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Abstract Pushdown systems (PDSs), Boolean Programs, and Re-

cursive State Machines (RSMs), are equivalent abstract

Nested words are a structured model of execution pathsmodels of procedural programs, with finite data abstrac-
in procedural programs, reflecting their call and return tion but unbounded call stack. Software model checking
nesting structure. Finite nested words also capture the technology is by now thoroughly developed for checking
structure of parse trees and other tree-structured datahsu w-regular properties of runs for these models, when the
as XML. runs are viewed as ordinary words (see [5, 8, 1]). Unfor-

We provide new temporal logics for finite and infi- tunately, temporal logic and-regular properties over ordi-
nite nested words, which are natural extensions of LTL, nary words are inadequate for expressing a variety of prop-
and prove that these logics are first-order expressively- erties of program executions that are useful in interproce-
complete. One of them is based on adding a "within” dural program analysis and software verification. These in-
modality, evaluating a formula on a subword, to a logic clude Hoare-like pre/post conditions on procedures, stack
CaRet previously studied in the context of verifying prop- inspection properties, and other useful program analysis
erties of recursive state machines. The other logic is basedproperties that go well beyond-regular (see [2] for some
on the notion of a summary path that combines the linear examples). On the other hand, many such program analy-
and nesting structures. For that logic, both model-chegkin sis properties can easily be expressed when runs are viewed
and satisfiability are shown to be EXPTIME-complete. as nested words. Runs of Boolean Programs and RSMs can

Finally, we prove that first-order logic over nested words Naturally be viewed as nested words once we add “summary
has the three-variable property, and we present a tempo_edges” between matching calls and returns, and we can thus
ral logic for nested words which is complete for the two- hope to extend model checking technology for procedural
variable fragment of first-order. programs using richer temporal logics over nested words

which remain tractable for analysis.

These considerations motivated the definition of Visibly
1 Introduction Pushdown Languages (VPLSs) [3] and the call-return tempo-
ral logic CaRet [2]. CaRet is a temporal logic over nested
An execution of a procedural program can reveal not just words which_ext_ends LTL with new temporal operat_ors th{?‘t
allow for navigation through a nested word both via its ordi-

a linear sequence of program states encountered during the

execution, but also the correspondence between each poinrt]ary sequential structure, as well as its matching callfnet

during the execution at which a procedure is called and theSummary structure. The standard LTL model checking al-

point when we return from that procedure call. This leads %Oorgzr::i(fe?:[(ilr:\:sl\)ﬂfsczrlfef SVIS; gggeggaﬁXttehne(jzgr;Z iltl)?r\ﬁ
naturally to the notion of a finite or infinite nested word ([4, 9 ' y

3, 2]). A nested word is simply a finite ar-word supplied plexity [2]. VPLs [3] are a richer class of languages that

with an additional binary matching relation which relates capture MSO-definable properties of nested words. Re-

: . ... cently, results about VPLs have been recast in light of
corresponding call and return points (and of course saisfie . . .
“ > . o nested words, and in particular in terms of Nested Word Au-
well-bracketing” properties). Finite nested words oféer

. . . ._tomata [4] which offer a machine acceptor far-Jregular
alternative way to view any data which has both a sequential . .
) . . : nested words, with all the expected closure properties.
string structure as well as a tree-like hierarchical strrect

Examples of such data are XML documents and parse trees. Over ordinary words, LTL has long been considered the



temporal logic of choice for program verification, not only a tableaux construction which translates an NWTL formula
because its temporal operators offer the right abstractioninto a Nested Word Automaton, enabling the standard au-
for reasoning about events over time, but because it pro-tomata theoretic approach to model checking of Boolean
vides a good balance between expressiveness (first-ordePrograms and RSMs with complexity that is polynomial in

complete), conciseness (can be exponentially more sucthe size the model and EXPTIME in the size of the formula.
cinct compared to automata), and the complexity of model-  \we then explore some alternative temporal logics, which
checking (linear time in the size of the finite transition-sys extend variants of CaRet with variants of unary “Within”

tem, and PSPACE in the size of the temporal formula). operators proposed in [2]’ and we show that these exten-
This raises the questiolVhat is the right temporal logic  sions are also FO-complete. However, we observe that the
for nested words? model checking and satisfiability problems for these logics

The question obviously need not have a unique answerare 2EXPTIME-complete. These logics are — provably —
particularly since nested words can arise in various appli- more concise than NWTL, but we pay for conciseness with
cation domains: for example, program verification, as we added complexity.
already discussed, or navigation and querying XML doc- It follows from our proof of FO-completeness for NWTL
uments under “sequential” representation (see, e.g.).[27] that over nested words, every first-order formula with one
However, it is reasonable to hope that any good temporalfree variable can be expressed using only 3 variables. More
logic for nested words should possess the same basic qualigenerally, we show, using EF games, that 3 variables suffice
ties that make LTL a good logic for ordinary words, namely: for expressing any first order formula with two or fewer free
(2) first-order expressive completene4g.L has the same  variables, similarly to the case of words [13] or finite trees
expressive power as first-order logic over words, and we[19]. Finally, we show that a natural unary temporal logic
would want the same over nested words; @asonable  over nested words is expressively complete for first-order
complexity for model checking and satisfiabilignd (3) logic with 2 variables, echoing a similar result known for
nice closure propertiesd TL is closed under boolean com- unary temporal logic over ordinary words [9].
binations including negation without any blow-up, and we Related Work. VPLs and nested words were introduced
would want the same for a logic over nested words. Finally in [3, 4]. The logic CaRet was defined in [2] with the goal
(and perhaps least easy to quantify), we wantr@ural  of expressing and checking some natural non-regular pro-
temporal operators with simple and intuitive semantics ~ gram specifications. The theory of VPLs and CaRet has

Unfortunately, the logic CaRet appears to be deficient been recast in light of nested words in [4]. Other aspects of
with respect to some of these criteria: although it is easily nested words (automata characterizations, games, model-
first-order expressible, proving incompleteness — a widely checking) were further studied in [1, 4, 2, 16]. It was also
believed conjecture — appears to be quite difficult. Also, observed that nested words are closely related to a sequen-
some temporal operators in CaRet (such as the past-timdial, or “event-based” API for XML known as SAX [24] (as
call modalities), motivated by program analysis, may not be opposed to a tree-based DOM API [7]). SAX representation
viewed as particularly natural in other applications. Eher is very important in streaming applications, and questions
is much related work in the XML community on logics for related to recognizing classes of nested words by the usual
trees (see, e.g., surveys [14, 15, 28]), but they tend to havevord automata have been addressed in [27, 6].

different kinds of deficiency for our purposes: they concen-  \While finite nested words can indeed be seen as XML
trate on the hierarchical structure of the data and largely documents under the SAX representation, and while much
ignore its linear structure; also, they are designed fotefini effort has been spent over the past decade on languages
trees. for tree-structured data (see, e.g. [14, 15, 28] for suiyeys
We introduce and study new temporal logics over nestedadapting the logics developed for tree-structured datatis n
words. The main logic we consideested Word Tem-  as straightforward as it might seem, even though from the
poral Logic (NWTL) extends LTL with both a future and complexity point of view, translations between the DOM
past variant of the standard Until operator, which is inter- and the SAX representations are easy [26]. The main prob-
preted ovelsummary pathsather than the ordinary linear lem is that most such logics rely on the tree-based repre-
sequence of positions. A summary path is the unique short-sentation and ignore the linear structure, making the nat-
est directed path one can take between a position in a rurural navigation through nested words rather unnatural un-
and some future position, if one is allowed to use both der the tree representation. Translations between DOM and
successor edges and matching call-return summary edgesSAX are easy for first-order properties, but verifying nav-
We show that NWTL possesses all the desirable proper-igational properties expressed in first-order is necdgsari
ties we want from a temporal logic on nested words. In non-elementary even for words if one wants to keep the
particular, it is both first-order expressively completelan data complexity linear [10]. On the other hand, logics for
has good model checking complexity. Indeed we provide XML tend to have good model-checking properties (at least



in the finite case), typically matching the complexity of word) induced by elementssuch that < ¢ < j. If j < i

LTL [11, 21]. We do employ such logics (e.g., those in we assume thab|i, j] is the empty nested word. For nested
[18, 19, 25]) in the proof of the expressive completeness of w-wordsw, w[i, oo] denotes the substructure induced by el-
NWTL, first by using syntactic translations that reconcile ementd > i. When this is clear from the context, we do not

both types of navigation, and then by combining them with

distinguish references to positions in subwotgls, j] and

a composition game argument that extends the result to ther itself, e.g. we shall often writéw|:, j],7) E ¢ to mean

infinite case, which is not considered in the XML setting.
This, however, involves a nontrivial amount of work. Fur-
thermore, “within” operators do not have any natural analog

on trees, and the proof for them is done by a direct compo-

sition argument on nested words.
Organization. Basic notations are given in Section 2.

Section 3 defines temporal logics on nested words, and

W‘aefine the next/previous and until/since operators for-vari

Section 4 presents expressive completeness results.
study model-checking in Section 5, and in Section 6 we
prove the 3-variable property and present a logic for the 2-
variable fragment. Due to space limitations, proofs arg onl
sketched here.

2 Nested Words

A matchingon N or an interval[l, n] of N consists of
a binary relatiory, and two unary relationsall andret,
satisfying the following: (1) ifu(7, j) holds thencall(s)
andret(j) andi < j; (2) if u(i,5) andu(i, j') hold then
j = 7 and if u(i,j) andu(i’, j) hold theni = i’; (3) if
i < jandcall(i) andret(j) then there exists < k < j
such that eitheg (i, k) or u(k, 7).

Let X be a finite alphabet. Ainite nested woraf length
n overY is a tuplew = (w, u,call, ret), wherew =
aj...a, € ¥*, and(u, call, ret) is a matching onl, n].
A nestedv-word is a tuplew = (w, u, call, ret), where
w=aj... € XY and(y, call, ret) is a matching omN.

We say that a positiohin a nested wordv is acall po-
sition if call(s) holds; areturn position if ret(i) holds;
and aninternal position if it is neither a call nor a return.
If u(i,5) holds, we say that is the matching call ofj,
andj is the matching return of, and writec(j) = ¢ and
r(i) = j. Calls without matching returns apendingcalls,
and returns without matching calls geendingreturns. A
nested word is said to lveell-matchedf no calls or returns

are pending. Note that for well-matched nested words, the

unary predicatesall andret are uniquely specified by
the relationu.

A nested wordw = (w, u,call,ret) is represented
as afirst-order structurélU , (P, )4ex , <, ,call, ret),
whereU is {1,...,n} if w is a finite word of lengtm and
Nif w is a nested>-word; < is the usual ordering?, is the
set of positions labeled, and(u, call, ret) is the match-
ing relation. When we talk about first-order logic (FO) over
nested words, we assume FO over such structures.

For a nested wordo, and two elements, j of w, we
denote byw|[i, j] the substructure of (i.e. a finite nested

thaty is true at the first position afi[¢, j].

3 Temporal Logics over Nested Words

We now describe our approach to temporal logics for
nested words. It is similar to the approach taken by the logic
CaRet [2]. Namely, we shall consider LTL-like logics that

ous types of paths in nested words.

All the logics will be able to refer to propositional letters
including the base unary relatiorall andret, and will
be closed under all Boolean combinations. We shall wirite
for true andl for false. For all the logics we shall define the
notion of satisfaction with respect to a position in a nested
word, writing (@, i) = ¢ when the formulap is true in the
position: of the worduw.

Since nested words are naturally represented as transi-
tion systems with two binary relations — the successor and
the matching relation — in all our logics we introduoext
operatorsO and(O),,. The semantics of those is standard:
(w,i) = Opiff (w,i+1) | ¢, (0,1) E O,piff iisacall
with a matching returr (i.e. (4, j) holds) andw, j) E .
Likewise, we shall havpastoperators>) and©),,: that is,

O is true in positioni > 1 iff ¢ is true in position — 1,
and© ¢ is true in positioryj if j is a return position with
matching calk andy is true ati.

The until/since operatorslepend on what a path is. In
general, there are various notions of paths through a nested
word. We shall consider until/since operators for paths tha
are unambiguous: that is, for every pair of positioasd;
with i < j, there could be at most one path between them.
Then, with respect to any such given notion of a path, we
have the until and since operators with the usual semantics:

(w,i) = U iff there is a positionj > ¢ and a path

i =19 < i1 < ...< i = j between them such that

j) =v¢ and(w, i) = ¢ forevery0 < p < k.

w,1) E ¢Sy iff there is a positionj < ¢ and a path
=49 < i1 < ... < 1, = 1 between them such that

w,7) = ¢ and(w, i,) = ¢ forevery0 < p < k.

The approach of CaRet was to introduce three types of
paths, based on the linear successor (cdliezhr pathg,
the call-return relation (calledbstract pathy and the in-
nermost call relation (callechll paths.

To define those, we need the notiadh@) andR(:) for
each position — these are the innermost call within which



the current action is executed, and its corresponding re-
turn. Formally,C(7) is the greatest matched call position
j < i whose matching return is after(if such a call po-
sition exists), andi (7) is the least matched return position
¢ > i whose matching call is befoie

Definition 3.1 (Linear, call and abstract paths) Given
positionsi < j, asequence=ig < iy <...<ix =jIS
e alinear pathif i, | =i, 4+ 1 forall p < k;
e acall pathif i, = C(ip41) forall p < k;
e anabstract patlif

. r(ip) if i, is @ matched call
(3 = .
7717 )i, + 1 otherwise.

