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Abstract  37 
 38 
Perception of facial expression is crucial in the social life of primates. This visual information 39 
is processed along the ventral cortical pathway and the subcortical pathway. Processing of face 40 
information in the subcortical pathway is inaccurate, but the architectural and physiological 41 
properties that are responsible remain unclear. We analyzed the performance of convolutional 42 
neural networks incorporating three prominent properties of this pathway: a shallow layer 43 
architecture, concentric receptive fields at the first processing stage, and a greater degree of 44 
spatial pooling. The neural networks designed in this way could be trained to classify seven 45 
facial expressions with a correct rate of 51% (chance level, 14%). This modest performance was 46 
gradually improved by replacing the three properties, one-by-one, two at a time, or all three 47 
simultaneously, with the corresponding features in the cortical pathway. Some processing units 48 
in the final layer were sensitive to spatial frequencies (SFs) in the retina-based coordinate, 49 
whereas others were sensitive to object-based SFs, similar to neurons in the amygdala. 50 
Replacement of any one of these properties affected the SF coordinate of units. All three 51 
properties constrain the accuracy of facial expression information in the subcortical pathway, 52 
and are essential for determining the coordinate of SF representation. 53 
 54 
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Introduction 60 
 61 
Perceiving the facial expressions of other individuals plays a critical role in the social life of 62 
primates, including humans. Two neural pathways, the ventral cortical pathway and the 63 
subcortical pathway, contribute to this perceptual ability (Fig. 1A; Pessoa and Adolphs, 2010; 64 
Tamietto and de Gelder, 2010; Petray and Bickford, 2019). The ventral cortical pathway consists 65 
of a network of areas in the occipito-temporal region of the cerebral cortex, and processes a 66 
variety of visual features of objects, people, and environments, including shape, color, texture, 67 
material properties, and binocular disparity (Ungerleider and Mishkin, 1982; Connor et al., 68 
2007; Conway et al., 2010; Roe et al., 2012; Kravitz et al., 2013; Vaziri et al., 2014; Verhoef et 69 
al., 2016; Komatsu and Goda, 2018). Neurons that preferentially respond to images of faces or 70 
facial features are found in several clusters along this pathway (Desimone et al., 1984; Perrett 71 
et al., 1987; Fujita et al., 1992; Haxby et al., 2000; Tsao and Livingstone, 2008; Duchaine and 72 
Yovel, 2015; Freiwald et al., 2016). They constitute the neural system that analyzes facial details 73 
such as expression, identity, and direction of attention. The subcortical pathway consists of a 74 
few processing stages in phylogenetically ancient regions: the superior colliculus in the 75 
midbrain, the pulvinar nucleus in the posterior thalamus, and the amygdala in the medial limbic 76 
system. The subcortical pathway is suggested to mediate rapid behavioral and physiological 77 
(autonomic) responses to sensory signals related to possible dangers such as fearful faces 78 
(Tamietto and de Gelder, 2010; Nakano et al., 2013; for a critical review, see Pessoa and 79 
Adolphs, 2010). The ventral cortical pathway and the subcortical pathway intersect at the 80 
amygdala.  81 
 82 
Psychological and brain imaging studies suggest that the subcortical pathway subserves the 83 
ability of some patients with lesions in the primary visual cortex (V1) to discriminate facial 84 
expressions despite lacking visual awareness (“affective blindsight”; deGelder et al., 1999; 85 
Pegna et al., 2005; Striemer et al., 2019). These patients also reflexively exhibit specific facial 86 
expressions and pupillary reactions when exposed to fearful or happy faces (Tamietto et al., 87 
2009). Studies have also shown that the subcortical pathway supports unconscious face 88 
perception in neurologically healthy subjects (Morris et al., 1999, 2001). Furthermore, 89 
orientation bias toward faces or face-like patterns by newborn babies is suggested to be mediated 90 
by the subcortical pathway (Cassia et al., 2001; Johnson, 2005; but see Buiatti et al., 2019). 91 
Importantly, these perceptual abilities are not perfectly accurate, instead resulting in modest 92 
performance at above-chance levels. These findings suggest that information on faces conveyed 93 
by the subcortical pathway is less accurate than that carried by the ventral cortical pathway.  94 
 95 
Electrophysiological studies have demonstrated that processing of facial expression in the 96 
subcortical pathway is indeed fast and not very accurate. Méndez-Bértolo and colleagues (2016) 97 
showed that intracranial local field potentials in the human amygdala respond differentially to 98 
fearful faces versus other faces within 74 ms after stimulus onset. A recent single-neuron 99 
recording study in the monkey revealed that a population of amygdala neurons responded to 100 
threatening faces even within 50 ms (Inagaki et al., 2022a). This early response, when combined 101 
across an ensemble of neurons, carries information that allows linear classifiers to discriminate 102 
threatening faces from neutral and affiliative faces. The rate of correctly discriminating the three 103 
expressions is around 50%; this is well above chance (33%), but significantly worse than perfect. 104 
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Some neurons in the superior colliculus and pulvinar of the monkey also respond to faces and 105 
face-like patterns with an even shorter latency of 30–50 ms (Nguyen et al., 2013, 2014). 106 
 107 
What architectural and physiological properties of the subcortical pathway are responsible for 108 
its fast, crude processing? The fast processing most likely arises from the small number, or 109 
“shallowness,” of processing stages in the subcortical pathway, given that the ventral cortical 110 
pathway and its upstream area (the lateral geniculate nucleus) consist of a larger number of 111 
regions (at least six before reaching the amygdala) than the subcortical pathway (only two), and 112 
that every transition from one cortical region to the next takes at least 10 ms (Schmolesky et al., 113 
1998). It is unclear whether the shallow processing similarly explains the low accuracy of the 114 
information transmitted by the subcortical pathway to the amygdala. This uncertainty arises 115 
from the fact that in addition to the difference in the number of processing stages, visual 116 
response properties differ markedly between the two pathways. Neurons in the superior 117 
colliculus at the first stage of the subcortical pathway show circular receptive fields with center-118 
surround organization, which can be modeled using the difference-of-Gaussian (DoG) function 119 
(Cynader and Berman 1972; Updyke 1974; Marino et al. 2008; Churan et al., 2012). By contrast, 120 
simple cells of V1 at the first stage of the cortical pathway have elongated receptive fields with 121 
side-by-side ON and OFF subregions, which can be modeled by two-dimensional Gabor 122 
functions (Jones and Palmer, 1987). Furthermore, the receptive field is typically larger in the 123 
superior colliculus (for the foveal field, 1.5–10° in superficial layers, 10–20° in deep layers; 124 
Goldberg and Wurtz, 1972; Wallace et al., 1997) than in V1 (1.18° in simple cells, 1.3° in 125 
complex cells; Van den Bergh et al., 2010) and the extrastriate areas V2 and V4 (Freeman and 126 
Simoncelli, 2011). Thus, spatial pooling across ascending stages occurs over a wider visual field 127 
area in the subcortical pathway than in the ventral cortical pathway.  128 
 129 
In the present study, we addressed how these properties of the subcortical pathway, i.e., the 130 
shallowness of processing stages, DoG-type receptive fields at the initial stage, and spatial 131 
pooling over a wider visual field, influence facial expression processing. To this aim, we 132 
constructed convolutional neural networks (CNNs) and analyzed their performance in facial 133 
expression discrimination. CNNs are one type of multilayer perceptron, and can be optimized 134 
(“learn”) to classify inputs by varying connection weights between processing units through 135 
supervised learning algorithms (LeCun et al., 2015). Typical CNNs have several to tens of layers 136 
(deep neural networks, DNNs). DNNs developed for classifying visual objects share 137 
architectural and representational features similar to those of the ventral cortical pathway 138 
(Yamins et al., 2014; Güçlü and van Gerven, 2015; Yamins and DiCarlo, 2016; Hassabis et al., 139 
2017). We designed our CNNs to imitate the subcortical pathway by reducing the number of 140 
processing stages and by implementing DoG-type receptive fields and a wider extent of pooling. 141 
These CNNs, hereafter referred to as shallow neural networks (SNNs), learned to discriminate 142 
facial expressions with modest correct rates. Replacing the three properties, one-by-one, two at 143 
a time, or all three simultaneously, with the corresponding properties in the ventral cortical 144 
pathway gradually improved discrimination performance, suggesting that all three features are 145 
responsible for limiting the performance of the SNNs. We further showed that like some neurons 146 
in the amygdala, a major group of units in the final processing layer of the SNNs were sensitive 147 
to spatial frequency (SF) in the retina-based reference frame as initially detected in the first 148 
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processing layer, and that the three subcortical properties contribute to preserving the retina-149 
based SF sensitivity.  150 
 151 
 152 
Materials and Methods  153 
 154 
Architecture of SNNs. 155 
We constructed SNNs incorporating the distinct properties of the primate subcortical pathway 156 
(Fig. 1B–D; Table 1). Unlike typical DNNs, the SNNs consisted of only two sets of convolution 157 
and pooling layers followed by two fully connected layers (FC1, FC2), approximating the small 158 
number of processing stages of the subcortical pathway. The first convolution layer incorporated 159 
32 DoG-type filters (Fig. 1C, top) with a spatial resolution of 11 × 11 pixels, whereas weights 160 
in the second convolution layer were initially random, i.e., the filters had no structure, and 161 
gradually changed through training. A rectified linear unit (ReLU) was used as the activation 162 
function of a unit in the convolution layers and FC1; the ReLU forwards the processing results 163 
directly to the next stage if they are positive, otherwise it outputs zero. A max pooling operation 164 
was performed over 5 × 5 sliding regions with a stride of 4 for the outputs of convolution layers 165 
(Fig. 1D, top). Max pooling selected the largest value among the responses of units within a 166 
sliding window over the preceding convolution layer, and forwarded the value to the next layer. 167 
A local response normalization process was added after the pooling layers to aid generalization 168 
(Krizhevsky et al., 2012; we used slightly different parameters from theirs; k = 1, n = 5, 𝛼 = 2 × 169 
10-5, 𝛽 = 0.75). Every unit in FC1 and FC2 received inputs from all units in the immediately 170 
preceding layer, i.e., each was fully connected. FC1 is the final processing layer, and FC2 171 
outputs the results of entire processing by the SNNs. These features were implemented to 172 
capture the architectural and computational properties of the subcortical pathway, i.e., fewer 173 
processing stages compared to the ventral cortical pathway (Fig. 1A), DoG-type receptive fields 174 
in the superficial layer of the superior colliculus (Churan et al., 2012), and large receptive fields 175 
of deeper superior colliculus neurons (Wallace et al., 1997). The first three processing layers 176 
were intended to represent the superior colliculus, pulvinar, and amygdala, respectively. The 177 
processing types of these layers, i.e., convolution and pooling in the first two layers and full 178 
connection in FC1, were chosen to match the retinotopic organization of the three brain regions. 179 
The convolution and pooling processes in the first two layers exploit retinotopy, as the superior 180 
colliculus and pulvinar contain retinotopic maps (Bender, 1981; Chen et al., 2019). The FC1 181 
layer loses retinotopic information because of the fully convergent connection from the earlier 182 
stage, as the amygdala does not have a retinotopic map (Morawetz et al., 2010). 183 
 184 
The SNNs were trained to discriminate images of facial expressions representing seven basic 185 
emotions: angry, disgusted, fearful, happy, sad, surprised, and neutral (Fig. 1E; see below for 186 
details). For each input image, the seven units in FC2 yielded scores ranging from 0 to 1 for the 187 
seven expression categories, representing the probabilities of classified expressions. The 188 
expression with the highest score was taken as the output of the model.  189 
 190 
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 191 
 192 
Figure 1.  Shallow neural networks (SNNs) and modifications. (A) Cortical and subcortical 193 
visual pathways for processing facial expressions in the primate brain. AMYG: amygdala; AIT, 194 
PIT: anterior and posterior parts of inferior temporal cortex; LGN: lateral geniculate nucleus; 195 
PU: pulvinar nucleus; SC: superior colliculus; V1, V2, V4: visual areas 1, 2, 4. (B) A schematic 196 
illustration of the SNNs and full-replacement models. In the full-replacement models, 197 
processing layers were added, the filters in the initial layer were changed with Gabor filters, and 198 
the range of pooling was narrowed. (C) DoG filters for the SNNs and DoG models (upper) and 199 
Gabor filters for the Gabor models (lower). (D) The pooling range for the SNNs (5 × 5) and the 200 
narrow-pooling models (3 × 3). (E) Examples of presented face images with seven expressions 201 
(angry, disgusted, fearful, happy, sad, surprised, neutral) of two individuals (upper: female, 202 
AF06; lower: male, AM27). The original images were obtained from the Karolinska Directed 203 
Emotional Faces database (Lundqvist et al., 1998). 204 

