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Abstract 1 

While technologies for multiplexed imaging have provided an unprecedented 2 

understanding of tissue composition in health and disease, interpreting this data remains a 3 

significant computational challenge. To understand the spatial organization of tissue and how it 4 

relates to disease processes, imaging studies typically focus on cell-level phenotypes. However, 5 

images can capture biologically important objects that are outside of cells, such as the 6 

extracellular matrix. Here, we developed a pipeline, Pixie, that achieves robust and quantitative 7 

annotation of pixel-level features using unsupervised clustering and show its application across a 8 

variety of biological contexts and multiplexed imaging platforms. Furthermore, current cell 9 

phenotyping strategies that rely on unsupervised clustering can be labor intensive and require 10 

large amounts of manual adjustments. We demonstrate how pixel clusters that lie within cells can 11 

be used to improve cell annotations and decrease the amount of manual fine-tuning needed. We 12 

comprehensively evaluate pre-processing steps and parameter choices to optimize clustering 13 

performance and quantify the reproducibility of our method. Importantly, Pixie is open source and 14 

easily customizable through a user-friendly interface.  15 
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Introduction 16 

The advancement of multiplexed tissue imaging technologies over the last few years has 17 

enabled the deep phenotyping of cells in their native tissue context.1–9 Investigating the 18 

relationship between tissue structure and function using multiplexed imaging has led to important 19 

discoveries in many fields, including cancer, infectious disease, autoimmunity, and 20 

neurodegenerative disease.10–17 As imaging studies continue to grow in number and size, so does 21 

the need for robust computational methods for analyzing these data. In most multiplexed imaging 22 

studies, cells are the objects of interest that are quantified and investigated in downstream 23 

analyses. As such, development of methods for accurate cell annotation is an active area of 24 

research.18–20 Unlike assays that measure dissociated single cells such as CyTOF or single-cell 25 

RNA-sequencing, imaging data is not inherently measuring single cells and can capture 26 

substantial information content outside of cells. These extracellular features can have important 27 

biological functions. For example, the extracellular matrix is increasingly being recognized as an 28 

important modulator of the tissue microenvironment in cancer and other disease contexts.21–24 In 29 

addition, protein aggregates can form as extracellular deposits and have been implicated in many 30 

neurological disorders.25 These important acellular objects are captured in multiplexed images 31 

but are typically not the focus in multiplexed imaging studies. 32 

One important consideration when analyzing imaging data is that the tissue sections that 33 

are captured in the images are two-dimensional cross sections of complex three-dimensional 34 

objects. Depending on the plane of tissue sectioning, what is observed in the images can be 35 

highly variable (Supplementary Fig. 1a). For example, depending on if the cell body or dendrites 36 

are in the plane of imaging, dendritic cell markers can take on a typical round cellular shape or 37 

might only be present as small spindle-like projections (Supplementary Fig. 1b). While cell 38 

segmentation methods for accurately defining the boundary of cells have recently been 39 

developed26–28, signal along the edges of cells can be misassigned to neighboring cells, 40 

particularly in dense tissues where cells are packed close together (Supplementary Fig. 1c,d). 41 
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Furthermore, cells that are elongated or shaped distinctly from spherical cells, or anucleated cells, 42 

are difficult to capture using cell segmentation (Supplementary Fig. 1e). Identifying phenotypes 43 

at the pixel-level can address many of these issues that confound high-dimensional image 44 

analysis. 45 

Due to these challenges with analyzing multiplexed imaging data, we developed a 46 

pipeline, Pixie, for the quantitative annotation of pixel-level features that captures phenotypes 47 

independent of traditional cell segmentation masks. We perform extensive evaluation of pre-48 

processing steps and parameter choices to optimize clustering performance, as well as 49 

comprehensively assess stochasticity, an often-ignored aspect of high-dimensional data analysis 50 

methods. In addition, we show the application of Pixie across various tissue contexts and imaging 51 

platforms, including mass-based, fluorescence-based, and label-free technologies. Finally, we 52 

show how pixel clusters can be utilized to improve the identification of cell phenotypes. Taken 53 

together, Pixie is a complete pipeline for generating both pixel and cell-level features that is 54 

scalable, cross-platform, and publicly accessible in Jupyter notebooks that include user-friendly 55 

graphical user interfaces (GUI) for cluster adjustment and annotation. 56 

 57 

Results 58 

Overview of pixel clustering using Pixie 59 

We created a full pipeline, Pixie, for the generation of quantitative pixel-level features from 60 

multiplexed images, with the goal of designing a pragmatic workflow that balances automation 61 

and unbiased analysis with human curation (Fig. 1). We aimed to create a robust and scalable 62 

pipeline that is user-friendly and easily extensible. After a multiplexed imaging dataset has been 63 

generated, the output is a series of images, each corresponding to a different marker of interest. 64 

The first step is to decide which markers will be included in the clustering process. Typically, 65 

phenotypic markers are included, while functional markers that can be expressed across various 66 

cell types are excluded. After the user has specified the subset of markers relevant for 67 
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phenotyping, we perform a series of pre-processing steps, described in detail below (Fig. 2a, 68 

Supplementary Fig. 2a). A common practice in high-dimensional data analysis is to first cluster 69 

observations into a large number of clusters (such as 100), then metacluster these clusters into 70 

biologically relevant groups.10–12,15,17,29 This allows for the capture of rare phenotypes and more 71 

precise clusters. In Pixie, we use a self-organizing map (SOM)30, an unsupervised clustering 72 

algorithm, to cluster all pixels into a large number of clusters (typically 100). We then combine 73 

these into metaclusters using consensus hierarchical clustering. If necessary, the final clusters 74 

can be manually refined and annotated with biologically relevant labels using a custom-built GUI 75 

in Pixie. These phenotypes can be mapped back to the original images and quantified in 76 

downstream analysis. Pixie is publicly available as user-friendly Jupyter notebooks that perform 77 

all pre-processing steps and clustering, starting from multiplexed images through generation of 78 

pixel phenotype maps, where the color of each pixel corresponds to its pixel cluster. 79 

 
Figure 1: Pixie robustly captures pixel-level and cell-level phenotypes in multiplexed imaging datasets. After 
acquiring multiplexed images, single-pixel expression profiles are extracted from the multi-channel imaging dataset 
and clustered to identify pixel-level phenotypes. This method can be used to generate quantitative, reproducible 
annotations not captured by traditional cell segmentation, and is cross-platform and applicable across a variety of 
biological contexts. Finally, pixel-level phenotypes can be combined with traditional cell segmentation and be used to 
improve the annotation of cell-level phenotypes. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2022. ; https://doi.org/10.1101/2022.08.16.504171doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504171


