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COMPLETE COINDUCTIVE THEORIES. II

A. H. LACHLAN

Abstract. Let T be a complete theory over a relational language which has an

axiomatization by 3V-sentences. The properties of models of T are studied. It

is shown that existential formulas are stable. A theory of forking and indepen-

dence based on Boolean combinations of existential formulas in 3V-saturated

models of T is developed for which the independence relation is shown to sat-

isfy a very strong triviality condition. It follows that T is tree-decomposable in

the sense of Baldwin and Shelah. It is also shown that if the language is finite,

then T has a prime model.

This paper is the second part of a work begun in [9] which will be referred to

as Part I. The topic is coinductive complete theories over relational languages,

where coinductive means that there is an axiomatization by 3V-sentences. The

section numbers follow consecutively from those in Part I. The introduction to

Part I will also serve for Part II. So here we give only a brief outline of what

follows.

In §6, the first section of Part II, it is shown that 3-formulas are stable. This

strengthens Theorem 2.1 which says that quantifier-free formulas are stable.

A formula is called a 3 : \/-formula if it is a Boolean combination of 3-

formulas. In §7, by working within 3V-saturated models, we develop a theory

of forking based on 3 : V-formulas. This is made possible by the stability

of 3-formulas and Corollary 3.9 which says that in a 3V-saturated model the

elementary type Tp(a) of a tuple is determined by its 3-type 3-tp(ïï). It turns

out that the notion of independence based on 3 : V-formulas is trivial in the

sense that, for all subsets A , C , D of a model and each element b,

A I C (D) => [A I b (C U D) V C I b (Au £>)].

In §8 we use the triviality of the independence relation to show that complete

coinductive theories are tree-decomposable in the sense of Baldwin and Shelah

[3, p. 253]. An equivalent statement is that any extension of the theory by unary

predicates is stable. In particular, we see that complete coinductive theories are

stable, a result we have been unable to obtain more directly.
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In §9 it is shown that when the language is finite there is always a prime

model, although prime models over sets in general do not exist. In §10 we list

some conjectures which suggest directions for further study.

6. Stability of existential formulas

We have already seen that quantifier-free formulas are stable. Here we show

that existential formulas are also stable.

6.1. Theorem. Let T be a complete 3V-theory over a relational language. Then

all existential formulas are stable in T.

Proof. Without loss of generality assume that the language is countable. We

first reduce to the case of an existential formula y/(x ,y). This is accomplished

by adapting the usual proof that, if T is unstable, then some formula y/(x, y)

is unstable. To this end suppose that some existential formula y/(x, y) of T

is unstable, and choose such y/(x, y) with l(x) as small as possible. Towards

a contradiction suppose that l(x) = m + 1 > 1 . Let k be an infinite cardinal

such that k ° = k . We construct a model JÍ such that:

( 1 ) For every « < a>, A ç M of size < k , and JV 2V -^ > every 3V- «-type

over A realized in JV is also realized in Jf.

(2) There exists B ç M of size k such that more than k y/-(m+ l)-types

over B are realized in Jf.

Let a,b, CM (i < k+) realize distinct y/-(m + l)-types over B. By

assumption, for each existential formula 6(x, z) the number of 6-1 -types over

B is < k . Since the language is assumed countable, the number of 3-1-types

over B is < k ° = k . By thinning we can suppose that 3-tp(a.|73) = 3-tp(a |t3)

(i < j < k+) . From Corollary 3.9 Tp(a,\B) = Tp(ay|ß) (/ < j < k+) . From

(1) there exist b\ £ M (i < k+) such that 3V-tp(a0^|73) = 3V-tp(ai6(|73)

(/ < k+) . Let y/'Cx , y) denote y/(y0, xx, ... , xm,yx, ... , yl{y)). Then the

b, realize distinct ^'-w-types over B U {a0}. Thus, ip'(x' ,yl) is unstable.

This contradicts the choice of y/(x ,y). We conclude that l(x) = 1 .

Using compactness and Ramsey's theorem we can find countable models J?,

Jf~ of T with Jf~ çv J?, a quantifier-free formula <f>(x ,y,~z) over M~ ,

a countably infinite set IilJ linearly ordered by < , and a,, b., c; (i £ I,

j £ J , i < j) satisfying the following conditions:

R1. Each of / and J is dense in I i)J and there are no end points.

R2. For all i £ I and j £ J

[J"\= (//(a^bj)]^ i <j,

where y/(x, y) denotes Jztp(x, y ,~z), and / < j implies

J'N^fl,,^.,^.).

R3. Let A = {ai:i£l}, B = {J{bj : j £ J}, and C = {J{c,J : i £ I, j £J ,

i < j}. Then M~ = M\(A U B U C).
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R4. If iQ < j0 < ■ ■ ■ < im < jm and i'0<j'0<---< i'm < j'm , where the i 's

and i 's are in / and the j's and / 's are in J, then the tuple

a  •••a   b   ■••b   c     ---c    c  ■ ■■■c
'o lm    7o !m    'oh V«    l\h 'mJm

realizes the same type over M~ as

a., • • • a,, b-, ■ ■ ■ br c,,,, • • • c,,, c.,,, • • • c( -.

Property R4 will be referred to as "the indiscernibility" below.

The whole configuration described above is to be chosen so as to ensure that

l(y) is as small as possible.

By choosing a different formula <¡>(x ,y,z) if necessary we can suppose that

a,bj n c,:. = 0 (i £ I, j £ J , i < j). By the indiscernibility this means that

a,bj n ckl = 0   (i, k e I, j, I e J, k < I). Also, at the cost of adjoining

some elements to M~~ if necessary, we can suppose that b,P\b¡ = 0 (j, I £ J ,

j t¿ /) and c,j; n ckl = 0 (i, k £ I, j, I e J , i' ^ k, or j ¿ I). From the

indiscernibility it follows that a, £ bj   (i £ I, j £ J).

We say that a £ M depends on i £ I if either a = a, or a £ c; for some

j £ J , j > i. Similarly, a £ M depends on j £ J if either a £ b- or a £ c..

for some i £ I, i < j . Clearly, a £ M depends on at most one / e / and at

most one j £ J , and if on both then i < j . The elements k £ IU J such that

some a £ d depends on k are called the coordinates of d .

Let i, i' £ I and d £ M. Suppose that

(VjeJ)\cijnd¿0=*i'<j].

The tuple d obtained from d by moving i to i is defined entry by entry: if

the entry dh of d does not depend on i, then d'h , the corresponding entry of

d , is dh ; if dh = a,, then d'h = a,, ; if dh is an entry of ci¡, then d'h is the

corresponding entry of c,,,. Let ; , f £ J and suppose that

(Vi£l)[cund¿0^i</].

The tuple d obtained from d by moving j to j is defined in the obvious

way.

Claim 1. Let 0(«) be a quantifier-free formula, d £ M, i, i' £ I, and /'

not be a coordinate of d. If d is obtained from d by moving i to i , then

Jf N 6(d) «-► 6(d ). Similarly with j ,f , J replacing i, t , I respectively.

Proof of Claim 1. Consider the part about i and i ; the part about j and /

is similar. Towards a contradiction suppose that Jf \= 6(d)&.-^6(d ). By the

indiscernibility some coordinate of d lies between / and i'. By interpolating

other elements of / between / and / we can suppose that there is a unique

coordinate k of d which lies between /' and /'. There are two cases: i < k < Í



530 A. H. LACHLAN

and i' < k < i. We treat only the first case; the second case is similar. Thus,

suppose i < k < i . Reordering ü if necessary write d = 1 f, where ë

enumerates the elements of d which depend on /'. Choose i , km £ I u /

(m < of) such that im £ I, km £ I iff k £ I, and i < iQ < k0 < ix < kx <

■ ■ ■ < k . Notice that k is not one of the coordinates of ë. Let ë be obtained

from ë by moving i to im , and f n be obtained from / by moving k to kn .

From the indiscernibility

m < n <*> [Jf 1= 6(ëmfn)]       (m,n< &>).

Thus, 6(x , ~y) is unstable, contradicting Theorem 2.1.

Claim 2. (i) Let i, i' £ I, i' < i, and neither i nor i' be a coordinate of

b. Let a be obtained from a by moving i to i . Then df 1= y/(a, b) -»

y/(a', b). Moreover, if there is no /-coordinate of b between i' and i, then

Jf N y/(a, b) <-> y/(a', b).
(ii) Similarly with j, j , J, I for i, i', I, J respectively, with the order

reversed.

Proof of Claim 2. It is implicit in the statement of the claim that i is a coordi-

nate of a and hence that í is not. Assume that /, i , and b satisfy the hypoth-

esis of (i) and that JÍ 1= y/(a, b). There exists c such that Jf 1= <¡>(a, b,c).