205 
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Table 1. Architecture of the Shallow Neural Network (SNN). Each row describes a layer i with 206 
calculation operator Fi, output resolution Hi × Wi, and the number of output channels Ci. Conv 207 
denotes convolution layer, and Pool denotes max pooling layer. 208 
 209 
Input & 
Layer 
𝑖 

Operator 
𝐹% 

Resolution 
𝐻% ×𝑊% 

#Channels 
𝐶% 

Input  227 × 227 3 
Layer 1 11 × 11 Conv (stride 4) & 5 × 5 Pool (stride 4) 55 × 55 32 
Layer 2 5 × 5 Conv (stride 1) & 5 × 5 Pool (stride 4) 4 × 4 64 
Layer 3 Fully connected 1 × 1 32 
Layer 4 Fully connected 1 × 1 7 

 210 
 211 
 212 
The DoG-type filters of the first convolution layer were built using the following formula: 213 
 214 

𝐷𝑜𝐺(𝑟) = ±𝐴3𝑒𝑥𝑝 7−
9:

;<=:
> ∓ 𝐴;𝑒𝑥𝑝 7−

9:

;<::
>,                    (1) 215 

 216 
where r is the polar radius from the filter center, A1 and A2 are the amplitudes of exponentials of 217 
two Gaussian functions, and σ1 and σ2 are the standard deviations. Values of A1, A2, σ1, and σ2 218 
were chosen empirically so that DoG curves took the shapes of Mexican hats. A1 values were 219 
0.4, 0.67, 0.8, and 1.0. A2 values were determined based on A1 − A2 = 0.4. When A1 was 0.4 (i.e., 220 
A2 is 0, and σ2 cannot be defined), we set the σ1 value at	1/2√2, 1/4√2, 1/8√2, or	1/16√2	. 221 
Otherwise, the σ1 value was 1/2√2	or	1/4√2	. The σ2 value was based on σ1 / σ2 = 0.5 or 0.25. 222 
The same number of filters was generated for each A1 value.  223 
 224 
We also constructed modified models in which the three properties of the SNNs were replaced 225 
one-by-one, two at a time, or all three simultaneously with the corresponding properties in the 226 
ventral cortical pathway. First, we added additional convolution layers with filters of 3 × 3 pixels 227 
after each of the first two convolution layers to increase the number of processing stages (add-228 
layer model). In adding the convolution layers, the stride of sliding filters was reduced to 1 to 229 
keep the output resolutions unchanged before and after adding the new layers. Also, to keep the 230 
number of the output channels unchanged, the new layers contained the same number of filters 231 
as the preceding layers. 232 
 233 
Second, we replaced the DoG-type filters with Gabor-type filters (Gabor model). Gabor-type 234 
filtering occurs in simple cells of V1, and emerges in the first layer of DNNs after they are 235 
trained to classify object images (Krizhevsky et al., 2012; Rai and Rivas, 2022). We constructed 236 
the Gabor-type filters with the following formula: 237 
 238 

𝑔(𝑥, 𝑦; 	𝑓, 𝜃) 	= 	𝐴𝑒𝑥𝑝(− P:QR:

;<:
)𝑒𝑥𝑝(2𝜋𝑖𝑓(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃)),      (2) 239 

 240 
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where A is the amplitude of the Gaussian envelope, i is √−1, f is the carrier frequency of a Gabor 241 
filter, and θ is the orientation (Movellan, 2002). A was fixed at 0.4 to match the amplitude of 242 
the DoG filters. σ was fixed at 0.125 so that the half-amplitude width was half of the filter width. 243 
f values were 2 or 4 cycles/image. Orientation θ was 0, 22.5, 45, 67.5, 90, 112.5, 135, or 157.5. 244 
We built even- and odd-symmetric filters for every combination of variables. In total, we 245 
obtained 32 Gabor-type filters (Fig. 1C, bottom). 246 
 247 
Finally, we made the pooling window (convergence field) in the max pooling layers smaller (3 248 
× 3; Fig. 1D, bottom) than that of the SNNs (5 × 5; Fig. 1D, top), enabling better spatial 249 
resolution of processing (narrow-pooling model) to mimic the smaller receptive fields in the 250 
visual cortices compared to the superior colliculus and pulvinar (Wallace et al., 1997; Vand den 251 
Bergh et al., 2010; Freeman and Simoncelli, 2011). The pooling range of 3 × 3 is often used in 252 
DNNs (e.g., AlexNet of Krizhevsky et al., 2012; ResNet of He et al., 2016).  253 
 254 
Face images and training of the SNNs. 255 
Face images were obtained from Karolinska Directed Emotional Faces (KDEF; Lundqvist et al., 256 
1998) and Radboud Faces Database (RaFD; Langer et al., 2010). Images of the seven 257 
expressions of 40 individuals (half females, half males) were chosen from each database (the 258 
total number of images was 560 = 7 × 40 × 2). We converted the images from color into 259 
grayscale, and extracted the face region by removing hair, neck, and ears with the face-detection 260 
function of a computer vision library, OpenCV (Open Source Computer Vision Library; Bradski, 261 
2000). The isolated faces were pasted on a gray background (198 × 198 pixels; RGB values = 262 
128; Fig. 1E). We augmented the number of face images by changing size and position, and by 263 
flipping horizontally; seven sizes (28 × 28, 56 × 56, 85 × 85, 113 × 113, 141 × 141, 170 × 170, 264 
and 198 × 198 pixels), five positions (center, left-top, right-top, left-bottom, and right-bottom; 265 
directional displacements = 10 pixels), and two horizontally flipped images. The augmentation 266 
increased the number of images by 70 times to 39,200. At each training session, we randomly 267 
split this augmented set of face images into a training set (29,400 images), a validation set (2,450 268 
images), and a test set (7,350 images). The number of images per facial expression was identical 269 
within each of these stimulus sets. To avoid the inadvertently biased assignment of face images 270 
of a particular size, position, or horizontal flip state into a given set, all images from the same 271 
individual were assigned into the same set. 272 
 273 
The training was performed through supervised learning, and was conducted individually 20 274 
times with randomized initial weights except for the built-in weights of the fist convolution layer, 275 
i.e., 20 SNNs with different initial states were built. In training, the weights other than the first 276 
convolution layer were optimized for classification of face images into the seven categories. 277 
Stochastic gradient descent was used for weight optimization. For each iteration, 32 samples 278 
were randomly selected from the training set as a mini-batch. The averaged cross-entropy 279 
(Goodfellow et al., 2016) across the 32 images in a mini-batch was calculated as an estimate of 280 
loss value, which is a measure of the difference between a model output and a supervised signal, 281 
and is used for quantifying the training effect. The number of iterations (i.e., weight-updating 282 
processes with single mini-batches) was set at 240,000. Initial weight parameters followed a 283 
normal distribution with a mean of 0 and a standard deviation of √(2/N) (N is the total number 284 
of weights; He et al., 2015). Weights were updated at each iteration with a constant learning rate 285 
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of 0.001. This learning rate was determined empirically; a preliminary analysis based on 10 286 
constructed SNNs (different from the 20 SNNs in the main analysis) revealed no decrease in 287 
loss values (i.e., no learning) with a learning rate of 0.01, which has frequently been used for 288 
DNNs in the literature (e.g., Simonyan and Zisserman, 2014). A dropout process was added 289 
before FC2 to facilitate learning across all units. The proportion of units dropped out of each 290 
weight update was set to 0.5. The training was conducted in a Python environment (Chainer 291 
3.0.0; Tokui et al., 2015) on a graphics processing unit (GPU) machine (Intel® Core™ i7-5820K 292 
Processor. Intel, Santa Clara, CA, USA; The GeForce® GTX 1080 Ti, NVIDIA, Santa Clara, 293 
CA, USA). While the SNNs were being trained with the training set, the correct rate and loss 294 
value for the validation set were periodically checked to monitor signs of overfitting. After 295 
training was completed, the performance of the models was evaluated using the test dataset that 296 
had not been used for training. This was done to ensure that the models acquired a genuine 297 
ability to classify the facial expressions, as opposed to simply sorting the training images into 298 
the seven facial expression categories according to the instruction signals. 299 
 300 
Test for reference frames of SF tuning of model units. 301 
A difference in visual responses between the two pathways is the reference frame of neuronal 302 
tuning to SFs (Inagaki and Fujita, 2011). Neurons in the inferior temporal cortex, the final stage 303 
of the ventral cortical pathway, are tuned to object-based SFs (cycles/object) and represent face 304 
patterns in a size-invariant, hence distance-invariant, manner (Fig. 2A, right). Thus, the ventral 305 
cortical pathway converts the representation of SFs in the retina-based coordinate 306 
(cycles/degree) to that of object-based SFs. By contrast, many amygdala neurons preserve 307 
sensitivity to retina-based SFs. When the stimulus size is changed, these neurons change their 308 
preferred object-based SFs; for large stimuli, they respond to higher object-based SFs, which 309 
correspond to the same retina-based SFs (Fig. 2A, left). We analyzed the reference frame of 310 
FC1 SF tuning to evaluate how well our models captured this characteristic of subcortical 311 
processing.  312 
 313 
Bandpass-filtered face images were used to examine the SF tunings of FC1 units (Fig. 2B). 314 
These images were created by multiplying Gaussian functions with the original face images on 315 
the polar Fourier domain. Gaussian functions had 61 different center frequencies between 1 316 
cycle/object and 64 cycles/object. The center frequencies had discrete values at steps of 0.1 317 
cycles/object on a log scale. Gaussian functions shared the same variance at 2.4 octaves, 318 
regardless of their center frequencies. The filtered images had amplitude spectra that were 319 
determined solely by the Gaussian function because their spectra were set to be flat before the 320 
multiplication. To balance the total luminance contrast among the filtered face images, the peak 321 
amplitude of the Gaussian function was set inversely proportional to the center image-based SF 322 
(Inagaki and Fujita, 2011). These bandpass-filtered images were created for the seven facial 323 
expressions at two different sizes (99 × 99 and 198 × 198 pixels).   324 
 325 
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 326 
 327 
Figure 2.  Test determining whether units are tuned for object- or retina-based spatial 328 
frequencies (SFs). (A) Hypothetical tuning curves for object-based SFs of units ideally tuned to 329 
retina-based SFs (left: peak shift = 1) or object-based SFs (right: peak shift = 0). (B) The models 330 
were fed face images with two different sizes (198 × 198 and 99 × 99 pixels) and 64 different 331 
bandpass filtering. These images were created by applying two-dimensional bandpass filters 332 
that shared the same center object-based SF across different sizes. For each unit in FC1, we 333 
obtained responses to images of different center SFs to create tuning curves for object-based 334 
SFs. 335 
  336 
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To characterize the reference frame of SF tuning of each unit, the peak SFs for the two stimulus 337 
sizes were estimated, defined by the SFs at which filtered face stimuli activated a unit most 338 
strongly. For a given unit, 14 peak SFs were determined (two sizes × seven expressions). The 339 
degree to which unit responses to SFs depended on the stimulus size was quantified by 340 
calculating differences in peak SFs on a log scale between the two face sizes. A peak shift of 0 341 
indicates that a unit respond to the same cycles/object regardless of the image size, and is 342 
perfectly tuned to object-based SFs (Fig. 2A, right). A peak shift of 1 means that an SF tuning 343 
curve shifts by the amount corresponding to the change in the stimulus size, indicating that a 344 
unit is perfectly tuned to retina-based SFs (Fig. 2A, left). This analysis excluded cases in which 345 
units did not respond to face images or were not sensitive to SFs, and cases in which peak SFs 346 
were at either end of the tested range of SFs and the peak positions could not be determined. 347 