5 
 

In Pixie, the user specifies the number of metaclusters for consensus hierarchical 80 

clustering and can manually adjust these metaclusters (Supplementary Fig. 2b). While there have 81 

been various methods developed to computationally determine what the algorithm predicts is the 82 

optimal number of metaclusters, we found that manual inspection of the cluster expression 83 

profiles is a fast and accurate method for determining the number of relevant phenotypes. The 84 

number of relevant phenotypes, although subjective, may vary based on the biological question 85 

of interest and is best understood by the researchers leading the study. For example, for a study 86 

that is focused on granular subsets of myeloid cells, it may be important to stratify populations 87 

that are expressing combinations of CD206, CD209, CD163, CD68, CD14, and CD16 within the 88 

monocyte/macrophage lineage. However, for another study that is interested in mapping the 89 

general immune landscape, these markers may be grouped together into the macrophage 90 

population. Analogous to “human-in-the-loop” approaches in the fields of machine learning and 91 

artificial intelligence, the manual annotation step allows us to utilize the biological expertise of the 92 

user to improve the results more quickly. Furthermore, one of the reasons that it has previously 93 

been difficult to manually adjust clustering results is that there was no good way to manually 94 

interact with the clustering outputs. Importantly, manual adjustments and annotations can be 95 

easily made using a custom-built GUI in our Jupyter notebooks (Supplementary Video 1). 96 

Pixie captures the major immune phenotypes in lymph node tissue 97 

To test pixel clustering in Pixie and optimize parameters, we used a dataset of lymph 98 

nodes stained with a panel of immune markers (Supplementary Table 1) and imaged using 99 

multiplexed ion beam imaging by time-of-flight (MIBI-TOF). In addition to T and B lymphocytes, 100 

lymph nodes contain many dendritic cells, follicular dendritic cells, and macrophages that have 101 

traditionally been difficult to capture using cell segmentation. Lymph nodes are also densely 102 

packed tissues, which can confound cell phenotyping. Therefore, we chose this lymph node MIBI-103 

TOF dataset for proof of principle to evaluate our method.  104 
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  Figure 2: Pixie identifies accurate and consistent pixel-level features in lymph node tissue. (A) Overview of pixel 
clustering in Pixie. Individual pixels are clustered using a self-organizing map (SOM) based on a set of phenotypic 
markers. The clusters output by the SOM are metaclustered using consensus hierarchical clustering. If necessary, 
users can manually adjust the metaclusters, then annotate each metacluster with its phenotype based on its expression 
profile using our easy-to-use GUI. (B) Heatmap of mean marker expression of pixel cluster phenotypes for an example 
dataset of lymph node samples. Expression values were z-scored for each marker. (C) Multi-channel MIBI-TOF image 
of a representative field-of-view (FOV) (left), the corresponding pixel phenotype map (middle), and representative insets 
(right). Colors in the pixel phenotype map correspond to the heatmap in B. (D) The FOV in C colored according to the 
cluster consistency score. (E) Distribution of cluster consistency score across all pixels in the dataset. (F) Comparison 
of cluster consistency score across different pre-processing steps. **** indicates p-value < 2e-16 using a Wilcoxon test. 
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Using Pixie, we were able to capture the major immune phenotypes that would be 105 

expected in a lymph node (Fig. 2b). We found that automated metaclustering was able to generate 106 

accurate features and required only a small amount of manual adjustment (Supplementary Fig. 107 

2b). Importantly, we were able to capture more fine-grained features at the pixel-level that would 108 

likely be grouped together at the cell level. For example, CD209+CD206+ pixels clustered 109 

separately from CD163+CD206+ pixels (Fig. 2b), which would likely have both been assigned to 110 

macrophages at the cell level. Mapping these pixel clusters back to the original images, we can 111 

see that the pixel clusters accurately recapitulate underlying spatial trends in protein expression 112 

(Fig. 2c, Supplementary Fig. 3). We could clearly delineate the germinal center, B cell follicle, and 113 

surrounding T cell zone in the lymph node (Fig. 2c). Thus, we were able to quickly and accurately 114 

quantify high dimensional phenotypes at a pixel-level using Pixie. 115 

Evaluating reproducibility 116 

Many algorithms commonly used to analyze high-dimensional datasets – including 117 

unsupervised clustering methods and dimensionality reduction techniques such as tSNE (t-118 

distributed stochastic neighbor embedding) and UMAP (uniform manifold approximation and 119 

projection) – are stochastic, meaning that there is randomness inherent to the algorithms. 120 

Therefore, running the same method on the same dataset using a different random seed will 121 

generate distinct results. Good clustering results that reflect true biological phenotypes should be 122 

reproducible across different random initializations. Here, we evaluated the stochasticity of our 123 

pipeline and defined a metric, which we termed the “cluster consistency score”, for quantifying 124 

reproducibility (Methods). In an ideal situation, we would simply evaluate how consistently pixels 125 

were assigned to the same phenotype across replicates. However, like all unsupervised clustering 126 

approaches, Pixie relies on manual annotation using expert knowledge to assign each cluster to 127 

a phenotype. Given that this process would need to be repeated for each replicate in each 128 

experiment, direct evaluation of consistency in this manner would not be feasible for large 129 
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numbers of tests. The cluster consistency score allows us to measure reproducibility in an 130 

automated way and quantitatively compare different parameter choices. 131 

To calculate the cluster consistency score, we run pixel clustering on the same dataset 132 

and the same parameters five times, each time with a different random seed, then quantify how 133 

stable the cluster assignments are for each pixel across replicate runs (Methods). The cluster 134 

consistency score can be roughly interpreted as the number of different clusters a given pixel was 135 

assigned to across replicates. Lower scores indicate higher reproducibility, with a score of 1 being 136 

the best possible score. A score of 1 would indicate that in all the replicates, the same pixels were 137 

always grouped together in the same cluster. In contrast, a high score indicates bad 138 

reproducibility, meaning that the pixel was assigned to clusters that may have contained many 139 

other pixel types. 140 

To benchmark the cluster consistency score using high-dimensional datasets that are 141 

commonly analyzed using stochastic methods, we used two publicly available single cell datasets, 142 

a CyTOF dataset of whole blood and single-cell RNA-sequencing dataset of peripheral blood 143 

mononuclear cells (PBMCs) (Supplementary Fig. 4c-e).31,32 We would expect better 144 

reproducibility for single cell datasets than for pixel-level features, since as mentioned above, 145 

imaging data is not inherently single cell and is therefore more noisy. Pixel-level data is also 146 

noisier because it is only a fraction of the total cell volume. Even for these well-behaved single 147 

cell datasets, the cluster consistency score was above 1, showing that stochasticity is an inherent 148 

feature of multi-dimensional data analysis that should be taken into account. 149 

We calculated this cluster consistency score for each pixel in the lymph node dataset (Fig. 150 

2d,e), which had an overall cluster consistency score of 2.07 ± 0.32 (mean ± SD). Despite the 151 

stochastic nature of the algorithm, by viewing the pixel phenotype maps across replicate runs, we 152 

can see that the majority of pixel cluster assignments were stable across replicates 153 