By applying Claim 1 if necessary we can suppose that i is not a coordinate

of c. Let c be obtained by moving i to /'. Then Jf N cp(a , b,c) by

Claim 1, whence Jf 1= i//(a , b). Now suppose that there is no /-coordinate

of b between i and i, and that Jf 1= y/(a , b). There exists c1 such that

Jf (= (/»(a' ,b,~c). From Claim 1 we can suppose that c1, has no /-coordinates

between i and z, because any such coordinates can be moved to the right

of i without a or b being affected. Since there are no /-coordinates of c

between i and i there exists c obtained from c by moving /' to i. Then

Jf N= 4>(a ,b,c) by Claim 1, whence JÍ 1= y/(a, b).

Our strategy in the rest of the proof of the theorem is to investigate the so-

lution sets of formulas of the form y/(x, b). Since a considerable amount of

detail seems unavoidable, before going further, we indicate the kind of contra-

diction we are aiming for. Let j, k £ J and suppose that A* = {a,:. j < i < k)

is a definable subset of Jf. Let l(y) = m . Consider the family Sf of all sub-

sets of A* of the form X(b) = {a £ A* : Jf N y/(a, b)} , where b runs through

Mm . From (i) of Claim 2, ignoring the at most m elements a, such that i is

a coordinate of b, X(b) is closed downwards, i.e., if « , i £ I, j < h < i < k ,

and a, £ x(b), then ah £ X(b) also. Thus, if \A*\X(b)\ > m, then there

exists / e / such that j < f < k and X(b) c X(b¡t). Thus, we have

Jt N \fy3z[\A*\X(y)\ > m ^ [\A*\X(z)\ > m&X(y) C X(z)]].

Let a be a first-order sentence expressing this last property, where we quantify

existentially to eliminate the parameters needed to define A*. Then \-T a , and
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o has only infinite models. Since T is 3V, there is a consistent 3V-sentence

t which implies a . But r has a finite model as does every 3V-sentence over a

relational language. This is the desired contradiction. The same idea, referred

to as the basic argument below, can be applied whenever a definable set can be

found to play the role of A*.

We now return to our study of the solution sets of the formulas y/(x, b).

We need to consider particular entries of the tuples /3 and c¡,. Because we

already have subscripts from / and /, the «th entries in ¿? and c. • will be

denoted b" and c", respectively. We begin with the simplest case in which b

is bj for some j £ J . The next two claims follow easily from Claim 2.

Claim 3. If h , j, k £ J are distinct and 1 < « < 1(b), then

* 1= y/(bnh, bj) ~ i//(b"k , bj).

Claim 4. Fix «, 1 < « < /(?*.-) • Let i run through / and j, k run through

/ . One of the following three formulas holds universally:

[i<k&j¿k]=*W)=ip(c"k,bj)],

[i <*&;#*]=►[,# £^y/(c"k,bj)],

[i < k&j ¿k]^ [[Jf F- tp(c"k , bj)] # I < j].

The next claim is one of the key points in our analysis.

Claim 5. There exist Y , Y0, Yx ç {« : 1 < « < /(c/;.)} such that Y n Y0 = 0,

F Ç Yj, and for all j £ J the intersection of the solution set of ip(x, bj) with

M\(M~ U ß) is the union of the sets:

{a,: i£l, i<j},

{c"k:i£l,k£j,i<j,k,j¿k,n£Y},

{c"k: i £ I, k £ J , i <k, j ¿k, n £ YQ} ,

{c"j-. i el, i<j, n£ Yx}.

Proof of Claim 5. Except for Y CYX the conclusion follows immediately from

Claims 2 and 4. Fix j0, k0 , kx, jx all in / and increasing. From the limited

conclusion just mentioned we see that the solution set of the formula

->y/(x, b, )&y/(x, ~bk )&ip(x, bk )&^y/(x, b¡ )
J0 *0 "-1 J|

is

{c"j-. i£l, j0<i<k0, n£ Y\YX}.

Choose a minimal nonempty set Z ç Y\YX , if any, such that

{c^: i el, j0<i<kQ, n£Z}

is definable. This set can play the role of A* in the basic argument. Hence no

such Z exists, which implies that Y C Yx .
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The next claim follows immediately from Claims 3 and 5 taking X = Y,

X0 = YQ\Yx,and Xx = YX\(Y U YQ).

Claim 6. There exist pairwise disjoint set X, X0, Xx ç {«: 1 < « < /(c--)}

such that for all j0 , jx £ J with j0 < jx the solution set of the formula

-*y/(x, b, )&y/(x, b¡ )&x é b¡b¡
7o 7| 7o   7|

is the union of the sets:

{a,: i el, j0<i<jx},

{c"j : ie I, j £ J, j0< i < jx, i <j, n£X},

{c"Jo: i el, i<j0, neX0},

{c¡j'. i el, /<;,., neXx}.

For the rest of the proof let jQ , k0, kx, j, 6 / be fixed such that j0 < k0 <

kx < jx. Let B* denote the solution set of the formula

-iip(x, b¡ )&-<y/(x, bk )&y/{x, bk )&ip(x, bj ).
7o "o K¡ h

From Claim 6

B* = {a,, c"j : i £ I, k0< i < kx, i < j, « e X}.

Let D denote the set of all b £ Mm such that

J! 1= Vx[(-.|z/(.x, b. )&y/(x, /5, )) -> [{y/(x ,bk)^y/(x, b))
Jo J\ "-o

&(w(x,b)^w(x,bki)]].

From now on we are mainly concerned with the sets

F(b) = B* n{a£M:J?\=y/(a,b)}       (b £ D).

Note that /3 e D if and only if k0 < j < kx , and that an an element of B* is

in F(bj) if and only if its /-coordinate is less than j .

Claim 7. Let b £ D. There exists j £ J such that k0 < j < kx and j is a

coordinate of each entry of b. Further, if a £ B* has /-coordinate / and i

is not a coordinate of b , then a £ F(b) if and only if i < j.

Proof of Claim 1. Fix b £ D. Consider the intervals into which the coordinates

of b and k0 , kx partition the rest of the set {x £ I: j0 < x < jx). Consider

an / in one of these intervals. Whether or not a, e F(b) does not depend

on the particular /, but only on the interval in which it falls. Since b £ D,

a, £ F(b) if i < k0, and a, £ F(b) if kx < i. Consider the leftmost interval

for í in which a, £ F(b). From Claim 2 this interval is bounded on the left

by a /-coordinate j of b . Clearly, k0 < j and j < kx . If there is an entry of

b of which j is not a coordinate, then the formula y/'(x, y1), obtained from
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y/(x,y) by substituting only such entries of b for the corresponding variables

in y, is an existential formula with the order property which contradicts the

choice of 4>(x ,y,z) since l(y) < l(y). This gives the first part of the claim.

The second part of the claim is obtained as follows. Let n £ X, i e I,

k £ J, i < k, k0< i < j, and i not be a coordinate of b . Choose i £ I such

that jQ < i < k0 and Ï is not a coordinate of b. Since b £ D, a,> and c"k

are both in F(b). Clearly, b has no /-coordinate between i and i. By Claim

2(i), a, and c"k are both in F(b) also. Now make the same assumptions as

before but with j < i < kx instead of kQ < i < j. Choose i £ I and k' £ J

such that kx < i < k' < jx . Since b £ D, neither a¡> nor c"k is in F(b).

Since j is a coordinate of each entry of b, b has no other /-coordinate and

its /-coordinates are all < j. From Claim 2, moving /' to i and then k' to

k , we see that a, £ F(b) and c"k £ F(b). This completes the proof of the

claim.

Claim 8. Let n e X, b £ D, j £ J be the coordinate of b found in Claim 7,

and / > k0 be an /-coordinate of b . Then either

(V/c 6 J)[i <k¿j^c"k£ F(b)]   or   (V/c £ J)[i <k¿j^cniki F(b)].

Proof of Claim 8. From Claim 7 recall that j £ J, k0 < j < kx, and j is

a coordinate of each entry of b. Towards a contradiction suppose that the

conclusion of the lemma fails. By Claim 2(ii) there exist /0, lx £ I such that

/ < /0 < /, < j, lx is a coordinate of b, and

(V/c, k' £ J)[l0 <k<lx<k' < ; => [c"k £ F(b) * c"k, i F(b)]].

The formula y/'(x, ~y), obtained from y/(x ,y) by substituting the entries of

b of which lx is not a coordinate for the corresponding entries of y, has the

order property because it can be used to "cut" a suitably chosen sequence of

elements c"k    (h = 0, 1, ... ) at any point. Since an entry of b which has i

as a coordinate cannot also have lx as a coordinate, l{y) < l(y) contrary to

the choice of <f>(x, y, z).

In Claims 7 and 8 it is clear that for each b £ D there exists j(b) £ J, the

unique /-coordinate of b, and

U, V ç {i e I: i is a coordinate of b} x {«: 1 < « < /(c(.)}

such that F(b) ç F(bj(l)) and F(bj(l))\F(b) is

icu(b) •■ (i, n) eU}\J{c"k: (i, n) eV, k£j, i<k¿ j(b)}.