We shall denote until/since operators corresponding to
these paths byJ /S for linear paths,U¢/S¢ for call paths,
andU®/S¢ for abstract paths?

Our logics will have some of the next/previous and un-
til/since operators. Some examples are:

e When we restrict ourselves to the purely linear frag-
ment, our operators af® and©, andU andS, i.e.
precisely LTL (with past operators).

e The logic CaRet [2] has the following operators: the
next operator§) andO,,; the linear and abstract untils
(i.e.,U andU?), the call since (i.e $¢) and a previous
operator©,. that will be defined in Section 4.2.

Another notion of a path combines both the linear and

For example, in the figure belo\2, 4, 5) is a call path,
(3,4,6,7,8,10) is both an abstract and a summary path;
and(3,4,6,7,8,9) is a summary path but not an abstract
path (a9 occurs inside a cafk(8, 10), there is actually no
abstract path frorfi to 9).

8 9 10 11

4 Expressive Completeness

In this section we study logics that are expressively com-
plete for FO, i.e. temporal logics that have exactly the same
power as FO formulas in one free variable over finite and
infinite nested words. In other words, for every formuyla
of an expressively complete temporal logic there is an FO
formulay’(x) such tha(w, i) = ¢ iff @ | ¢’ (i) for every
nested wordo and position in it, and conversely, for every
FO formulay(z) there is a temporal formula’ such that
@ = (i) iff (w,7) F .

Our starting pointis a logic NWTL (nested-word tempo-
ral logic) based on summary paths introduced in the previ-
ous section. We show that this logic is expressively com-
plete (and of course remains expressively complete under
the addition of operators present in logics inspired by-veri
fication of properties of execution paths in programs). This
latter remark will be of importance later, when we study the
complexity of model checking.

We then look at logics close to those in the verification

the nesting structure. It is the shortest path between tWOliterature, i.e. with operators such as call and abstratit un

positions: andj. Unlike an abstract path, it decides when
to skip a call based on positign Basically, a summary path
from i to 5 moves along successor edges until it finds a call
positionk. If k has a matching returfisuch thatj appears
after?, then the summary path skips the entire call frem
to ¢ and continues frord; otherwise the path continues as a

successor path. Note that every abstract path is a summary
path, but there are summary paths that are not abstract paths

Definition 3.2 A summary pattbetween < j in a nested
wordw is a sequence=ip < i1 < ... < i = j such that
forall p < k,

ipy1 = {

The corresponding until/since operators are denote@l§y
andSe.

1our definition of abstract path differs very slightly fromathin [2]:
there ifi, is not a call and,, + 1 is a return, the path stops. This does not
affect the results in any significant way: in fact for summpaghs, to be
defined shortly, adding the same stopping condition resuéta equivalent
logic that is used heavily in the proof of expressive congriess.

r(ip) if i, is @ matched call ang > r (i)
ip + 1 otherwise

and since, and ask what needs to be added to them to get
expressive completeness. We confirm a conjecture of [2]
that awithin operator is what’s needed: such an operator
evaluates a formula on a nested subword.

4.1 Expressive completeness and NWTL

The logic NWTL (ested words temporal logibas next
and previous operators, as well as until and since with re-
spect to summary paths. That is, its formulas are given by:

Tlalcall | ret | ~p | pV¢' |
OSO | O;LSO | @SO | @;L(p |
(pUa(pl | (,OSU(PI

PP

where a ranges over. We use abbreviationsnt for
—call A —ret (true in an internal position). Note that in
the absence of pending calls and returag,1 andret are
definable a&§), T and©,, T, respectively.

Theorem 4.1 NWTL
nested words.

FO over both finite and infinite



Proof sketch Translation of NWTL into FO is quite
straightforward, but we show how to do it carefully, to get
the 3-variable property. For the converse, we define yet an-
other notion of path, called a strict summary path, that is
different from summary paths in two ways. First, if it skips
a call, it jumps fromi not tor(¢) butr(i) + 1. Second, if it

property says that FO sentences over the usual, unnested,
words can be evaluated without using the previgisind
since S operators. Let NWTL™'® be the fragment of
NWTL that does not us8” and the operator® and©,,.

Proposition 4.4 There areFO sentences over nested words

reaches a matched return position, it stops. We then look athat cannot be expressed MV TL e,

the logic NWTL® in which the semantics of until and since
is modified so that they refer to strict summary paths. We
then show that NWTE. C NWTL andFO C NWTL?®.

The former is by a direct translation. The proof of
FO C NWTL? is in two parts. First we deal with the fi-
nite case. We look at the standard translation from neste
words into binary trees. If a matched call positide trans-
lated into a node of a tree, then the first position inside
the call is translated into the right successorpfind the
linear successor of(¢) is translated into the left successor
of s. If 4 is an internal position, or an unmatched call or
return position, its linear successor is translated inedeft
successor of. With this translation, strict summary paths
become paths in a tree.

We next use until/since-based logics for trees from [18,
25]. By a slight adaptation of techniques from these papers
(in particular using the separation property from [18]), we
prove expressive completeness of a translation of NWTL
into a tree logic, and then derive expressive completerfess o
NWTL? for finite nested words.

In the infinite case, we combine the finite case and the
separation property of [18] with Kamp’s theorem and the
separation property of LTL. Note that a nesteewvord
is translated into an infinite tree with exactly one infinite
branch. A composition argument that labels positions of

that branch with types of subtrees reduces each FO formula

to an LTL formula over that branch in which propositions

are types of subtrees, expressible in NWTy the proof

in the finite case. Using the separation properties, we then

show how to translate such a description into NWTL O
Recall thattO* stands for a fragment of FO that consists

of formulas which use at mogt variables in total. First,

from our translation from NWTL to FO we get:

Corollary 4.2 Over nested words, eveRO formula with
at most one free variable is equivalent to B&® formula.

Furthermore, for FOsentenceswe can eliminate the
since operator.

Corollary 4.3 For everyFO sentenceb over finite or in-
finite nested words, there is a formuja of NWTL that
does not use the since operat®f such thatw = @ iff

(@,1) .

The previous operatofs) and©,,, however, are needed

Proof sketch Let w; andwy be two well-matched nested
words, of lengthn; andns respectively. We first show
that, for every NWTI“"® formula, there is an integet

dSUCh thato, [il, nl] =i ﬁ}g[ig, ng] |mp||es (ﬂ}l,il) ): ) iff

(w2,i2) E . Here=; means that Player Il has a win in
the k-round Ehrenfeucht-Fraissé game. This follows from
expressive-completeness and properties of future fosnula
Using this, we show that there is no NW¥t"™ formula
equivalent toO, T A O,Oa (checking whether the first
position is a call, and the position preceding its matching
return is labeled). ]

Note also that adding all other until/since pairs to NWTL
does not change its expressiveness. That is, if we let
NWTL™' be NWTL+ {U, S, U¢, S¢, U%, S}, then:

Corollary 4.5 NWTL*" = FO.

Later, when we deal with model-checking, we shall
prove upper bound results for NWTLthat, while expres-
sively complete for FO, allows more operators.

4.2 Thewithin operator

We now go back to the three until/since operators origi-
nally proposed for temporal logics on nested words, based
on the the linear, call, and abstract paths. In other words,
our basic logic, denoted by L1, is

@, =T | a|call | ret | ~p [ oV |
Op | Oup | Op | Ouep |
eU" | pS¢’ | U | ¢8%" | ¢U%" | 8%/

We now extend this logic with the followingithin op-
erator proposed in [2]. I is a formula, theWWy is a for-
mula, and(w, i) = We iff iis a call, and @]z, j],%) = ¢,
wherej = r(i) if ¢ is a matched call angl = || if i is
an unmatched call. In other wordg/p evaluatesp on a
subword restricted to a single procedure. We denote such
an extended logic by LTL+ W.

Theorem 4.6 LTL*+W = FO over both finite and infinite
nested words.

even for FO sentences over nested words. This situationThe inclusion of LTI* 4+ W into FO is routine. The con-

is quite different thus from LTL, for which the separation

verse is done by encoding NWTL into LTL+ W.



CaRet and other within operators The logic CaRet, as  states, a set of initial state§)q C @, a set of (linear) ac-
defined in [2], did not have all the operators of ITLIn cepting state$” C @, a set of pending call accepting states
fact it did not have the previous 0perat®and@#, and F, C @, a call-transition relation, C Q x ¥ x Q x Q,

it only had linear and abstract until operators, and the call an internal-transition relatio; C Q x ¥ x @, a

since operator. That is, CaRet was defined as return-transition relatiod, C Q x Q x ¥ x @, and a
. ) pending-return-transition relatiaf, C @ x 3 x Q. The
g, = T la]|call|ret| ¢ |pVy | automatonA starts in the initial state and reads the nested
Op | Oup | Ocp | word from left to right. The state is propagated along
U | U | o8%, the linear edges as in case of a standard word automaton.

However, at a call, the nested word automaton propagates
states along the linear edges and also along the nesting edge
(if there is no matching return, then the latter is required
to be in F, for acceptance). At a matched return, the new
state is determined based on the states propagated along the
linear as well as the nesting incoming edges.
Formally, arun r of the automatondA over a nested
wordw = (ajaz ..., u, call ret) is a sequence, qi, - - -
of states along the linear edges, and a sequehcéor
every call positioni, of states along nesting edges, such
thatqy € Qo and for each position, if 7 is a call then
e (w,i) = Cyiff w[j,i] = ¢, wherej = C(i) if C(i) is (qi—1,0ai,qi,q;) € O if i is internal, then(q;—1, a;, ;) €
defined, ang = 1 otherwise. d;; if 4 is a return such thai(j, ), then(g;—1, q.;-, ai,q;) €
_ . . N ) d,; and ifi is an unmatched return thég,_1, a;, ¢;) € py.
[ ] =
i(sw(’jle)firiwze;?ﬁ: (;Ui’ Tiv,z(n? g{gi:ﬁﬁe) 07?(&? (Ilff 75_)(2 The runr is a_ccepting if (1) for all pgnding calisg; € I,
infinite) otherwise. and (2) _th(_e flnal statg, € F for_ finite word of lengtht,
and for infinitely many positions, ¢; € F, for nestedo-

Theorem 4.7 CaRet+ {C,R} = FO over both finite and ~ Words. The automator accepts the nested word if it
infinite nested words. has an accepting run ove.
Nested word automata have the same expressiveness as

The proof of this result is somewhat involved, and relies the monadic second order logic over nested words, and the
on different techniques. The operators used in CaRet do notanguage emptiness can be checked in polynomial-time [4].
correspond naturally to tree translations of nested words,
and the lack of all until/since pairs makes a translatiomfro 52  Tapleau construction
NWTL hard. We thus use a composition argumaingctly
on nested words.

and we assume thatranges oveE U {pret}, wherepret

is true in pending returns (which is not definable with the re-
maining operators). Her@), is the previous operator cor-
responding to call paths. Formallys, i) = O if C(i) is
defined andw, C(7)) = ¢.

A natural question is whether there is an expressively-
complete extension of this logic. It turns out that twibhin
operators based ahandR (the innermost call and its re-
turn) functions provide such an extension. We define two
new formulag¢ andR¢ with the semantics as follows:

We now show how to build an NWA accepting the satis-
. o fying models of a formula of NWTL. This leads to deci-
5 Model-Checking and Satisfiability sion procedures for satisfiability and model checking.
Let us first consider special kinds of summary paths:
In this section we show that both model-checking and summary-dowrpaths are allowed to use only call edges
satisfiability are single-exponential-time for NWTL. Ircta (from a call to the first position inside the call), nesting
we prove this bound for NWTL, an FO-complete exten-  edges (from a call to its matching return), and internal edge
sion of NWTL with all of U, S, U¢, 8¢, U% 8% We use (from an internal or return position to a call or internal po-
automata-theoretic techniques, by translating formuia in  sition). Summary-ugpaths are allowed to use only return
equivalent automata on nested words. We then show thakdges (from a position preceding a return to the return),
a different expressively complete logic based on adding thenesting edges and internal edges. We will Usé' and
within operator to CaRet requires doubly-exponential time U’ to denote the corresponding until operators. Observe
for model-checking, but is exponentially more succinct. thatU? 1 is equivalent tap U1 (o U7 ).
Given a formulap, we wish to construct a nested word
5.1 Nested word automata automatord,, whose states correspond to sets of subformu-
las of . Intuitively, given a nested word, a runr, which
A nondeterministic nested word automaton is a linear sequenagyg; . .. of states and stateg labeling
(NWA) A over an alphabetX is a structure nesting edges from call positions, should be such that each
(Q,Qo, F, Fe,6c,0;,0r, ) consisting of a finite set of  stateg; is precisely the set of formulas that hold at position



i+ 1. The labely, is used to remember abstract-next formu-
las that hold at positiohand the abstract-previous formulas
that hold at matching return. For clarity of presentatioa, w
focus on formulas with next operatdts andO,,, and until
over summary-down paths. It is easy to modify the con-
struction to allow other types of untils and past operators.

