proofs). Thus, for
all the cases cited in the previous theorems for which the set of valid formulas is not r.e.,
there can be no complete axiomatization.*

There is some good news in this bleak picture. In many applications it suffices to
restrict attention to structures of size at most N (i.e., structures whose domain has at
most N elements), some fixed N. In this case, we get decidability.

4We remark that in [AH94], the exact degree of undecidability of the difficulty of the validity problem
for all these logics is completely characterized. It turns out to be wildly undecidable, much harder than
the validity problem for the first-order theory of arithmetic. In fact, with just one binary predicate in
the language, the validity problem is harder than that for the first-order theory of real analysis, where
we allow quantification of real numbers as well as over natural numbers! As a consequence, our logics of
probability are not even decidable relative to the full theory of real analysis. In retrospect, this is perhaps
not surprising. A probability function is a higher-order function on sets, so reasoning about probability
causes extra complications over and above reasoning about real numbers and natural numbers. We refer
the reader to [AH94] for details.
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Theorem 5.4: If we restrict to structures of size at most N then, for all ®, the validity
problem for LT(®) (resp., L3 (), LT(P)) with respect to type 1 (resp., type 2, type 3)
probability structures is decidable.

A fortiori, the same result holds if equality is not in the language. We also get decidability
if we restrict to structures of size exactly N.

The restriction to bounded structures is necessary though.

Theorem 5.5: For all ® (resp., for all nonempty ®, for all ®) then the set of LT (D)
(resp., LT (D), LS (D)) formulas valid with respect to type 1 (resp., type 2, type 3) prob-
ability structures of finite size is not r.e.

5.2 An axiom system for probability on the domain

Although the previous results tell us that we cannot in general get a complete axioma-
tization for reasoning about probability, it is still useful to obtain a collection of sound
axioms that lets us carry out a great deal of probabilistic reasoning.

In order to carry out our reasoning, we will clearly need axioms for doing first-order
reasoning. In order to reason about probabilities, which we take to be real numbers, we
need the theory of real closed fields. An ordered field is a field with a linear ordering <.
A real closed field 1s an ordered field where every positive element has a square root and
every polynomial of odd degree has a root. Tarski showed [Tar51, Sho67] that the theory
of real closed fields coincides with the theory of the reals (for the first-order language with
equality and nonlogical symbols +, x,<,0,1). That is, a first-order formula involving
these symbols is true of the reals if and only if it is true in every real closed field. He
also showed that the theory of real closed fields is decidable and has an elegant complete
axiomatization. We incorporate this into our axiomatization too, since the language of
real closed fields is a sublanguage of £1(®).

Consider the following collection of axioms, which we call AXj.

First-order reasoning:
PC All instances of a standard complete axiomatization for first-order predicate calcu-

lus, including axioms for equality if equality is in the language (see, for example,

[End72])
MP From ¢ and ¢ = % infer ¢ (modus ponens)

Gen From ¢ infer Yy (universal generalization)

Reasoning about real closed fields:
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RCF All instances of a standard complete axiomatization for real closed fields (see,
for example, [Sho67]). The axioms of RCF consist of the standard axioms for
fields (saying that addition and multiplication are commutative and associative,
multiplication distributes over addition, 1 is the identity element for multiplication,
and so on), axioms that say < is a total linear order, an axiom that says that every
positive number has a square root, and an axiom schema that says that every odd
degree polynomial has a root.

Reasoning about probabilities over the domain:

PD1 Va,...Vo,0 = w2 (¢) = 1, where (zy,. .., z,) is a sequence of distinct object
variables

PD2 wz(y¢) >0
PD3 wi(p A ) +wz(p A =) = waz(p)

PD4 wz(p) = way, /2 (p[zi/2]), where z is an object variable which does not appear in
Tor g

PD5 wzz(p A ) = wz(p) X wg(vp), if none of the free variables of ¢ is contained in ¥,
none of the free variables of v is contained in 7, and 7 and ¥ are disjoint

RPD1 From ¢ = ¢ infer wz(p) = wz(v))

Note that PD4 allows us to rename bound variables, while PD5 lets us do reasoning
based on the independence of the random variables. AX; is a straightforward extension
of the axiom system used in [FHMO90] for reasoning about the propositional case. Not
surprisingly, it is also quite similar to the collection of axioms given in [Bac90]. Bacchus
does not use the axioms for real closed fields; instead he uses the axioms for ordered
fields, since he allows his probability functions to take values in arbitrary ordered fields.
His axioms for reasoning about probabilities are essentially the same as ours (indeed,
axioms PD1, PD2, and PD4 are also used by Bacchus, while PD5 is a weaker version of
one of his axioms).

It is easy to check that these axioms are sound with respect to type 1 probability
structures: if AX; F ¢ then M = ¢ for every axiom ¢.

Theorem 5.6: AX; is sound with respect to type 1 probability structures.

Proof: It suffices to show that every instance of each axiom is valid and that the inference
rules preserve validity. The only nontrivial case is axiom PD5.

Suppose that none of the free variables in ¢ is contained in § and none of the free
variables in v is contained in 7, and 7, § are disjoint sequences of variables. We
can assume without loss of generality that ¥ = (zq,...,2%) and ¥ = (@p41,...,25).
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Let A = {(dy,...,d,) : (M,v[z1/dr,...,2,/ds]) E ¢
(M,v[z1/dy, ..., 2/di])) = ¢}, and let C = {(dgs1,...,dn
1 }. By definition we have

A¢}7 let B = {(dl,...,dk) :
)i (M, v[@per/digrs .. xn/dy]) E

[w(zl ..... zn>(g‘9 A 77Z})](M,U) = ;un(A)7
(W01, ()] (M) = uk(kB),
[w(xk_H ..... rn)(¢)](M,u) - }un— (C)

From Proposition 2.1, it follows that (M, v[x1/dy, ...z, /d,]) E oA Mt (M, v]z1/dy, ..., 2/dk]) E
¢ and (M, v[zrs1/dks1, ..., 20/dn]) = 9. Thus, A = B x C. By the definition of prod-

uct measure, it follows that p"(A) = p*(B) x u"*¥(C), and hence that wzg(¢ A ) =

wz(p) X wyg(1)), as desired. Thus every instance of PD5 is valid.