Note that there exists s < a> such that |Í7| + \V\ < s for all b £ D.

We now adapt the basic argument to B* as follows. A sentence true in Jf

with only infinite models is

(Vj7 £ D)(3z £ D)[j(y) <k.-+ [jÇz) < kx&F(y) C F(z)]].
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Since B* and D are definable, to see that this sentence is first-order it is enough

to show that j(y) < kx is first-order. But from the form of ir(e.,¿))\.F(¿) found

above it is clear that j(y) < kx is equivalent to

3?, • • • 3-zs[zx ,...,-zse D&F(y) c F(zx) c • • • C F(zs)].

This completes the proof of the theorem.

7. Forking in models of complete 3V-thoeries

We wish to develop stability theory for complete 3V-theories over relational

languages. Since we do not know whether all formulas are stable we make do

with knowing that existential formulas are stable. This is possible because by

Corollary 3.9 in 3V-saturated models the elementary type of a tuple is deter-

mined by its existential type, and by Lemma 3.1 every model has a V-extension

which is 3V-saturated. In this section we shall often deal with formulas which

are Boolean combinations of existential formulas; such formulas will be called

3 : V-formulas. The stability of such formulas follows immediately from the

stability of existential formulas.

We now sketch some necessary background material. A useful reference here

is the paper [5] of Harnik and Harrington. For the time being let T be an

arbitrary first-order theory, Jf N /, B CM, and <¡>(x, y) be a formula with

l(x) = m and without parameters. By instances of 4>(x, y) we mean instances

obtained by substituting either parameters or variables not appearing in x, for

the variables y. A formula 6(x ,~z, d) is said to be based on 4>(x, y) if it is

a Boolean combination of instances of (ß(x, y). Let ^(x) be an infinite set of

formulas over B . We define 4>-rank and (^-multiplicity by

0-Rk(T(x)) = RmÇ¥{x),<t>, N0),        <p-MtC¥(x)) = MltÇVpc), cp, K0).

where the notation on the right is from [14, Chapter 2, §1]. We will write

(/>(Rk, Mt)CF(x)) for (0-Rk(¥(jc)), 0-MtCF(Jc))). If *¥{x) = M*)} isasin-
gleton, then we write (j)-Rk(i//(x)), 4>-Mt(\p(x)) for tp-Rk^pc)), 0-Mt(»F(;c)).

We will assume that the reader is familiar with the properties of this rank which

can be found in Shelah [14, Chapter 2].

Let-6(x, c) be a formula over M. A conjugate of 6(x, c) over B is a

formula of the form 6(x, c*) such that Tp(c/|tS) = Tp(c|y3).

We write <f> -L >p as an abbreviation for (cp&^y/) V (y/Jk-Kp), the symmetric

difference of 4> and y/ .

A useful property of </>-rank is

7.1. Lemma. With the above notation, let <j)(x,y) be stable, 6(x,c) be based

on <f>(x, y), c £ M, and (ft- Rk(*P(jc) U {6(x, c)}) = r > 0. In some elemen-

tary extension of ./# there exists a positive Boolean combination x(x, d) of

conjugates of 6(x, c) over B such that

(1)  (f)-(Rk, Mt)CP(3c) U {6(x, c) ± *(3c, d)}) <r.
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(2) If d0, dx are tuples realizing Tp(d\B) in an elementary extension of

Jt, then either x(x, d0) and x(x, dx) are equivalent in *P(x) or

</>-Rk(¥(x) U {x(x, dQ) _L x(x, dx)}) = r.

This is an application of Theorem 9.3 of [5]. If x(x, d) satisfies (2) we say

that x(x, d) is (f)-normal in *F(x).

Another result we need relates the ranks obtained from different formulas.

7.2. Lemma. With the above notation, let 4¡(x ,yl) be a stable formula without

parameters such that

J? N Vy3yVx[<f>(x, y) «-» tf>'(x, y)],

and let *F(x) be a complete elementary type over B. Let 6(x) be a formula

over M based on ç!/(x,y/). Then

(j)-RkC¥(x) u {6(x)}) < </>-Rk(¥(x)) =► <75'-Rk(¥(x) U {6(x)}) < ¿'-RkpFpc)).

Proof. We prove the contrapositive. Let

r = 0'-Rk(^(3c) U{6(x)}) = <j>'-Rk{V(x)).

Applying 7.1 to 6(x) and <f>'(x, y), we obtain in some elementary extension a

formula x(x) which is a positive Boolean combination of conjugates of 6(x)

over B such that <rj'-Rk(T(x) U {6(x) 1 x(x)}) < r'. Of course, x(x) also

has the property that it is </>'-normal in 4*(x). Since (ft'-Rk^^&xCx)) =

f/7/-Rk(vP(x)), there exist m < u> and conjugates x¡{x) (i < m) of x(x) over

B such that for every conjugate x'(x) of /(x) in an elementary extension

of Jf there exists i < m such that h^Çx) implies x'(x) <-> x¡(x) is valid.

Since 4*(3c) is a complete elementary type over 5, the formulas x¡(x) (i < m)

cover T(x). Since each ^-(x) is a positive Boolean combination of conjugates

of 6(x) over t3 , *P(x) is covered by a finite number of conjugates of 6(x)

over B . It follows that <¡hRíCV(x) U {0(x)}) = ^-Rk^^c)), as required.

Applying Lemma 7.1 in the context of complete 3V-theories we obtain

7.3. Lemma. Let T be a complete 3V'-theory over a relational language and

J!' N T be 3\'-saturated. Let B ç M, <f>(x, y) be a 3 : ̂ -formula with l(x) =

m, and ^(x) be a set of 3 : V-formulas over B. There exists a finite equivalence

relation E on Mm defined by a 3 : V'-formula over B such that for any E-class

C
(1) either

0-Rk(T(x) U {x £ C}) < (f>-RkC¥(x))

or

(f>-Mt(y¥(x)U{x£C})= 1;

(2) there is a formula a(x) over M based on <p(x,y) such that A^O*)

implies x £ C <-+ a(x).

Proof. (1) Let JV 2V J( be 3V-saturated over B, i.e., for every finite X ç N,

every 3V-type over B u X is realized in JÍ . By Corollary 3.9, J( ■< jV . Let
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í77-Rk(vF(x)) = r. Since 3 : V-formulas are stable, there is a formula 6(x, c)

over N based on </>(x, y) such that 0-(Rk, Mt)(*F(x) U {6(x, c)}) = (r, 1).

Let x(x,d) satisfy the conclusion of Lemma 7.1 with jV for Jf. Since

0-Rk(*F(x)&;r(x, d)) = 4>-RkÇ¥(x)), there exist a least number k < co and

conjugates x(x, d,) (i < k) of x(x) over B such that, in an elementary

extension of Jf, for every conjugate x'(x) of x(x, d) over B there exists i <

k suchthat A^C*) implies x'(x) ■<-+x(x, d¡). Let Y(U) denote 3-tp(d\B)U

V-tp(d\B). From Corollary 3.9 Y(u) implies Tp(c7|y3) in JT. Thus the set of

formulas

a = r(ïï0)u-ur(«t)uUTO; ): ' < /' < fc)

is not satisfiable in yf. Let Dy(yf) denote the V-diagram of ./f". Since JV

is 3V-saturated over v3, A U flv(i/") is not satisfiable. By compactness there

exist y(ü), a finite conjunction of formulas from Y(U), and y/{x), a finite

conjunction of formulas from *F(x), such that the same is still true if in A we

replace Y(u,) by {?(«,)} and ¥(xy) by Mx;;)}.

The formulas

(^ip(xx)&^t//(x2))

V Í i//(xx)&y/(x2)&3üx ■ ■ • 317í:3x123x13.

a^t-ulA^t»,): !<*<*>
&/\{v(Xíj)&(x(Xíj . ",-)) " -tf(*,j. «/)): 1 < » < i < ^}

&/\{x(xx, ü¡) «-» Z(^2 ' "/): ! < ' < ^}   j

and

(-.^(x,)&-íí/(x2)) V (íí/(x,)&^(x2)&VT7[y(w) -» /(x,, 5) «-» x(x2, 0)])

define the same finite equivalence relation £ on Am . Since one of these

formulas is equivalent to a 3V-formula and the other to a V3-formula, E is

defined by some 3 : V-formula over B by Corollary 3.9. Similarly, t(x) =

3ü(y(ü)&x(x, Ti)) is equivalent to a 3 : V-formula over B. Now E satisfies

the conclusion of the lemma for *F(x U {t(x)}) , because we started with the

formula x(x, d) such that (f>-(Rk, Mt)(<P(x)u{^(x, d)}) = (r, 1). Also either

0-RkCF(Jc)U{-.T(x)}) < 0-Rk(T(x)) or0-Mt(V(3c)U{-.T(Jc)}) < 0-MtCP(5c)).
In the former case £ will do for vF(x), and in latter we can repeat the whole

argument beginning with *F(x) u {->x{x)} instead of *F(x). In a finite number

of steps we obtain a new equivalence relation E which works for *F(x). Thus

( 1 ) is proved except that we worked in Jf instead of JÍ which does not matter

since Jf <jy.