(Supplementary Fig. 4a), demonstrating the reproducible nature of this method. Here, we 154 
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developed a quantitative metric that can be used to assess the reproducibility of Pixie across 155 

different parameter choices. 156 

Optimization of Pixie for accurate pixel classification 157 

When developing Pixie, we optimized a series of pre-processing steps that leads to more 158 

accurate, reproducible pixel clustering results (Supplementary Fig. 2a). While these steps and 159 

parameters have been tested across a variety of datasets and platforms as described below, 160 

these are all tunable steps that can be easily modified in our Jupyter notebooks.  161 

First, we apply a Gaussian blur to the data. Akin to dropout in single-cell RNA-sequencing 162 

data where genes are not detected due to low amounts of mRNA in individual cells and inefficient 163 

mRNA capture33, multiplexed images do not capture all of the protein expressed in the tissue. 164 

Analogous to compensating for dropouts, we use a Gaussian blur to smooth the signal to make 165 

the distribution more reflective of the true underlying data. We assessed four different standard 166 

deviations for the Gaussian blur and balanced resolution of features and cluster consistency by 167 

visualizing the clusters and evaluating the cluster consistency score (Supplementary Fig. 5). We 168 

determined that a standard deviation of 2 was optimal. 169 

Next, we apply a pixel normalization step, in which for each individual pixel, we divide the 170 

signal of each marker by the total signal in that pixel, such that the sum total of that pixel is 1. The 171 

intuition behind this step is that when performing phenotyping, we are interested in the ratio 172 

between the phenotypic markers. The absolute intensity of pixels across images can be different, 173 

for example due to biological differences (such as downregulation of T cell receptors upon 174 

activation) or technical differences (drifts in instrument sensitivity, variations in tissue fixation and 175 

staining). While the underlying cause for the differences in intensity can be different, the resulting 176 

differences in absolute intensity of individual pixels confounds the phenotyping. The ratio of 177 

marker expression within each pixel contains the important phenotyping information. Without this 178 

key pre-processing step, the results contained one dominating pixel cluster that was poorly 179 

defined (low expressing for all the markers) (Supplementary Fig. 6). After pixel normalization, we 180 
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apply a 99.9% marker normalization step, where each marker is normalized by its 99.9th percentile 181 

value. When this step was excluded, the results contained poorly defined clusters that expressed 182 

many markers (Supplementary Fig. 7). Importantly, when either the pixel normalization or the 183 

99.9% marker normalization steps were excluded, the cluster consistency score was significantly 184 

worse (Fig. 2f), indicating that these pre-processing steps are vital for generating consistent 185 

clusters that are more likely reflective of true biology. 186 

There are many additional parameters in the SOM that can be tuned. As described above, 187 

Pixie uses a SOM to first overcluster the pixels, then metaclusters. For the lymph node dataset, 188 

we tested using a SOM to directly cluster pixels into 15 clusters (Supplementary Fig. 8). This 189 

resulted in poor pixel cluster definition for some clusters, as well as a worse cluster consistency 190 

score, indicating that initial overclustering is a critical step for accurate results. Furthermore, the 191 

number of passes through the dataset that is used to train the SOM is another tunable parameter. 192 

For this dataset, we compared training the SOM using 1 pass, 10 passes, and 100 passes 193 

(Supplementary Fig. 9). We found that 10 passes were sufficient to achieve accurate clusters and 194 

that increasing the number of passes up to 100 did not change the clustering results. 195 

Pixel-level data analysis can introduce significant computational demands. When training 196 

a SOM, all the pixels must be read into memory at the same time. For very large datasets, this is 197 

a computational bottleneck. To ensure that this approach is scalable, we wanted to see if a 198 

subsampling approach could yield equally valid results. We hypothesized that for large datasets, 199 

a random subset of pixels is a representative sample and provides the SOM with enough 200 

information to generate accurate clusters. Using a large dataset of around 800 million total 201 

pixels34, we trained the SOM using a random 10% subset of pixels (Supplementary Fig. 10). We 202 

found that the results of subsampling were highly concordant with the results from the whole 203 

dataset, and the cluster consistency score was consistent as well. We have shown that for large 204 

datasets, using a random subset of pixels to train the SOM is more computationally efficient and 205 

leads to highly accurate results. Therefore, this approach is scalable to large datasets. 206 
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Here, we optimized a set of pre-processing steps and parameters for consistency and 207 

biological accuracy. While we have applied these steps and parameters across a variety of 208 

datasets, these parameters are easily modified in our user-friendly pipeline. 209 

Pixie captures extra-cellular information in multiplexed images 210 

While cells are important features to annotate in multiplexed images, a large amount of 211 

information is captured in multiplexed images outside of cells (Fig. 3). The extracellular matrix, 212 

blood vessels, and extracellular protein aggregates are examples of objects that can exist outside 213 

of the cellular space. The biological relevance of these objects can vary based on tissue type and 214 

disease context. For example, in immune tissue such as lymph nodes (Fig. 3a), cells are densely 215 

packed within the tissue and therefore most pixels fall within cells. However, for ductal carcinoma 216 

in situ (DCIS) or triple negative breast cancer (TNBC) that contain large amounts of extracellular 217 

matrix and structural proteins (Fig. 3b-3c), pixel clustering is useful for generating a quantifiable 218 

metric for extracellular features. For these tissue types, pixels that lie outside of cells that express 219 

phenotypic markers make up a majority of the total pixels in the image (Fig. 3d). Pixie assigns a 220 

phenotype to each of these pixels, which can then be quantified and analyzed in downstream 221 

analysis. Importantly, pixel clustering using Pixie allows us to utilize a larger percentage of the 222 

informative pixels captured using multiplexed imaging technologies than cell-level analysis only. 223 

Pixel-level features from Pixie are reproducible across replicate MIBI-TOF runs 224 

For multiplexed imaging approaches to be used in large translational studies and 225 

eventually in clinical diagnostics, not only must the imaging technology be robust, workflows for 226 

analyzing these data must be reproducible and accurate. In recent work by our group, we 227 

undertook a validation study to demonstrate the reproducibility of MIBI-TOF in which we assessed 228 

concordance across a dozen serial sections of a tissue microarray (TMA) of 21 cores that 229 

consisted of disease-free controls as well as multiple types of carcinomas, sarcomas, and central 230 

nervous system lesions.35 Here, we demonstrate the reproducibility of Pixie on replicate serial 231 

sections (Supplementary Fig. 12a). 232 
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  Figure 3: Pixie captures more information in multiplexed images than cell segmentation masks alone. 
Representative FOVs from (A) lymph node, (B) ductal carcinoma in situ (DCIS), and (C) triple negative breast cancer 
(TNBC), showing MIBI-TOF overlays (left) and pixel phenotype maps (right). Cells identified using cell segmentation 
are overlaid on the pixel phenotype maps in gray. Colors of the pixel phenotype maps correspond to the phenotypes 
indicated on the right. (D) Comparison of the average fraction of informative pixels (pixels that were included in pixel 
clustering) that were outside of the cell segmentation masks across the three datasets. 
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Using this pipeline, we clustered the pixels across all the images into 12 phenotypes 233 