Given a formulap, the closure ofp, denoted byel(p),
is the smallest set that satisfies the following properties:
cl(p) containsy, call, ret, int, and Oret; if either
=, or Oy or Op1p is in cl(p) theny € cl(yp); if
YV € c(p), theny, ' € cl(p); if » Uk € cl(yp),
theny, v/, Oy Uty'), andO,, (v UHy') are incl(p);
and if¢p € cl(y) andy is not of the form—6 (for any9),
then—y € cl(yp). Itis straightforward to see that the size of
cl(y) is only linear in the size ap. Henceforth, we identify
=) with the formulag).

An atomof p is a setd C cl(p) that satisfies:

e Foreveryy € cl(p),p € Diff v &€ D .

e For every formulay vV ¢’ € cl(p), v V' € D iff
(v € ®ory’ € ).

e For every formulay ULy’ € cl(p), p Uy € @
iff either ¢’ € ® or (y € ® andOret ¢ ® and either
O U7Hy') € @ or O, (v U7y € ).

e & contains exactly one of the elements in the set
{call ret,int}.

These clauses capture local consistency requirements.

Given a formulap, we build a nested word automaton
A, as follows. The alphabét is 247, whereAP is the set
of atomic propositions.

1. Atoms ofyp are states ofl,;
2. An atom® is an initial state iffp € ®;

3. Foratomsb, ¥ and a symbok C AP, (®,a, V) is an
internal transition of4,, iff (a) int € ®; and (b) for
p € AP, p € aiff p € ®; and (c) for eactOy ¢
cl(p), ¢ € Viff Oy € ®; (d) foreachO ¢ € cl(p),
O;ﬂ/] ¢ P.

For atoms®, ¥, , ¥, and a symbola C AP,
(®,a,¥,;,¥,) is acall transition ofd,, iff () call €
®; and (b) forp € AP, p € aiff p € ®; and (c) for
eachOy € cl(yp), v € U, iff Oy € ®; and (d) for
eachO,y € cl(p), O € Uy iff Oy € ®.

For atoms®;,®,,¥ and a symbola C AP,

(®y, @1, a, T) is areturn transition ofl, iff (a) ret €

®;; and (b) forp € AP, p € aiff p € ®;; and (c) for
eachOy € cl(yp), v € Y iff Oy € &;; and (d) for
eachO ¢ € cl(p), Oup € @y iff 1 € ©;.

For atomsp, ¥ and a symbolk C AP, (®,a,V)is a
pending-return transition ofl, iff (a) ret € ®; and
(b) forp € AP, p € aiff p € ®; and (c) for each

Oy € c(p), v € iff Oy € ®; (d) foreachD ¢ €
cl(p), Ouh € @.

The transition relation ensures that the current symbol is

consistent with the atomic propositions in the currentstat

and next operators requirements are correctly propagated.
An atom ® belongs to the sef, iff ® does not con-

tain any abstract-next formula, and this ensures that, in an

accepting run, at a pending call, no requirements are prop-

agated along the nesting edge. For each until-formuia

the closure, lef’,, be the set of atoms that either do not con-

tain+ or contain the second argumentf Then a nested

word w over the alphabe?*” satisfiesy iff there is a run

r of A, overw such that for each until-formula € cl(y),

for infinitely many positions, ¢; € F;. Thus,

Theorem 5.1 For a formulay of NWTL™, one can effec-
tively construct a nondeterministidiBhi nested word au-
tomatonA,, of size2©(I¥l) accepting the models of

Since the automatod,, is exponential in the size aj,
we can check satisfiability af in exponential-time by test-
ing emptiness ofA,,. EXPTIME-hardness follows from the
corresponding hardness result for CaRet.

Corollary 5.2 The satisfiability problem foNWTL™" is
ExpPTIME-complete.

When programs are modeled by nested word automata
A (or equivalently, pushdown automata, or recursive state
machines), and specifications are given by formuylasf
NWTL™, we can use the classical automata-theoretic ap-
proach: negate the specification, build the N\WMA, , ac-
cepting models that violate, take the product with the pro-
gramA, and test for emptiness @ A)NL(A-,). Note that
the program typically will be given more compactly, say, as
a Boolean program [5], and thus, the NWAmay itself be
exponential in the size of the input.

Corollary 5.3 Model checking\WTL " specifications with
respect to Boolean programsExpTIME-complete.

5.3 Checkingwithin operator

We now show that addingithin operators makes model-
checking doubly exponential. Given a formyaf NWTL
or NWTL™, let p,, be a special proposition that does not
appear inp. Let W, be the language of nested words
such that for each positian (w, ¢) |= p, iff (w,7) = We.
We construct a doubly-exponential automaf@rihat cap-
turesW.,,.. First, using the tableau construction for NWTL
we construct an exponential-size automatotinat captures
nested words that satisfy. Intuitively, every time a propo-
sition p,, is encountered, we want to start a new copylof
and a state of3 keeps track of states of multiple copies of



A. At a call, B guesses whether the call has a matching re- Remark: checking @ = ¢ for finite nested words For
turn or not. In the latter case, we need to maintain pairs of finite nested words, one evaluates the complexity of check-
states ofA so that the join at return positions can be done ing whether the given word satisfies a formula, in terms
correctly. A state of3, then, is either a set of states4br a of the length|w| of the word and the size of the formula.
set of pairs of states of. We explain the latter case. A pair A straightforward recursion on subformulas shows that for
(g, ¢') belongsto the state &, while reading positionof a NWTL formulas the complexity of this check(|w|-|¢|),
nested word, if the subword from to the first unmatched  and for both logics wittwithin operators, CaRet {C, R}
return can taked from ¢ to ¢’. When reading an internal  and LTL* + W, itis O(|w|? - ||).

symbola, a summary(q, ¢’) in the current state can be up-

dated to(u, ¢'), providedA has an internal transition from 5.4 Onwithin and succinctness

tou ona. Let B read a call symbat. Consider a summary

(¢,¢') in the current state, and a call-transiti@na, q:, qn) We saw that adding within operators to NWTLin-

of A. ThenB guesses the return transitiom, g, b, u) that  creases the complexity of model-checking by one exponent.
will be used byA at the matching return, and sends the |n particular, there could be no polynomial-time transiati
summary(q;, w;) along the call edge and the triple v, ¢') ~ from NWTL™ + W to NWTL*. We now prove a stronger
along the nesting edge. While processing a return symbolresyit that gives a space bound as well: while NWTFLW

b, the current state oB must contain summaries Only of has the same power as NWTthS formulae can be ex-
the form (¢, ¢) where the two states match, and for each ponentially more succinct than formulas NWTLThat is,
summary(b, u, ¢') retrieved from the state along the nesting there is a sequence,, n € N, of NWTL* + W formulas
edge, the new state contaifis ¢'). Finally, B mustenforce  sych thaty,, is of sizeO(n), and the smallest formula of
thatWe holds wherp,, is read. Only a call symbal can  NWTL* equivalent tap,, is of size2?(™). For this result,

containp,,, and when reading such a symbsl,guesses a  we require nested-words to be over the alphabt”.
call transition(qo, a, ¢;, gr.), Wheregy is the initial state of

A, and a return transitiofw, ¢x, b, g¢5), wheregy is an ac- Theorem 5.6 NWTL ™ 4+ W is exponentially more succinct
cepting state ofl, and sends the summa(ig, ;) alongthe  thanNWTL™.

call edge and the symbablalong the nesting edge.

The proof is based upon succinctness results in [9, 22],

Lemma 5.4 For every formulap of NWTL™, there is a by adapting their examples to nested words.

nested word automaton that accepts the languageand

has size doubly-exponential jip|. . )
6 Finite-Variable Fragments
Consider a formula of NWTL " +W. For every within-

subformulaWp of ¢, let ¢’ be obtained fromp by substi-
tuting each top-level subformul&/y in ¢ by the propo-
sition p,,. Each of these primed formulas is a formula of

We have already seen that FO formulas in one free vari-
able over nested words can be written using just three dis-
NWTL". Then, if we take the product of the nested word tinct _va_lriables, asin the case of the usual, unnested, words

' ’ For finite nested words this is a consequence of a tree rep-

aug}zmatal acceptmg!;w co.rrhestﬁ)ondlng (th all éhe within- resentation of nested words and the three-variable pyppert
subformulasy, together with the nested word automaton ¢, r gyer finite trees [19], and for infinite nested words
Ay, the resulting language captures the set of models ofthiS is a consequence Theorem 4.1

- Intuitively, the automaton forl’, is ensuring that the In this section we prove two results. First, we give a
truth of the prqposﬂmrpw re.ﬂ?CtS the truth of the subfor- model-theoretic proof that FO formulas with zero, one, or
mulayVep. If i itself ha§ awnhm—subformulﬁV% thenthe 5 free variables over nested words (finite or infinite) are
automaton fory treats it as an atomic propositih,, and equivalent toFO? formulas. Given th&?O = FO? col-
the automaton checking;, running in parallel, makes sure lapse, we ask whether there is a temporal logic expressively
that the truth of,, correctly reﬂects_the truth oV, complete forFO?, the two-variable fragment. We adapt
For the lower bound, the deqsyon_ .problem for LTL techniques from [9] to find a temporal logic that has the
games can be reduced to the satisfiability problem for for- same expressiveness B&? over nested words (in a vo-

rr;}ulas V‘;]'th lllneca:tr untils anddwghlr) t?pr(]arat(_)rhs_ [17], and thﬁ cabulary that has successor relations corresponding to the
shows that for CaRet extended with the within operator, the « o » temporal operators).

satisfiability problem is 2EpPTIME-hard. We thus obtain:

Proposition 5.5 For the logicNWTL* extended with the 6.1 The three-variable property

within operator)V the satisfiability problem and the model

checking problem with respect to Boolean programs, are  \We give a model-theoretic, rather than a syntactic, argu-
both ZEXPTIME-complete. ment, that uses Ehrenfeucht-Fraissé games and shows that



over nested words, formulas with at most two free vari- 6.2 The two-variable fragment
ables are equivalent B80® formulas. Note that for finite
nested words, the translation into trees, already useckin th  In this section, we construct a temporal logic that cap-
proof of Theorem 4.1, can be done using at most three vari-tures the two-variable fragment of FO. Note that for fi-
ables. This means that the result of [19] establishing thenite unranked trees, a navigational logic captudit@? is
3-variable property for finite ordered unranked trees gives known [20, 19]: it corresponds to a fragment of XPath.
us the 3-variable property for finite nested words. We prove However, translating the basic predicates over trees firgo t
thatFO = FO?® over arbitrary nested words. vocabulary of nested words requirdwvariables, and thus
we cannot apply existing results even in the finite case.
SinceFO? over a linear ordering cannot define the suc-
cessor relation but temporal logics have next operators, we
explicitly introduce successors into the vocabularyFof.
These successor relations in effect partition the linegesd
into three disjoint typesinterior edgesgall edges, ande-

Proof: We look at infinite nested words since the finite turnedges, and the nesting edges (except those from a po-
case was settled in [19]. It is more convenient to prove the Sition to its linear successor) into two disjoint typesil-
result for ordered unranked forests in which every subtreereturnsummaries, andall-interior-return summaries.
is finite. We translate a nestedword into such a forest as
follows: wheny(i, j) holds, the subwordy|i, 5] is mapped
to a subtree with root, i + 1 as the first child ofi, and
j + 1 asi's next sibling (note that this is different from S¢(i, j) holdsiffiis a calland = i+ 1is notareturn;
the translation into binary trees we used before). iff an e S7(i,7) holdsiffiis notacallang = i+ 1is areturn.
internal position, or a pending call or return position ftlite
has no descendants and its next sibling-is1.

Itis routine to define, in FO, relationsy.s. and=g, for
descendant and younger sibling in such a forest. Further-

Theorem 6.1 Over finite or infinite nested words, evef®
formula with at mos® free variables is equivalent to an
FO? formula.

e Si(i,7) holdsiff j = i + 1 and eithep(i, j) ori is not
a call andj is not a return.

S (i, 7) holds iff u(i, j) and there is a path fromto
4 using only call and return edges.

