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1 Force-extension behavior of linear polymers

In the previous section, we have started from the isotropic elastic rod model and developed
several simplified models that could be used to compute the extension of a linear polymer
in the absence of external forces. In this section, we will look at the response of linear
polymers to an external force F . Starting with the first stretching experiments on DNA by
Bustamante and coworkers (1), these models have enabled quantitative comparison between
experiments on individual macromolecules and increasingly refined polymer theories of how
these molecules respond to external forces. We will start by introducing three models -of
increasing sophistication- to describe the stretching response of linear polymers. In all three
models, we will initially make several simplifying assumptions:

• We will consider the case that the polymer under study either has no twist rigidity
due to the presence of single bonds (as is the case for single-stranded DNA or RNA
or many synthetic polymers such as polyethylene glycol) and/or free ends, due to a
molecular attachment strategy that allows free rotation at the ends. In this case, the
twist and twist-stretch degrees of freedom in the isotropic elastic rod can be neglected,
since the twist is zero.

• In addition, we will initially consider a situation where we take the polymer to be
inextensible, i.e. it can not be stretched beyond its contour length LC . This will be
true for forces that are small enough that stretching can be neglected, i.e. cases where
F � S, where S is the stretch modulus, in units of force. For double-stranded DNA,
S ≈ 1000 pN (2) and the inextensibility assumption is typically valid for forces ≤ 10
pN.
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1.1 Models to describe the stretching response of linear polymers

In the previous sections, we have introduced the freely-jointed chain model, which consists
of N segments of length b. The segments are assumed to be perfectly rigid and inextensible.
The total length or contour length of the polymer is given by LC = N · b. The segments
are further taken to be connected by perfectly flexible hinges or joints. Furthermore, we
assume that the segments do not interact and can even pass through each other, i.e. there
is no self-avoidance.

Figure 1: Schematic representation of three models for the force-extension behavior of linear
polymers: 1-dimensional freely-jointed chain (1D-FJC), 3-dimensional freely-jointed chain
(3D-FJC), and the worm-like chain (WLC). The external applied force is shown as a red
arrow.

1.1.1 1-D freely-jointed chain (1D-FJC)

To start, we will take the assumptions of the freely-jointed chain model and further assume
that the problem is 1-dimensional, i.e. that the segments are only along one specific direc-
tions (Figure 1, left). Let us assume that the segments are all aligned with the z-axis. Each
segment can either point “up”, along the positive z-direction, or “down”, along the negative
z-direction. Clearly, this is not necessarily a very realistic model and is only expected to
capture the behavior of real polymers in a qualitative fashion. Nonetheless, several key
insights emerge from this simple model:
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• In the absence of an external force, i.e. for F = 0, the polymer just performs a random
walk (1D, in this case). We neglect the effect of the presence of the surface and of
force transducers such as beads or an AFM cantilever throughout this section. In
this case, the mean extension in the absence of force is simply 〈z〉 = 0, as would be
expected for a random walk.

• If we apply an external force to stretch the polymer to a length z > 0, there is an
energy associated with this force given by −F · z.

• The polymer resists stretching, i.e. it requires energy to stretch it to an extension z,
due to the fact that there are more states or conformations of the polymer for small
z than for large z. In particular, if the polymer is stretched to its contour length LC ,
there is only one conformation remaining (the one where all segments point along the
+z direction). In other words, the polymer resists stretching since It is entropically
unfavorable to stretch the polymer and this regime is consequently called the entropic
stretching regime.

The 1D-FJC model is worked out in detail in Phil Nelson’s book (3) on page XXX; in
addition, there is a nice discussion of it in Philipps, et al. (4) on page YYY. The result for
the mean extension as a function of the applied force is:

〈z〉 = N · be
(F ·b)/(kBT ) − e(−F ·b)/(kBT )

e(F ·b)/(kBT ) + e(−F ·b)/(kBT )
= N · b · tanh(F · b/kBT ) (1)

The relationship is graphed in Figure 2.

1.1.2 3-D freely-jointed chain (3D-FJC)

In the previous section, we have assumed that the stiff segments of the FJC model can
only point along one direction. However, in a real experimental situation, the polymer can
typically move in all three dimensions. So as a next step towards a more realistic model
of stretching elasticity, we consider the three-dimensional FJC. There are still N segments
(with indices i) of length b that are extensible and connected by perfectly flexible hinges
that can now point in any direction. Let us assume that the external forces points into the
z-direction and let us introduce a spherical coordinate system where θ denotes the angle
with the z-axis. The energy due to the external force is given as a sum over all segments of
the projection of the segment length onto the z-axis times the external force:

E =

N∑
i=1

Ei = −F · b
N∑
i=1

cos(θi) (2)
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Figure 2: Extension vs. force (left) and force vs. extension (right) predicted by the 1D-FJC,
3D-FJC, and WLC models. The extension has been normalized to the contour length, i.e.
we plot 〈z〉/(N · b). The segment length was set to b = 100 nm for the FJC models and the
persistence length was set to A = 50 nm for the WLC model.