By the results of Subsection 5.1, we cannot hope that AX; (or any other axiom
system!) will be complete for £,(®) once ® has a predicate of arity at least two, nor can
it be complete for L. However, if we restrict ® to consist only of unary predicates and
do not have equality between object terms in the language, then it is complete.

Theorem 5.7: If ® consists only of unary predicates, then AXy is a sound and complete
axiomatization for the language L1(P) with respect to type 1 probability structures.

Proof: Soundness follows from Theorem 5.6. For completeness, suppose ¢ is valid. We
show that in the appendix that it must be the case that there is a formula @1 A @
such that (1) AX; F (o1 A wa) = ¢ (2) @1 is a pure first-order formula over ¢ (and
so 1s formed from the function and predicate symbols in ® and object variables, using
first-order quantification), ¢ is a formula in the language of real closed fields (and so
is formed from 0,1, 4, x, >, =, and field variables, using first-order quantification over
field variables), and (3) both ¢; and ¢y are valid. Since ; is a valid pure first-order
formula, we have {PC,MP} F ¢;; since ¢, is a valid formula in the language of real
closed fields, {RCF,MP} F ¢y. From (1), it follows that AX; F ¢. The details of the
proof can be found in the appendix. We remark that this proof gives us an immediate
proof of Theorem 5.1, since, as we mentioned above, the theory of real closed fields is
known to be decidable, as is first-order logic with only unary predicates [DG79]. I

Although the restriction to only unary predicates is clearly a severe one, a great deal
of interesting probabilistic reasoning can be done in this language. In particular, our
examples with flying birds can can be carried out in this language. This result suggests
that, although it is not complete, AX; is rich enough to let us carry out a great deal of
probabilistic reasoning. The next result reinforces this impression.

Let AXY be AX, together with the following axiom, which says that the domain has
size at most V:

FINy Jzy...anVy(y =21 V... Vy = an)
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Theorem 5.8: AX is a sound and complete aviomatization for LT (®) with respect to
type 1 probability structures of size at most N.

Proof: See the appendix. 1

We can of course modify axiom FINy to say that the domain has exactly N elements,
and get a complete axiomatization with respect to structures of size exactly V.

5.3 An axiom system for probability on possible worlds

In order to reason about type 2 structures, we must replace the axioms for reasoning
about probabilities over the domain with axioms for reasoning about probabilities over
possible worlds. Consider the following axioms:

Reasoning about probabilities over possible worlds:

PW1 ¢ = (w(p) = 1), if no function and predicate symbols in ® appear in ¢ except in
the argument 1 of a probability term of the form w(%))

PW2 w(p) >0
PW3 w(p AY) +w(e A1) =w(yp)
RPW1 From ¢ = ¢ infer w(p) = w(y)

PW2, PW3, and RPW1 are the result of replacing wz in PD2, PD3, and RPDI1,
respectively, by w. PW1 is the analogue of PD1. Note that we cannot get a sound axiom
simply by replacing the wz in PD1 by w. For example, it might very well be the case
that Ya P(x) holds at some possible worlds and not at others, so that, for example, we
may have Yz P(z) A w(P(z)) = 1/2 holding at some possible world. On the other hand,
since we use the same probability function to evaluate probability terms at all possible
worlds, it is clear that if ¢ is a formula all of whose function and predicate symbols
appear only in the arguments of probability terms (for example, ¢ might be a formula
such as * = y = (w(P(z) AN Q(y)) = 1/2)), then the truth of ¢ is independent of the
possible world. Thus, if ¢ is true at some possible world, then it must be true at all of
them. The validity of all instances of PW1 in type 2 structures follows.

Let AX; be the system that results by combining these axioms for reasoning about
probabilities in possible worlds together with the axioms and rules of inference for first-
order reasoning and for reasoning about real closed fields, with one small caveat. The
standard axiomatization for first-order logic (see, for example [End72] has the substitu-
tion axiom Yz = @[z /t], where ¢ is a term that is substitutable for x. We do not give
a careful definition for substitutable here (one can be found in [End72]); intuitively, we
do not want to substitute ¢ if ¢ contains a variable y which will end up in the scope
of a quantifier. Here we have to extend the definition of substitutable even further
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so as not to allow the substitution of terms which contain non-rigid function and con-
stant symbols into the scope of the w. To understand why, suppose we have a type 2
structure M consisting of two states, say s; and sy, each of which has probability 1/2,
and exactly two domain elements, say di and dy. Suppose M,s; = P(dy) A =P(dy)
while M, sy | P(dz) A =P(dy). Finally, let a be a constant symbol such that in sy,
the interpretation of a is dy (i.e., 7(s1)(a) = dz) and in sq, the interpretation of a is
di. Now it is easy to see that M,s; | Va(w(P(x)) = 1/2) (informally, this is because
both P(dy) and P(dy) hold at 1/2 of the states), while M,s; = w(P(a)) = 0. Thus,
Vae(w(P(x)) =1/2) = (w(P(a)) = 1/2) is not valid in M. The problem here is that a is
not a rigid designator. Once we restrict substitution appropriately, as described above,
the problem disappears.

With this restriction, it is easy to show
Theorem 5.9: AX); is sound with respect to type 2 probabilily structures.

While AX, is sound with respect to type 2 probability structures, the results of
Subsection 5.1 tell us that it cannot be complete with respect to Lo(®) (resp. L3 (®)) for
any nontrivial ®. However, we can get an analogue to Theorem 5.8. Let AXY be AX,
together with the axiom FINy.

Theorem 5.10: AXY is a sound and complele aziomatizalion for L5 (®) with respect
to type 2 probability structures of size at most N.

Proof: See the appendix. 1

5.4 A combined axiom system

Of course, we can combine AX; and AX, to get AXj3, which is a sound axiomatization
for L3 with respect to type 3 structures. Again, we cannot hope to prove completeness
in general, but, as before, we can prove that AXLY is complete with respect to type 3
structures of size at most N. We omit further details here.

6 Conclusions

We have provided natural semantics to capture two different kinds of probabilistic rea-
soning: in one, the probability is on the domain, and in the other, the probability is on
a set of possible worlds. We also showed how these two modes of reasoning could be
combined in a straightforward way.