 348 
Analysis of the effects of the max pooling operation on SF selectivity. 349 
The max pooling operation collapses positional information of edges, which is detected by 350 
convolution filters and is critical for encoding the SFs of facial images. We therefore examined 351 
the effects of the max pooling on the SF selectivity of units. We were particularly interested in 352 
the role of the max pooling in converting sensitivity to retina-based SFs to sensitivity to object-353 
based SFs. Bandpass-filtered images of the two stimulus sizes (198 × 198 and 99 × 99 pixels) 354 
were fed to the models, and it was determined how different stimulus sizes affected the 355 
responses of units to SFs in the first convolution layer (before pooling) and the first max pooling 356 
layer (after pooling). Changes in response patterns across the units associated with different 357 
stimulus sizes were quantified by calculating the dissimilarity index. The dissimilarity index D 358 
(x, y) for responses x to the large stimuli and responses y to the small stimuli was defined by the 359 
Euclidean distance between x and y as follows:  360 
 361 
D(x, y) = ǁx - yǁ/(NM)          (3) 362 

 363 
where ǁ·ǁ is the Euclidean distance, and N is the number of elements of x and y. M is the 364 
maximum value among the 6,405 Euclidean distances calculated for 61 center SFs and the seven 365 
facial expressions of 15 individuals. To probe the roles of the max pooling, the ratio of the 366 
dissimilarity index before pooling in the first convolution layer and after pooling in the first max 367 
pooling layer was then calculated. This analysis was applied to the case of wide pooling (5 × 5) 368 
and narrow pooling (3 × 3), as well as to the case of the SNNs and the Gabor models. By dividing 369 
ǁx - yǁ by M, the dissimilarity index was normalized across the layers (convolution vs. max 370 
pooling) and the models (SNNs vs. Gabor models), taking values from 0 to 1. 371 
 372 
 373 
Results 374 
 375 
Performance of SNNs in facial expression classification.  376 
The SNNs were trained to classify each face image in the training set into one of the seven facial 377 
expressions. The training improved the classification performance rapidly over the initial 378 
iterations and then slowly thereafter. The correct rate across the seven facial expressions rose 379 
from the chance level (0.14), surpassed 0.6 around 50,000 iterations, further improved to around 380 
0.8 over 150,000 iterations, and reached an asymptote (Fig. 3A for an example SNN; 3B for the 381 
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average of the 20 constructed SNNs; orange lines). The correct rate for the validation set 382 
saturated at around 0.5, which was substantially lower than for the training set, indicating 383 
insufficient generalization to “unseen” images. However, the validation correct rate reached a 384 
plateau in a similar way to the training correct rate. This indicates that the low correct rate was 385 
not the result of inadequate training, but represents the limited learning ability of the SNNs. It 386 
also indicates that no overfitting occurred. The loss value also quickly decreased over the initial 387 
50,000 iterations, and became gradually stable (Fig. 3A, B; cyan lines). The results indicate that 388 
within the range of adopted iterations (240,000), the SNNs were trained to classify facial 389 
expressions without overfitting.  390 
 391 
The correct rates for the test set were higher than the chance level (1 / 7 = 0.14) for all facial 392 
expressions, but were modest; the average correct rate across the seven expressions was 0.51 393 
for the example SNN shown in Fig. 3A. The average correct rate across the 20 constructed SNNs 394 
was 0.51 (± 0.03, s.d.). This was not different from the average correct rate across 20 additional 395 
SNNs that were trained with 3,000,000 iterations (0.50 ± 0.03; p = 0.289, t-test). The training 396 
performance thus did not improve even when the SNNs underwent overly excessive training, 397 
assuring that the modest correct rate was not due to insufficient training but instead reflected the 398 
limited ability of the SNNs. Confusion matrices showed that the correct rates varied among the 399 
facial expressions (Fig. 3A, B, right panels). Based on the averaged performance, the 400 
classification performance of the SNNs was best for happy (0.74) and surprised faces (0.72), 401 
followed by angry (0.50), disgusted (0.47), and fearful (0.44) faces, and was worst for sad (0.37) 402 
and neutral (0.34) faces. Sad faces were often confused with neutral, angry, and fearful faces. 403 
Neutral faces were often confused with sad and angry faces. This expression-dependent 404 
performance was consistent across the 20 constructed SNNs (Fig. 3C; p < 0.001 for expressions, 405 
p = 0.562 for models, two-way ANOVA).  406 
 407 
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 408 
 409 