(2) Without loss of generality suppose that the search for E ends in one step.

If a~x , a2 are solutions of 4*(x), then ax Ea2 if and only if 1= x(dx, dx) <->
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X(a2, d,) (i < k). Since x(x, d) is based on 4>(x, y), x £ C restricted to

^(x) is equivalent to a formula based on d)(x, y).

Consider a model ^# of a complete 3V-theory /. For a £ M and B ç M,

3 : V-tp(â|73) denotes 3-tp(ä|/3) uV-tp(â|5). More generally, a 3 : V-type

over B is one of the form 3 : V-tp(ä|7?), where a £ N and / 2V /¥. Unless

otherwise specified, 3 : V-types are complete. Here these types play the role of

complete elementary types in ordinary stability theory.

Let FE™. v(v5) denote the family of all finite equivalence relations on Mm

definable by 3 : V-formulas over B . Let a £ M and 1(a) = m . We define

3 : V-stp(â\B) = {E(x,a):Ee FE™. v(5)}.

This is the 3 : V-strong type of a over B. In general, a 3 : V-strong type over

B is one of the form 3 : V-stp(ä|ß) for a in some V-extension of Jf. It is

clear that every 3 : V-strong type over B implies a unique 3V-type over B.

1A. Lemma. Let Jf be a 3V-saturated model of a complete 3V-theory T.

Let l(x) = m, B ç M, *F(x) be a 3 : V-strong type over B, and Q(x) be

the corresponding 3 : V-type over B. Let (p(x ,y) be a 3 : V-formula without

parameters.

( 1 )   «MRk, MtXYG?)) = (4>- Rk(6(Z)), 1 ).
(2) Let 4>,(x, y¡)  (i < k) be 3 : V-formulas without parameters and 6, (i <

k) be a formula over M based on (piCx^y,) suchthat

(prRk(V(x) u {6,(x)}) < ¿rRkOP(X))      (i < k).

Then ^(x) U {->6,(x): i < k} has the same 4>-rank as ^(x) ■

Proof. (1) Towards a contradiction suppose that 0-Rk(*P(x)) < <p-Rk(Q(x)).

Let a realize ^(x), where a is in some V-extension of Jf . Since (7>rank has

finite character there exist « < w and E, £ FE™. v(t5) such that

0-Rk(0(x) U{Ei(x",a):i<n})< 0-Rk(0(x)).

There exists E £ FE™. v(t3) suchthat

JT t= VxxVx2 E(xx, x2) -> f\{E,(xx, x2): i < «}

Hence, <7>Rk(0(x)U{£(x, a)}) < 4>-Rk(S(x)). Since E is a finite equivalence

relation there exist k <(o and a, £ M (i < k) realizing ©(x) such that ä0 = ä

and

Jt f- (A0(^)) -♦ \J{Eix, a,: i < k)}.

A basic property of t/j-rank tells us that for some i < k

tp-Rk(e(x) U {E(x, a,)}) = f7,-Rk(0(x)).

Since each a, realizes the same elementary type over B in Jf,

(/>Rk(0(x)U{£(x,a.)})
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is the same for all i < k . We now have a contradiction. Thus, (/>Rk(*P(x)) =

0-Rk(0(x)).
It remains to show that </3-Mt(vP(x)) = 1.   From Lemma 7.3 there exists

E £ FE™. v(t5) such that for each m-tuple a~ £ M either

</>-Rk(0(x) U {E(x, a)}) < 0-Rk(0(x))

or

<¿>-Mt(0(x)U{£(x,a)}) = 1.

Let a, £ ©(.#) (i < n) be representatives of all the ^-classes which meet

©(.#). Since Tp(fl¿|/3) is determined by 9(äf), </>-(Rk, Mt)(0(x)u{£(x, a,)})

does not depend on i < k . Since 0(x) is covered by the formulas E(x, a,)

(i < k),
</>Rk(0(x) U {E(x, a,)}) = (p-Rk(e(x))       (i < k).

It follows that 0-Mt(0(x) U {E(x, a,)}) = 1   (/' < k). Since A^O*) implies

0(x)U{£(x, a,)} for some i<k and has the same </5-rank, 0-Mt(vF(x)) = 1.

(2) Choose a 3 : V-formula (p'(x, y1) without parameters such that

hTVy3yVx[(f>(x,y)^(ß'(x,y)]

and for all i < k

Y-TVyi3yV^[(Pi(x,yi)-(p'(x,y)].

Let O'(x) be the complete elementary type determined by 0(x) in 3V-saturated

V-extensions of JÍ. From Lemma 7.3 there is a formula a¡(x) over M

based on <f>,(x,y,) such that ^(x) contains a formula equivalent to a,{x),

(p,-Rk(Q(x) U {a,(x)}) = 0,-Rk(0(x)), and (Tj.-Mt(0(x) u {<r,(x)}) = 1. No-

tice that essentially 0(x) U {o,(x)} ç ^(x). From (1), <£;-(Rk, Mt)(<F(x)) =

(</>,.- Rk(0(x)), 1). Since 0/-Rk(4/(x) u {0,(x)}) < ^.-Rk(V(3c)), we have

(*) 0rRk(0(x) u {0,(x), <t,.(x)}) < <TJ,-Rk(0(x)).

Since f\@(x) and /\Q'(x) have the same solution set in every 3V-saturated

V-extension of ^#, we can substitute 0'(x) for 0(x) in (*). Applying Lemma

7.2 yields

0'-Rk(0'(x) U {6,(x), a,.(x)}) < </>'-Rk(e\x)).

and reversing the replacements gives

<p'-Rk(V(x) U {6,(x)}) < (p'-Rk(0(x) U {6,(x), rj.(x)})

< (p'-Rk(&(x)) = ^-Rk(Vpc)).

It follows immediately that *P(x) U {-i#;(x): i < k} has the same </j'-rank as

*F(x). Towards a contradiction suppose that

<¿>-Rk(¥(x) U {-0,(x): i < k}) < 0-Rk(»F(x)).

Then

0-Rk(¥(x) U {/\h6,(x): i <k}})< (b-Rk(V(x)).
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Repeating the argument made above we see that *F(x) U {-</\{-'d¡(x): i < k}}

has the same f/j'-rank as *P(x), whence *F(x) U {6,(x)} has the same ¡//-rank

as *F(x) for some i < k. This contradicts (#) above and completes the proof

of the lemma.

We now have all the underpinnings for what one might call 3 : V-stability

theory. Let T be a complete 3V-theory, IN T, B ç C ç M, l(x) = m,

and <P(x) be a 3 : V-strong type over B. The heir 0(x) over C of <P(x) is

defined as follows. Let yf 2V Jf be 3V-saturated and

0(x) = {E(x, a): E £ EF™. V(C), a~ £ N, r/>(x, y) is a 3 : V-formula,

E(x, a) is based on (¡>(x, y), 0-Rk(<P(x) U {E(x, a)}) = 0-Rk(<P(x))}.

From Lemma 7.4 we see that 0(x) 2 $>(x) is a 3 : V-strong type over C and

that <7>Rk(0(x)) = r7>Rk(<P(x)) for every 3 : V-formula </>(x, y). Moreover,

0(x) is the unique such 3 : V-strong type.

Let /NT and A, B, C ç M. Then A and C are independent over

B, written A [ C (B), if in some 3V-saturated model JV 2V -^ > 3 : V-

stp(â|73 U C) is the heir of 3 : V-stp(a|5) for all a £ A. By Corollary 3.9

writing "every" for "some" makes no difference. This relation has the familiar

properties:

Finite character A [C (B) if and only if for all finite A' ç A and all finite

C' ç C we have a' j C' (B). Moreover, if a and c are dependent over B,

meaning that ä J. c (B) fails, then there is a formula 6(x, z) over B such

that 1= 6(a, c) and

[6(x, z)&(x, z realize 3 : V-stp(5|£), 3 : V-stp(c|fi))] -» --[x j z (B)].

(We could replace 3 : V-stp by 3 : V-tp here which would sharpen the result.)

Transitivity A [ C \J D (B) if and only if A | B U C (B) and A [ D

(BUC).
Symmetry A[C  (B) if and only if C \ A   (B).

Trivial independence A [ C  (A).

Let B C M, /(x) = m , and O(x) be a 3 : V-strong type over B . A sequence

(â(: i < a), where ä( G Nm and yf" Dv ^# is a Morley sequence for O(x) if

3 : V-stp^lTSulJiä,: i < j}) is the heir of O(x) for all j < a . Such a Morley

sequence is said to be over B. The 3 : V-type over B of a Morley sequence

over B is uniquely determined by O(x), and the set of m-tuples enumerated

by such a sequence is indiscernible with respect to 3 : V-formulas over B.