We then considered the problem of providing sound and complete axioms to charac-
terize first-order reasoning about probability. While complexity results of [AH94] show
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that in general there cannot be a complete axiomatization, we did provide sound ax-
iom systems that we showed were rich enough to enable us to carry out a great deal of
interesting probabilistic reasoning. In particular, together with an axiom guaranteeing
finiteness, our axiom systems were shown to be complete for domains of bounded size.

Our results form an interesting contrast to those of Bacchus [Bac90]. Bacchus gives
a complete axiomatization for his language (which, as we remarked above, is essentially
the same as our language £1(®) for reasoning about probabilities on the domain), thus
showing that the set of formulas in his language that are valid with respect to the class
of domains he considers is r.e. The reason for this difference is that Bacchus allows
nonstandard probability functions, which are only required to be finitely additive and
can take values in arbitrary ordered fields. Facts about the real numbers (such as the
statement that 2 has a square root), are not valid in all the domains considered by
Bacchus. It is not clear how much we lose by moving from the real numbers to arbitrary
ordered fields. Our technical results, as well as the examples of Bacchus, suggest that the
loss may not be too serious. It is worth noting that the move to nonstandard probability
functions is the key reason that a complete axiomatization is obtainable. In [AH94] it
is shown that all the undecidability results mentioned above can be proved even if we
only require the probability function to be finitely additive, and restrict probabilities to
taking only rational values.?

The situation here is somewhat analogous to that of axiomatizing arithmetic. Godel’s
famous incompleteness result shows that the first-order theory of arithmetic (for the
language with equality and nonlogical symbols +, x, 0,1, where the domain is the natural
numbers) does not have a complete axiomatization. The axioms of Peano Arithmetic are
sound for arithmetic, but not complete. They are complete with respect to a larger class
of domains (including so-called nonstandard models). Our results show that reasoning
about probabilities is even harder than reasoning about arithmetic, and so cannot have
a complete axiomatization. However, Bacchus’ axioms are complete with respect to a
larger class of structures, where probabilities can assume nonstandard values. And just
as the axioms of Peano Arithmetic are sufficiently rich to let us carry out a great deal
of interesting arithmetic reasoning, so the axioms that we have provided (or the axioms
of [Bac90]) are sufficiently rich to enable us to carry out a great deal of interesting
probabilistic reasoning.

5Bacchus claims [Bac90] that it is impossible to have a complete proof theory for countably additive
probability functions. Although, as our results show, his claim is essentially correct (at least, as long as
the language contains one binary predicate symbol or equality), the reason that he gives for this claim,
namely, that the corresponding logic is not compact, is not correct. For example, even if ® = {P}, where
P is a unary predicate, the logic is not compact. (Consider the set {w,(P(z)) # 0, wy(P(z)) < 1/2,
wy(P(x)) < 1/3, we(P(x)) < 1/4, ...}. Any finite subset of these formulas is satisfiable, but the full set
is not.) However, by Theorem 5.7, the logic in this case has a complete axiomatization.
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Appendix: Proofs of Theorems 5.7, 5.8, and 5.10

Before proving the theorems, we first show that a number of facts about probability—
facts that we use repeatedly in our proofs—are provable in AXj.

We say two formulas ¢ and ¢ are mutually exclusive if PC + ¢ = —). A set
©1, ..., of formulas is mutually exclusive if each pair ¢;,¢;, for ¢ # 7, is mutually
exclusive.

Lemma 6.1:
1. If o1,..., 01 are mutually exclusive, then
AXiFwz(er V... Vpr) =wz(er) + -+ wzler).

If AXy F @, then AXy F wz(p) = 1.
AX: Fwz(p) + wz(—p) = 1.

1) =
1) =

®).

wa(
(wz(p A ) = wz(p)).
(
) =

v o

AXy F (wz(y)
6. AXqF (wz(v) = wz(p A —p) = 0).

(wz(p) = wa(¢)).

8. If none of the variables free in ¢ are contained in i, and the variables in T and 1
are distinct, then

7. AXiF (wzle=9¢) =1

AXq F wf,g‘(@) = wf(t,o).

Proof: For part (1), let ©» = @1 V...V ¢;. We proceed by induction on k, the number
of disjuncts. First observe that using PD3 we get that

AXy Fwz(v) = wz( A pr) + wa( A —er).

Since the ¢;’s are mutually exclusive, we get that both
PCF (¢ A1) = @1, and

PCF(pN—-pr) = (p2V ...V pp).
Now using RPD1 and RCF, we get that

AXi Fwz(v) = weler) + wa(pz V..o Vo).

We now continue by induction.
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For part (2), suppose ¥ = (z1,...,x,). By applying universal generalization (the rule
Gen), we have that AX; F Vzq...2,p. The result now follows from PDI.

For part (3), since PC F (¢ V =), from part (1) we get AX; F wz(p V ) = 1.
Since the formulas ¢ and —p are mutually exclusive, the result now follows using part
(1) and straightforward reasoning about equalities.

For part (4), observe that by PD3, we have AX; F wz(p) = wz(p A ) + wz(p A ).
By PD2, we have AX; F wz(e A =p) > 0. The result follows using straightforward
reasoning about inequalities (which can be done using the axioms of RCF).

We prove parts (5) and (6) simultaneously. Observe that from part (3) we have
AXy F (wslth) = 1) = (ws(~¢) = 0), (1)
From part (4), we have
AXy F (ws(~4) = 0) = (wslp A ~p) = 0). (2)

Part (6) now follows from (1) and (2). For part (5), we need only put this together with
the following instance of PD3:

AXy Fwz(p) = wa(e AY) 4 wa(e A =¢).
In order to prove part (7), first observe that, by part (5), we get
AXiFwzlp=v)=1= wz((¢ =) A p) = wz(p) and

AXiFuwzlo =¢) =1 = wz((¢ =) AY) = wz(v).

From the definition of =, the formula (¢ = ¢) is an abbreviation for (@A) V (- A —1)).
Thus, we get
POE((¢=9y)Ne) = (¢ AY), and

PCF((p=9¢)Atp) = (A1),
By applying RPD1, we get
AXiFwzlp=v)=1= wz(p A ) = wz(e) and
AX wf(go = ¢) =1= wf(c,o A ¢) = wf(L/J)

Part (7) now follows.