Since the force is only in the z-direction, we still have a random walk in the x and y-
direction and consequently 〈x〉 = 〈y〉 = 0. We want to compute 〈z〉 to find the force
extension relationship. To this end we will consider the partition function of the 3D-FJC.
Recall that the probability of a given configuration of a system is given by its Boltzmann
factor, properly normalized:

Pj =
exp(−Ej/kBT )∑
j exp(−Ej/kBT )

= Z−1 exp(−Ej/kBT ) (3)

where exp(−Ej/kBT ) is the Boltzmann factor of state j and Z =
∑

j exp(−Ej/kBT ) the
partition function; the sum runs over all possible states of the system j, in the case of a
system that has discrete states (as, for example, the 1D-FJC considered in the previous
section). For a system that takes on continuous values, we replace the sum by an integral:

Z =

∫
d~x exp(−E(~x)/kBT ) (4)

the integration is performed over all relevant variables of the system ~x. In our case, each
segment can point in any direction on a sphere with radius b. Therefore, the integral takes
on the form:

Z =

∫ 2π

0
dφ1

∫ π

0
sin θ1dθ1 . . .

∫ 2π

0
dφN

∫ π

0
sin θNdθN exp(−E(~φ, ~θ)/kBT ) (5)
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The canonical average of any quantity is computed by averaging the value of the quantity
in states j weighted by the probability of the states j. In particular, for the canonical average
of z we have

〈z〉 =
∑
j

zjPj = Z−1
∑
j

zj exp(−Ej/kBT ) = Z−1
∫
d~xz(~x) exp(−E(~x)/kBT ) (6)

The extension along z as a function of the variables ~φ and ~θ is given by

z(~φ, ~θ) =

N∑
i=1

b cos(θi) (7)

Now, we compute the canonical average for z for the FJC model:

〈z〉 = Z−1
∫ 2π

0
dφ1

∫ π

0
sin θ1dθ1 . . .

∫ 2π

0
dφN

∫ π

0
sin θNdθN

(
N∑
i=1

b cos(θi)

)
exp(−E(~φ, ~θ)/kBT )

(8)
In addition, we use the expression for the energy of the system that we found above:

〈z〉 = Z−1
∫ 2π

0
dφ1

∫ π

0
sin θ1dθ1 . . .

∫ 2π

0
dφN

∫ π

0
sin θNdθN

(
N∑
i=1

b cos(θi)

)
exp

(
F · b

∑
i cos(θi)

kBT

)
(9)

Now we will use the “stat mech trick” to recognize that the last expression can be written
as a derivative of the log of the partition function:

〈z〉 = kBT
∂

∂F
ln(Z) (10)

with the partition function

Z =

∫ 2π

0
dφ1

∫ π

0
sin θ1dθ1 . . .

∫ 2π

0
dφN

∫ π

0
sin θNdθN exp

(
F · b

∑
i cos(θi)

kBT

)
(11)

Furthermore, we realize that the partition function is just a product of N identical and
independent factors:

Z =

(∫ 2π

0
dφ

∫ π

0
sin θdθ exp

(
F · b cos(θ)

kBT

))N
(12)

and therefore

〈z〉 = kBT
∂

∂F
ln

((∫ 2π

0
dφ

∫ π

0
sin θdθ exp

(
F · b cos(θ)

kBT

))N)
(13)
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Using basic logarithm rules, we can rewrite as

〈z〉 = NkBT
∂

∂F
ln

(∫ 2π

0
dφ

∫ π

0
sin θdθ exp

(
F · b cos(θ)

kBT

))
(14)

Next, we do the integral, using the variable substitutions x = cos(θ) and dx = sin(θ)dθ

〈z〉 = NkBT
∂

∂F
ln

(∫ 2π

0
dφ

∫ 1

−1
dx exp

(
F · b · x
kBT

))
(15)

〈z〉 = NkBT
∂

∂F
ln

(
2π

[
kBT

F · b
exp

(
F · b · x
kBT

)]+1

−1

)
(16)