Given ä £ M and a £ On, in a suitable V-extension JV of Jf there exists a

Morley sequence (af: i < a) for 3 : V-stp(a|y3) with a0 = a.

The following lemma relates Morley sequences to dependence and dividing.

Since the situation is exactly parallel to that in ordinary stability theory, the

proof is left to the reader.

7.5. Lemma. Let J( be a model of a complete 3V-theory T. Let B ç M,

and <I>(x), 0(z) be 3 : V-strong types over B realized by a, c respectively.

Let a0, dx, ...  be a Morley sequence of <P(x).
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( 1 ) a and c are dependent over B if and only if there exist 3 : V-formulas

4>(~z, y) without parameters and y/(x, 1) over B such that Jf (= y/(â, c) and

<7>Rk(0(z) U {y/(â, z)}) < <r>Rk(0(z)).

(2) If </>(z, y) without parameters and y/(x, z)) over B are 3 : V-formulas

such that 0-Rk(0(z) U {y/(a~, z)}) < </>-Rk(0(z)), then the formulas y/(a,, z)

(i < co) are almost disjoint in 0(z).

(3) If (f)(z, y) without parameters and y/(x, z) over B are 3 : V-formulas

such that the formulas y/(Zz;., z) (i < co) are almost disjoint in 0(z), and

ip(a~, z) is based on </>(z, y), then </j-Rk(0(z) u {y/(a~, z)}) < <7>Rk(0(z)).

We now come to the crucial result which will enable us to show that the

theories we are studying are tree-decomposable.

7.6. Lemma (Triviality of independence). For all J£ 1= /, A, C, D ç M,

and b e M

[A | C (D)] =» [A I b (C U D) or C l b (A U £>)].

Proof. Towards a contradiction let A , C, D, b constitute a counterexample.

From the finite character of independence we can assume that there are finite

tuples ä, c such that A = a and C = c. Let c realize 3 : V-stp(b\CllD) and

c | A U {/)} (CUD). Clearly, C U {c} \b (AU D) fails since C j b (AuD)

fails. By applying the listed properties of independence, principally transitivity,

we deduce C\J{c) [A   (D) and

[A lb (Co {c} \JD)]=>[A[b(C\J £>)].

Thus without spoiling the counterexample we can adjoin c to C . So we can

suppose that *¥(y) = 3 : V-tp(b\C UD) is equivalent to the 3 : V-strong type of

b over C U D, and similarly with A instead of C .

Let <P(x) and 0(z) be the 3 : V-strong types over D realized by a and c.

Let ö"0 (= ä), a~x, ... and c0 (= c) ,cx, ... be Morley sequences for <P(x)

and 0(z) such that

U{5, : i <co}i\J{bi: i < co} (D).

Since -<[A lb (Co D)], from Lemma 7.5 there is a 3 : V-formula a(y, x, z)

over D such that JÍ 1= a(b ,a,c) and the formulas a(y, a,, c) (i < co) are

almost disjoint in ^(Jf). By compactness there is a formula y/(y) £ *¥(y) such

that the formulas o(y,a~,,c) (i < co) are almost disjoint in \p(Jf). Thus,

a(y, x, z) can be chosen so that the formulas a(y, a,, c) are almost disjoint

(in JÍ ). Similarly we see that there is a 3 : V-formula n(y, x, z) over D such

that Jf ë n(b,a~,c) and the formulas n(y, a, c¡) (i < co) are almost disjoint.

Taking the conjunction of a and n we obtain a 3 : V-formula x(y > x, z) over

D such that Jf N 3yx(y ,a~,c), and both the formulas x(y > #, > c) (i < co)

and x(y > û > ?,)   (' < w) are almost disjoint.

Below we shall show that the configuration afforded by D, the 3 : V-strong

types O(x) and 0(z), and the formula x(y, x, z), is not compatible with T
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being a complete 3V-theory. However, before we proceed it is convenient to

replace the language by a finite sublanguage (the relation symbols occurring in

X will suffice), T by its restriction to the new language, D by the finite subset

of elements whose names appear in x > and Jf by a countable elementary

substructure of the 3V-saturated model considered above. Below, the finite

language chosen will be referred to as L. Thus, assuming that the lemma fails,

we have:

7.6.1. Proposition. There exists a countable 3V-closed model Jf, D çfin M,

3 : V-strong types 0(x) and 0(z) over D, and a 3 : V-formula x(y,/, z)

over D such that, if (a,: i < co) and (c¡: i < co) are mutually independent

Morely sequences for <!>(x) and 0(z) in a 3V-closed V-extension Jf' of J?,

then a, n 3. = ci n c. = 0 (i < j < co), Jf' 1= 3yx(y, a,, c,) (i, j < co), the

formulas x(y, «, > c¡) (j < co) are almost disjoint in Jf' for each i, and the

formulas x(y > #,, c •)   (i < co) are almost disjoint in Jf' for each j.

Let J£, now countable, be elementarily embedded in a highly 3V-saturated

model fê. Let constants be introduced naming the elements of Jf. Let ®

denote the set of rationals, 5 £ C\M (q £ Q) realize the heir of O(x) over

M U \J{âr: r £ <Q>\{<?}}, and c £ C\M (q £ Q) realize the heir of 0(z) over

M U \J{cr: r £ Q\{<?}} U \J{dr- re®}. Without loss of generality a (~l cr = 0

(q, r £ ®). Note that the sets {a~r : r e ®} and {cr : r £ ®} are mutually

independent over M, and hence mutually indiscernible over M in W .

For each formula of L, augmented with names for the elements of M, of

the form

lyy-ly^i,... ,ym,xx,... ,xn)

with (j) quantifier-free, /(3c.) = l(x)  (1 < j < n), and

W£3yx---3ym(f)(yx,...,ym,a-l,...,a-n),

we introduce Skolem functions Fx , ... , F¿, as follows. F has arity « • l(x)

and is defined only on tuples of the form ä ••■a such that qx < ■ ■ ■ < qn in

Q. The values are such that

W^(Fx'(äqi,...,ä^,...,F:(äqr...,äq),äqt,...,äJ.
Similarly, for each formula over M of the form

3yx---3ymy/(yx,... ,ym,lx,... ,zn)

with \p quantifier-free, /(z ) = /(z)   (1 </'<«), and

%t3yx---3ymy(yx,...,ym,cx,...,cn),

we introduce Skolem functions G\" , ... , Gvm .

Let L' be L augmented with names for the elements of M U |J{ïïr U cr : r £

®} and symbols /f , gj for the Skolem functions just mentioned. The only

terms allowed are variables, the names just mentioned, and those of the forms
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ff\ '"\ and f/X, "'\' where ai<"<an in Q. Let A = (F, G) be
any pair of order automorphisms of ®. We also denote by A the permutation

of the variable-free terms of l! which fixes M pointwise, maps a to aF, ,,

c to cG,s, and the other terms analogously. Enlarging fë if necessary, we can

choose a~ , c and the values of the Skolem functions such that, for all order

automorphisms F, G of ®, A = (F, G) preserves the truth-value of atomic

sentences of L'.

Let i be an irrational, 0 < / < 1 , and ¿V be the submodel of £T such that

N C C is the least set satisfying:

MUa~qöcqCN       (-i<q£®)

and

Ff(a-qi,...,a-qJ,Gj(cq¡,...,cqj£N

whenever there exists k < co with k - i < qx <---<q<k — i + \. The

elements of N\M are naturally partitioned into an (»sequence of a-blocks

and an w-sequence of oblocks. Let a and c enumerate the kxh. a-block

and kth c-block respectively in such a way that ak is an initial segement of a ,

ck is an initial segment of c , (a : k < co) is order-indiscernible with respect

to quantifier-free formulas over M U \J{c : k < co} , and (c : k < co) is order-

indiscernible with respect to quantifier-free formulas over M u \J{a : k < co} .

Thus, assuming the lemma fails, we have:

7.6.2. Proposition. There exist Jf, D CM, <E>(x), 0(1"), and x(y,x,z)

satisfying the previous proposition, and / 3V/ such that:

(1) There exist tuples a1, c'   (i < co) of length co such that

N\M = \J{aUc: i<co}.

The set {a1 : i < co} is indiscernible in ¿V over Mö\J{c' : i < co}, and {cl : i <

co} is indiscernible in J¥ ovr Ml)\J{ä': i < co}.

(2) Let a1 = (a'0, a\, ... ), c1 = (c'0, c\, ...), and a,, c, denote (a'0, ... ,

a\(x)-i) ' (co> ••• ' c/'(z)-i) respectively. In éV, (a,: i < co) is a Morley sequence

for the heir of <P(x) over M, and (c.: i < co) is a Morley sequence for the heir

of 0(1) over M.