For part (8), given ¢, let ¢ be any sentence (formula with no free variables) such that
AX; F . (For example, if the free variables of ¢ are contained in Z, we can take ¢ to

be wz(p) > 0.) Observe that PC' F ¢ = (¢ A ). Thus, by RPD1, we get

AXy Fwzg(p) = wegle A).
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Applying PD5, we get

AXy Fwagle A) = walp) X wy(ih).
By part (2), we know AX; F wz(p) = 1, so part (8) follows. I

We are now ready to prove Theorem 5.7. Recall it says that AX; is sound and
complete for the language £1(®), if ® contains only unary predicates.

Proof of Theorem 5.7: We have already dealt with soundess. In order to prove
completeness, suppose 1 ¢. We want to that ¢ is provable in AX;. The proof is
somewhat technical; we just sketch the highlights here, leaving details to the reader.

We first need to develop some machinery. Given a finite set of formulas ¥q,..., ¥y,
define an atom over 1y, ..., v to be a formula of the form ] A ... A 9}, where each 9!
is either ¥; or —);. Note that the atoms are mutually exclusive. Moreover, note that
1 is provably equivalent to the disjunction of the 2¥~! atoms which have 1; as one of
their conjuncts. Thus, given any formula ¢ of the form (o1 A1) V ...V (¢r A ), by
using propositional reasoning (in particular, by using only axioms of the form (p A (¢ V
r))=((pAq)V(pAr)), we can rewrite ¢ to a provably equivalent formula of the form
(i Ao1) V...V (Tm A 0,), where the o;’s are atoms over 1, ..., (since there are 2
distinct atoms, we must have m < 2%) and the ;s are disjunctions of some subset of
©i’s.

Define a pure first-order formula over ® to be one formed from the function and
predicate symbols in ® and object variables, using first-order quantification over object
variables; define a formula in the language of real closed fields to be one formed from
0.1, +, x,>,=, and field variables, using first-order quantification over field variables;
finally, a formula in the language of real closed fields augmented with probability terms
is a formula in the language of real closed fields where we allow in addition probability
terms of the form wz(v)).

Ultimately, we want to reduce ¢ to a conjunction of a pure first-order formula and
a formula in the language of real closed fields. We need to first get ¢ into a certain
canonical form in order to accomplish this goal.

Claim 1: We can effectively find a formula ¢* provably equivalent to ¢ such that ¢* is
in the following canonical form:

(pr A1) VoV (ke A thy),

where

1. p;,e=1,...,k, is a pure first-order formula over @,

2. ;1 = 1,....k, is a formula in the language of real closed fields augmented by
probability formulas,
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3. there is a fixed object variable g such that for every probability term wz(1)) that
occurs in ©*, we have that ¥ = (o) and that ¢ is a conjunction of the form
Q1(zo) A ... A Qn(x0), where each @; is either P; or = P; for some unary predicate
P;in ©,

4. the formulas ¥1,..., 1 are mutually exclusive,

5. for every pure first-order subformula of ¢* of the form Vz°¢’, the formula ¢’ is a
Boolean combination of atomic formulas of the form P(z°) (so that, in particular,
Va°p' is a closed formula).

Moreover, the same variables are free in ¢ and ¢*.

Proof: We prove that ¢ can be simplified in this way by induction on the structure of
@. If ¢ is an atomic formula of the form P(¢y,...,%,) then the result is immediate. The
result is also immediate if ¢ is an atomic formula of the form t; > 5 or t; = t,, where
t; and t, are field terms, neither of which contain probability terms. If ¢ is of the form
©' A" or =’ we can get the result by straightforward propositional reasoning, forming
the appropriate atoms to get mutual exclusion among the ;’s. Thus, there remain only
three cases: (1) ¢ is of the form Vz°¢’, (2) ¢ is of the form Va/y', (3) ¢ contains a
probability term of the form wz(¢').

In the first case, we can assume without loss of generality that ¢’ is in canonical form,
and so is of the form (@1 A1) V ...V (¢ A tr). Since the variable 2° does not occur
free in any of the formulas 1, ..., ¥, by straightforward first-order reasoning (using the
fact that the 1;’s are mutually exclusive) we can show that

k
PCF V2% = (\/ (¢i AV2°¢))).

=1

Now we want to rewrite Vz°p; so that clause 5 in Claim 1 holds, namely, so that all
that remains in the scope of Vz° is a Boolean combination of atomic formulas of the
form P(z°). By clause 5 of the induction hypothesis, we can assume that ¢; is a Boolean
combination of atomic formulas of the form P(z°) and formulas where z° does not appear
free. Using the same ideas as discussed above in the context of atoms, we can show that
@; is provably equivalent to a formula of the form (aq V B1) A ... A (@ V B1), where
each «; is a Boolean combination of formulas of the form P(x°), the variable 2° does not
appear free in any of the 3;’s, and the j3;’s are mutually exclusive. We can now proceed
just as above to pull the §;’s out of the scope of the Vz°. Namely, we can show that

PCFY2'p; = (\7"1/(/32 AVzla;)).

=1

This completes the proof of the first case.

The proof of the second case is similar (but easier), and is left to the reader.
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Now consider the third case, where we have a term of the form wgz(¢'). By the
induction hypothesis and rule RPD1, we can again assume without loss of generality
that ¢’ is in canonical form; i.e., that ¢ is in the form (o1 A1) V...V (g A b)), where
the 1;’s are mutually exclusive. By part (1) of Lemma 6.1, we have

AXy Fwz(p) = wz(er Ahr) + -+ wz(wr A i) (3)

By (3), we can restrict attention to terms of the form wz(/° A ¢"¢/), where /° is a pure
first-order formula and ¢"/ is a formula in the language of real closed fields augmented
by probability terms.

We now proceed very much along the lines of the first case. Suppose & = (x1,...,2,).
By the induction hypothesis, the only variables free in "/ are field variables (since there
are no free object variables in the probability terms, by clause 3 of the claim), so we get
that PC F @™/ = Va,...2,0"/. Using PD1, we get AX; F ¢"/ = (wz(¢"/) = 1). By
applying parts (5) and (6) of Lemma 6.1, we get

AXyF @™ = (0a(!” A ™) = wi(!?)), and (4)

AX; F ﬁgorcf = (wf(gofo A g.o“f) = 0). (5)

By ordinary propositional reasoning we can show that
PCE o= (oA )V (pA=p™).