Figure 3.  Learning curves and confusion matrices of an example SNN (A) and the average of 410 
20 SNNs with different initial weights (B). Left panels show changes in correct rates that 411 
occurred during training in the training set (orange) and the validation set (red), and loss values 412 
(cyan). Confusion matrices on the right indicate the rate of classification of each facial 413 
expression (true label) as one of the seven expressions (prediction label). (C) The correct rates 414 
for the seven expressions. Black line indicates the mean of the 20 SNNs, and lines with other 415 
colors indicate the individual performance of the 20 SNNs. The order of facial expression is 416 
based on the mean correct rate.  417 
  418 
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Effects of modification of SNNs on classification performance.  419 
Replacement of one or more of the three subcortical properties, namely the shallowness of 420 
processing stages, the DoG-type receptive fields at the initial stage, and spatial pooling over a 421 
wider visual field, with the corresponding cortical properties improved the classification 422 
accuracy (Fig. 4A; p < 0.001, ANOVA). The correct rates averaged across the seven expressions 423 
and the 20 constructed models of each modification were increased from 0.51 in the SNNs to 424 
0.55 in the narrow-pooling models, 0.64 in the Gabor models, and 0.69 in the add-layer models 425 
(p < 0.01 / 28=8C2; t-test with Bonferroni correction). Among these models with one replaced 426 
property, the add-layer models exhibited the best performance. The results indicate that all three 427 
properties had effects on classification performance, and the layer structure was the most 428 
influential.  429 
 430 
When two properties were replaced together, the narrow-pooling + Gabor models and the 431 
narrow-pooling + add-layer models performed better than the narrow-pooling models and the 432 
Gabor models (p < 0.01 / 28=8C2; t-test with Bonferroni correction), but comparably to the add-433 
layer models (correct rate, 0.69, p = 0.778 for the narrow-pooling + Gabor models; 0.69, p = 434 
0.564 for the narrow-pooling + add-layer models). The Gabor + add-layer models performed 435 
better than all one-property-replacement models (correct rate, 0.75; p < 0.01 / 28=8C2). When 436 
all three properties were replaced together (full-replacement models), the correct rate was 0.77, 437 
which was better than all other models (p < 0.01 / 28=8C2) except for the Gabor + add-layer 438 
models (p = 0.00846 > 0.01 / 28=8C2). The performance was improved for all facial expressions 439 
(Fig. 4B; mean correct rates: happy = 0.92; surprised = 0.85; disgusted = 0.81; neutral = 0.78; 440 
angry = 0.75; fearful = 0.66; sad = 0.65). As in the SNNs, it was highest for happy and surprised 441 
faces, and lowest for fearful and sad faces. The performance was improved most for neutral 442 
faces (SNNs, 0.37; full-replacement models, 0.78). The variance of the correct rates was affected 443 
both by facial expressions and models (Fig. 4C; p < 0.001 for facial expressions, p = 0.00285 444 
for models, two-way ANOVA). The improved performance of the two-property–replacement 445 
and full-replacement models indicate that the effects of the three features on classification 446 
performance were partially additive, suggesting that the three features exerted their effects 447 
partially independently.  448 
 449 
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 450 
 451 
Figure 4.  Effects on model performance of replacing subcortical properties with corresponding 452 
cortical properties. (A) Discrimination performances of the SNNs and the modified models. The 453 
discrimination performance differed across the models (ANOVA, p < 0.001). The pairs of 454 
models with statistically significant differences in the performances are linked with horizontal 455 
lines in the upper part (t-test, Bonferroni correction, p < 0.01/ 28=8C2). (B) Confusion matrix 456 
for the full-replacement models (average of the 20 constructed models). (C) The correct rate for 457 
the seven expressions across the 20 full-replacement models. The black line indicates the mean, 458 
and lines with other colors indicate the data for individual full-replacement models. 459 
  460 
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Spatial frequency representation in the FC1 layer.  461 
As shown above, the SNNs exhibited modest performance in facial expression classification, 462 
and this performance was improved by changing SNN subcortical properties to corresponding 463 
cortical properties. These findings suggest that the SNNs captured aspects of processing in the 464 
subcortical pathway to the extent that they explained the suboptimal perceptual performance of 465 
V1-lesioned patients. We next looked into individual computational units to gain insights about 466 
the processing in the models. We examined SF sensitivities of FC1 units using two different 467 
sizes of input images (198 × 198 and 99 × 99 pixels). This procedure allowed us to determine 468 
whether units were sensitive to retina- or object-based SFs (Fig. 2; see Materials and Methods).  469 
 470 
FC1 units of the SNNs exhibited a variety of dependencies of SF tunings on stimulus size (Fig. 471 
5A). Some units responded to the same range of object-based SFs for both large and small 472 
stimuli, and the peak positions of the SF tuning curves remained unchanged (Fig. 5Aa, Ab). 473 
Other units exhibited different preferred SFs for large and small stimuli, and in these cases the 474 
peak position shifted horizontally along the abscissa (Fig. 5Ac–f). We quantified these shifts by 475 
measuring the difference between preferred SFs on a log scale for the two stimulus sizes. A peak 476 
shift of 0 means that the unit encoded SFs in the object-based coordinate, whereas a peak shift 477 
of 1 means that the unit encoded SFs in the retina-based coordinate. The peak shifts of the 478 
example units shown in Fig. 5A were 0.0 (a), 0.1 (b), 0.1 (c), 0.9 (d), 1.0 (e), and 1.3 (f). 479 
 480 
We plotted the peak positions of 2,401 FC1 units of the 20 SNNs in a two-dimensional space 481 
defined by the peak SF for the large stimuli on the abscissa, and the peak SF for the small stimuli 482 
on the ordinate (Fig. 5B, left). Note that 46% of FC units were excluded from this analysis, 483 
either because they were not sensitive to SFs (23%) or because the largest responses were found 484 
at the end of the examined range of SFs and the peak SFs could not be determined (23%). The 485 
diagonal solid line in Fig. 5B represents the responses of a peak shift of 0, and the dashed line 486 
next to it represents the responses of a peak shift of 1. FC1 units of the SNNs were clustered in 487 
multiple groups in this scatter plot. One conspicuous group was selective to low SFs and was 488 
centered on the diagonal, i.e., peak shift values around 0. Another group was selective to higher 489 
SFs, and was clustered on the dashed line indicative of peak shift values around 1. The 490 
multimodality of the distribution can also be seen in the histogram (Fig. 5C, left). We applied 491 
an excess mass test for multimodality (Ameijeiras-Alonso et al., 2019, 2021) to this distribution. 492 
This test statistically determines the number of peaks in the distribution, with the null hypothesis 493 
that the true number of peaks is N (N = 1, 2, 3, ...). The true number of peaks is estimated as the 494 
smallest N under which the null hypothesis is not rejected. The excess mass test also estimates 495 
the locations and heights of peaks from Gaussian kernel density estimation. The test revealed 496 
that there were three peaks in the distribution of the SNNs (first p-value < 0.001, second p-value 497 
< 0.001, third p-value = 0.096). Based on the probability density function derived from the 498 
histogram (Ameijeiras-Alonso et al., 2021), the peaks were estimated to be located at −4.85, 499 
0.144, and 0.909 (open and solid arrowheads in Fig. 5C, left). Units sensitive to low SFs below 500 
2 cycles/object were most frequent around a peak shift of 1 (gray columns). Comparing this 501 
result and the density map, the peak around 0 was mostly from the low spatial frequency group 502 
and the peak around 1 was from the high spatial frequency group. Although the third peak at the 503 
far periphery (at −4.85, open arrowhead) was statistically detected, it was much smaller in height 504 
than the other two peaks (1.1% of the peaks near 0 and 1). The results indicate that FC1 505 
contained two major groups of units, those sensitive to low SFs, encoding SFs in the object-506 
based coordinate, and those sensitive to high SFs, encoding SFs in the retina-based coordinate. 507 
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 508 