S¢r (i, 4) holds iff u(i, j) and neitherj = i + 1 nor

more, from these relations, we can define the usuahd S( 5)-
1 in nested words using at mdstariables as follows. The Let T denote the sefic, i, , cr, cir} of all edge types. In
formulas forz < y andu(z, y) are given by addition to the built-in predicates! for ¢ € T', we add the

transitive closurenf all unions of subsets of these relations.
(4 Zdese ) V 32(% Zdesc 2 A3 (2 <sib TAY Zdesc ©))  That is, for each non-empty sEt C T of edge types, let
(y Rdese ) AV2Z((2 Rdese ) — 2 < ). ST stand for the union;<St, and let<” be the reflexive-
transitive closure of”. Now when we refer t&O? over
Thus, it suffices to prove the three-variable property for nested words, we mean FO in the vocabulary of the unary

such ordered forests, which will be referred ta4s3, etc. predicates plus all the™s, the five successor relations, and
We shall use pebble games. 1@}, (A, a1,b1,B,b1,b2) be  the built-in unarycall andret predicates.

the m-move,v-pebble game on structures and 3 where We define a temporal logic unary-NWTL that has future
initially pebblesz; are placed om; in A andb; in B. and past versions of next operators parameterized by edge
Player Il has awinning strategy f6}, (A, a1, b1, B, b1, b2) types, and eventually operators parameterized by a set of

iff A, a1,a2 and B,b;,b, agree on all formulas with at  edge types. Its formulas are given by:

mostv variables and quantifier-depth. We know from

[13] that to prove Theorem 6.1, it suffices to show that, ¢ == T |alcall [ret | o[V |
for all &, if Player 1l has a winning strategy for the game Otga | @tw | <>ng | @Fga
G§,€+2(A7 a1,as; B,b1,bs), then she also has a winning

k .
strategy for the gamer (A, a1, aQ’_B’ by, ba). non-empty subsets &f. The semantics is defined in the
We show that Player Il can win the-pebble game by  jpvious way; for exampld, i) = T iff for some po-
maintaining a set of 3-pebble subgames on which she copiegjion ; <, (@,5) E .
Player I's moves and decides on responses using her win- .. a_nF62 férmulacp(x) with one free variable:. let
ning strategy for these smaller 3-pebble games. The choice dp() be its quantifier depth, and for a unary-NWTL for-

of these sub-games will partition the univefsg U | B| so mulay’, letodp(¢') be its operator depth.
that each play by Player | in thepebble game will be an- '

swered in on&-pebble game. This is similar to the proof Theorem 6.2 1. unaryNWTL is expressively complete
that linear orderings have the 3-variable property [13[1 for FO2.

wherea ranges ovek, ¢ ranges ovef’, andI’ ranges over



2. If formulas are viewed as DAGs (i.e identical sub-

formulas are shared), then eveRO? formula o(z)
can be converted to an equivalent unaWwTL for-
mula ¢’ of size 20U#l(adr(¥)+1) and odp(y’) <
10 qdp(e).
polynomial in the size af’.

3. Model checking of unarfdWTL can be carried out
with the same worst case complexity as for NWTL.

Proof sketch The translation from unary-NWTL intBO?

The translation is computable in time

(3]
(4]
(5]
(6]

(7]
(8]

is standard. For the other direction we adapt techniques of 9]

[9]. Given anFO? formula ¢ (z), the translation works a

follows. Wheny(z) is of the forma(x), for a proposi-

tion a, it outputsa. The cases of Boolean connectives are [10]

straightforward. The two cases that remain are when)
is of the form3x ¢*(z) or Jy p*(x,y). In both cases, we
say thaty(x) is existential In the first casep(z) is equiv-

alent tody ¢*(y) and, viewingz as a dummy free variable

in *(y), this reduces to the second case.
In the second case, we can rewritg"(z,y) as
5()(0(1'73/)’ T Xr—l(xay)a 50(1')7 T gs—l(x)7 CO(y)a
.., Gt—1(y)), wheref is a propositional formula, each
is an atomic order formula, ar@d’s and(;’s are atomic or
existentialFO? formulas with quantifier depth: qdp(y).
In order to be able to recurse on subformulagatfie have

to separate thg;’s from the(;’s. For that, we consider mu-

tually exclusive and completerder typesthat enumerate
possible order relations betweenand y with respect to

[11]

[12]

[13]

[14]

[15]

different S*’s. Under each order type, each atomic order [16]

formula evaluates to either or L. Furthermore, ifr is
an order typesy)(x) anFO? formula, andy’ an equivalent

unary-NWTL formula, one can obtain a unary-NWTL for-

mular(y) equivalent tody(r A ¥(y)). Using this and the
hypothesis fog; for i < s and¢/(z) we can compute’.

[17]
(18]

[19]

Model checking for unary-NWTL can be carried out [20]

with the same complexity as NWTL, by adapting the

tableaux construction in Section 5. O
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A Proofs and Intermediate Results
Some terminology

Thequantifier rank(or quantifier depthof anFO formulay is the depth of quantifier nesting in Therank-k typeof a
structure?t over a relational vocabulary is the det | 91 = ¢ and the quantifier rank af is k}, wherep ranges over FO
sentences over the vocabulary. It is well-known that thezdinitely many rankk types for allk, and for each rank-typer
there is arFO sentencey, such thatht | ¢, iff the rank+ type of 90t is 7. Sometimes we associate types with formulas
that define them.

Many proofs in this paper make use Bfirenfeucht-Frésse (EF) games. This game is played in two structufgsand
M’, over the same vocabulary, by two playe?fayer | and thePlayer Il. In round: Player | selects a structure, s2#, and
an element; in the domain oB0t; Player Il responds by selecting an elemenin the domain of)t’. Player llwinsin &
rounds, fork > 0, if {(c;,e;) | @ < k} defines a partial isomorphism betwe®handOt'. Also, if @ is anm-tuple in the
domain of9t andb is anm-tuple in the domain o', wherem > 0, we write (O, a) =, (M, b) whenever Player Il wins
in k rounds no matter how Player | plays, but starting from positi, b).

We write It =, O iff 9t and 9’ have the same ranktype, that is for everfFO sentencep of quantifier rankk,

M E o< M E . Itis well-known thatit =, 9 iff Player Il has a winning strategy in theround Ehrenfeucht-Fraisse
game ortJt andMt’.

In the proof of Theorem 6.1, we shall also us@ebble gamesIn such a game, Player | and Player Il have access
k matching pebbles each, and each round consists of Play#rer @emoving, or placing, or replacing a pebble in one
structure, and Player Il replicating the move in the othercttire. The correspondence given by the matching pebibbedds
be a partial isomorphism. If Player Il can play while maintag partial isomorphism fom rounds, then the structures agree
on allFO* sentences of quantifier rank uprig if Player Il can play while maintaining partial isomorphigorever, then the
structures agree on d@llO* sentences.

Proof of Theorem 4.1

We start with the easy direction NWTC FO.
Lemma A.1 For everyNWTL formulay, there exists afrO formulaa., () that uses at most three variablesy, z such

that for every nested word (finite or infinite), we havéw, i) = ¢ iff @ = o, ().

Proof of Lemma A.1The proof is by induction on the formulas and very simple fibtlee cases exced? andS?: for
example,

ag,¢ (@) = 3y (p(z,y) A3z (& =y A ay(x))).

For translatindU?, we need a few auxiliary formulas. Our first goal is to definerarfula~y, (z, z) saying that: is R(z),
i.e. the return of the innermost call within whichis executed. For that, we start witly,z) = z < y A ret(y) A
Vo (u(z,y) — x < z) saying that is a return that is preceded byand whose matching call, if exists, precedethat is,y
is a candidate foR (z). Then the formulay,-(z, z) is given by

Jy (y=2Nd(y,2)) A\Vy (0(y,2) — y > ).

Likewise, we define..(y, z) stating that thaly equalsC(z), that is, the innermost call within whichis executed. Now define

X1(y,2) = Jz (ve(x,2) AN <vy), xa(z,2) = Iy (vely, 2) Ay > 2)

andx(z,y, z) asx1(y, z) A x2(x, z). Then this formula says that the summary path frote y does not pass through
assuminge < z < y. With this, a,u-y () is given by

ay(z) V Iy (y > 2 Aap(z) AJz (z =y Aay(@) AVz ((z <z <yA-x(z,9,2) — 3z (z = z/\aw(x))))

The proof forpS?1) is similar. This concludes the proof of the lemma. m|
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In the proof of the other directio®O C NWTL, we shall need two variants of summary pathsSémi-Strict summary
pathbetween positionsandj, with i < j, in a nested worapb, is a sequence= iy < i1 < --- < i) = j such that

_ r(ip) + 1if 4, is a matched call angl > r(3,)
P74, + 1 otherwise.
That is, when skipping a call, instead of jumping to the matgheturn position, a semi-strict path will jump to its saessor.
A strict summary patlis a semi-strict summary path= iy < i; < iy < --- < i, = j in which noi, with p < kis
a matched return position. In other words, a strict summati ptops if it reaches a matched return position. In pdaiicu
there may be positions< j in a nested word such that no strict summary path exists legttbeem. The until/since operators
for semi-strict summary paths and strict summary pathsheiltlenoted byJ?, /S7. andU?/S?, respectively. Versions of
NWTL in which U? /S are replaced b¥J?, /S, (or U?/S7) will be denoted by NWTE® as NWTL?.
We will usemret forret A, T, andmcall for cal1AO,, T, to capture matching return and call positions, respelgtive
The proof is based on two lemmas.

Lemma A.2 NWTL® C NWTL®® C NWTL.
Lemma A.3 FO C NWTL?®.

This of course implies the theorem: NWTC FO C NWTL® C NWTL®® C NWTL. Note that as a corollary we also
obtain NWTL® = NWTL*® = FO.

Proof of Lemma A.2For translating an NWTE formulay into an equivalent formula,, of NWTL®® we need to express
U760 with U7, which is simply(a, A —ret)U7 oy, and likewise for the since operators. For translating é&ahrL **

formula ¢ into an equivalent NWTL formulgs,, again we need to consider only the case of until/since ¢eraThe
formulayU?.0 is translated into

By V <ﬂ¢ A <<(6¢, Vret) A (—call — OM))U”
((@p Vret) A (mcall — Opy) A (call — (OBp V O, OB V O(-ret A 7)))>)), 1)

wherev is a formula defined as follows:

<(5¢, Vret) A (mcall — Ofy) A (Oret — ca11)> U’
((611, Vret) A (mcall — Ofy) A (call — (Ofp V Oﬂ)ﬂe)))

The translation foiS?; is similar. The proof that the translation is correct is bguntion on the structure of NWTE
formulas. Again we need to consider only the case of umitésioperators. Assume that 6 are equivalent tgs,, and

B, respectively. We need to prove thalU7. 0 is equivalent to (1). We only show here that(if, ) satisfies (1), then
(w,i) = U0, as the other direction is similar. Given that, ) satisfies (1), eithefw, ) = 3y or (w,) satisfies the
right-hand-side of the outer disjunction of (1). Given tigatandé are equivalent, in the former ca¢@,i) = ¢U7.0.
Thus, assume that the latter case holds. Then) = v, sincey andg, are equivalent, and there exists a summary path
i =19 < i1 <--- <ipsuch that:

(w,ix) E (61/1 Vret) A (—call — Oﬁw) 0<k<p
(w,i,) E (By Vret) A (-call — Ofp) A (call — (Opfg vV O, Opfs vV O(-ret Av)))

We consider three cases.

1. First, assume thaj is not a call position. Then given thab, i,,) = (—call — Ofy), we have thatw, i, + 1) = Ss.
Only one semi-strict summary path with endpointndi, + 1 can be obtained from the sequerige< i; < --- <
ip < ip + 1 by removing some positions; lét= j, < j; < --- < jy = i, + 1 be that semi-strict summary path.
Then we have thatw, j;) = 6 since(w,i, + 1) = By. Next we show thatw, ji.) = v for everyk € [0,¢ — 1].
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If & = 0, then the property holds since, ) = . Assume thak € [1,¢ — 1]. If j; is not a return position, then
(w, jix) E 9 since(w, jix) E (By V ret). If ji is a return position, then given thgf is in the semi-strict summary
path fromjg to j,, we have thaji, — 1 is also in this semi-strict summary path and is not a calltfmsi Thus, given
that (w,j, — 1) E (-call — Ofy), we have tha{w, ji) E B,. We conclude thatw, ji) = v and, hence,

(w, ) = Y UL0.

2. Second, assume thigtis a call position andw, i,) = OBy v O,Opy. Then there exists a positiap;; > i, such
that(w, ip4+1) = e andi, is eitheri, + 1 or the linear successor of the matching return,0fOnly one semi-strict
summary path with endpoinisandi,;; can be obtained from the sequenige< i; < --- < i, < i,41 Dy removing
some positions; let = jo < j1 < -+ < j¢ = ip41 be that semi-strict summary path. Then we have thag,) = ¢
since(w, ip4+1) = B9. Next we show thatw, ji) = ¢ for everyk € [0,¢ — 1]. If k = 0, then the property holds since
(w,1) = ¢. Assume thak € [1,¢ — 1]. If ji is not a return position, thew, j,) = ¥ since(w, ji) = (By V ret). If
Jjk is a return position, then given that is in the semi-strict summary path frofato j,, we have thaf, — 1 is also in
this semi-strict summary path and is not a call position.sTlgiven thatw, j, — 1) = (-call — Ofy), we have that
(w, jx) E By. We conclude thatw, j;) = ¢ and, hence(w, i) = ¢UJ,0.

3. Third, assume thay is a call position andw, i),) = O(—ret Av). Then there exists a path+1 = ip11 < ipi2... <
i4 such that:

(w,ir) E (By Vret) A (-call — Ofy) A (Oret — call) p+1<k<gq
(w,iq) = (By Vret) A(mcall — Ofy) A(call — (Of v O.Op))

Next we show that if,, is a matched call with returp,, theni, < j,. On the contrary, assume thigt> j,. On the
contrary, assume thaj > j,. Then there existd € [p + 1,¢| such thati, = j,. Given thati,, iS not a return
position, we have thag > p + 1 and, thereforej, — 1 is also a position in the path 11 < ipt2... < ig. But
given thati;, = j, is the matching return af, andi, + 1 < i, — 1, we have thai, — 1 is not a call position. Thus,
(w,ir — 1) = Oret — call, which contradicts the fact thgs, 1 < i,12... < i, witnesses formulg.