By standard first-order reasoning about equalities, thanks to (4), we can replace all
occurrences of wz(p/° A ") in ¢ A " by wz(p??), and thanks to (5), we can replace
all occurrences of wz(/° A ") in p A ="/ by 0.

Thus we have transformed ¢ to a provably equivalent formula where the argument in
a probability term is a pure first-order formula; i.e., we can restrict attention to terms
of the form wz(p/°) where ©/? is a pure first-order formula. We are still not done
with this case; we must prove clause 3 of Claim 1. Now, using clause 1 of Claim 1
and standard first-order reasoning, »/° is provably equivalent to a formula of the form
(a1 A B1) V...V (ar A Bi), where each «; is the conjunction of atomic formulas of the
form P(y) or =P(y), where y is one of the variables appearing in Z, none of the variables
variables in ¥ appears free in 3;, and the (3;’s are mutually exclusive. Using part (1) of
Lemma 6.1 again and the fact that the 3;’s are mutually exclusive, we can show that

AXy F wg(%) = wa(ay A By) + -+ + walog A Bi).

Thus, we can restrict attention to a term of the form wz(a; A 3;), where none of the
variables in # appears free in ;. Using analogues to (4) and (5), we pull the 3;’s out of
the scope of wg, just as we pulled "¢/ out of the scope of wz(p/° A /). This means we
can reduce to considering terms of the form wz(«;), where «; is a conjunction of atomic
formulas of the form P(y) or =P(y), and y is one of the variables in Z. We can then apply
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PD5 (and part (8) of Lemma 6.1) repeatedly to reduce to the case where the sequence ¥
in the subscript consists of a single variable. For example, using PD5, we can show

AXyF wiey) (P(2) A =Q(y)) = wa(P(2)) X w,(=Q(y)).

Finally, by applying PD4, we can reduce to the case that the variable is the same for all
probability terms. This proves clause 3 of Claim 1.

In order to complete the proof of Claim 1, we need only observe that the transfor-
mations required to get a formula ¢ into the canonical form required by Claim 1 are all
effective. Moreover, they do not introduce any new variables, so that the same variables
are free in ¢ and *. 1

Claim 2: Given ¢, we can effectively find a formula ¢’ A 1’ such that

1. ¢’ is a pure first-order formula,

2. 9" is a formula in the language of real closed fields,
3. AXi F (' ANY') =,

4. @ is valid iff ¢’ A @' is valid.

Proof: We can assume without loss of generality that ¢ is in the canonical form de-
scribed in Claim 1. Let Py, ..., P, be the atomic formulas that appear in the arguments
of probability terms in ¢, and let 2 be the fixed object variable that appears in the prob-
ability terms. Consider the 2" atoms over Pi(xq),..., P.(z0); call them aq,..., asn. As
we have already observed, we can replace a probability term whose argument is a Boolean
combination of P;(zg),..., P.(zo) by a sum of probability terms whose arguments are
(disjoint) atoms. Thus, ¢ is provably equivalent to a formula where all the probability
terms are of the form w,,(«;). Without loss of generality, we will assume that ¢ is in this
form to start with. Since the «;’s are mutually exclusive and their disjunction is provable,
using parts (1) and (2) of Lemma 6.1, we can show AX; F w,(oq) 4+ -+ + wyy(agn) = 1.

We now show that we can replace these probability terms by variables, thus completely
getting rid of probability terms from the formula. Let v, ..., yon be fresh field variables,
not appearing in ¢; we think of y; as representing wy,(«;). Let ¢z be the result of
replacing each probability term w,,(c;) that appears in ¢ by y;. Let ¢” be the universal
closure® of the formula

2‘TL
Yy yn (- +yr = DA (N 5 > 0)) = ).
=1

6Recall that the universal closure of a formula ¢ is the result of universally quantifying the free
variables in &. Thus, if the free variables in £ are z1, ..., z, then the universal closure of £ i1s Vz7 ... zp€.
Note that the universal closure of a formula is guaranteed to be a closed formula.
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Intuitively, ¢ says that o holds for all ways of assigning probability to the 2" atoms
ai,..., a0 (as long as the probabilities are positive and sum to 1). Clearly PC F ¢" = ¢,
since if we instantiate the y;’s in ¢” with w,(«;), as we observed above, w,, (a1) + -+ +
Wy (agn) = 1 is provable, as is (by PD2) w,(a;) > 0. Moreover, if ¢ is valid, then ¢” is
valid. This follows from the observation that for every choice of values of the y;’s, with
y1+--+ymm=1and y; > 0,2 =1,...,2" it is possible to define a probability function
o on the domain such that w,(a;) = y;. Clearly it is also the case that if ¢ is valid, then
so is i, since " = @ is provable.

Observe that the formula ¢” has no occurrences of probability terms. By using Claim
1, we can effectively find a formula " provably equivalent to ¢” such that ¢" is of the
form (@1 A1) V...V (@ A tpy), where each ¢; is a pure first-order formula and each
t; is a formula in the language of real closed fields (there are no probability terms in
the t;’s since there were none in ¢”) and the v;’s are mutually exclusive. Moreover,
each ; and 1; is a closed formula, since ¢” is. By the arguments above, we know that
AX; F " = ¢. It immediately follows that AX; F (¢; A ;) = ¢ for each disjunct
wi A ; of .

Since ¢" is equivalent to ", and we have already shown that ¢ is valid if ¢” is valid,
it follows that ¢ is valid iff " is valid. We now show that if ¢ is valid iff @; A ¥; is
valid for some ¢ € {1,...,k}. Clearly if ¢; A 1, is valid, then so is ¢"’. For the converse,
suppose " is valid. By the result of Tarski mentioned above, we know that a formula
in the language of real closed fields is valid iff it is true of the reals. Since the ;’s are
mutually exclusive, at most one can be true of the reals. We cannot have all the ;’s
being false of the reals, for then ¢ could not be valid. Thus, exactly one of the 1;’s must
be true of the reals, say ;. It is now easy to see that ¢;, must be valid (since if there
is some first-order structure where —p,, is not satisfiable in some first-order structure,
then —¢" is also satisfiable in that structure augmented by the reals). We can now take
the ¢’ and @’ required to prove the claim to be ¢;, and t;,. From the decidability of the
theory of real closed fields, it follows that we can effectively find the required ;, and ;.
|