 509 
 510 
Figure 5.  SF tuning reference frames of FC1 units of the SNNs and full-replacement models. 511 
Responses of FC1 units to SF-filtered face images were examined at two different sizes (198 × 512 
198, 99 × 99 pixels). (A) Six example FC1 units of SNNs with a different peak shift (PS). (B) 513 
Two-dimensional histograms of peak SFs at large images versus small images for the SNNs 514 
(left) and the full-replacement models (right). Solid lines indicate peak shifts of 0, and dashed 515 
lines indicate peak shifts of 1. (C) Distribution of peak shifts of units in the 20 SNNs (left) and 516 
the 20 full-replacement models (right). Arrowheads indicate the estimated locations of multiple 517 
peaks in the distribution (solid: major peaks, open: statistically detected but less obvious peaks). 518 
Gray columns indicate units with a response peak at SFs below 2 cycles/object for large and/or 519 
small stimuli. 520 
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The distribution of peak shift values was drastically altered in the full-replacement models. In 521 
the two-dimensional plot shown in Fig. 5B (right), most data points were diffusely distributed 522 
in an elongated area between the diagonal and dashed lines, indicating that the SF reference 523 
frame of most units was intermediate between retina-based and object-based. An excess mass 524 
test again detected three peaks located at −4.84, 0.436, and 4.98 (Fig. 5C right, solid and open 525 
arrowheads; first p-value < 0.001, second p-value < 0.001, third p-value = 0.096). The second 526 
and third peaks at −4.84 and 4.98 (open arrowheads) were smaller than the primary peak at 527 
0.436 (3.1% and 2.6% of the primary peak, respectively), making the distribution nearly 528 
unimodal. 529 
 530 
Given the change of the peak shift distribution in the full-replacement models, we next analyzed 531 
one- and two-property replacement models to determine which subcortical properties were 532 
essential for the multimodal distribution of the SNNs. All these modified models exhibited 533 
unimodal distributions of the major peak (solid arrowheads) at different peak positions (Fig. 6). 534 
An excess mass test for multimodality detected two other less obvious peaks (open arrowheads) 535 
in each model as in the cases of the SNNs and the full-replacement models (Fig. 5C). The heights 536 
of these smaller peaks were 2.6–26 % of those of the major peaks, and were located at the 537 
periphery of the distribution.  538 
 539 
Each of the three one-property–replacement models showed a characteristic distribution of the 540 
peak shift values. The narrow pooling models contained units with peak shift values between 0 541 
and 1 in addition to units with peak shift values around either 0 or 1. The distribution became 542 
unimodal and broad, and was estimated to be centered at 0.85. In the Gabor models, units with 543 
peak shift values intermediate between 0 and 1 were the most abundant with a smaller number 544 
of units of peak shift values around 0 and 1. The distribution peak was estimated at 0.51. In the 545 
add-layer models, units with peak shift values around 0 were predominant, and exhibited a sharp 546 
distribution peak at 0.32. As to the two-property–replacement models, the narrow-pooling + 547 
Gabor models and the Gabor + add-layer models showed a broad distribution straddling the 548 
peak values from 0 to 1 (peak for the former, 0.56; peak for the latter, 0.52), whereas the narrow-549 
pooling + add-layer models showed a sharp distribution peak at 0.20. As in the SNNs and the 550 
full-replacement models, units sensitive to low SFs (below 2 cycles/object) were most 551 
frequently found around the peak shift of 0 in all of the one- and two-property replacement 552 
models (gray columns). The results indicate that all of the three computational properties were 553 
responsible for the multimodal distribution of peak shift values observed in the SNNs. In 554 
particular, the smaller number of units with peak shift values around 1 in the Gabor models and 555 
the add-layer models suggests that the shallowness and the DoG-type filters were critical for 556 
preserving the unit sensitivities to retina-based SFs. The broad distribution observed for the 557 
narrow-pooling models and the narrow-pooling + Gabor models suggests that the wide pooling 558 
employed in the SNNs contributed to the two peaks at 0 and 1, by reducing units with peak shift 559 
values intermediate between 0 and 1.  560 
 561 
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 562 
 563 
Figure 6.  Distributions of peak shifts of FC1 units of the SNNs and one-property or two-564 
property–replacement models. (A) Data from narrow-pooling model, add-layer model, and 565 
Gabor model. (B) Data from models with two modifications: narrow-pooling + Gabor, Gabor + 566 
add-layer, narrow-pooling + add-layer. Gray columns indicate units with a response peak at SFs 567 
below two cycles/object for large or small stimuli. Arrowheads indicate the estimated locations 568 
of multiple peaks in the distribution (solid: major peaks, open: statistically detected but small 569 
peaks). Gray columns indicate units with a response peak at SFs below 2 cycles/object for large 570 
and/or small stimuli. 571 
  572 
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Effects of max pooling on SF tuning.  573 
We showed above that FC1 units of the SNNs were roughly grouped into two populations in 574 
terms of the reference frame of SF encoding. Because the max pooling yields the same output 575 
from a population of convolution layer units in response to slightly different spatial arrangement 576 
of local features, the max pooling operation is likely to affect the encoding of global 577 
configuration of face components. This information of global configuration will be reflected in 578 
a low range of SFs. Therefore, we next compared the effect of max pooling on the representation 579 
of SFs across different SF ranges. 580 
 581 
We first analyzed the responses of the 96,800 units (32 filters × 55 × 55 resolution) in the first 582 
convolution layer. We obtained the response patterns across these units by feeding bandpass-583 
filtered faces of two sizes (198 × 198 and 99 × 99 pixels; Fig. 2B) to the models, and quantified 584 
the difference between the SF tunings obtained for the two stimulus sizes by calculating the 585 
dissimilarity index (see Materials and Methods). In the SNNs with DoG filters, the dissimilarity 586 
index was high (around 0.6) for a low SF range up to approximately four cycles/object, but 587 
gradually decreased over a higher range of SFs (Fig. 7A, black curve). In the pooling layer, the 588 
dissimilarity index of the 6,272 units (32 filters × 14 × 14 resolution) became lower for a low 589 
SF range of less than four cycles/object than that of the convolution layer. For a high SF range 590 
of greater than four cycles/object, by contrast, it became higher than that of the convolution 591 
layer (Fig. 7A, compare the orange and cyan curves with the black curve). Thus, max pooling 592 
resulted in the SF tuning becoming similar between the two stimulus sizes for a low SF range, 593 
consistent with the results of peak shift analysis (Fig. 5C). Although these changes were 594 
observed both for wide pooling (5 × 5) and narrow pooling (3 × 3), the effects were larger for 595 
the former than for the latter (Fig. 7A, compare the orange curve with the cyan curve). This was 596 
more evident when we plotted the ratio of dissimilarity indices between before and after pooling 597 
(Fig. 7B). Furthermore, the ratio curve for wide pooling had smaller standard deviations than 598 
that for narrow pooling (shown as shades in Fig. 7B), indicating that wide pooling exerted its 599 
effects more consistently across the 15 individual faces and the seven facial expressions than 600 
narrow pooling.  601 
 602 
By contrast, the convolution-layer units of the Gabor models exhibited a constantly high 603 
dissimilarity index over most of the SF range (Fig. 7C, black). However, when we applied max 604 
pooling with windows of either 5 × 5 or 3 × 3 in size, the dissimilarity index became small over 605 
almost the entire SF range, with the largest decrease for 1–16 cycles/object (Fig. 7C; compare 606 
the orange and blue curves with the black curve). As in the case of the SNNs, the effect was 607 
stronger for wide pooling than for narrow pooling (Fig. 7D). These results demonstrated that 608 
max pooling rendered the SF tuning more invariant to stimulus size for units sensitive to low 609 
SFs, enabling them to represent SFs in the object-based coordinate. Regardless of the filter type 610 
in the first convolution layer (i.e., DoG vs. Gabor), wide pooling was more effective than narrow 611 
pooling in creating this response property.  612 
 613 
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 614 
 615 
Figure 7.  Effects of max pooling on the size-invariant responses to SFs. (A) Dissimilarity index 616 
curves of responses of units in the first convolution layer of the SNNs before max pooling 617 
operation (black), after wide pooling (blue), and after narrow pooling (orange). Dissimilarity 618 
indices, defined by the Euclidean distances of unit responses between different stimulus sizes 619 
(see Method and Methods), are plotted against the center SFs of input images. Solid lines 620 
indicate the means of dissimilarity indices across the seven facial expressions. Shades indicate 621 
standard deviations. Each dissimilarity index was normalized by the number of units and the 622 
maximum values. (B) Dissimilarity ratios of inputs and outputs of the max pooling operation 623 
(upper, after wide pooling; lower, after narrow pooling). (C, D) Data from units in the first 624 
convolution layer of the Gabor models. The conventions are the same as in A and B. 625 
 626 
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Effects of alternation of sliding strides on SF tuning. 627 
Finally, we examined the effect of another free parameter of our models, the stride size, on the 628 
SF sensitivity of FC1 units. We changed the stride of the two max pooling layers of the SNNs 629 
from 4 to 2. The stride size of 2 was also employed in the narrow-pooling model. This modified 630 
model with a smaller stride of 2 achieved a mean correct rate of 0.54, which was better than the 631 
SNNs (0.51) but similar to the narrow pooling models (0.55) (vs. SNN, p = 0.0020; vs. the 632 
narrow pooling, p = 0.23; t-test with Bonferroni correction). 633 
 634 
An analysis of FC1 responses to two stimulus sizes (198 × 198 and 99 × 99 pixels) revealed that 635 
the distribution of the peak shift had three peaks, at −4.17, −0.0107, and 0.976 (first p-value < 636 
0.001, second p-value < 0.001, third p-value = 0.098; excess mass test for multimodality; solid 637 
and open arrowheads in Fig. 8). Two of them were conspicuous and located near 0 or 1 (solid 638 
arrowheads), and the third one at the periphery of −4.17 (open arrowhead) was small (3.2% and 639 
3.3% of the two major peaks). Comparisons with Fig. 5B, C show that the small-stride model 640 
exhibited a similar SF representation as in the SNNs, in that there were two main groups of units, 641 
one sensitive to low SFs, representing SFs in the object-based coordinate (peak shift around 0), 642 
and the other sensitive to high SFs, representing SFs in the retina-based coordinate (peak shift 643 
around 1). The change of the stride from 4 to 2 had little effects on the reference frame of SF 644 
sensitivity of FC1 units. 645 
 646 
  647 
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 648 
 649 
Figure 8.  Effects of alternation of sliding strides of pooling windows on SF tuning reference 650 
frames of FC1 units of the SNNs. Responses of FC1 units were obtained in the same way as in 651 
Fig. 5. (A) A two-dimensional histogram of peak SFs obtained with large (198 × 198) versus 652 
small (99 × 99) stimulus images. (B) Distribution of peak shifts of units. Arrowheads indicate 653 
the estimated locations of multiple peaks in the distribution. 654 
 655 
 656 
  657 
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Discussion 658 
 659 
We analyzed the ability of the SNNs and modified models to classify facial expressions, with 660 
the goal of determining what architectural or physiological properties underlie the modest 661 
performance of facial expression discrimination supported by the primate subcortical pathway. 662 
The SNNs were implemented with the three prominent subcortical properties, i.e., shallow 663 
processing, DoG-type filters at the first processing stage, and spatial pooling over wide areas 664 
(Fig. 1). The SNNs classified the seven basic facial expressions with modest performance (Fig. 665 
3). Replacement of any one of these properties with the corresponding cortical properties 666 
resulted in higher performances (Fig. 4). Replacement of a combination of two or three 667 
properties further improved classification performances in a partially additive manner (Fig. 4). 668 
These results suggest that all three subcortical properties of the SNNs underlie the modest 669 
performance. A major group of units in the final processing layer (FC1) of the SNNs was 670 
sensitive to SFs defined in the retina-based coordinate, whereas another group responding to 671 
low SFs encoded SFs in the object-based coordinate (Fig. 5). The number of retina-based units 672 
was reduced in most of the modified models, suggesting that the three features are also important 673 
for preserving retina-based SF information (Figs. 5, 6). Max pooling over the wide window 674 
employed in the SNNs contributed to object-based SF representation of units sensitive to low 675 
SFs (Fig. 7). These findings advance our understanding of the computational processes utilized 676 
by the subcortical pathway in facial expression recognition.  677 
 678 
Modest performance of the SNNs and neural computations of the subcortical pathway. 679 