Most of the points of the proposition are probably clear. However, one point

is worth stressing. In JV the tuples of the indexed set Ak = {a : k - i < q <

k -1 + 1} satisfy exactly the same 3 : V-formulas over M asin W . This is the

point of Skolem functions. Hence, each member of Ak is independent from

the rest of the set over M. Let F be an order automorphism of ® such that

F(q) = q for all q such that q < k - i or k -i + 1 < q . The map aq ^ aF(q)

(k-i<q<k-i + l) can be extended to an automorphism of yV which fixes

MuUia, : i < co, i ^ k} pointwise. Thus for every q, k-i < q < k-i+l, aq

realizes the heir of <P(x) over M U (J{Rng(ä;): i < co, i ^ k} . This explains
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why the a, 's form a Morley sequence for the heir of <P(x) over M. The

same argument applies to the c, 's. Another point to notice is that the order-

indiscernibility of the a' 's and c' 's with respect to quantifier-free formulas

yields indiscernibility because quantifier-free formulas are stable.

We are now ready for the main contradiction argument based on the models

Jf and yV of 7.6.2. Let a, c denote a~0, c0 respectively. Note that the

Morley sequences (a~, : i < co) and (c, : i < co) are mutually independent over

M because of the indiscernibility. From the symmetries of yV, any solution of

X(y, a, c) in yV is either a solution of all the formulas x{y > ä, c¡) (i < co),

or of all the formulas x{y > &i, c) (i < co). Hence, x(y > a, c) has no solution

in yV. However, by choice of x there is a solution of /(y, a, c) in every

3V-closed V-extension of yV .

Let x(y > x, z) be 3ü(p(y, x, 1, u)&Vvy/(y, x, ~z, v), where </3 and y/ are

quantifier-free formulas over D. Let (D, : i < co) be an increasing sequence of

finite subsets of N such that a~c ç D0, \Ji<(0 D, = N, and for all j, k < i,
_2 y _2k

D, is invariant under the permutation which switches a and a and fixes

the rest of N pointwise, and invariant under the permutation which switches

c J and c and fixes the rest of N pointwise. Since x{y, ä, c) has a solution

in a V-extension of yV, for all i < co there exist b( and ë, such that

(*) yV f- 4>(b,,ä, c, ë,)&(Vv e Di u Z^M^,a,c,v).

Let A, C denote |J{fl' : i < co}, \J{c' : i < co} respectively. (The model W

has been forgotten.) Either b, £ AUM for infinitely many i, or b, e CliM for

infinitely many /. Without loss of generality, by thinning the sequence (D. : / <

co) we may suppose b,■ £ C U M for all i. Let A0 denote \J{a !+1 : i < co} .

We stipulate that b,■ £ C U M and ë ■ be chosen such that the number of

entries of ë, which fall in ä is as small as possible consistent with (*). The

number of entries of a tuple ë which fall in ä will be denoted by «(e). By

deleting an initial segment of (D,: i < co) we ensure that n(ë,) is independent

of /, equal to s say.

Claim, b, and ë, may be chosen such that b¡ £ C U M, (Vj > 0)[âJ n ë, =

0 v a' n D, = 0], and ë, n (A\â0) ç ^odd.

Towards establishing the Claim fix i, choose k such that D,nA ç ä° U ~äx U

• • • U a  , and let D,    be obtained from D, by applying the map which takes

ax, a1, ... , rf to ank+x, ank+2,..., ä{n+X)k respectively, and fixes CuMuö0

pointwise. Consider j £ co such that

[jiD^: «</(«)} CDj.

Clearly, for all « </(«),

yV^(t>(bj,ä,c, ëj)&(Vv ç Df u bjë])y/(b] ,ä,c,v).
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Since |e.| < /(«) and

(VA > 0)(Vm, n)[m < « < /(«) -» (o* n/)¡m) =0VôAnDJ*0 = 0)],

there exists m<l(u) such that (V« > 0)[ô* n ë. = 0 v ô* n Z>jm) = 0]. Since

the set {a ,a~ , ...} is indiscernible over CUM, by switching <z" with äm +"

for 1 < « < k and fixing all other elements of N, we can map D. onto Z>..

Thus, we can choose b, and ë(. such that b, £ C U M and (V« > 0)[<z De- =

0 V äÄ n Z), = 0]. By permuting the ô* such that /j > 0 and ah f\D, = 0 we

can ensure that ë, n (j4\ö°) ç ^odd.

Let è( and ë, be chosen satisfying the conclusion of the Claim. Since b0

and ë0 have been chosen to minimize n(ë°) = s, we have

yV N Vïï[{ <£(/>,., â, c, ïï)&«(ïï) < s} => (3Î7C D0Uüb,)^y/(b,, a, c, v)].

Let ô7 be a finite initial segment of 5 such that (D0Da )\Ja~ç\a. Moving the

elements of D0 n (A\a ) into ^4° while keeping C U Mlia fixed pointwise

we obtain F ç C ö M U Aodá such that for all /

(t)   yV N Vü[{(f)(b¡ ,ä, c,ü)&n(ü) < s} => (3?JÇ F Uaüb^y/^,, ä~, c, v)].

By deleting an initial segement of {D¡ : i < co) we ensure that for all i

(#) yr\=(Vv£Fuab,ëi)y/(bi,a,c,v).

By thinning (D, : i < co) and permuting the entries of ü we may suppose

that ë, = g,h,, where g, c C U M l) A0 , h¡ ç a as sets, and ¡(g,) and

1(h), = s do not depend on i. For each i < co let k(i) be the least j > 1(a)

such that h, C {a0, ... , üj}. Keeping b, and g; fixed, rechoose h, so as to

minimize k(i). Let ~a, denote the initial segement of et of length l{a).

There are now two cases:

Case 1. Sup{/t(/) : /' < co} < co. By thinning the sequence (D, : i < co) we may

ensure that h, = h is fixed for all i. Let «   stand in the same relation to a1 as

« to a . Since a map, which switches ä and ä ; for some j < i and fixes

the rest of N pointwise, is an automorphism, from (*) we have

yV N (f>(b,, d2¡, c, g,Ji2j)&(Vv £ D, u b^7h2])y/(b,, d2¡ ,c,v).

By compactness there is a V-extension of yV in which the formulas x{y, ä2j, c)

(j < co) have a common solution. This contradicts the almost disjointness

property of x •

Case 2. Otherwise. In this case we obtain a contradiction to the stability of

existential formulas. Let yV' ç yV be the model defined by

N' = M U C U A0** ufu {a2/: i<co, j < 2i + 1(a)}.
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Let x1 be a tuple of distinct variables extending x of length 1(a). Let the

formula

3w[4>(bi,x, c, g,w)&(Vv £ FUxb^/w)\i/(b,,x, c, v)]

be denoted 6(x , c, b,-, g,). Since the universal quantifier is restricted to a

specified finite set, this formula is equivalent to an existential one. Let H,

denote {j: yV' 1= 6(a2J ,c,b¡,g¡), j < co} . Let h, denote the image of h,

under the map which takes a   to aj. From (*) and ( # ),

yTN 4>(b,, a,c, e¡))&(Vv £ F öab^^y/^,, a~,c,v).

Switching if and a2J and fixing the rest of N pointwise, we get

yV h (j)(b,, a2j, c, g7h,2j)&.(Vv £ F ua2jb¡gjii2¡)\í/(b,, a, c, v).

Since the set corresponding to H, in yV is co, H, is the complement of some

finite initial segement of co.

Towards a contradiction suppose j £ f]{^¡: i < co} . For all i < co we have

h, £ N' such that

(f>(b,, a2j, c, £;I[.)&(W £ F u a2jb£jt^\i/(b, ,a},c,v)

is true in yV' and hence also in yV . In yV we can switch a and dj, keeping

the rest of the model fixed pointwise. This gives h,  such that

(**) yV N (p(b,,a, c,  g,H])&(Vv £ F URng(b¿Ji])y(b,, â, c, v)).

From (t) n(g,h*) = s, whence h, Ça . Since a ' is truncated in yV' and

h, is the image of h¡ ç ~ü J on switching a~   and a J,

T* ^   r   0 0 i
«,. Q{a0,...,a2j+ICal)}.

Since {íZq , ... , a^j^.-iA C /). for all sufficiently large i, we have h, c D, for

all sufficiently large /. From (*) and (**) it follows that for all sufficiently

large i

yV N (p(b, ,ä,c, g¡h*)&(Vv e D, u b^7h])H/(b, ,â,c,v).

Thus, for all sufficiently large i, h, is a possible choice for «.. Hence k(i) <

2j + 1(a) for all sufficiently large i, which contradicts the case hypothesis.

We have shown that f]{H,: i < co} = 0. It follows easily that the existen-

tial formula 6(x, 1, y ,u) is unstable in T. This completes the proof of the

Lemma 7.6.

7.7. Lemma. Let ^ be a model of a complete 3V-theory. Let A, C C M

and a £ M.
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(1) The formula x = y V ->[x j y (D)] defines an equivalence relation on M.