(Supplementary Fig. 12b). Because we had six serial sections per tissue core in the TMA, we 234 

could assess the reproducibility of Pixie by finding the correlation between serial sections of the 235 

same tissue core. Because true biological replicates are not possible, we compared serial 236 

sections of each tissue core as a proxy. As a result, we would expect some true biological 237 

differences between serial sections. Despite these differences, the overall Spearman correlation 238 

was high, with R2 of 0.92 ± 0.03 (mean ± SD) (Supplementary Fig. 12c), demonstrating the 239 

reproducibility of pixel clustering using Pixie. This high reproducibility was obtained despite the 240 

intensity differences across experiments, showing that our normalization pipeline is robust to 241 

technical variation and batch effects (Supplementary Fig. 12d). Here, we show that despite 242 

differences in absolute pixel intensity, Pixie is able to capture reproducible pixel phenotypes, 243 

demonstrating that pixel clustering can generate biologically meaningful annotations across entire 244 

cohorts. 245 

Applications of Pixie across biological contexts and imaging platforms 246 

In one example, we used pixel-level analysis to capture biologically meaningful 247 

phenotypes in the myoepithelial layer in ductal carcinoma in situ (DCIS). In previous work, our 248 

group used MIBI-TOF to characterize the transition from DCIS to invasive breast cancer (IBC) 249 

using a 37-plex panel.11 DCIS is a pre-invasive lesion that is itself not life-threatening, but if left 250 

untreated, will progress to IBC in up to 50% of cases.36 The myoepithelial layer surrounding the 251 

ductal cells is an important histological feature that is known to undergo transformations during 252 

the progression to IBC. Normal breast myoepithelium is a thick, highly cellular layer between the 253 

stroma and ductal cells. In DCIS, the myoepithelium becomes stretched out in a thin layer with 254 

few, elongated cell bodies. In IBC, complete loss of this layer is accompanied by local invasion of 255 

tumor cells. Therefore, understanding the changes in ductal myoepithelium may shed light on 256 

what drives the progression of DCIS to IBC. Classical cell phenotyping strategies, which rely on 257 

detecting cells with a strong nuclear signal and are often optimized for conventional cell shapes,  258 
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fail to capture the myoepithelial phenotype. To be able to quantify features of this important 259 

histological region, we used Pixie to identify discrete myoepithelial phenotypes (Fig. 4a). We 260 

identified seven myoepithelial phenotypes that could be quantified and compared across clinical 261 

subgroups: CK7+, CK5+, ECAD+, PanKRT+, VIM+, CD44+, SMA+. Here, we used Pixie to 262 

quantify distinct phenotypes in a small, but clinically relevant histological region that would not 263 

be captured using classical cell segmentation. 264 

Another setting in which analyzing high-dimensional images has been challenging is in 265 

studies of the human brain. Studying the brain has historically been difficult due to the strong 266 

inherent autofluorescence of brain tissue, limiting the use of traditional fluorescence-based 267 

imaging techniques. We used MIBI-TOF to image neuronal and immune protein targets in the 268 

human brain. Due to the abnormal shapes of neuronal objects and the complex spatial 269 

conformations of features such as dendrites, cell bodies, and axons, classical cell segmentation 270 

techniques have limited efficacy, and detection of neuronal objects is an ongoing area of 271 

research.13 Using Pixie, we were able to map the full neuronal landscape of the human 272 

cerebellum, including neurons, axons, vessels, astrocytes, and microglia (Fig. 4b). For example, 273 

NEFH (neurofilament heavy chain)-expressing grey matter axons could clearly be identified as a 274 

pixel cluster but would likely be missed in cell segmentation due to their irregular shape. 275 

Therefore, pixel clustering using Pixie allows for the retention and classification of informative 276 

Figure 4: Applications of Pixie across imaging platforms and biological contexts. (A) Pixel-level phenotyping 
using Pixie of the myoepithelial layer in ductal carcinoma in situ (DCIS) imaged using MIBI-TOF.11 Heatmap of mean 
marker expression of the pixel clusters (left), MIBI-TOF overlay of a representative FOV (middle), and corresponding 
pixel phenotype map and inset (right). In the pixel phenotype map, the black region represents the myoepithelial 
layer. (B) Identification of pixel-level neuronal and immune features in MIBI-TOF images of the human cerebellum. 
Heatmap of mean marker expression of the pixel clusters (left), pixel phenotype map of a tiled image of the 
cerebellum (middle), and comparison of an inset with single-marker images (right). (C) Pixel clustering in a CODEX 
dataset of colorectal cancer using Pixie.17 Heatmap of mean marker expression of the pixel clusters (left), pixel 
phenotype map of a CODEX image (middle), and comparison of insets with single-marker images (right). (D) Pixel-
level annotation of a MALDI-IMS dataset of pancreatic ductal adenocarcinoma using Pixie.37 Heatmap of mean 
glycan expression of the pixel clusters (top). The rows correspond to pixel clusters and columns correspond to 
glycans. Pixel phenotype map (colors correspond to the heatmap) and comparison with selected glycans (bottom). 
Expression values were z-scored for each marker. 
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pixels that are independent of cell segmentation masks and can be used in downstream analysis, 277 

such as spatial analysis. 278 

To test the cross-platform compatibility of Pixie, we applied it to a publicly available 279 

CODEX (co-detection by indexing) multiplexed imaging dataset of colorectal cancer.17 In contrast 280 

to MIBI-TOF which uses metal-labelled antibodies, CODEX is a fluorescence-based method and 281 

achieves multiplexing by using DNA-barcoded antibodies and multiple cycles of imaging 282 

fluorescent nucleotides.1 Pixel clustering using Pixie enabled us to capture the major structural 283 

and phenotypic features in the tissue, including vasculature, epithelia, lymphatics, and immune 284 

cells (Fig. 4c). Because CODEX uses fluorescence imaging, there are significant levels of 285 

autofluorescence in the images. By including images of the empty cycles in the pixel clustering, 286 

we were able to ameliorate the effect of autofluorescence on the phenotyping by defining an 287 

autofluorescence-specific cluster. Here, we have shown the applicability of Pixie to fluorescence-288 

based imaging approaches. 289 

Furthermore, we applied Pixie to a previously published MALDI-IMS (matrix-assisted laser 290 

desorption ionization-imaging mass spectrometry) dataset of pancreatic ductal 291 

adenocarcinoma.37 MALDI-IMS is a label-free imaging approach, meaning antibodies are not 292 

used to target specific epitopes, and can be used to assess the distribution of complex 293 

carbohydrates in tissue, typified by N-linked glycans de novo. MALDI-IMS has been used to map 294 