The theorem now follows quickly from Claim 2. Given a valid formula ¢, we simply
construct the ¢’ and v’ guaranteed to exist by Claim 2. Since ¢’ is valid, we have
PC F ¢'; since ' is valid, we have RCF + ¢'. Thus AX; F ¢’ A /. From Claim 2, we
now get AX; F . 11

We next want to prove Theorem 5.8; recall that this theorem says that AX}Y is sound
and complete for LT (®) with respect to the domains of size at most N. As we shall
see, many of the ideas in the proof of Theorem 5.7 will reappear in the proof of this
theorem. For simplicity, we do this proof (and the following proof of Theorem 5.10)
under the assumption that ® contains no function symbols, although it may contain
arbitrary predicate symbols. (Since we can always replace a k-ary function symbol with
a (k + 1)-ary predicate symbol, this assumption really entails no loss of generality.) In
particular, this assumption implies that in an atomic formula of the form t; = 5, ; and
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ty are either both field terms or both object variables.

Proof of Theorem 5.8: Clearly AXY is sound. To prove completeness, suppose
is valid with respect to type 1 structures of size at most N. Let Ezactly(M) be the
formula that says that there are exactly M elements in the domain. More formally, let
Ezxactly'(z,...,2zm) be the formula

(A GE#EzZ)AVYy==V...Vy=zy),

i =1, M, i

which says that the z;’s represent the M different domain elements, and let Fzactly(M)
be the formula 321 ...zp Fractly'(z1,...,zm). 1t is easy to see that

{PC,MP,FINN}F o =( ;V\ (Ezactly(M) = ¢)).

Thus, each of the formulas Ezactly(M) = ¢ is valid, and in order to show that AXN + ¢,
it suffices to show, for M =1,..., N, that

AXN b Ezactly(M) = ¢. (6)

Note that we can assume without loss of generality that the variables zq1,..., 23 in

Ezxactly'(z1,...,zm) do not appear free in ¢. Now using standard first-order reasoning
and the fact that zq,...,zp do not appear free in , we get

PC V2. ..ozp(Eractly'(z1, ... 2m) = @) = (Fz1 .. zmBractly'(z1, ... 2m) = @).

Since, by definition, 3z;...zpm Ezactly’(z1,...,za) is just Frzactly(M), the validity of
Ezxactly(M) = ¢ implies the validity of Ezactly'(z1,...,2m) = ¢, and (given the rule
Gen), in order to prove (6) it suffices to prove

AXy F Ezxactly'(z1,...,2m) = ¢. (7)

We prove (7) using techniques similar to those used in Theorem 5.7. Again, the first
step is to reduce ¢ to a certain canonical form. The following claim is in fact almost
identical to Claim 1 in Theorem 5.7, the major difference coming in the details of the
third clause and the fact that we no longer require an analogue to the fifth clause of
Claim 1.

Claim 3: We can effectively find a formula ¢* such that AX; F Ezactly'(z1,...,2m) =
(p = ¢*), and ¢* is in the following canonical form:

(1 Ah1) VooV (or A tg),

where

1. @;,e=1,...,k, is a pure first-order formula over @,
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2. ;1 = 1,....k, is a formula in the language of real closed fields augmented by
probability formulas,

3. there is a fixed object variable g such that for every probability term wz(1)) that
occurs in ¢*, we have that ¥ = (z¢) and that ¢ is a formula of the form z¢ = z;,

where z; is one of the M free variables in Fzactly'(z1,...,2m),
4. the formulas ¥q,..., 1, are mutually exclusive.
Moreover, a variable is free in ©* iff it is free in ¢ or it is one of zq,..., zps.

Proof: Again, we proceed by induction on the structure of ¢, and again, there are three
nontrivial cases: (1) ¢ is of the form Vz°y’, (2) » is of the form Vz/¢', (3) ¢ contains a
term of the form wz(¢’).

We can deal with a formula of the form Vz°¢' just as in the corresponding part of the
proof of Claim 1; indeed, since we no longer have to deal with an analogue of clause (5),
we don’t have to work so hard. Dealing with a formula of the form Va/¢' is similarly
straightforward.

Now consider the third case, where ¢ contains a term of the form wz(¢’). By the
induction hypothesis and rule RPD1, we can assume without loss of generality that ¢’ is
in canonical form; i.e., that ¢’ is in the form (o1 A1) V...V (pr AtPy), where the ;s are
mutually exclusive. Moreover, none of the variables that appear free in the ;’s appear
free in & (since, by clause (3) in the claim, it follows that the only free object variables
that can appear in probability terms in ¢; are in {z1,...,2za}). Thus, just as in the proof
of Claim 1, we can reduce to the case that the argument in the probability term is a pure
first-order formula; i.e., we can restrict attention to terms of the form wz(p’) where ¢ is

a pure first-order formula.

To get the idea of what we are going to do next, suppose ¢’ is the atomic formula

P(y1,y2). Further suppose that P(z1,z1) and P(z1, 23) hold, and that these are the only
domain values for which P holds. Thus P(y1,y2) is true iff (313 = 21 Ay2 = 23) V (11 =
z1 ANy = z3). It then follows that wz(¢') = wz(y1 = 21 Ay1 = z1) +wz(y1 = 21 Ayp = 23).
Thus, we have replaced a probability term by one whose arguments are of the form
y; = zj. This can be done in general.

Suppose that the free variables in ¢’ are y1,...,y,. Define an (M, m)-sequence to be
one of the form (i1,...,0,), where 1 < ¢; < M (note that the i¢;’s are not necessarily
distinct). There are clearly M™ such (M, m)-sequences. If .J is the (M, m)-sequence
(11, ... tm), define Eq(y,.J) to be an abbreviation for the formula

y1 =z N oo o N Y = %4,

Finally, if 7 is a set of (M, m)-sequences, let Eq(y, J) be an abbreviation for the formula
Vier Fq(y,J). We can think of the z;’s in Exactly'(z1, ..., zn) as describing the elements
of the domain. Then the formula Fq¢(i, J) holds exactly if the variables in i take on one
of the values specified by a sequence in J.
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Now in every first-order structure, there is some set of domain values for which the
formula ¢’ holds. For each (M, m)-sequence J = (i1,... 1), let ¢; be an abbreviation
for the formula ¢'[y1/zi,, . . ., Ym/zi, |- Let SEQ(M,m) be the set of all subsets of (M, m)-
sequences. For each J € SEQ(M,m), let ¢'; be an abbreviation for

(A €D ACNA ).