(2) [A I C  (D)] «■ (Va e A)(Vc £ C)[a j c  (D)].

(3) a I a  (D) if and only if a £ acl^(D) via some existential formula.

Proof. (1) Suppose that -^[a I b (D)] and ->[b j c (/))]. Towards a contra-

diction suppose that ale  (D). From Lemma 7.6 there are two cases:

Case I. a l b ({c} u D). From a I c (D) we have a l {c} U D (D). By

transitivity we have a I {b, c}   (D), whence a l b   (D), a contradiction.

Case 2. c I b ({a} UD). By the same argument switching a and c we obtain

b I c  (D) which is again a contradiction.

(2) It is sufficient to prove that

[A U{b} IC (D)] &[AIC (D)8cblC (D)].

From left to right the implication is trivial. For the other direction suppose

A I C  (D) and b I C  (D). From Lemma 7.6 there are two possibilities:

Case 1. Alb CuD). From b | C (D) we have b | CUD (D). From A | b

(C U D) we have b l A U C (C u D). From M C U Z> (fl) and b lAuC
(CUD) by transitivity we have b lAuC (D). Hence, b I C (AuD), and so

ClAu{b} (AUD). Also, C I AUD (D) since A | C (Z>). From C 1 yluD
(Z>) and ClAU {b}   (A UD) by transitivity we get C l Au {b}   (D).

Case 2. C lb (A U D). In this case we get C 1 A U {b} (A U D) immediately.

The rest of the argument is the same as in Case 1.

(3) a I a (D) means that a realizes the heir of tp(a\D) over Du{a} . This is

the same as saying that, if yV 2V Jf is 3V-saturated, then a £ acl^(D). From

Theorem 4.1 this is the same as: there exist « < co and an existential formula

4>(x) over D such that yV 1= 4>(a)&.(3-nx)(j>(x). The desired conclusion is now

clear.

Below the equivalence relation obtained in (1) of the last lemma will be

denoted ED.

7.8. Lemma. Let Jf be a model of a complete 3V-theory, a £ M, a £ On,

and (A, : i < a) be an increasing chain of subsets of M such that

-^[Ai+i I a K)]   for all i < a.

Then a < \L\+ .

Proof. Assume the hypothesis. Let <P(-(x) = 3 : V-stp(a\A,) (i < a). From

Lemma 7.5(a) for each i < a there exists a 3 : V-formula (p,(x, y,) without

parameters such that <73;-Rk(<P(+1(x)) < </j.-Rk(<I>((x)). Since the value of the

rank is a natural number, a particular 3 : V-formula of L occurs at most a

finite number of times in the sequence (0;(x, y): i < a). Hence, a < \L\+ as

required.
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8.  MONADIC STABILITY AND TREE DECOMPOSITIONS

In their paper [3] on second-order quantifiers and the complexity of theories

Baldwin and Shelah introduced the notion of tree decomposability of theories.

One of their results [3, Theorem 4.2.17] says that, if T is stable and (T^,

2nd) ^ (T, Mon), then T is tree-decomposable. Using 3 : V-stability instead

of stability and similar, but not identical, reasoning we show that any complete

3V-theory is tree-decomposable.

We begin by adapting four definitions from [3].

8.1.1. Definition. Let Jf be a structure for a relational language A ç M,

and E be an equivalence relation on M\A. Tuples a = (ax, ... , am) and

b = (bx, ... , bn) in M\A are called similar with respect to E if m = n,

a,Eaj & b,Ebj   (1 < /, j < m), and

tp(a¡¡---ai}A) = tp(b,t---b,]A)

whenever 1 </,,..., i, < m and a- , ... , a¡   are all in the same £-class.
1 7 'i 'j

E is called a congruence on ^# over A if tp(ä|yl) = tp(b\A) whenever a~,

b £ M\A are similar with respect to E.

8.1.2. Definition.  / is a tree if, for some X and k , / ç -KX and

[a £ -KX8ca ç t e /] => ct G /.

a is a tip of I if a is maximal in / with respect to ç. The set of tips of /

is denoted p(I). The height of / is sup{Dom(er) + 1 : a £ 1} .

8.1.3. Definition. The /-structure J( is decomposed by the tree I if there

exist L-structures ¿% , yV (n £ I) and equivalence relations Er (r £ I\p(I))

such that for all n, p £ I and x £ I\p(I) :

(i)  |7V„|<|L| + N0.
(ii) If h c p, then N^cNpCMpCM^.

(iii) Ez is a congruence on Jfx over AT. The /^-classes are the sets Ma\Nx

such that cr is a minimal extension of t in /.

(iv) If /(«)   is a limit ordinal, then  tV   = [}{Na: act]}  and M   =

Ç]{Ma:ocn}.

(v) M()=M = \\{Na:o£l}.

8.1.4. Definition. T is tree-decomposable if^ every model of T is decomposed

by some tree.

Our notion of ^# being decomposed by the tree / is stronger in one respect

than that of [3, Definition 3.2.1].   Since we require that N \N   ^ 0 when

n c p, the height of a tree decomposing JK is at most (\L\ + N0)+. Since

the same feature can conveniently be added to the definition just cited, this

difference seems inessential. A more significant distinction lies in (iii) which is

weaker here than in [3].



548 A. H. LACHLAN

Let monadic logic be obtained by adjoining variables which range over subsets

of the universe, and corresponding quantifiers, to the apparatus of first-order

logic. We use s, t, u possibly with superscripts and subscripts as set variables.

There are new atomic formulas of the form x £ s .

8.1.5. Definition. The first-order theory T is monadically unstable if there is

a monadic formula <f>(x ,y,s) of the language of T such that for every linear

ordering (/, <) of cardinality > 1 there exist Jf 1= T and U , a sequence of

subsets of M, such that <f>(x, y, U) defines in Jf a linear ordering isomorphic

to (/, <) on the solution set of 3y[<p(x, y, U)V <f>(y, x, U)].

In §8 of [3] it is shown that the definition is equivalent if for <f>(x, y, s)

one reads (¡)(x, y ,s), where /(3c) = l(y) = n . T is monadically stable if it

is not monadically unstable. In the notation of [3] T monadically stable" is

rendered "(Th(<), Mon) <Mon (T, Mon)". From 3.2.4, 4.2.17, and 8.1.6 of

[3] we observe:

T tree-decomposable

=> T monadically stable

=> [T stable &(Tx,  2nd)  $ (T, Mon)]

=> T tree-decomposable.

From the proof of Theorem 4.2.17 of [3] it is apparent that the last implication

is true for our notion of tree-decomposable theory. Below we will verify that the

first implication is also valid for our notion. It will then follow that for theories

the two verisons of tree-decomposability are equivalent and the same as monadic

stability. A point which emerges from the equivalence of tree-decomposability

and monadic stability is that the choice of language for a theory makes no

difference to whether the theory is tree-decomposable.

In order to show that tree-decomposability implies monadic stability we make

a brief digression into a particular infinitary version of monadic logic, in the

formulas of which the only free variables are those for subsets of the universe.

When we apply this logic we shall have in mind a particular structure Jf and

a particular subset A of M. As initial formulas we take those of the form

3xO(x, s), where x is a tuple of inidividual variables, J a tuple of set vari-

ables, and <P(x, s) a possibly infinite conjunction of atomic and negated atomic

formulas over A . Other formulas are built up from initial formulas by nega-

tion, arbitrary conjunctions, and existential quantification of set variables, con-

junctions are restricted to those having only a finite number of free variables.

Formulas constructed in this way are called L^ u(Mon)-formulas over A. Note

that every (finitary) monadic formula over A which has no free individual vari-

ables is equivalent to an L^ iy(Mon)-formula over A .

A set {y/j(s): i e /} of L^ w(Mon)-formulas isa partitioning set if for every

structure ./# such that A ç M and every tuple U of subsets of M exactly

one of the sentences y/AU)   (j £ J) is true in .£ .
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Let J£ be a structure, A ç M, and E be a congruence on Jf over ,4.

Let U be a tuple of subsets of M. Let C(^#, £) denote the family of all

substructures yV ç „# such that A ç N and A\^4 is an £-class. The next

result is a simplified version of Lemma 3.1.13 of [3].

8.2. Lemma. Let a set A and language L be given. For every L^ w(Mon)-

formula   (f)(s)   over   A   there are a partitioning set   {y/j(s): j   £   /}   of

Lœ œ(Mon)-formulas over A anda cardinal X such that for every L-structure

Jf, with M 2 A, congruence relation E on J£ over A, and tuples U0, Ux

of subsets of M, we have

jr t (p(ü 0) ~ (¡>(ü x)

whenever

\{yV £C(Jt ,E)\yVV y/j(V0 \N)}\ = k

&\{yV £<£(£,E):yf\= y/j(Ux \ N)}\ = k

for all j £ J and k < X.

Since the proof of Lemma 8.2 is routine we leave it to the reader.