To finish the proof of the lemma we need to consider two cases.

(a) Assume that, is not a call position. Then given thab, i,) = (-call — Ofy), we have thatw, i, + 1) = Sp.
Furthermore, given that if, is a matched call with retury),, then we necessarily have that< j,, we conclude
that only one semi-strict summary path with endpoints iy andi, + 1 can be obtained from the sequence
io < i1 < --- <ig < iq+ 1 by removing some positions; lét= jo < j1 < --- < j¢ = iq + 1 be that semi-strict
summary path. Then we have tiat, j,) |= 6 since(w, i, + 1) = B9. Next we show thatw, j;) = v for every
k € [0,¢ —1]. If & = 0, then the property holds sin¢e, ) |= ¢. Assume thak € [1,¢ — 1]. If j; is not a
return position, therfw, ji) = v since(w, ji) = (By V ret). If ji is a return position, then given that is in
the semi-strict summary path frofn to j,, we have thaj; — 1 is also in this semi-strict summary path and is not
a call position. Thus, given théto, j, — 1) & (—call — Of,), we have thatw, ji.) = (8. We conclude that
(w, jx) = ¢ and, hence(w, i) = ¢y U70.

(b) Finally assume that, is a call position. Then given théto,i,) = (call — (OBs vV O,.Ofs)), there exists
a positionig1 > i such that(w, i44+1) = Bs andigy is eitheri, + 1 or the linear successor of the matching
return ofi,. Furthermore, given that i, is a matched call with returj,, then we necessarily have thgt< j,,
we conclude that only one semi-strict summary path with emidpi = i¢ andi,4; can be obtained from the
sequencey < i1 < --- < ig < ig41 Dy removing some positions; lét= jo < ji1 < -+ < j¢ = iq4+1 be that
semi-strict summary path. Then we have thatj,) = 6 since(w, iq+1) = fo. Next we show thatw, ji) = ¢
for everyk € [0,£—1]. If k = 0, then the property holds sin¢e, i) = 1. Assume thak € [1, ¢ — 1]. If j; is not
a return position, thetw, ji) = v since(w, ji) = (By V ret). If j; is a return position, then given that is in
the semi-strict summary path frofg to j,, we have thaj; — 1 is also in this semi-strict summary path and is not
a call position. Thus, given th&t, ji, — 1) = (-call — Opfy), we have thatw, j,) = 3,. We conclude that

(wa]k) ': ’l/) and, hence@f}, Z) ': ’l/)Ugse
This concludes the proof of the lemma. ]

Proof of Lemma A.3We start with the finite case, and then show how the incluskbenels to nested-words.
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As a tool we shall need a slight modification of a result fror, [28] providing an expressively complete temporal logic
for trees with at most binary branching. We consider bineggs whose domaib is a prefix-closed subset §6), 1}*, and
we impose a condition that - 1 € D thens -0 € D. When we refer to FO on trees, we assume they have two successo
relationsSy, S; and the descendant relatieh(which is just the prefix relation on strings) plus the labglpredicates, which
include two new labelgcall andpret (for pending calls and returns). Each node can be labeledttwsre letter from>:,
or by a letter from® andpcall, or by a letter fron® andpret (i.e. labelspcall andpret need not be disjoint from other
labels).

We also consider the following logic TE%

© = al Ve | e |
O | O |Ose | Op |
eUpp | ¢S

wherea ranges ovek U {pcall, pret}, with the following semantics:
o (T,s) = O, piff (T,s-1i) = ¢ either fori =0 ori = 1;
T,s-i) E Oy iff (T,s) = ¢ (Wherei is either0 or 1);
T,5-0) E O_eiff (T,s-1) E ¢;
T,s-1) E O_piff (T,s-0) E ¢;
s) = ¢U, v iff there existss’ such thats < s/, (T, s’) = ¢, and(T, s”) |= ¢ for all s” such thats < s” < §/;

(
(
(
(
(T,
(

o (T,s) = ¢S, iff there existss’ such that’ < s, (T, ") = ¢, and(T, s”) |= ¢ for all s” such thats’ < s” < s.
Lemma A.4 (see [18]) For unary queries over finite binary tredd,"® = FO.

This lemma is an immediate corollary of expressive complets of logicXyni from [18] on ordered unranked trees, as
for a fixed number of siblings, the until and since operatarstze expressed in terms of the next and previous operatoes. T
result of [18] applies to arbitrary alphabets, and thus mipalar to our labelings that may ugeall andpret.

Next we need a translation from nested words into binanstregsentially the same as in [4]. For each nested wone
have a tred’; and a function,; : w — T3 that maps each position af to a node ofl’; as follows:

e the first position ofiv is mapped into the root &f;;
o if s = 1y4(4) then:

1. if 7 is an internal, or an unamcthed call, or an unmatched retunthjs not the last position af, thens has only
childs - 0 andew.t(i + 1) = s - 0;
2. if i is a matched call, themhas both childrer - 0 ands - 1 andey.¢(r(7) + 1) = s - 0, andewt(i + 1) = s - 1.
3. if i is a matched return, then theras no children.
Of course theZ-labels ofi and.1(¢) are the same. If was a pending call, we label,.+(i) with pcall, and ifi was a
pending return, we labe),(7) with pret.

Note that., is a bijection, and that labetsall andpret may only occur on the leftmost branchBf. The following
is immediate by straightforward translations.

Claim A.5 For everyFO formulap(z) over nested words there is & formulay’(x) over trees such that for every nested
word @ and a positior in it, we havew = ¢(i) iff Ty = ¢ (twt(2)).

SinceFO = TL"® by Lemma A.4, all that remains to prove is the following claim

Claim A.6 For everyTL"® formula ¢, there exists alNWTL® formula¢° such that for every nested word and every
positions in it, we have

(0,9) = ¢ & (T, (i) = -
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This is now done by induction, omitting the obvious casesroppsitional letters and Boolean connectives. We note that
the path in the tree betweep(i) and..«(j) corresponds precisely to the strict summary path fidmj (that is, if such
a strict summary path i58= ig,i1,...,ix = J, thenu(io), twt(i1), - - ., tw-t(ir) is the path fromy.t(7) t0 twt(j) in Tip).
Hence, the translations of until and since operators are:

(PU)° = o"UZY°,  (¢S19)° = p°STy°.
For translating next and previous operators, and penditigjresurns, define:

mcall = (O,T (true in a matched call position);
mret = (),T (true in a matched return position).

Then the rest of the translation is as follows:

pcall® = call A —mcall

pret® = retA —mret
(Op)° = -retA (Ocp" V (call A OHQ<p°))
(Orp)° = (@ret A @@Nsoo) v (@ﬁret A @gpo)

(O_p)® = Oreth ©O0,0¢°
(O—p)® = Ocall AOO,O¢°

Now with the proof completed for finite nested words, we egltérto the case of nested-words. Note that Claim A.5
continues to hold, and Claim A.6 provides a syntactic tratish that applies to both finite and infinite nested wordd, tans
we need to prove an analog of Lemma A.4 for trees of the fbgywherew ranges over nesteg-words.

If @ is an nested-word, thenT; has exactly one infinite branch, which consists preciseby9fi) wherei is anouter
position, i.e., not inside any (matched) call. We say thatinside a call if there exists a cglwith a matching returt such
thatj < ¢ < k. If i is an outer position, then we shall call;(i) anouternode in the tred’; as well.

If 7 is an outer position which is not a matched call, then so+isl andwy(i + 1) is the left successor af,.¢(i). If
is an outer position and a call with> ¢ being its matching return, then the left successar,qf:) on the infinite path is
wet(j + 1). Furthermore, the subtre® (i) which hasi as the root, its right child, and all the descendants of tiiet child
is finite and isomorphic t@;; ; (note thato[i, j] has no pending calls/returns).ilén internal or pending call/return outer
position, we let™ (z) be a single node tree labeled:dn w.

Let w now be an nested-word. For each outer positianwe let7,2 () be the ranks type oft™(¢). If 7 is not a matched
call, such a type is completely describeditsflabel (which consists of a label i and potentiallypcall or pret).

If j is not an outer position, ands an outer position such thak j < k, wherek is the matching return af thenr2(5)
is the rankm type of (T [i, k], tw-t(4)) (i-€., the rank ofl;[4, k] with a distinguished node correspondingijo

Next, for an nested-word w, let s be a node ifT; such thats = (7). Letiy, o, ... enumerate all the outer positions
of w, and assume thay is such that, < i < i,41 — that is,.w-t(¢) is a node in the subtre# (i,,). We now define a finite

word s;,, (w, s) of lengthp — 1 such that its positions, . . ., p — 1 are labeled” (i1), ..., 7% (ip—1), and anv-words;,’ (w, s)
such that its positions, 2, . .. are labeled by (i,+1), 7,5 (ip+2), . . .. Next the standard composition argument shows the
following.

Claim A.7 Letw,w’ be two nested-words, ands = ty-(4), s’ = ww-t(7') two nodes i’y and T+ such that:
@) s, (w,8) =m s5, (W', s");
(b) s, (w,s) =m s, (W0, s);
© (i) =71
Then(Tg, s) =m (Twr, s').
The win for Player Il is straightforward. Ifi, i, ... enumerate outer positionsimnandi, < i < i,,1, then a move by

Player |, say, irll;, occurs either in®(5) with 5 < 4, orint“ (), or in t“(5) with j > 4. Player Il then select$’ so that

15



the response is inw/(j’) according to his winning strategy in games either (a) orifj (s in t%(:), thenj’ is in T;f;/ (@),
and then, since the rank-types oft”(j) and the choseﬁﬁ'(j’) are the same, selects the actual response according to the
winning strategy® (j) =, t* (j').

Next we show how Claim A.7 proves thRO is expressible in TI®*¢ over infinite trees;. First note that being an outer
node is expressible: sin€e._ T is true in right children of matched calls, then

Qoyter — (TSL (O&T))

is true if no node on the path to the root is inside a call, thapiecisely in outer nodes.

Next note that for each rank-type  of a tree there is a formuld. such that ifs = «,.¢(¢) is an outer node df;, then
(Tw, s) = B, iff the rank-m type oft® (i) is 7. If 4 is not a matched call, then such a type is uniquely deterntige label
and perhapgcall or pret, and thus is definable in TE°,

If ¢ is a matched call, the existence of such a formgjldollows from the fact the ranks type oft“ (i) is completely
determined by the label éfand the rankn typer’ of the subtree( (i) of t“ () rooted at the right child of (recall that the
root has only (right) child, by the definition of (:)). Typer’ is expressible in FO and, sin¢&(:) is finite, is expressible in
TL"®€as well by Lemma A.4. Furthermore, by the separation prgurf18], it is expressible by a formuld’, that does
not useO; andS,. This means thatTy,, s - 1) = 3., iff the rank+m type oft¥ (i) is 7. Hence,3, is expressible in TI®
as a Boolean combination of propositional letters firand formulasD), 3.,. Note that in this case}, does not usgcall
andpret.

By Claim A.7, we need to express, for each nede uy.(7), the rankm types ofs:, (w0, s) ands;,; (w0, s) in TL"® over
Tz, as well as the ranka type of 7 (4), in order to express a quantifier-rankformula, as it will be a Boolean combination
of such formulas. Giver, we need to defingy.(i,) — the outer position in whose scopeccurs — and then from that point
evaluate two FO formulas, defining ramk-types of words over the alphabet of ranktypes of finite trees. By Kamp’s
theorem, each such FO formula is equivalent to an LTL fornrmlase propositional letters are ranktypes of trees.

Assume we have an LTL formutaexpressing the rank: type 7y of s’ (w0, s). By Kamp’s theorem and the separation
property for LTL, it is written using only propositional tets, Boolean connectives) andU (that is, no© andS). We now
inductively take conjunction of each subformulajoivith —(O._ T) (i.e., a TL"®formula which is true in left successors),
replace LTL connective® andU by O, and Uy, and replace each propositional letteby 3, to obtain a TI®® formula
~'. Then(Tg, w+(ip)) =+ iff s;,; (w, s) has typery. Thus, for a formula

/7” = (aouter A ’71) V TQouter Sl (aouter A ’71)
is true in(Ty, tw-1(2)) iff the rank+n type of s, (w, s) is 7o.

The proof fors;, (w, s) is similar. Since this word is finite, by Kamp’s theorem and fieparation property, there is an
LTL formula v that use<O), S, propositional letters and Boolean connectives such-tieamluated in the last position of the
word expresses its rank-type. Since there is exactly one path from each node to thetmivanslatey into a TL"®formula
' we just need to replace propositional letters by the comeding formulas3,, and© by O;. Then, as for the case of
s, (w, s), we have thay’ evaluated iny.i(i,) expresses the type of, (w, s). Then finally the same formula as in the case
of s, (w, s) evaluated ins expresses that type.

Finally we need a TI®® formula that expressesZ (i), the rankm type of t” (i), when evaluated Ty, tw(i)). We
can split this into two cases. .., iS true inwy.t(7), then, as explained earlier, the ranktype oft* (i) is a Boolean
combination of propositional letters, and thus definable.