N-glycan distribution across multiple cancer types.38–40 Unlike MIBI-TOF, CODEX, and other 295 

antibody-based approaches, MALDI-IMS was used to map glycosylation patterns and not protein 296 

expression in this dataset, so traditional image analysis techniques that rely on detecting cellular 297 

objects are not applicable. Here, we used pixel clustering in Pixie to annotate discrete phenotypes 298 

in the tissue based on glycosylation patterns (Fig. 4d). Importantly, the pixel clusters identified 299 

here were reflective of the tissue features that were manually identified in the original publication.37 300 

For example, the pixel cluster localized to the center of the tissue, cluster 13 (purple-blue cluster), 301 

corresponded to the necrotic region of the tissue as determined by H&E in the original publication. 302 
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One of the defining glycans in this pixel cluster was Hex6HexNAc5 (m/z 2028.7136), which was 303 

identified in the original publication as being localized to necrotic tissue. Similarly, 304 

adenocarcinoma and normal pancreatic regions were captured using pixel clustering and were 305 

defined by glycans identified in the original publication, such as Hex7dHex1HexNAc7 (m/z 306 

2742.9831) and Hex6dHex1HexNAc5 (m/z 2174.7715), respectively. Therefore, despite the fact 307 

that MALDI-IMS is a completely different type of imaging technology that quantifies a different 308 

type of molecule on different feature scales, Pixie was able to identify histologically relevant 309 

features in an automated fashion, as well as identify glycans that were commonly co-occurring. 310 

Through these four case studies, we have shown that pixel clustering can be useful across 311 

biological contexts and imaging platforms to capture informative pixel-level features independent 312 

of cell segmentation masks. 313 

Using pixel clusters to improve cell-level annotations in Pixie 314 

Since cells are the building blocks of tissue, it is important to generate accurate 315 

annotations of cells, in addition to the pixel features described above. Development of methods 316 

for accurate cell annotations is an active area of research.18,19 The current paradigm for annotating 317 

cells in images is to use unsupervised clustering, where the input features are the sum of the 318 

expression of each marker for each cell, in a manner similar to analysis of flow or mass cytometry 319 

data.1,10–12,15,17,41 We rely on cell segmentation to generate accurate cell masks, then integrate the 320 

expression of each marker within each cell mask to generate the expression profile for each cell. 321 

However, as discussed above, imaging data is not measuring dissociated single cells. Bright 322 

signal present along the perimeter of a cell can be inaccurately assigned to its neighboring cells, 323 

particularly in dense tissue where the cells are packed close together (Supplementary Figure 324 

1c,d). Therefore, cell clusters using integrated expression values can have poor cluster definition 325 

due to noisy signal. In this paradigm, clusters with poor definition are usually manually inspected 326 

and compared against the images, which is a time-consuming process. Often, manual gating 327 

steps are needed to identify cells that cannot be clustered using this method. Therefore, cell 328 
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phenotyping using the integrated expression of each cell requires a significant amount of manual 329 

work to visually inspect the images and adjust the clustering. 330 

In Pixie, we use the pixel clusters resulting from the workflow described above to improve 331 

cell classification. After generating single cell masks using cell segmentation, instead of 332 

integrating the expression of each marker, we tabulate the number of pixels belong to each pixel 333 

cluster in each cell. The number of pixel clusters in each cell is then used as the feature vector 334 

into a SOM, followed by consensus hierarchical clustering and manual cluster adjustment and 335 

annotation, as described above for pixel clustering (Fig. 5a). We hypothesized that this method 336 

would improve cell annotation because it quantifies discretized pixel phenotypes. When simply 337 

integrating expression over the cell, misassigned pixels could have a large impact on clustering, 338 

if their expression is very bright. Even though there may be bright pixels from a neighboring cell 339 

or from features such as dendrites that seem like they are protruding into the cell in a 2D image, 340 

the number of those pixels should be low. Because there should be few of these pixels that are 341 

misassigned to the cell of interest, the real signal of that cell should drive the clustering in this 342 

method. Furthermore, this method also quantifies the degree of protein co-expression at a pixel-343 

level, which is information that is lost when integrating expression for each cell. 344 

To test cell clustering using Pixie, we used the lymph node dataset described above. We 345 

compared the cell expression profiles from using integrated expression and pixel composition for 346 

cell clustering (Fig. 5b,c). When using integrated expression, while the major immune phenotypes 347 

could be identified, there was one cluster that was unassigned, which was also the largest cluster 348 

(Supplementary Fig. 13b). Under this paradigm, this unassigned cluster would usually require 349 

manual comparisons with the images to determine the true phenotypes of these cells. In 350 

comparison, there was no unassigned cluster when using pixel composition to perform cell 351 

clustering. Therefore, by using pixel clusters to perform cell clustering in Pixie, we obtained 352 

accurate cell clusters with better cluster definition and less amount of manual work, saving the 353 

researcher considerable time. Importantly, using pixel composition for cell clustering also resulted 354 
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  Figure 5: Pixel clusters can be used to improve cell annotations in Pixie. (A) Overview of cell-level phenotyping 
using pixel clusters. After pixel clusters have been identified and annotated, the frequency of each pixel cluster within 
each cell boundary (identified using cell segmentation) is used as the feature vector for cell clustering. Cells are 
clustered using a SOM and clusters are metaclustered using consensus hierarchical clustering. The metaclusters are 
then manually adjusted and annotated by the user. (B) Using the same dataset as shown in Fig. 2, heatmap of mean 
marker expression of cell phenotypes obtained from cell clustering using integrated marker expression for each cell. 
Clusters were manually adjusted and annotated. (C) Using the same dataset as displayed in Fig. 2 and in B, heatmap 
of mean pixel cluster frequency of cell phenotypes obtained from cell clustering using pixel cluster composition for 
each cell in Pixie, as outlined in A. Clusters were manually adjusted and annotated. Expression values were z-scored 
for each marker. (D) Comparison of Silhouette score for cell clusters obtained using integrated expression or pixel 
composition. Five replicates were performed for each method. Red bar indicates the average Silhouette score. P-
value was determined using a Wilcoxon test. (E) Comparison of cell phenotype maps colored according to cell 
phenotypes obtained using either integrated expression (left) or using pixel composition (middle), and a MIBI-TOF 
overlay (right) for one representative FOV. Colors in the cell phenotype maps correspond to the heatmaps in B and 
C, respectively. Four representative examples of the advantage of using pixel composition over integrated expression 
for cell clustering (bottom). 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2022. ; https://doi.org/10.1101/2022.08.16.504171doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504171


20 
 

in significantly higher Silhouette scores, which measures how well cells are clustered with other 355 

cells that are similar to each other, a commonly used metric for evaluating clustering performance 356 

(Fig. 5d). Furthermore, the cluster consistency score was lower when using pixel composition to 357 

perform cell clustering (Supplementary Fig. 13e,f). 358 

Upon closer inspection of the images, we can identify various examples where using pixel 359 

composition to cluster cells in Pixie was advantageous to using integrated expression (Fig. 5e). 360 