 680 
Based on psychological assessment and brain imaging in V1-lesioned patients, it has been 681 
proposed that affective blindsight is mediated by components of the subcortical pathway spared 682 
by the lesions, including the superior colliculus, pulvinar, and amygdala (de Gelder et al.,1999; 683 
Pegna et al., 2005; Striemer et al., 2019). One view assumes that the shortest route directly 684 
connecting the three subcortical structures conveys facial expression information from the 685 
superior colliculus via the pulvinar to the amygdala (Tamietto and de Gelder, 2010). A different 686 
view proposes that information from the pulvinar reaches the amygdala through the facial 687 
processing system in the temporal cortex, under an assumption that “the direct connections of 688 
the pulvinar with the amygdala are likely insufficient in themselves for recognizing emotional 689 
expressions” (Gerbella et al., 2019). The present study demonstrates that the SNNs with only 690 
three processing stages and the subcortical physiological properties can successfully acquire an 691 
ability to discriminate facial expressions.  692 
 693 
The average correct rate of classifying the seven facial expressions in the present study was 0.51. 694 
This rate was well above chance (1/7 = 0.14), but was far from perfect. The modest correct rate 695 
is in line with the performance of patients with affective blindsight. Pegna et al. (2005) reported 696 
that a patient with bilateral lesions in V1 discriminated happy faces from either angry, sad, or 697 
horrified faces at correct rates of 0.58–0.62, marginally above the chance level of 0.5. Another 698 
patient with bilateral lesions in V1 exhibited correct rates of 0.64–0.67 for happy vs. fearful or 699 
angry faces (chance level = 0.5; Striemer et al. 2019). The residual ability of facial expression 700 
classification in these patients was only moderate compared to the nearly perfect performance 701 
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in healthy people. This raises the question of why subcortical processing supports vision more 702 
poorly than visual functions mediated by the cortical pathway.  703 
 704 
A traditional explanation is that neurons in the subcortical pathway respond to low SFs and are 705 
less sensitive to high SFs than the cortical pathway (e.g., Vuilleumier et al., 2003; Méndez-706 
Bértolo et al., 2016; Burra et al., 2019). This will limit the ability of the subcortical pathway to 707 
analyze the fine details of visual images, and can itself result in the inaccurate processing of face 708 
images. However, the dependence of the subcortical response on low SFs has been disputed by 709 
other researchers (De Cesarei and Codispoti, 2013; McFadyen et al., 2017). Our results suggest 710 
that low SF sensitivity, if important, was not the only cause, because the DoG filter models 711 
combined with narrow-pooling or add-layer modifications exhibited improved performances, 712 
despite the fact that our DoG filters were tuned to low SFs, and had full width at half maximum 713 
of 0.067–1.0 cycles/degree. Note that we estimated this value on an assumption of the image 714 
size of 30.5° based on our DoG parameters, the filter resolution, and the RF size of superior 715 
colliculus neurons representing the foveal region. The range of DoG-filter width corresponds to 716 
that applied in models of the superior colliculus in a recent simulation study (Méndez et al., 717 
2022). 718 
 719 
Another explanation is that the small number of processing stages in the cortical pathway 720 
hampers detailed analysis of visual inputs. However, a previous study (Dailey et al., 2002) 721 
showed that CNNs that had only two processing layers, with Gabor filters at the first stage, 722 
performed highly accurate discrimination of facial expressions (the mean correct rate for 723 
classifying six facial expressions was 0.90). The performance of our SNNs incorporating the 724 
three subcortical properties was not this high. This was not due to inadequate training, because 725 
the performance reached a plateau and stayed stable over a large number of iterations in the 726 
training sessions (Fig. 3). This was further verified by showing that the correct performance for 727 
the test set remained unchanged even after overly excessive training with 3,000,000 iterations. 728 
Furthermore, replacing not only the small number of processing layers but also the filter type at 729 
the first processing layer and the width of the pooling window with the corresponding cortical 730 
properties improved the performance of the SNNs (Fig. 4). The three properties at least partially 731 
underlie the less accurate processing of facial images in the subcortical pathway, and hence, 732 
may be responsible for the low performance in affective blindsight. 733 
 734 
Confusions of facial expressions in the SNNs, DNNs and patients. 735 
 736 
The classification accuracy of the SNNs varied across facial expressions (Fig. 3A, B). The 737 
classification performance of the SNNs was best for happy and surprised faces and worst for 738 
sad and neutral faces. The rank order of performance on the seven facial expressions was largely 739 
consistent across the 20 SNNs trained independently from random states (Fig. 3C). It also 740 
corresponds to the classification performance by previously developed AlexNet-based DNNs 741 
(Inagaki et al., 2022b). These DNNs were trained to discriminate between the seven expressions 742 
derived either from the KDEF database or the Kokoro Research Center (KRC) facial expression 743 
database (Ueda et al., 2019). Like the SNNs, the DNNs exhibited the best performance for happy 744 
and surprised faces (KDEF: 0.93 for happy, 0.84 for surprised; KRC: 0.91 for happy, 0.84 for 745 
surprised; chance level, 0.14). This coincidence may simply suggest that within each database, 746 
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facial features are consistent across faces with happy or surprised expressions, but are more 747 
diverse across faces with sad or neutral expressions. However, the variations across examples 748 
of facial expressions within a database are not the sole reason for the difference in the 749 
performance across facial expressions, because neutral faces were classified poorly by the SNNs 750 
(Fig. 3B; correct rate = 0.34), but the DNNs of Inagaki et al. (2022b) classified them with high 751 
correct rates (0.85 for KDEF, 0.82 for KRC). An alternative, yet-to-be-tested explanation is that 752 
the ease (or difficulty) of classification may vary across the facial expressions owing to 753 
differences in the conspicuousness of component facial actions underlying various expressions. 754 
Similarities between neural networks regarding expression-specific performance may vary 755 
according to these differences.  756 
 757 
The relatively poor ability to distinguish between sad and neutral faces was also observed in 758 
another CNN with the first layer of DoG filtering and average pooling (Méndez et al., 2022). 759 
This CNN was constructed to simulate facial processing in the superior colliculus, and was 760 
trained to discriminate three facial expressions: happy, sad, and neutral. The CNN showed the 761 
best performance for happy faces and moderate performance for sad faces, but classified neutral 762 
faces into neutral faces with a classification rate of 0.49 and into sad faces with a rate of 0.39. 763 
The fact that this CNN and the SNNs in the present study demonstrated this confusion, whereas 764 
AlexNet-based DNNs and our add-layer models (0.52 for sad, 0.67 for neutral) did not, suggests 765 
that the convolution processes after the initial DoG filtering (in the case of add-layer models) or 766 
the convolution by the Gabor filters (in the case of AlexNet-based DNNs) may be critical for 767 
classification of sad and neutral faces.  768 
 769 
Finally, we point out that the expression-dependent performance of the SNNs also had both 770 
similarities and dissimilarities to that observed in a V1-lesioned patient. The patient reported by 771 
de Gelder et al. (1999) classified happy and sad faces with a higher correct rate than angry and 772 
fearful faces; our SNNs and this patient classified happy faces well, whereas the performance 773 
for sad faces was poor in the SNNs but good in the patient.  774 
 775 
Reference frame of coding SF information and invariance of visual responses. 776 
 777 
FC1 units of the SNNs consisted of two major groups, each with different properties regarding 778 
SF processing (Fig. 5). One group of units responded best to the same object-based SFs 779 
(cycles/object) regardless of the stimulus size (peak shift around 0). This size-invariant response 780 
indicates that these units represent SFs in the object-based coordinate. Most of these units were 781 
tuned to a low SF range (around one to two cycles/object). In the other group of units, the 782 
optimal object-based SFs shifted when testing was performed with different stimulus sizes. The 783 
direction of the shift was consistent with the interpretation that the units were tuned to retina-784 
based SFs (cycles/degree) (peak shift around 1). That is, for larger stimuli, the units responded 785 
to higher object-based SFs that corresponded to the same retina-based SFs. The DoG filters at 786 
the initial stage and the shallow architecture appear to be critical for preserving the SF 787 
representation based on the retina-based coordinate, because FC1 units with retina-based SF 788 
sensitivity were reduced in number when the first convolution layer were changed to Gabor 789 
filters or when the number of processing layers was increased (Fig. 6A, middle, bottom).  790 
 791 
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A major group of the object-based SF units in the SNNs were tuned to low SFs (Fig. 5B). This 792 
curious bias of the object-based units towards low SF sensitivity likely resulted from the wide 793 
max pooling process. Lowpass-filtered facial images contain only coarse structure such as solid 794 
blobs at eye or mouth positions. Positional information of these blobs is initially detected by 795 
DoG filters, and is encoded as response patterns across units in the convolution layer. These 796 
blobs appear in different positions and scales for images of different sizes, and thus the response 797 
patterns vary between different sizes. After the max pooling operation, however, response 798 
patterns would become more similar between different sizes, because this operation renders 799 
units in the pooling layer insensitive to slight changes in spatial arrangement of local features. 800 
Indeed, the dissimilarity index for lowpass-filtered images decreased after max pooling in our 801 
data (Fig. 7). This effect might result in object-based SF tuning (i.e., preferential responses 802 
invariant of image size to a particular range of object-based SFs) for lowpass-filtered images. 803 
Wider pooling window would enhance this effect at the expense of losing fine details of inputs. 804 
When the pooling window is narrower, this effect would be incomplete, and units with 805 
intermediate peak shift values would increase, as we found in the narrow-pooling models (Fig. 806 
6A, top). 807 
 808 
One may wonder why FC1 units of the SNNs maintained sensitivity to retina-based SFs, i.e., 809 
size-dependent representation of SFs, despite the demand that we imposed on the SNNs to 810 
classify facial expressions regardless of the seven different face image sizes. One possibility is 811 
that the architecture of our SNNs cannot achieve sufficient object-based representation, and 812 
remains suboptimal for the required task even after the excessive training sessions. This may be 813 
a reason for the modest classification performance of the SNNs. Indeed, replacement of the 814 
subcortical processing properties with the cortical properties resulted in the representation 815 
becoming more object-based (Fig. 5B, C, Fig. 6) and improved the classification performance 816 
(Fig. 4). However, if object-based SF encoding was the only requirement for optimal 817 
performance under our training conditions, the models that showed object-based SF encoding 818 
should have had the highest correct rate, but this was not the case. The add-layer models and the 819 
narrow-pooling + add-layer models exhibited the best object-based encoding of SFs (Fig. 6A 820 
bottom, 6B bottom), while they performed worse than the full-replacement model (Fig. 4A). 821 
The representation acquired for the classification depended not only on the task demand of size-822 
invariant classification of facial expressions, but also on other, yet unspecified, constraints 823 
deriving probably from the architecture of the models.  824 
 825 
In the primate amygdala, the responses of many neurons are affected by retina-based SFs, and 826 
only a minority of neurons have perfect object-based SF sensitivity (Inagaki and Fujita, 2011). 827 
By contrast, many FC1 units tuned to low SFs of the SNNs exhibited object-based SF sensitivity. 828 
The paucity of evidence for units with object-based SF sensitivity in the amygdala may be 829 
related to the fact that the previous electrophysiological study (Inagaki and Fujita, 2011) did not 830 
present face images with very low SFs, and may have overlooked the neurons with object-based 831 
SF sensitivity in this range of SFs. 832 
 833 
Some inferior temporal cortex neurons exhibit invariant responses to changes in shape sizes 834 
(Rolls and Baylis, 1986; Ito et al., 1995). The max pooling operation may help achieve these 835 
invariant responses. To some degree, max pooling ignores positional changes of inputs in each 836 
region of interest. Because size changes involve alternations in edge positions without 837 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.18.524656doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524656