So we now consider the case wheg,;.. is not true in,.¢ (7). Thent® (i) is given by a Boolean combination of formulas
that specify (1) the label af,, and (2) the rankn type of (¢ (i,,), s), the subtree of“(i,,) rooted at the child of, with s as
a distinguished node. This type can be expressed by a forminldL"®® overty (i,,) by [18]. Hence if iny we recursively
take conjunction of each subformula withty,,..,., we obtain a formula’ of TL"®® that expresses the type of) (ip), s)
when evaluated ifiT'3, s). Thus,7 (i) is expressible by a Boolean combination of formufagand—cayser S| (outer A @)
wherea is a propositional letter.

This completes the proof of translation of FO into"ftover nested,-words, and thus the proof of the lemma. o

Proof of Corollary 4.3

In the proof of Theorem 4.1, we show that every FO sentenceanested wordy can be translated into an FO sentence
over treeT;, and then, by the separation property of'f1[18] is equivalent to a Tf*formula that does not usg and(.
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Then, given that in the translation of 1 into NWTL?® we only useS? in the rule(pS;v)° = ¢°SJ%°, we see that the
equivalent NWTL formula does not us87. Thus, given that in the proof of Lemma A.2, no since operestarsed in the
translations olU7 into U?, andU¢?, into U7, the corollary follows for the finite case.

For the infinite case, we note that in the proof of Theoremérithe case of FO sentences we only need to specify the
type of s, (w0, s) wheres is the root. Thus, one can see that in this case the uSgiof TL"®® formulas is not required, and
hence the resulting formulas are translated into NWfidemulas withoutS?.

Proof of Proposition 4.4

We shall look at finite nested words; the proof for the inficise applies verbatim. To evaluate a formutsf NWTL U
in position: of a nested wordo of lengthn one only needs to look at[i,n]. That s, ifw and@’ of lengthn andn’
respectively are such thatfi, n] = @[i’, n'], then(w, ) = ¢ iff (@’,i) |= ¢ for every formulap of NWTLM",

Furthermore, for every collection of NWT{""® formulas® = {¢, ...,;}, one can find a numbér= k(%) such that

wli,n] =, wli',n'] implies (w,i) =, < (W',i') E 1y, forallp <Ll

In particular, ifo” stands for the word of lengthin which all positions are labelgdand the matching relation is empty, we
derive that there are numbets = k1 (V) andks = k() with k1 > ko such that

P¥ = g, & b2 =y, forallp <.

Now consider the following NWTL formula:
o = O,u—l— N O,u@aa

saying that the first position is a call, and the predeceskis anatching return is labeled. We claim that this is not
expressible in NWT[re,

Assume to the contrary that there is a formdlaf NWTL™""® equivalent tax. Let ¥ be the collection of all subformulas
of 3, including g itself, and letk; andk, be constructed as above. We now consider two nested wardsdws of length
k1 + 2 whose underlying words arfeb* of lengthn = k; + 2, such that the matching relatign of w; has one edge
u1(1, 3), and the matching relatigm, of wy has one edgg; (1, n + 1 — k2). In other words, the only return position @f is
r1 = 3, and the only return position afy is 7o = n + 1 — ko, and thuso, [ry, n] = b** andw;[rs, n] = b*2. Further notice
that for everyi > 1 we havew, [i, n] & @i, n].

Observe thatw,, 1) = a and(w2, 1) & —a.

We now prove by induction on formulas ih that for each such formula we have(w;, 1) = v iff (w2,1) | v, thus
proving that3 anda cannot be equivalent.

e The base case of propositional letters is immediate.
e The Boolean combinations are straightforward too.

e Lety = O. Then

sincews [2, n] & w1[2,n].

e Lety =(O,¢. Then

(ﬁ)Q,TL—Fl—kQ) ':’l/)
(’lDQ,l) ):77

teeoe
-
<

sincey € 0.
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e Lety = ¢U%¢. Assume(wy, 1) = . Consider three cases.

Case 1w, 1) = 9. By the hypothesigws, 1) = ¢» and we are done.

Case 2: The witness fasU? occurs beyond the only return. Thé@,, 1) = ¢ and(w1,71) | ¢U%. Since
©U% € U we have(ws, m2) = U9, and by the hypothesi&gs, 1) = ¢, so(ws2,1) E ¢U%.

Case 3: The witness fasU?« occurs inside the call. Since for every position- 1 we have(w;,i) E ¢ iff
(ws,1) = ¢ and likewise forp, the same summary path witnessds?« in w,.

Thus, (w2, 1) | 7.

Now assuméiws, 1) = ~. In the proof of(w;, 1) |= « is the same as above in Cases 1 and 2. For Case 3, assume that
in the path which is a witness fgrU?«) the position in whichy is true is the 2nd or the 3rd position in the word. Then
the same path witnessés;, 1) = ~, as in the proof of Case 3 above. Next assume it is a posititmindex; higher

than3 (which is still labeled) wherey first occurs. Therp must be true in all positionswith 3 < ¢ < j in w,. Hence

@ is true in all such positions i, as well, and thus the summary pathiin that skips the first call (i.e. jumps froin

to 3) witnessespU“¢. Hence, in all the casdsus, 1) = v implies(w;,1) = v, which completes the inductive proof,

and thus shows the inexpressibility@in NWTLUe, O

Proof of Theorem 4.6

The translation from LTE + W into FO is similar to the translation used in the proof of Theorem Z&prove the other
direction, we show how to translate NWTL into LTl2- WW. More precisely, for every formulain NWTL, we show how to
construct a formulax, in LTL* + W such that for every nested wor (finite or infinite) and positior in it, we have that
(w,1) = pifand only if (w0, 7) = a,.

Since LTL* includes the same past modalities as NW@&L,,is trivial to define for the atomic formulas, Boolean combi-
nations and next and previous modalities:

aTt = T,
Qca11 = call,
Qret = ret,
a, = a,
Aoy = 0,
Qupvy = Oy V Qy,
0O, = Oozg,,
a0, = Opa,
Qg = @a@,
ag,e = @uas@-

Thus, we only need to show how to defingy-, ando,g-,. Formulac,u- is defined as:
apuey = a,U% (ay V (ap A Oay) V W<>(oz¢ AOT A (-ret — O(BSY)) A (ret — @#(ﬁsw)))),

whereg and~ are formulas defined as:

B = au,S*ay, A-ret AO((ay A —ret)S(ay, A call))),
y o= —OT.
Moreover, formulax,s-; is defined as:
Qpgoy = 089 (eS%y),
whered is a formula defined as:
§ = ayS*a,A-ret A O((ay, A —Tet)Scall)).

This concludes the proof of the theorem.
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Proof of Theorem 4.7

In order to prove Theorem 4.7 we use the composition argupresented below.

Let w be a nested word andan element inv. Letcy,..., ¢, Wherem > 0, be all elements inv such that, for each
Jj € [1,m], ¢; < i and there is an elemenj such thatu(c;, ;) andi < r;. Assume without loss of generality that
1 <cg << ey

Fix £ > 0. LetI be the set of all rank-types of nested words with one distinguished constant. Vilaeléhe word
Qi (w,1) = apa - - - a,, Over alphabel’ x T as follows:

e The element is labeled with the tuple whose first component is the ramgpe of (w[1, ¢; — 1], 1) and whose second
component is the rank-type of (w[rq, o], 1) if m # 0; otherwise, it is labeled with the tuple whose first compdiien
the rank# type of (@w[1, ¢ — 1], 1) and whose second component is the rartipe of (w[é, oo], 1)

e foreach0 < j < m, the element; is labeled with the tuple whose first component is the ramgpe of (w(c;, ¢j41 —
1], 1) and whose second component is the rarype of (w[r;;1,7; — 1],1); and

e if m # 0 then the element,, is labeled with the the tuple whose first component is the#atype of (w[c;,, i — 1], 1)
and whose second component is the rarype of (@[i, r, — 1], 1).

The following is our composition argument:

Lemma A.8 (Composition Method) Let w; and wy be two nested-words, and let andi’ be two elements im; and
we, respectively, that share the same labebinand such that is a call (resp., return) iffi’ is a call (resp., return). Then
Qk(ﬁ}l,i) =k42 Qk(ﬁ}g,i/) implies(wl,z’) = (’lDQ, il).

Proof: First we need to introduce some terminology. kebe a nested;-word and: a position inw. Assume elements
C1,---,Cm,T1,...,Tm are defined as above. With each elemeot w we associate an elemeni of Q4 (1w, ) as follows:

e If m # 0 ands belongs tow[0, ¢; — 1] or @w[ry, oc] then(s] is the first element of2;(w, 7). In such case we say that
w[0,¢1 — 1] andw|ry, o] are the left and right intervals represented[bly respectively. 1fm = 0 ands belongs to
w[0,4 — 1] or w[i, oo] then(s] is also the first element ¢t (w, 7). In such case we say thaf0, i — 1] andw[i, oo] are
the left and right intervals represented |k} respectively.

e If m # 0 ands belongs taw|c,,, i — 1] or @[i, r,, — 1] then[s] is the last element d?; (@, ¢). In such case we say that
W[em, ¢ — 1] andwli, r,, — 1] are the left and right intervals represented dyrespectively.

e If m # 0 ands belongs tow[ce, cey1 — 1] OF @[res1,re — 1], for somel < ¢ < m, then[s] is the (¢ + 1)-th element of
Ok (w, ). In such case we say thafc,, o1 — 1] andw[r,y1, ¢ — 1] are the left and right intervals represented 4y
respectively.

We denote bys]Z and[s]* the left and right intervals represented b respectively.

We now prove the lemma. For each royn@ < j < k) of thek-round game orfw,, i) and(w-, i'), Player II's response
b; in wo to an element; in w;, played by Player | is defined as follows (the strategy fordhse when Player | picks a
point in w; is completely symmetric). Assume that Player | plays ele@mesh in Q4 (w@1,4) in the round; of the (k + 2)-
round game o1 (w1, i) andQ)y (w2, 4'). Then given thafd, (w1,1) =g+2 (w2, 1), Player Il uses her winning strategy
to choose a respongg| in Q (w2, i) to [a;]. Thus, by definition of2;, we have that the right and left intervals represented
by [a;] have the same ranktype than the right and left intervals representeddyy (with the first element distinguished
as a constant), respectively. Hencey jifbelongs to the left interval represented|by], then the Player Il can find response
b; to a; according to the winning strategy for theround game ora;]> and[g;]%, and ifa; belongs to the right interval
represented bju;], then the Player Il can find resporiseto a; according to the winning strategy for titeround game on
[a;]" and([g;] ™.

Assume that for round < j < k the elements played by following this strategy are(()], . . ., [p;]) in Qg (@1, 1), (2)
(] - -+, [g5]) In Qg (w2, '), B) (a1, ...,a;) inwy, and (4)(b1, . .., b;) in we. We note that by definition of the strategy, for
everyi € [1, j], we have that; = p; orb; = g;. Since we assume that thg|'s and[g;|'s are played according to a winning
strategy for Player Il in thék + 2)-round game o}, (w1, ¢) andQ2 (w2, ), it is the case that:

(Qk(wlv i)v [pl]v R [pj]) =k—j+2
(e (w2, 1), a1, - - [a5])-
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By the way the strategy is defined, for each [1, j], if a> anda/* are the subtuples dfi1, . . ., a;) containing the elements
from (a1, ...,a;) that belong tda,]* and[a,]%, respectively, then the corresponding subtupfeandb’ of (by,...,b;)
contain the elements froiiby, . .., b;) that belong tdbv,|* and[b] %, respectively. Further, by definition of the strategy, we
also have thatfa,|, ak, 1) =—; ([be]*, bk, 1) and([a,]®, al, 1) =—; ([be]®,bE, 1) (where 1 represents the first element
of the interval).

We now show how to define Player II's response in the roisrd. Let us assume without loss of generality that for round
j + 1 of the game or{w, 7) and(w,, '), Player | picks an element_,, in @, that belongs to the left interval represented
by [a;+1] (all the other cases can be treated in a similar way). Pldyesponseé ;. in @, is defined as follows. First, there
must be an element] in Oy (w2, i) such that

(Q(w1,9), [p1], .-, [psls [Pj+1])  =k—j+1
(Q(w2,7"), [q1], - - -, [aj], [s]),

wherep;+1 = a;41. The latter, together with the way that the strategy is defimaplies that there is an eleménin [s]*
such tha([a;+1]%, @', aj41,1) =x—;—1 ([s]F,,b,1), wherea’ is the subtuple ofas, . . ., a;) containing all the elements in
(a1,...,a;) that belong tda;1]* andb’ is the corresponding subtuple @, . . ., b;). We then seb; 1 = b.

We show by induction that, for eagh < &, if (a1,...,a;) and(by,...,b;) are the firstj moves played by Player |
and Player Il or(w.,¢) and(ws, i), respectively, according to the strategy defined above, tha, ..., a;), (b1,...,b;))
defines a partial isomorphism betweefy , ) and(ws, i’). This is sufficient to show thdto, i) =, (w2,7’).

Assumej = 0. Then it follows from the statement of the lemma thahdi’ share the same label i, and that is a call
(resp., return) iffi’ is a call (resp., return).