In the first example, a cell was erroneously assigned as a CD8 T cell. The neighboring cell had 361 

clear CD8 expression, and the CD8 signal from this neighboring cell was confounding cell 362 

annotation. By using pixel composition, the cell was correctly assigned as a CD4 T cell. In the 363 

second example, a cell that had clear CD3 signal and was likely a T cell was being misassigned 364 

as a CD163+ macrophage, due to sparse CD163 signal that could be due to a neighboring 365 

macrophage being sectioned in 2D. Using pixel composition, this cell was assigned as a T cell. 366 

In the third example, a cell that was unassigned when using integrated expression, possibly due 367 

to noisy expression from neighboring cells, was correctly assigned as a CD68+ macrophage using 368 

pixel composition. Finally, in the fourth example, cells that were unassigned when using integrated 369 

expression were assigned as B cells and FDCs using pixel composition. Because B cells and 370 

FDCs are closely packed and often interacting in a lymph node follicle, it can be difficult to 371 

correctly assign phenotypes to these cells, emphasizing the ability of Pixie to perform well on 372 

traditionally challenging phenotypes. 373 

In addition, we used Pixie to perform cell annotation of the TMA dataset described in 374 

Supplementary Fig. 12, where we assessed the concordance between serial sections of a TMA 375 

that was randomized with respect to staining and imaging day. Using the pixel clusters shown in 376 

Supplementary Fig. 12b, we classified cells into 10 cell phenotypes, then assessed concordance 377 

between serial sections by calculating the average Spearman correlation between serial sections 378 

of the same tissue core (Supplementary Fig. 14). Overall, the Spearman correlation was high, 379 

with R2 of 0.93 ± 0.05 (mean ± SD). Similar to pixel-level features, Pixie was able to capture 380 
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reproducible cell phenotypes despite differences in absolute pixel intensity between imaging runs 381 

(Supplementary Fig. 14d). 382 

Here, we have shown the utility of pixels clusters for improving cell phenotyping. By using 383 

pixel cluster composition to perform cell clustering in Pixie, we obtain accurate cell clusters that 384 

require fewer manual adjustments than when using integrated expression. 385 

 386 

Discussion 387 

Here, we present Pixie, a complete pipeline for identifying pixel-level and cell-level 388 

features from multiplexed imaging datasets and demonstrate its utility across a variety of tissue 389 

types and imaging platforms. Using an example dataset of lymph nodes imaged using MIBI-TOF, 390 

we demonstrate the robustness and accuracy of our method. We also show applications of Pixie 391 

in DCIS and brain MIBI-TOF datasets, as well as CODEX and MALDI-IMS datasets. Finally, we 392 

show how pixel clusters can be used to improve cell classification. Importantly, Pixie is available 393 

as user-friendly Jupyter notebooks that perform all steps of the pipeline and includes a GUI for 394 

manual adjustment and annotation of clusters. Our notebooks are open source can be easily 395 

customized to each user’s requirements. 396 

Using pixel clusters to annotate features in images has been previously performed in 397 

various contexts in multiplexed imaging as well as spatial transcriptomics. In Gut et al., the authors 398 

also use a SOM to cluster pixels in iterative indirect immunofluorescence imaging (4i) images and 399 

relate these pixel features to cells, terming them Multiplexed Cell Units (MCUs).6,42 In spatial 400 

transcriptomics, pixel-level features have been used to perform cell annotation and infer tissue 401 

substructures.43–46 These methods demonstrate the utility of pixel-level analysis. Here, we build-402 

upon this previous work by providing a comprehensive evaluation of the pre-processing steps and 403 

parameter choices that optimize clustering performance, show use cases across imaging 404 

platforms and biological questions, and present a user-friendly pipeline for running this method. 405 
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First, we illustrate the beneficial effect of each of the pre-processing steps in the Pixie 406 

pipeline – Gaussian blurring, pixel normalization, and 99.9% marker normalization. While we have 407 

determined an optimal parameter space for each of these pre-processing steps using multiple 408 

datasets, these parameters may need to be tuned for each individual dataset. For example, we 409 

determined a lower Gaussian blur was appropriate when analyzing the smaller myoepithelial area 410 

in DCIS and that no Gaussian blur was needed when analyzing MALDI-IMS data. There are many 411 

other parameters of the SOM that could be tuned, such as the learning rate, initialization of the 412 

cluster centers, and distance function. We found that the default parameters of the SOM (see 413 

Methods) worked well for our use cases; however, these could all be easily changed in our 414 

pipeline. We encourage users to visualize the resulting pixel clusters alongside marker expression 415 

images to assess the best parameter choices for their own datasets. 416 

While we used a SOM as the clustering algorithm in our pipeline, there are many other 417 

unsupervised clustering algorithms that have been developed for a similar purpose.47–50 We chose 418 

to use a SOM because it is accurate, fast, and scalable, which is particularly important for this 419 

method because we are clustering a large number of pixels in which the number of observations 420 

can approach 1 billion. In contrast, the number of cells from single-cell RNA-sequencing or CyTOF 421 

experiments are usually on the order of thousands or millions. One popular clustering algorithm 422 

is the Leiden algorithm, which is built upon the Louvain algorithm, both often used in 423 

transcriptomic analysis and implemented in the popular Seurat package.51,52 PhenoGraph, 424 

another popular clustering algorithm, is a graph-based method that identifies communities using 425 

Louvain. We performed a time comparison of a SOM (implemented in FlowSOM), Leiden 426 

(implemented in Seurat), and PhenoGraph (implemented in Rphenograph) and observed that a 427 

SOM has the fastest runtime (Supplementary Fig. 15). If the user wishes to use another clustering 428 

algorithm, the modular nature of our code allows the clustering algorithm to be easily replaced. 429 

Additionally, we have shown that Pixie can quantify biologically meaningful features that 430 

are not captured by traditional cell segmentation across disease contexts and imaging platforms. 431 
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In one example, we used Pixie to define a clinically meaningful feature in DCIS that could stratify 432 

patient groups. One of the defining features of DCIS is that the myoepithelium becomes stretched 433 

out as the tumor cells proliferate and expand. We found that normal breast myoepithelium exists 434 

in a luminal, E-cadherin (ECAD)-positive phenotypic state, which transitions to a more 435 

mesenchymal, vimentin-positive state in DCIS, which aligns with an analogous shift in tumor cell 436 

differentiation. In previous work from our group, we built a random forest classifier using 433 437 

parameters for predicting which DCIS patients would progress to IBC, including the pixel-level 438 

features.11 Importantly, a high abundance of the ECAD+ myoepithelium pixel cluster was the 439 

number one predictor of IBC recurrence in this study, highlighting the utility of this pixel clustering 440 

method. 441 

Lastly, we demonstrate the utility of using pixel clusters to annotate cell-level features and 442 

show its improvement over using integrated marker expression for cell annotation. While we offer 443 

one improvement to the traditional cell clustering methodology, there are many other algorithms 444 

that have been developed to address similar problems. REDSEA (Reinforcement Dynamic 445 