20230127 
 

28 
 

modifications in topologies, if the changes are small enough to be covered by each region of 838 
interest, stimuli before and after the changes would yield similar responses. The effects of wide 839 
pooling shown in Figure 7 suggest that some aspects of the invariant responses of inferior 840 
temporal cortex neurons can simply be achieved by bypassing early cortical areas with high 841 
spatial resolutions such as V1. Such shortcut routes indeed exist, including the projection from 842 
the pulvinar to V2 and then to the posterior inferior temporal cortex and the projection from the 843 
pulvinar to V4 and then to the anterior inferior temporal cortex (Pessoa and Adolphs, 2010).  844 
 845 
The size invariance in low SFs is important in newborns. They have blurred visions that relies 846 
on low SFs (Atkinson et al., 1974; Dobson & Teller, 1978), but respond to faces or face-like 847 
patterns irrespective of the stimulus size or the viewing distance (Cassia et al., 2001; De Heering 848 
et al., 2008). These findings indicate that the ability of size-invariant face recognition based on 849 
low SFs is innately implemented in our visual system. Convergence of inputs from the 850 
superficial layer of the superior colliculus to the deep layer, which is already present in newborns 851 
(Wallace et al., 1997), may be part of the neural substrate supporting this aspect of size-invariant 852 
face recognition. 853 
 854 
Concluding remarks 855 
 856 
The present study provides the first computational model for facial expression processing along 857 
the subcortical pathway (see Méndez et al., 2022 for a model of face processing in the superior 858 
colliculus). Despite the celebrated success of DNNs in modeling visual processing in the ventral 859 
cortical pathway, it has remained unclear whether and how the CNN architecture can be adapted 860 
to processing in the subcortical pathway. We demonstrated that the SNNs implemented with the 861 
three computational properties of the subcortical pathway, i.e., a shallow layer architecture, 862 
concentric receptive fields at the first processing stage, and a greater degree of spatial pooling, 863 
were successfully trained to discriminate facial expressions with a modest correct rate. The three 864 
properties were all essential for reproducing the modest performance seen in V1-lesioned 865 
patients, as well as the representation of SFs in the retina-based coordinate observed in a 866 
population of amygdala neurons. Research interest in the role of subcortical structures in 867 
cognitive functions has recently surged, but physiological data are still much sparser for 868 
subcortical structures than for the cerebral cortex (Janacsek et al., 2022). Computational 869 
approaches such as the one we present here are expected to partially compensate for this data 870 
scarcity and to guide future research.871 
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