Assume that the property holds fgr Also assume without loss of generality that for the roynd 1 of the game on
(w1,1) and (w2, '), Player | picks an element; |, in w; that belongs to the right interval represented(&y; ] (all the
other cases can be treated in a similar way). We provebthatas defined above preserves the partial isomorphism. It is
not hard to see that;; = 7 iff b;;1 = ¢’. Indeed, assume first that# r,,,. Then[a;41] is the last element d (w1, 7),
andQy(w1,1) =gyo Qe (we,4") implies that[b;4+1] is the last element d, (w2, ). Sincea;11 = i is the first element of
[ajH]R, b;+1 is the first element o[lij]R, which isi’. Assume now that = r,,,. Then both the last elementsQf, (w1, %)
andQy (w., ") are of the form(, 7.), wherer. is the rankk type of the empty nested word. Thusijs also a non-pending
return, andia;11] is the penultimate element 6f;(w1,¢). Since,Qy(w1,7) =gr2 Qu(w2,4’), [bj4+1] is the penultimate
element ofQ2, (w2, 4"). But sincei’ is a non-pending return, it implies that the first elementhef tight interval associated
with the penultimate element 6f, (w2, ¢’) is alsob, 11 = '.

Further, it is also clear that the label @f;, in w; is a iff the label ofb,; in w; is a, for eacha € Sigma. Next we
consider the remaining cases.

e Assume thatrjy; € call. Then([a;41]",@,a11,1) =p—j—1 ([bj1]",b',bj41,1), whered' is the subtuple of
(a1,...,a;) containing all the elements i, . . .,a;) that belong tda;;1]~ andd’ is the corresponding subtuple of
(b1,...,b;). Thisimmediately implies thdt;;, € call. The converse is proved analogously.

e Assume thati;; € ret. Thisis similar to the previous case.

e First, assume that;;; < a¢ holds for some/ € [1,j]. Sincea;i; belongs to[a;1]®, we have that, belongs
to [a,] and, thus, we only need to consider the cageb = [a;11] and[a;1] < [ae]. If [ag] = [aj11], then
([ae)Es ar,aj41) =0 ([be]*, be, bj4+1) and, thereforeh; 1 < b, also holds. Ifla; 1] < [ac], then[b;+1] < [be] and,
thus,b;+1 < b, holds since), andb; 1 belong to[b,|~ and[b;;1]%, respectively.

Second, assume that < ;1 holds for somé € [1, j]. We need to consider three casks] = [a;+1], [ad] < [aj+1]
and(a;ji1] < [ac). If [ae] = [aj41], then([ae)®, ap, aji1) =0 ([be], be, bj11) and, thereforeh, < b;41 also holds. If
[aj1+1] < [ae], thena, belongs tda,]” and[b;+1] < [be] and, thush, < b;;1 holds sincé, belongs tdb,] while b,
belongs tdb,1]%. Finally, if [a;] < [a;+1], then[bs] < [b;11] and, thusb, < b;1 holds sinceé;; belongs tdb;1]%
and every element ifb; 1] is bigger than every element in eithég]’* or [b,] .

e First, assume that(a;41, ar) holds for some € [1, j]. Sincea,; 1 belongs to the right interval represented|by,: ],
we have thafa,] = [a;4+1]. Thus, given that[a,|*, ar,aj+1) =o ([be]”, be, bj+1), we conclude that(b;1, by) holds.

Second, assume thata,, a;+1) holds for somé € [1, j]. We need to consider two cases. If bathanda,,; belong
to the same interval, thefia,|*, ar,aj11) =o ([be]*, be, bj+1), and thusp(be, bj11) holds. Ifa, anda;; belong to
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ao(z) = Pa(x),
acann(z) = call(x),
aret(z) = ret(x),
aint(z) = —call(x) A -ret(z),
apres(z) = ret(z) A Jyu(y,z),
a-p(w) = map(w),
dovp(T) = () Vay(w),
ao,(r) = Fyl@<y A -Tz(z<zAz<y) A ap(y)),
a0,e(x) = Fy(ux,y) A ap(y)),
ag,.(®) = FyIz(y<zAz<zApyz) A ae(y) A
Vuvo(u < z Az <vAp(u,v) = u=yVu<y)),
apup(r) = Fy((@<yVe=y)Aayy) A
Vz(z < yA(z=zxVe<z) — ap(z))),
apuey(x) = Fy((z<yVz=y) Aay(y) AVuvo(u<yAy <vAp(u,v) = u<z) A
Vz(z<yA(z=z Ve <z)AVuVv (u <zAz <vAp(u,v) — u<z) — a(2))),
apsey(r) = ay(@) V IY (Y <z A dean(y) A Vz(u(y,z) =z <z) Aay(y) A
Ve(((z=2)V(acann(2) A2 <z Ay < 2 AVu(u(z,u) = x < 1)) — au(2))),
aco(z) = (mFyIz(u(y,2z) Ny<z Az <z) AVz(-Ju(u<z) — Oc(p(z)[z’x]) \%

(FyFz (u(y,z) Ny<z Az <z A
Vuvo(u <z Az <o Ap(u,v) — u=yVu<y) A as(y)?),
arep(z) = (3yIz(pw(y,2) Ny<z Az<z)AVz(-TJu(z<u) — Oc(p(:c)[x’z]) \Y%
(FyFz (u(y,z) Ny<z Az <z A
Vuvo(u <z Az <o Ap(u,v) — u=yVu<y) A ap(z)D).

Figure 1. Translating CaRet+ {C, R} into FO.

distinct intervals, thefiu,] = [a;41] + 1, a¢ is the first element ofa,]- anda, 1 is the first element ofa;1]%. Thus,
given that(Qy (w1, ©), [ar], [aj+1]) =1 (Qw(w2,7"), [be], [bj4+1]), itis the case thdb,] = [b, 1]+ 1. Furthermore, given
that the rankk type of[a,]” is the same as the rariktype of [b,]" with the first element distinguished as a constant, we
conclude thab, is the first element ofb,]~. In the same way, we conclude ttbat ; is the first element ofp;;1]* and,
therefore u(bg, b;41) holds.

This concludes the proof of the lemma. ]

We now present the proof of Theorem 4.7.

Proof of Theorem 4. AVe first show that every CaRet{R, C} formulay is equivalent to afrO formulac, (z) over nested
words, that is, for every nested wodd(finite or infinite), we havgw, ) |= ¢ iff w = «a,, (). The translation is standard and
can be done by recursively defining (x) from ¢ as shown in Figure A. In the following we assume that the F@nfda
6(z)v-*l is therelativizationof §(x) to elements in the intervéy, z], thatis,f(z)!¥#! is obtained fron® () by replacing each
subformula of the formu S with Ju(y < uAu < 2 A ) and each subformula of the forviu G with Vu(y < uAu < z — [).

We now show the other direction, thati&) C CaRett {R,C}. We extend the vocabulary with an extra atomic predicate
min interpreted as the first element of each nested word/e start by proving this result fa&tO sentences (that is, we prove
that for everyFO sentencep there is an CaRet {R,C} formula, such thato = ¢ iff (w, 1) = ), and then extend it to
the case of'O formulas with one free variable. Letbe an FO sentence. We use induction on the quantifier ranlote pr
thaty is equivalent to an CaRet {R,C} formula.

For k = 0 the property trivially holds, ag is a Boolean combination of formulas of the folf) (min), min < min,
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min = min, andy(min, min).

We now prove fork + 1 assuming that the property holds for Since everyO sentence of quantifier rarkk+ 1 is a
Boolean combination oFO sentences of the formzy(z), wherep(x) is a formula of quantifier rank, we just have to
show how to express in CaRet{R,C} a sentence of this form.

LetI" be the set of all rank-types of nested words over alphabét By induction hypothesis, for each € T there is
an CaRett- {R,C} formula&, such thatw, 1) = &; iff the rank+ type ofw is 7. Itis not hard to see then that there is an
CaRet+ {R,C} formulagt such thafw, 1) |= &2 iff the rank+ type ofw’ is 7, wherew’ is the nested word obtained from
w by removing its last element (note that in order to constffiete require the temporal operatay).

Let A be the set of all rankk+2) types of words over alphabEtI". We first construct, foreach€ A, an CaRet-{R,C}
formulaa, over alphabekE such that,

(w,i) = ay <= therank{k + 2) type of Q(w,7) is A,

for each nested wor@ and positiory of w.

Fix A € A. From Kamp’s theorem [12] there is an LTL formuta over alphabel’ x I such that a word satisfiess,
evaluated on its last element iff the rafk-+ 2) type of s is A. By the separation property, we can assume thabnly
mentions past modaliti€s) andS. Moreover, given thap Sy = ¥ V (¢ A O(pS1)), we can also assume thay is a
Boolean combination of formulas of the form eitheor O+, wherep does not mention any temporal modality afis an
arbitrary past LTL formula. Thus, since CaRet{R,C} is closed under Boolean combinations, to show how to define
from /3, we only need to consider two cases: (})is an LTL formula ovetl® x T" without temporal modalities, and (2),
is of the form(©1), wherey is an arbitrary past LTL formula ovét x I'. Next we consider these two cases.

e Assume thap, is an LTL formula without temporal modalities. Theun is defined to bess, where( )° is defined
recursively as follows. Givefir,7’) e I' x T,

(r,7)° = (-ret ACE AREL)V
(ret A C{f NEr ),

with 7. the rank# type of the empty word. Furthermoregifandy are LTL formulas without temporal modalities, then

(mp)°® = —¢°,
(pVy)® = @° Ve

e Assume thap, is a formula of the forn{©p, wherey is an arbitrary past LTL formula. Them, is defined to be3s,
where( )* is defined recursively as follows. Givén, 7’') € T x T,

(r,7)* == (O.TACENOLRE)V
(O T ACE AOLRE)
Furthermore, ifiy andy are past LTL formulas, then
(mp)* = e,
(pVi) = " V¥,
(Op)* = Oy,
(pSy)* = ¢Sy~

Now, let3zp(x) be anFO sentence such that the quantifier ranks¢f) is k. Then, from our composition methadx)
can be expressed in CaRe{R, C} as the formula/, . ,, ax, whereA’” C Ais the set of all rank# +2) types of words over
alphabef” x T that belong to{Q(w,) | @ E ¢(i)}. Thus,3zp(z) can be expressed as the following CaRe{R,C}
formula: T U (\/, <, aa). This concludes the proof of the theorem.

Finally, from the composition method and the previous pmefsee that the equivalenE® = CaRet+ {R,C} holds
for unary queries over nested words. ]
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Proof of Theorem 5.6

From the FO completeness of NWTLwe have that NWTL + ) can be translated into NWTL We show that at least
an exponential blow-up is necessary for such translaticorelprecisely, we construct a sequefigg },,>1 of NWTL™ +W
formulas of sizeO(n), such that the shortest NWTLformula that is equivalent tg,, is of size2("). Our proof is a
modification of similar proofs given in [9, 22]. Assun = {ay,...,a,}, and lety, be the following NWTL" + W
formula (here2?0 and$’ 0 are abbreviations for( TU?—6) and TS“6, respectively):

n

md <ca11 — woe ((/\(ai = ©%(a; N=OT))) — (ag « ©7(ao A ﬁ@T))>).

i=1

It is not hard to see that |= ¢, iff for every positionsi, j in w such thau(z, j) holds, if position? in @[, j] coincides with
i0Nnay,...,a,, thenf also coincides with onayg.
It is shown in Theorem 5.1 that for each NWTlformulac, the language

L, = {w | wisannested-word such thatv = a }

is recognized by a nondeterministic nested word automattma#’(*!) states. Thus, it is enough to show that every such
automaton for,,, requires at least?™" states. Letd be a nondeterministic nested word automator/fgr. Assume that
bo, - . ., ban_1 is an enumeration of the symbolsafi\{@o}, For everyK C {0,...,2" — 1} letwy be the wordr - - - can 1
over alphabe?2™, where for each < 2" — 1:

b; i1e K
Ci = .
b;U{aog} otherwise

It is not hard to see that for eadki C {0,...,2" — 1}, the nestedv-word (w%, 1), wherey = {(¢j,c3.9n-1—4) | 0 <

j < 2m — 1}, is such thatw4-, ) = ¢n. Let (¢k, ¢%) and(qk, g% ) be pairs of states such that (d)is in states;i- and
¢3. in an accepting run fofw4-, 1) after reading2”™ and2 - 2 symbols fromaw4., respectively, and (21 is in statesy},.,
andq?, in an accepting run fofwy.,, 1) after reading2™ and2 - 2" symbols fromw,,, respectively. Next we show that
(q%,q%) # (ak+, q% ) if K # K'. On the contrary, assume th@at,, %) = (g%, 4% ). ThenA acceptwx wx w4, p1'),
wherey' = {(c;,c3.9n-1—5) | 0 < j < 2™ — 1}, which is a contradiction sinc@vx wx w4, ') ¥ ¢n. Given that the
number of differentx’s is 22", the latter implies that the number of different pairs ofeseof A is at leas22”. Thus, if A
hasm states, them? > 22" and, hencep > 22" '. Therefore, the number of different states/fs at leas?”" . This
concludes the proof of the theorem.