Spillover EliminAtion) improves cell assignments by correcting for spillover signal at cell 446 

boundaries.20 While the pixel clustering method described here similarly accounts for spillover 447 

signal from neighboring cells, Pixie also accounts for pixels that may not be at the cell boundary 448 

that are confounding accurate classification, such as noisy pixels or pixels from objects actually 449 

not associated with the cell of interest, such as dendrites from nearby cells or the extracellular 450 

matrix. Furthermore, while Pixie relies on unsupervised clustering, another class of algorithms 451 

that can perform cell type assignment relies on feeding the algorithm prior knowledge.18,19,44,53 452 

Astir is a probabilistic model that uses prior knowledge of marker proteins to assign cells to cell 453 

types in multiplexed imaging datasets.18 A recently published algorithm, CELESTA, identifies cell 454 

types in multiplexed images by utilizing spatial information.19 One of the inputs of CELESTA is a 455 

user-defined cell type signature matrix. Methods that rely on a priori knowledge limit the potential 456 

for discovery of cell states and relies of an accurate reference list of marker expression. Although 457 
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we currently do not make use of the spatial location of pixels or cells for performing phenotype 458 

annotation, this represents an exciting new avenue for future work. 459 

As the amount of multiplexed imaging datasets continues to grow, automated, fast, and 460 

scalable approaches for analyzing these data are needed. Pixie is a simple, fast method that can 461 

generate quantitative annotations of features both independently and in conjunction with cell 462 

segmentation that will enable the comprehensive profiling of various tissues across health and 463 

disease. 464 

 465 

Methods 466 

Pixel clustering methodology 467 

The pixel clustering method in Pixie is illustrated in Supplementary Fig. 2a and described 468 

above. Single pixel expression profiles were extracted from single-channel TIFs, Gaussian 469 

blurred with a standard deviation of 2 (unless otherwise noted), pixel normalized by dividing by 470 

the total pixel expression, and 99.9% marker normalized by dividing by each marker’s 99.9th 471 

percentile. The 99.9% normalization step is necessary because markers that are systematically 472 

brighter would otherwise likely drive the clustering. By normalizing all markers to their 99.9th 473 

percentile, markers have a more even contribution to the clustering results. Next, we used the 474 

FlowSOM30 implementation of a SOM to cluster all pixels into 100 clusters. Unless otherwise 475 

noted in the manuscript, we used the following parameters of the SOM for all clustering: grid 476 

size = 10 x 10, start learning rate = 0.05, end learning rate = 0.01, initialization function = 477 

random, distance function = Euclidean, training passes = 10. Next, the mean expression profile 478 

of each of the 100 clusters was determined, z-scored for each marker, then z-scores were 479 

capped to a maximum value of 3. The clusters were then metaclustered using the 480 

ConsensusClusterPlus54 implementation of consensus hierarchical clustering using the z-scored 481 

expression values. Metaclusters were manually adjusted and annotated using a custom-built 482 

GUI (Supplementary Video 1). These final phenotypes were mapped back to the original images 483 
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to generate pixel phenotype maps. To generate expression heatmaps, we calculated the mean 484 

expression for each cluster and found the z-score for each marker. 485 

All processing was performed on a Google Cloud Compute Engine instance. The machine 486 

type, number of cores, and available memory were adjusted based on the size of the dataset. 487 

Cell clustering methodology 488 

 Cell segmentation for all datasets was performed using the pre-trained Mesmer 489 

segmentation model.26 For each cell in the image that was identified using Mesmer, we counted 490 

the number of each pixel cluster in each cell. We normalized these values by the total cell size 491 

and applied a 99.9% feature normalization (features here were the pixel clusters). Cells were then 492 

clustered using a SOM, and metaclustered using consensus hierarchical clustering, analogously 493 

to pixel clustering as described above. 494 

Cluster consistency score 495 

 To assess the stochasticity of Pixie, we created the “cluster consistency score” metric. 496 

Across different replicate runs of the same input data, the same phenotype may be output as a 497 

different cluster number, so assessing reproducibility by comparing the number of pixels 498 

belonging to the same phenotype is not easily automated and instead requires significant 499 

amounts of manual annotation. For example, the pixel cluster that is defined by CD20 may be 500 

pixel cluster 1 in the first run and pixel cluster 2 in the second run. Manual annotation of each 501 

cluster is infeasible for large numbers of tests when assessing pre-processing steps and different 502 

parameter choices. To measure reproducibility quickly and quantitatively, we created the cluster 503 

consistency score. Cluster consistency score is calculated as follows: 504 

1. For one set of parameters, we run the entire pipeline using the same input data five times, 505 

each time with a different random seed. We call these replicates 1-5. 506 

2. For each replicate, for each cluster, we quantify the minimum number of clusters in another 507 

run that it takes to get to 95% of the pixels in that cluster. For example, if there are 1000 508 

pixels belonging to cluster 1 of replicate 1, for these pixels, we count the number of pixels 509 
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in each cluster of replicate 2. We then rank this count table and determine the minimum 510 

number of clusters in replicate 2 it takes to get to 950 pixels in cluster 1 of replicate 1. 511 

3. For a single replicate, we calculate this number in a pairwise manner with all other 512 

replicates. For example, for replicate 1, we calculate this number for replicate 1-replicate 513 

2, replicate 1-replicate 3, replicate 1-replcate 4, replicate 1-replicate 5. These numbers 514 

are averaged. 515 

4. Steps 2 and 3 are repeated for each cluster in each replicate. The result is that each pixel 516 

cluster in each replicate has a score associated with it. 517 

5. These scores are mapped back to the pixel assignments. For example, if a pixel was 518 

assigned as pixel cluster 1 in replicate 1, the corresponding score determined in the 519 

previous step is assigned to that pixel. Each pixel is assigned 5 features, corresponding 520 

to the score from each replicate. These 5 features are averaged for each pixel, resulting 521 

in one score for each pixel. 522 

See code for full implementation. A low score indicates good reproducibility while a high 523 

score indicates bad reproducibility, meaning that the pixel was assigned to clusters that may have 524 

contained many other pixel types. At the cell level, the same paradigm was used, but instead of 525 

pixel clusters, we assessed cell clusters. 526 

We selected 95% when calculating the cluster consistency score because we determined 527 

that it was a good benchmark value. As expected, lowering this threshold resulted in lower cluster 528 

consistency scores, and raising this threshold resulted in higher cluster consistency scores 529 

(Supplementary Fig. 4b). 530 

Benchmarking cluster consistency score with reference cell datasets 531 

 To assess the cluster consistency score, we used two benchmark datasets, a CyTOF 532 

dataset31 and single-cell RNA-sequencing dataset downloaded from the Seurat tutorial website.32 533 