JeT J¢T

Thus, ¢'; holds if ¢’ is true precisely of the domain elements described by [J. It is easy
to see that

PCF @, =V . x,(¢ = Eq(y,T)). (8)

Now in every first-order structure, there is some set of domain values for which the
formula ¢’ holds. Thus, it is easy to see that

PCF Ezactly'(z1,...,2m) = ( \/ ©7).
TESEQ(M,m)

Thus we get

PCF Ezxactly'(z1,...,2m) = (¢

CV  endy) (9)

TESEQ(M,m)

Suppose that Z (the subscript in the probability term wz(’)) is the sequence (x1, ..., z,).
(Note that some of the z;’s and y;’s that appear in ¢’; may be identical.) From PD1 and
(8), we get

AXi b @l = wale’ = Eq(y, 7)) = 1. (10)
Using part (7) of Lemma 6.1, we get
AXyF (way’ = Bq(,T)) = 1) = (wz(¢) = ws( Eq(y, T)))- (11)

Let @7 be the result of replacing all terms of the form wz(¢’) in ¢ by wz(Fq(y,J)).
From (8), (10), and (11), it easily follows that

AXi (e Agly) = (0g A eg). (12)
Thus, from (9) and (12), we get

PC & Ezactly'(z1,...,2m) = (¢

( V 7 NP7))-

TESEQ(M,m)

Now we are almost done. The argument above says that we can replace all terms
wz(¢') in @ by probability terms whose argument is of the form FEq(y, 7). Now Eq(y, )
is an abbreviation for V;c 7 Fq(y,.J); moreover, the disjuncts are mutually exclusive,
since the z;’s represent distinct domain elements. Thus, by part (1) of Lemma 6.1, we
have

we(Eq(§,T)) = Y wa(Eq(y, 7).

JeT
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Thus, we can reduce consideration to probability terms whose arguments are of the form
y1 = 2y A ... AYm = z;,,. Since none of the z;’s appear in 7, by repeated applications
of PD5 (and part (8) of Lemma 6.1), we can reduce to the case where the sequence 7 in
the subscript consists of a single variable, which by PD4 we can rename to zg, and the
argument of the probability term is a single conjunct of the form y = z;.

To summarize, our arguments show that ¢ is equivalent to a formula ¢’ where all
the probability terms are of the form w,,(y = z;). If y is the variable zy, we are done.
If not, then AXy; F ¢ = ((po ANy # z;) V(1 Ay = z;)), where @y (resp. ¢1) is the
result of replacing all occurrences of the term w,, (y = z;) in ¢ by 0 (resp. 1). (This
follows since using PD1 and Lemma 6.1 and the fact that zo does not appear free in
the formula y = z;, we can easily show that AX; F (y = z;) = (ws(y = z;) = 1) and
AXiF (y # z;) = (wg(y = z;) = 0).) Thus, we can transform ¢ to a formula where all
the probability terms are of the form wg,(zo = z;).

Again, in order to complete the proof of Claim 1, we need only observe that the
transformations required to get a formula ¢ into the appropriate canonical form are all
effective, and that no extra free variables are introduced in ¢* other than possibly some
of the z;’s. 1

We can now prove an analogue of Claim 2.

Claim 4: Given ¢ in the canonical form described in Claim 3, we can effectively find a
formula ¢" A ¢’ such that

1. ¢’ is a pure first-order formula,

2. 1" is a formula in the language of real closed fields,

3. AXi F (' ANY') =,

4. Ezxactly'(z1,...,2m) = ¢ is valid iff Ezactly'(z1,...,20m) = @' A’ is valid.

Proof: The proof is almost identical to that of Claim 2. Let y,...,ya be fresh field
variables, not appearing in ¢; we now think of y; as representing wy, (2o = 2;). Let ¢z be
the result of replacing each probability term w,,(zo = 2;) that appears in ¢ by y;. Let
©” be the result of universally quantifying all the variables other than zq,..., 2y that
appear free in the formula

Vyl---yM(((y1+---+yM=1)/\([\ yi > 0)) = ¢y).

As in Claim 2, we can show that PC F ¢” = ¢. Moreover, if Ezactly(z1,...,zpm) = ¢
is valid, then Fzactly'(z1,...,zpm) = ¢" is valid.

Observe that the formula ¢” has no occurrences of probability terms. By using Claim
3, we can effectively find a formula ¢"’ provably equivalent to ¢” such that ¢ is of the
form (o1 A1) V...V (¢r A ), where each @, is a pure first-order formula and each
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Y; is a formula in the language of real closed fields, and the t,;’s are mutually exclusive.
Since ¢ has no free field variables, each of the ¥;’s must be a closed formula. Clearly
AX1 F (@iA);) = ¢ for each disjunct ; A); of p; moreover, using the same arguments as
in Claim 2, we can show that for some ig, we must have that Fzactly'(z1,...,2pm) = @ is
valid iff Ezactly'(z1,...,2m) = (wiy Ay, ) is valid, and that we can find this ¢ effectively.
We now take ¢’ to be ¢;, and ¥’ to be ;. 1

We can now easily prove (7) (and hence the theorem). Suppose Exactly'(z1,...,z2m) =
@ is valid. We simply construct the ¢’ and ' guaranteed to exist by Claim 4. It is
now easy to see that Fzactly’ = (¢’ A 9') is valid iff ¢ is valid in real closed fields
(or, equivalently, ¥’ is true of the reals) and Fzactly'(z1,...,z,) = ¢ is valid. Thus,
Ezxactly'(z1,...,2m) = ¢ is valid iff PC F Ezactly'(z1,...,2m) = ¢' and RCF + o',
Thus, if Fzactly'(z1,...,2m) = @ is valid, then AX; F (Fzactly'(z1,...,2m) = @) A,
and hence AXy F Fzactly'(z1,...,2m) = ¢. 1

Finally, we prove Theorem 5.10; recall that this theorem says that AXY is sound and
complete for L5 (®) with respect to the domains of size at most N. Again, the proof
follows the same basic pattern as the previous proofs. The key observation here is that
the analogue of all but part (8) of Lemma 6.1 also holds for AX, (where we replace wz
by w). The proofs are essentially identical to those in Lemma 6.1, except for part (2).
In order to prove (2), suppose that AX; F ¢. We want to show AX; F w(p) = 1. By
PW2, we have AX; - w(p) > 0. We can now apply PW1 to the formula w(p) > 0 to
get AXy F w(w(e) > 0) = 1. By straightforward propositional reasoning, we also have
AXy F o = (w(p) > 0). The result now follows using RPW1.