Proof of Theorem 6.1

As we mentioned already, in the finite case this is a directequence of [19] so we concentrate on the infinite case. It is
more convenient for us to prove the result for ordered urgdriirests in which a subtree rooted at every node is finite. Th
way to translate a nestedword into such a forest is as follows: when a matchedioalth 1.(7, j) is encountered, it defines
a subtree withi as its root, ang + 1 as the next sibling (note that this is different from the §lation into binary trees we
used before). If is an internal position, or a pending call or a pending reposition, then it has no descendants and its
next sibling isi + 1. Matched returns do not have next sibling, nor do they hayedascendants. The nodes in the forest are
labeled withcall, ret, and the propositions iR, as in the original nested word.

It is routine to define, in FO, relations,.s. and=y;, for descendant and younger sibling in such a forest. Furtbes,
from these relations, we can define the usdandy in nested words using at mostvariables as follows. Far < y, the
definition is given by

(y jdcsc I) \% 32 (I jdcsc AN 317(25 <sib 2 A\ Yy jdcsc I))

and foru(z,y), by
(y Rdese ) AVz((2 Rdese ) — Jz(z =z Az < y)).

Thus, it suffices to prove the three-variable property fahsardered forests, which will be referred to . ds B, etc. We
shall use pebble games. L&¢, (A, a1, b1, B, b1, b2) be them-move,v-pebble game on structuresand 53 where initially
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pebblest; are placed om,; in A andb; in B. Player Il has a winning strategy f@&? (A, a1, b1, B, b1, b2) iff A, a;,as and
B, by, b agree on all formulas with at mostvariables and quantifier-depth. We know from [13] that to prove Theorem
6.1, it suffices to show the following,

Claim A.9 For all k, if Player Il has a winning strategy for the gan@§k+2(A,al,QQ;B,bl,bQ). Then she also has a
winning strategy for the ganﬁ’,ﬁ(A, a1,a9; B, b1, b9).

We will show how Player Il can win th&-pebble game by maintaining a set of 3-pebble sub-games ahwhe will
copy Player I's moves and decide on good responses usingimeing strategy for these smaller 3-pebble games. The ehoic
of these sub-games will partition the univefge U |B| so that each play by Player | in tihepebble game will be answered
in one3-pebble game. This is similar to the proof that linear ondgsihave the 3-variable property [13].

The subgame$a3 (A, a1, az; B, b1, by), that Player Il maintains will all beerticalin which as <gese a1 andbe <gese b1
hold, orhorizontalin whicha; <, as andb; <, b2 hold.

The following lemma gives the beginning strategy of Playém ivhich she replaces an arbitrary game configuration with
a set of configurations each of which is vertical or horizbnta

Lemma A.10 If Player lwinsG3,, ,(A, a1, a2; B, b1, b2). Then there are points}, a}, from .A andb}, b, from B such that
Player Il wins the horizontal gam@?3 . , (A, a}, ab; B, b}, b}) and the vertical game&?, |, (A, a}, a;; B, b}, b}) fori = 1, 2.
Proof: For this proof sinced andB are fixed, we will describe a game only by listing the chosentspe.g. (a1, az; b1, b2).
We simulate two moves of the garr(é;°’n+4(a1, az; b1, ba), in which we choose Player I's moves and then Player Il answer
according to her winning strategy. Let+ v denote the least common ancestouadndv. First, we have Player | place
pebblez; ona}, the unique child ofi; + a- that is an ancestor af,. (Note that ifa] = a, then this move can be skipped
and similarly for the second movedf, = ay.) Player Il answers by placings on some point. Second, Player | should
move pebbler; from a; to aj, the unique child ofi; + a, that is an ancestor af,. Player Il moves:; to some poinb.

Since Player Il has moved according to her winning strategyhave that she still has a winning strategy for the three
games in the statement of the lemma. Furthermore, sifiemda’, are siblings and we have two remaining movégsand
b, must be siblings as well. O

Using Lemma A.10 we initially partition the universe acdogito four subgames:

e (ar,ap; by, by) with domain everything not below, or b,. Herea,, = a1 + a2, i.e., the parent of}, b, = b1 + bo, i.e.,
the parent of} anda, andb,. are the roots of4 andB, (the roots are not necessary but then the subgames are all on
horizontal or vertical pairs), or

e (a},aq;b},b1) with domain everything below; or b,
o (ah, as; b, be), with domain everything below, or b,
o (a},ab; b}, bYy), with the remaining domain.

We now have to explain, inductively, how all moves of Playgr the k-pebble game are answered by Player Il and how,
in the process, the universe is further partitioned. We dtidaly assume that Player Il has a winning strategy for edc¢he
3-pebble, m-move sub-games. There are two cases:

Vertical: Player | places a new pebble on a painthat is in the domain of a vertical gaméu, as; b1, b2). We thus
know thata is a proper ancestor af The interesting case is where neithen@nda, is above the other so, without loss of
generality, assume that< a,. We placers onaj, the child ofa + a9 that is aboves,. Let Player Il move according to her
winning strategy, placing; on some point,. We split the original game int@uy, a}; b1, b5) and(a, aq; bh, ba) so Player
Il has a winning strategy for these 3-pebble,~ 1 move sub-games. Next, in tlie;, a5; b1, b5) game we places onay,
the parent ofi, and we let Player Il answer according to her winning stratptacingzs on some pointh,. We then split
off the game(aq, ap; b1, by).

Returning to the gameuy, aj; b1, b}), we have Player | place; ona’, the sibling ofal, abovea, and let Player |l answer
according to her winning strategy, placimg on some point}’.

Finally, we let Player | move; to a, and let Player Il reply with:; on some poinb.

The sub-games are thu@ty, a,; b1, by,), (@', ab; b, bh), (a’,a; V', b), and(ab, as; bh, b2) and Player 1l has winning strate-
gies for theG3,_, game on all of them.
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Horizontal: In this case, we have the configuratidam;, as; b1, b2), consisting of a pair of siblings. The only interesting
case occurs when Player | puts a new pebble on some vertet,a; < a < az. In this case, we have Player | place pebble
x3 ond’, the sibling ofa; abovea. Player Il will place pebble:;s on some vertexy’, which must be a sibling df; andb,.

Next, in the game below andb’, we let Player | place pebbie ona and we let Player Il answer according to her winning
strategy in this game, placing, on some vertex). The domain of the original configuration is thus split intanthins for
three sub-gamesuy, a’; b1,b'), (a/,aq; b, b2), and(a’, a; b, b). On each of these, Player Il has a winning strategy for the
3-pebblem — 2 move game.

We now complete the proof that Player Il wi: (a1, a2; b1, b2). Whenever Player | places a new pebble on some point,
saya, in the original game, Player Il will answer as describedvahae., in one of the little games we will have Player I
wins G3,.(a,a’; b, b') where there are moves remaining in the big game.

Player Il then answers in the big game by placing the cormeding pebble orb. To see that the resulting moves are a
win for Player I, we must just consider any two pebbled pgint,a; € A, andb;,b; € B. If they came from the same
sub-game, then they agree on relatiefigs., <si, because Player Il wins the sub-game. Otherwisgh; came from one
sub-game(s;, anda;, b; came from another sub-gant;. By our choice of the domains and transitivity 8ficsc, <sib, it
thus follows thati;, a; stand in the same relation with respect{@sc, <si» asb;, b; do. O

Proof of Theorem 6.2

The translation from unary-NWTL intBO? is standard and can be done with negligible blow-up in thesithe formula,
S0 we concentrate on the other direction. The proof geresathe proof of an analogous result for unary temporal logér
words from [9].

Given anFO? formulay(x) the translation procedure works a follows. Whefx) is atomic, i. e., of the forma(z), it
outputsa. Wheny(x) is of the formy, Vv 12 or -¢)—we say thatp(z) is composite—it recursively computeg) andq),
or ¢y’ and outputs)] V 5 or —)’. The two cases that remain are whefx) is of the form3z ¢*(z) or Iy *(z,y). In
both cases, we say thafz) is existential In the first casep(x) is equivalent tady ¢* (y) and, viewingz as a dummy free
variable inp*(y), this reduces to the second case.

In the second case, we can rewritg§(x, y) in the form

cp*(w,y) = B(XO(‘T’ y)7 ) XT—l(xa y),§0(x), ) gs—l(x)a CO(y)v ) Ct—l(y))

whereg is a propositional formula, each formula is an atomic order formula, each formy@ais an atomic or existential
FO? formula withqdp(&;) < qdp(e), and each formulg; is an atomic or existenti@O? formula withqdp(¢;) < qdp(¢).

In order to be able to recurse on subformulagofie have to separate thig's from the (;’s. We first introduce a case
distinction on which of the subformulgs hold or not. We obtain the following equivalent formulatifmm ¢:

Vo (A& =% ATBX0 - Xr— 1700 Ys-15 05+ Go1))

Fe{T,L}s i<s

We proceed by a case distinction on which order relation hbketween: andy, wherez < y. We consider mutually
exclusive cases, determined by the following formulascivhve callorder types

o Uyisz =y.
e Foreacht € T, ¥, is St(x,y).
e Foreacht € T, ®; is 3z (St(z,2) A 2 <t y).

e Leto = t1,t9,...t; be a sequence ovét such tha < k < 5, all ¢;’s are distinct, and a call never appears before
return (that is, ift; = c thent; # r for j > i). Then¥,, stands for

321,20, 20, 2, 2 (ST (2, 21) A2y <TV ) NS (2], 20) Ay <T2 2H N - Az <R y)

where forl < i < k, the setl; equals the sefttq, ts . . . t; }, but withr removed if bothe andr belong to this set.
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We claim that these order types are mutually exclusive antpéete, and are expressible in unary-NWTL (and hence, in
FO?). First, let us show that the order types form a disjointiiart, meaning for all pairgz, y) such that: < y, we have
exactly one of these relationships holding true. To see $higposer < y. Then eitheiS?(z, y) holds for some type (and
the successor relatiorf’s are disjoint), or there is a path fromto y that uses at least two edges. The key observation is
that a path frone to y is a summary path iff the path does not contain a call edgevield! later by a return edge. Also,
there is a unique summary path franto y. We can now classify the paths by the edge types that thisierigmmary path
contains, and the order in which they first appear in the patin.example®.(z, y) holds when there is a path fromto y
using 2 or more call edge®,. .. (x, y) holds when there is a path fromto y which begins with a call edge, uses at least
one call-interior-return summary edge, and uses only theseypes of edgesp, ; .(z,y) holds when there is a path from
x to y that can be split into three consecutive parts: a part cointonly return edges, a part containing at least one iatern
and only internal and return edges, and a part containirgpat bne call and only call and internal edges. Note that ®dme
these order types are empty: for example, two summary edgesever follow one another, and henkg (z, y) can never
hold. Emptiness of some of the order types is not relevarteqgtoof.

When we assume that one of these order types is true, eaclcatatar formula evaluates to eithéror L, in particular,
each of they;’s evaluates to either or L; we will denote this truth value by?. For example, whe® ,.(z, y) holds then
(1) St(x,y) is true fort = cr and fasle fot # cr, and (2)<! is true if I containser or if I' contains bothk: andr, and false
otherwise.

We can finally rewritep as follows, wherél’ stands for the set of all order types:

Vo (AEG=wnV 3EAB0E,- - x7-1.7:0) -

Fe{T,L}s i<s TeY

If 7 is an order typeg (z) an FO? formula, andy’ an equivalent unary-NWTL formula, there is a way to obtain a
unary-NWTL formular () equivalent tady (7 A ¢ (y)), as follows. Assume that < y.

e For the order typd, 7(¢') is ¢’ itself.
e Foreacht € T, for the order typal,, (') is O'y)'.
e Foreach € T, for the order typab;, (') is Q'O Ottty

e For order typel,, whereo = t1,to, ...t is @ sequence ovér, 7(¢’) is OrOn™. .. <>Tk1//, where forl < i <
k < 5, the setl;; equals the seftt1, t- . . . ¢;}, but withr removed if bothe andr belong to this set.

The case corresponding to past opeartors is analogous.r@edure will therefore recursively computefor i < s and
¢l(x) fori < t and output

V NG =N N 786G X717 6@), - G (@) - )

Fe{T,L}i<s TEY

Now we verify that¢’| andodp(¢’) are bounded as stated in the theorem. Note that thésizis measured by viewing
the unary-NWTL formula as a DAG, i.e., sharing identicalfautmulas. Thabdp(y’) < 10 qdp(yp) is easily seen from the
operator depth in the translation table above. The prodf|tha < 2¢/#/(adp(¥)+1) for some constant is inductive on the
guantifier depth ofp. The base case is trivial, and the only interesting casedrirttiuctive step is whep is of the form
Jye*(x,y) as above. In this case, we have to estimate the length of (BreTare2® < 2/¥! possibilities fory in (2), and
each disjunct in (2) has length at mastp| max; < j<¢(|¢;], |(|) for some constant. By induction hypothesis, the latter is
bounded byl || 2¢/#1adr(#)  which implies the claim, providedis chosen large enough.

It is straightforward to verify that our translation g6 can be computed in time polynomial|ip’|.

Model checking of unary-NWTL can be achieved with the sammapexity as for NWTL using a variant of the tableaux
construction in Section 5. ]
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