The CyTOF dataset contained 1,140,035 cells from whole blood and was downloaded from: 534 

https://doi.org/10.5281/zenodo.3951613. We randomly subsampled 5000 cells from the dataset 535 
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and clustered the cells into 100 clusters using FlowSOM and metaclustered into 15 metaclusters 536 

using consensus hierarchical clustering. The Seurat dataset contained 2,700 peripheral blood 537 

mononuclear cells (PBMCs) and was downloaded from: 538 

https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz. 539 

The data was processed as outlined here: 540 

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html. The data was log normalized and the 541 

first 10 PCs from PCA were used as the input features. We constructed a KNN graph based on 542 

the Euclidean distance in PCA space and used the Leiden algorithm to cluster cells. For both 543 

CyTOF and RNA-seq datasets, the cluster consistency score was calculated as outlined above. 544 

Lymph node MIBI-TOF dataset 545 

 Six lymph nodes were imaged using a MIBI-TOF instrument with a Hyperion ion source 546 

using 37 markers (Supplementary Table 1). FOVs were imaged at a field size of 500 μm x 500 547 

μm at 1,024 x 1,024 pixels. 548 

Replicate serial section TMA dataset 549 

 The dataset assessing the reproducibility of TMA serial sections was previously published 550 

in Liu and Bosse et al.35 The processed imaging data is available at 551 

https://doi.org/10.5281/zenodo.5945388. Imaging parameters and pre-processing methodology 552 

(background subtraction, denoising) are described in the manuscript. Pixel clustering and cell 553 

clustering were performed as described above. Markers included in the clustering are indicated 554 

in Supplementary Fig. 12b. 555 

Decidua MIBI-TOF dataset 556 

 The decidua MIBI-TOF dataset was previously described in Greenbaum, Averbukh, Soon 557 

et al.34 Imaging parameters and pre-processing methodology (background subtraction, denoising) 558 

are described in the manuscript. To compare the full dataset against a subset dataset, we 559 

randomly subsampled 10% of the total number of pixels for each replicate run. Subsequent steps 560 
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(Gaussian blur, pixel normalization, 99.9% marker normalization) were performed as described 561 

above. Markers included in the clustering are indicated in Supplementary Fig. 10a,b. 562 

DCIS MIBI-TOF dataset 563 

 The DCIS MIBI-TOF dataset was previously published in Risom et al.11 The processed 564 

imaging data is available at https://data.mendeley.com/datasets/d87vg86zd8/3. Imaging 565 

parameters and pre-processing methodology (background subtraction, denoising) are described 566 

in the manuscript. Processing steps (Gaussian blur, pixel normalization, 99.9% normalization) 567 

were performed as described above. Markers included in the clustering are indicated in 568 

Supplementary Fig. 11a. 569 

For the myoepithelial analysis in Fig. 4a, masks of just the myoepithelial zone were 570 

generated as described in the manuscript. Images were first subset for pixels within the 571 

myoepithelial masks, then pixels within the myoepithelium mask were further subset for pixels 572 

with SMA expression > 0. Upon inspecting clustering results for a few different standard deviations 573 

(sigma) for the Gaussian blur, we determined that a Gaussian blur of 1.5 was more appropriate 574 

for this use case, since we were interested in discrete pixel features in a small histological region 575 

of the full image. Subsequent steps (pixel normalization, 99.9% marker normalization) were 576 

performed as described above. 577 

TNBC MIBI-TOF dataset 578 

 This dataset will be published in a forthcoming publication, currently under preparation. 579 

TNBC samples were imaged using a MIBI-TOF instrument. Each FOV was 800 μm x 800 μm at 580 

2,048 x 2,048 pixels. Processing steps (Gaussian blur, pixel normalization, 99.9% normalization) 581 

were performed as described above. Markers included in the clustering are indicated in 582 

Supplementary Fig. 11b. 583 

Cerebellum MIBI-TOF dataset 584 

 This dataset will be published in a forthcoming publication, currently under preparation. 585 

Human cerebellum samples were imaged using a MIBI-TOF instrument. Each FOV was 700 μm 586 
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x 700 μm at 1,024 x 1,024 pixels, and FOVs were tiled to generate the final cerebellum image. 587 

Processing steps (Gaussian blur, pixel normalization, 99.9% normalization) were performed as 588 

described above. Markers included in the clustering are indicated in Fig. 4b. 589 

Colorectal cancer CODEX dataset 590 

 The CODEX dataset was previously published in Schürch et al.17 The processed imaging 591 

data was obtained from The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.fqn0-592 

0326. We selected 20 representative FOVs from CRC_TMA_A: reg012_X01_Y01_Z09, 593 

reg039_X01_Y01_Z08, reg059_X01_Y01_Z11, reg046_X01_Y01_Z09, reg015_X01_Y01_Z08, 594 

reg052_X01_Y01_Z09, reg047_X01_Y01_Z08, reg027_X01_Y01_Z09, reg035_X01_Y01_Z09, 595 

reg018_X01_Y01_Z09, reg042_X01_Y01_Z08, reg041_X01_Y01_Z09, reg069_X01_Y01_Z09, 596 

reg063_X01_Y01_Z08, reg068_X01_Y01_Z09, reg024_X01_Y01_Z09, reg019_X01_Y01_Z09, 597 

reg064_X01_Y01_Z10, reg061_X01_Y01_Z10, reg045_X01_Y01_Z10. Processing steps 598 

(Gaussian blur, pixel normalization, 99.9% normalization) were performed as described above. In 599 

addition to the markers indicated in Fig. 4c, empty cycle TIFs were also included in the clustering. 600 

Pancreatic ductal adenocarcinoma MALDI-IMS dataset 601 

The MALDI-IMS dataset was previously published in McDowell et al.37 Raw MALDI-IMS 602 

data (corresponding to Figure 3 in the original publication) was provided upon request by Dr. 603 

Richard Drake. Data was provided as mis, bak and tsf files, which were imported into SCiLs Lab 604 

2022a imaging software. In SCiLs Lab, N-glycan spectra were normalized by total ion count and 605 

converted to vendor-neutral imzML format.55 The imzML and ibd files were parsed using pyimzML 606 

in Python, and the expression at each m/z peak was extracted as single-channel TIF images 607 

corresponding to each extracted m/z peak. These m/z peaks were then mapped to glycans by 608 

accurate mass as annotated in the original paper. These single-channel TIFs were then 609 

processed and clustered as described above for single-marker MIBI-TOF images. Upon 610 

inspecting clustering results for a few different standard deviations (sigma) for the Gaussian blur, 611 

we determined that no Gaussian blur was necessary for pixel clustering of MALDI-IMS data. This 612 
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is expected because MALDI-IMS data is lower resolution than MIBI-TOF data. Subsequent steps 613 

were performed as described above. 614 

Visualization 615 

Plots were created using the ggplot2 and pheatmap R packages and the matplotlib Python 616 

package. Schematic representations were created with biorender (https://biorender.io/). Figures 617 

were prepared in Adobe Photoshop and Adobe Illustrator. 618 

 619 

Data availability 620 

User-friendly Jupyter notebooks for running Pixie are available at: 621 

https://github.com/angelolab/ark-analysis. The code used in this study is available at 622 

https://github.com/angelolab/publications/tree/master/2022-Liu_etal_Pixie.  623 
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