〈z〉 = NkBT
∂

∂F
ln

(
2π
kBT

F · b

(
exp

(
F · b · x
kBT

)
− exp

(
−F · b · x

kBT

)))
(17)

Next, we do the force-derivative and collect terms:

〈z〉 = NkBTF

−1

F 2
+

b

FkBT

(
exp

(
F ·b·x
kBT

)
+ exp

(
−F ·b·x

kBT

))
(

exp
(
F ·b·x
kBT

)
− exp

(
−F ·b·x

kBT

))
 (18)

Further, using the trigonometric identity

coth(x) =
exp(x) + exp(−x)

exp(x)− exp(−x)
(19)

we get

〈z〉 = NkBT

(
−1

F
+

b

kBT
coth

(
F · b
kBT

))
(20)

and finally

〈z〉 = N · b
(

coth

(
F · b
kBT

)
− kBT

F · b

)
(21)

Similar to the 1D-FJC, the 3D-FJC model predicts that initially the polymer can be
significantly extended even by relatively small forces; however, as the extension approaches
the contour length, higher and higher forces are required to further extend the chain (Figure
2). It is instructive to consider the low and high force limits of the 3D-FJC model.

Low force limit of the 3D-FJC. For low forces, such that F · b � kBT , we can
expand the coth and use the approximation

coth(ε) ≈ 1

ε
+
ε

3
+O(ε3) (22)
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to obtain

〈z〉 ≈ N · b · 1

3

F · b
kBT

(23)

In other words, solving for F , we find

F ≈ 3kBT

b2N
〈z〉 (24)

and we can interpret the proportionality constant that connect force and extension as the
entropic spring constant: 3kBT

b2N
; this is exactly the same result that was previously obtained

by considering the fluctuations of a FJC model in the absence of force.

High force limit of the 3D-FJC. For high forces, i.e. in the limit F · b� kBT , the
coth function approaches 1 and we can write

〈z〉 ≈ N · b
(

1− kBT

F · b

)
(25)

Again, we can solve the limiting expression for the force and write

F ≈ kBT

b

1

1− 〈z〉
N ·b

(26)

to see that the force diverges as the extension approaches the contour length LC = N · b.
In principle, in this model, it takes an infinite force to extend the polymer to a length that
is exactly equal to the contour length. However, in a real experiments, the approximations
involved in the model will fail at some point, as will be discussed below.

The 3D-FJC model derived here was used to interpret initial force-extension measure-
ments on double-stranded DNA carried out by Bustamante and coworkers (see Figure 3 and
Equation 1 of Ref. (1)). While the DNA stretching data qualitatively behave as predicted
by the 3D-FJC model, with a segment length of the order of b ≈ 100 nm, quantitatively
the fit of the model to the data is not great and shows systematic deviations, in particular
at intermediate forces. It was found that the WLC model provides a much better fit to the
experimental DNA stretching data, as discussed in the next section.

1.1.3 Worm-like chain (WLC)

The worm-like chain model corresponds to the isotropic elastic rod model (REFER TO
CORRESPONDING SECTION) in the limit of no twist and no stretch. It models the
polymer as an elastic continuum, with a bending stiffness parametrized by the bending
persistence length A. The energy of the polymer in this limit is given by

Ebend =
1

2
kBT

∫ Ltot

0
(Aβ2)ds (27)
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where the integral runs over the contour of the linear polymer. Unfortunately, there is no
analytical solution for the extension of the WLC model as a function of force. However,
several authors have developed approximation formulae that provide a decent representa-
tion of the WLC model and enable a fit of experimental data (5, 6). A commonly used
approximation is due to Marko and Siggia (6):

F ·A
kBT

≈ 1

4
(

1− 〈z〉LC

)2 − 1

4
+
〈z〉
LC

(28)

An even more precise approximation that employs a seventh-order polynomial is due to
Bouchiat et al. (7). Again, we can take the low force, low extension limit, for 〈z〉/L � 1
where

1(
1− 〈z〉LC

)2 ≈ 1 + 2
〈z〉
LC

(29)

and find

F ≈ 3kBT

2ALC
〈z〉 (30)

Comparing this result to the low force limit of the 3D-FJC (and recalling that N · b = LC),
we see again the correspondence 2A ≈ b, i.e. the bending persistence is equal to half
the segment length in the corresponding 3D-FJC model. For the experimental stretching
data for long double-stranded DNA molecules, it was found that the WLC model describes
the data much better and achieves quantitative agreement over the entire force range (8).
From the fit, the bending persistence length for double-stranded DNA was determined to
be A ≈ 50 nm.
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