Proof of Theorem 5.10: Suppose that ¢ is valid with respect to type 2 structures of
size at most N. We want to show that AXY F . Just as in the proof of Theorem 5.8,
it suffices to prove

AXy b Ezactly'(z1,...,2m) = . (13)

In order to prove (13), we find an appropriate canonical form for formulas in £ (®).

Claim 5: We can effectively find a formula ¢* such that AX; F Ezactly'(z1,...,2m) =
(¢ = ¢*), and * is in the following canonical form:

(pr A1) VooV (ke A ty),

where

1. p;,e=1,...,k, is a pure first-order formula over @,

2. ¢, 1 = 1,....k, is a formula in the language of real closed fields augmented by
probability formulas,

3. the argument @ in every probability term w(1) that occurs in ¢* is a Boolean
combination of atomic formulas of the form P(z;,...,z;, ), where P is an m-ary
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predicate symbol in @ (thus, ¥ is a quantifier-free formula, the only variables that

can appear free in @ are zq,...,zy, and there are no equality terms of the form
tl = tg n ¢),
4. the formulas ¥q,..., 1, are mutually exclusive.
Moreover, a variable is free in ©* iff it is free in ¢ or it is one of zq,..., zps.

Proof: Again, we proceed by induction on the structure of . We discuss only the case
where ¢ contains a term of the form w(¢'). By the induction hypothesis and rule RPW1,
we can assume without loss of generality that ¢’ is in canonical form; i.e., that ¢’ is in
the form (@1 A1) V...V (pr Atb), where the ¢;’s are mutually exclusive. Thus, using the
appropriate analogue of Lemma 6.1 (and using PW1 in place of PD1 to prove analogues
of Equations (4) and (5)), we can reduce just as in the previous proofs to the case that
the argument in the probability term is a pure first-order formula; i.e., we can restrict
attention to terms of the form w(y’) where ¢’ is a pure first-order formula. By using
equivalences of the form V¢ = AM, ¥[x/2], we can easily find a quantifier-free formula
" such that
PC F Ezxactly'(z1,...,2:m) = (¢’ = ¢").

Similar arguments to those used in Claim 3 now allow us to replace each occurrence of
w(¢') in ¢ by w(e”). We omit details here.

We now want to replace all free variables that occur in " by z1,..., zpr. Suppose the

free variables of ¢ are y1,...,ym. Let Eq(y,.J) be defined just as in the proof of Claim
3, where .J is an (M, m)-sequence. Clearly we have PC' F Vo7 Eq(y,.J). Thus,

PCFo=(\ (pAEq, ). (14)
Jeg
Given J = (i1,...,0m), let ¢ be the result replacing all atomic formulasin ”[y1/zi,, ..., Ym/2i,,]

of the form z; = z; by true, and all atomic formulas of the form z; = z;, ¢ # j, by false.
Clearly PC + Eq(y,J) = (¢" = ¢). Thus PC'F (Eq(y,]) = (Eq(y,J) A (¢" = ©]))
Using RPW1 and part (3) of (the analogue of) Lemma 6.1, we can now show that

AXy Ew(Eq(y,J)) < w(e” = ¢). (15)
By PW1, we have AXy - Eq(y,J) = w(Fq(y,J)) = 1. Thus, from (15), we get
AXy F Eq(y,J) = (w(e = ¢7) = 1).

Let ¢ be the result of replacing occurrences of w(¢”) in ¢ by w(¢’7). Similar arguments
to those used in Claim 3 now show

AXy B (p A Eqly,])) = (ws A Eq(y, J)). (16)
By combining (16) with (14), we can see that Claim 5 follows. 1

Claim 6: Given ¢ in the canonical form described in Claim 5, we can effectively find a
formula ¢" A ' such that
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. ¢ is a pure first-order formula,
2. 9" is a formula in the language of real closed fields,

. AXl F (QO//\ @ZJ’) = 28

= e

. Brxactly'(z1,...,z2m) = @ is valid iff Ezactly'(z1,...,2m) = ¢ A’ is valid.

Proof: Let f,...,3, be all the atomic formulas that appear in probability terms in
. Let ajy,...,asn be the atoms over fq,...,3,. We now proceed as in Claim 2. We
can write each f3; as a disjunction of atoms. Thus, by Lemma 6.1, we can replace all
probability terms that appear in ¢ by a sum of probability terms whose arguments are
(disjoint) atoms. Thus, we can assume without loss of generality that the probability
terms that appear in ¢ are all of the form w(a;). Let @z be the result of replacing
each probability term w(a;) that appears in ¢ by y;. Let ¢” be the result of universally
quantifying all the variables other than zy,..., zp that appear free in the formula

2TL
Vyr...yan (1 + -+ yan = 1) A (/\ yi > 0)) = py).
=1

As in Claim 2, we can show that PC F ¢"” = ¢. Moreover, if Fxactly'(z1,...,2m) =
@ is valid, then Fzactly'(z1,...,2m) = ¢" is valid. (We remark that the validity of
Ezxactly'(z1,...,2m) = ¢" depends crucially on the fact that the predicates that appear
as the conjuncts in the «;’s only have z;’s as their arguments, since this allows us to
treat the atomic formulas as independent propositions. For example, if we had allowed
arbitrary variables as arguments, and the only atomic formulas appearing in probability
terms were P(z) and P(z'), then we would have an atom of the form P(x) A =P(2').
If ¢ included a conjunct of the form @ = 2/, then this atom could not have positive
probability, and we could not just replace it by a fresh variable y. Similar difficulties
arise if we allow equalities of the form ¢; = t5 in probability terms.) The rest of the proof
now proceeds just as in Claims 2 and 4, so we omit details here. I
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