8.3. Theorem. If T is tree-decomposable, then T is monadically stable.

Proof. Towards a contradiction let T be tree-decomposable and monadically

unstable.

Let (f>(x, y, s) be a monadic formula representing all linear orderings of

cardinality > 1 in models of /. Choose a model JÍ of T and subsets U of

M such that 4>(x ,y, U) represents in ./# a cardinal y . Let D be the solution

set of 3y[(p(x, y, U)V 4>(y, x, U)] in Jf.

Let .# be decomposed by the tree I ç - X according to Definition 8.1.3.

Recall that the height of the tree is at most (\L\ + N0)+ . For any cardinal ô

by setting y large enough we ensure that there exists x £ I\p(I) such that D

meets at least ô of the £T-classes. Fix such x. for any a c x let a+ denote

the initial segment of x of length 1(a) + 1. We form L* by adjoining new

unary relation symbols R, (i < l(x)) to L, and we expand Jf to an L*-

structure Jf* by letting MrU\MTl,,+x) be the interpretation of R,. Let E be

the equivalence relation on M\Nr defined by

E = Exu{J{Ea\(Ma\Ma+):acx}.

Claim.  E is a congruence relation on ^#* over NT.

Proof of the Claim. Let ax c a2 c ••• c an_x c x. Let b¡¡ £ Ma\M(a)+

(1 < i < n, 1 < j < k,) and bnj £ Mr\Nr (1 < j < kn) be such that, for

1 < i < n, any two entries of b ■ are ^-related, and b¡¡ and ¿>; - fall in

different ^-classes whenever j / /. Note that, for 1 < i < n, the £-class

of b¡j is an Ea -class, and the /s-class of bnj is an £r-class. Let c(  £ M\Nr
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(1 < i < n, 1 < j < k¡) be tuples falling in distinct v^-classes such that

tp(b,j\NT) = tp(c,j\Nx). To prove the Claim we have to show the concatenation

of the c,j realizes the same type as the concatenation of the b- over Nz. Let

öj € Na \Na (\ < i < n), and a~n e NT\Na . It is sufficient to prove that

the concatenation of the a, and c-. realizes the same type as the concatenation

of the a, and the ft., over Na .

Because of the way in which d! was expanded to Jf* we see that c,,. e

Ma \M,)+ (1 < i < «) and c e Mr\Nr. Since £T is a congruence relation

on ^#T over tVt , the concatenation cn of the c (1 < j < kn) realizes the

same type over Nt as the concatenation bn of the ft .. Hence tp(cnän|Aj ) =

tp(bna~„\Na    ).   For  1 < i < «  let c,  denote the concatenation of the c;

(1 < J < k¡), and b, the concatenation of the br (1 < / < k,). By downward

induction on / we now see that

tp(c„ä„c„_xan_x ■ ■■äi+lci\Na) = tp(bnänbn_xän_x ■ ■■äi+lbi\Na)

for 1 < i < n - 1. In the induction step we apply: Ea is a congruence re-

lation on Ma¡ over JV^ , c„änc„_,ä„_j ■■■äi+l and bnanbn_xan_x ■ ■ -ä,+x are

in M,,+ which is an Ea -class disjoint from Rng(c(), and these tuples real-

ize the same type over Na .  Taking i = 1  we see that c, • • • cna~2 •••&„ and

°i '' ' °n^2 '"&n reaUze tne same type over Na . This completes the proof of

the Claim.

Let 4>*(t, u,s) be an Lœ w(Mon)-formula equivalent to the monadic for-

mula

3x3y[x € t&y 6 u&(p(x, y, s)].

We are now apply Lemma 8.2 to the formula 4>*(t, u,s), the structure Jf*,

and the congruence E. Let {y/.(t, u,s): j £ /} be the partitioning set of

formulas and X the cardinal which result. It is crucial that S should be larger

than |/|. In this regard note that the partitioning set can be determined before

we form Jf*. (We form L* by adjoining |L| + N0 new unary relation symbols

to L. In expanding ./# to ^#* we use as many of the new unary relations as

we need, interpreting the rest as 0. We also set aside \L\ + KQ constants as

names of the elements in Nz. If |tY | < \L\ + N0 , some elements of tV. have

more than one name.) Let a, £ D (i < S) fall in different Ex-classes. For each

/' < ô let M, denote NT U (aJE) and j, the unique j £ J such that Jf* N

y/j({a¡}, 0, U \ M,). Since |/| < ô, we can fix distinct /, k < ô such that

j, = jk . It now follows from the conclusion of Lemma 8.2 that

^f * h 0*({fl/} ,{ak}*Û)~ ¿*(Kj . {«,} . Ü}),

whence ^# 1= 4>(a,, ak, U) —> (f>(ak , a,, U). Since a, ^ ak , this contradicts the

assumption that <f>(x, y, U) defines a linear ordering in ^#. This completes

the proof of the theorem.
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In [3, Theorem 3.2.4] it was shown that stable theories which satisfy (7^,

2nd) ^ (T, Mon) are tree-decomposable. Using the 3 : V stability theory

worked out in the last section we now show that complete 3V-theories are tree-

decomposable.

Let Jf, yV be structures with ^# ç yV. A ç M is called an a-subset of JÍ

with respect to yV if for all m , 1 < m < co, and every E £ FE™. V(A) in the

sense of yV each is-class represented in Mm is represented in Am . A ç M

is an a-subset of Jf if it is an a-subset of Jf with respect to Jt.

In the next lemma EA denotes the equivalence relation on N\A defined by

x = y V -jx l y  (A)] in the sense of yV .

8.4. Lemma. Let T be a complete 3V-theory over the language L. Let yV \= T

and yV' be the expansion of yV to L1, where l! is formed from L by adjoining

a new relation symbol for each existential formula. Let Jf' ç yV', Jf = Jf' \ L,

A ç M be an a-subset of Jf with respect to yV, and E be the restriction of

EA to M\A. Then E is a congruence on Jf' over A.

Proof. It is sufficient to prove that, if a~0, ax, ft0, ft, 6 M\A, l(a~,) = /(ft.)

(i < 2),

(Rnè(â0)/E) n (Rng(äx)/E) = (Rng(ä0)/£) n (Rng(äx)/E) = 0,

and \^,{ja.\A) = tp^ft^) (i < 2) ,jhen tp^(änä,|^) = tp^(ft0ft,|^). In

yV we have 3 : V-tp(ä,\A) = 3 : V-tp(ft,.|^) (i < 2), and from Lemma 7.7(2)

Rng(ä0) | Rng(ä,) (A) and Rng(fto) | Rng(ft,) (A). Since A is an a-subset

of J( with respect to yV,

3 : V-stp^.M) = 3 : V-stp^(ftf|^)       (i < 2).

Together with the independence noted above, this gives

3 : V-stp^(â0â,M) = 3 : V-sipyr(b0bx\A).

Hence, tp^-CÏÏQâ^A) = tp^;(b0bx\A) as required.

8.5. Theorem. /// is a complete 3V-theory, then T is tree-decomposable.

Proof. Let /' be the language obtained from the language L of T by adjoining

a new relation symbol for each existential formula of L. Let T1 be the L1-

theory corresponding to T. Let Jf' 1= T1 and Jf = Jf' \ L.

We establish a tree decomposition of „#' as follows. Let yV,. be a substruc-

ture of ./# of cardinality \L'\ such that A,,  is an a-subset of Jf. Let Jf',.

be ^#'. Enumerate ( ) in the tree / .

Suppose that yV and Jf1 have been defined such /, ç / c Jf' ç Jf'

and N is an a-subset of Jf = Jlf' \ L with respect to Jf, where n £ I

is a sequence of ordinals of length < \L'\+ . Let E denote the restriction of

EN   (relative to Jf ) [Bto M \N    By the previous lemma E   is a congruence

on Jf'  over N .   Let  {C;: i < a } be an enumeration of the E -classes.
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Enumerate n~(i) in the tree / for each i < a . Define •^l'ii\ to be the

substructure of Jf1 with universe N„UC,  (i < a ). Let N «... be an a-subset

of ^-i,) w*m resPect to Jf such that A C A »... and |tY -,,| < |L'|0. We

continue the construction as far as possible. If c; is a sequence of ordinals of

limit length < |/'|+ such that n £ I for all n C Ç, we define

N( = \J{Nv:r,cZ},        Mt = f){^: n C {}.

Note that N( is an a-subset of Jf^ with respect to Jf . If yV = Jf', then n

is a tip of the tree. (Branches of length \L'\+ are not ruled out however.)

We claim that M = V){N : w e ^} ■ Towards a contradiction suppose a £

M\\MNn'- n e /}• Let f = lj{>7 6 /: a £ MJ. Since a 6 Mn\Nn for all

w c £, /(¿;) = |/'|+. For all j < |/'|+ let Aj = A«... Consider particular

j < \L'\+ and let r\ = ¿; f ; . Let if(i) ç ¿j . Then A/ ^^ = A^ U C, = A} U C,.

Moreover, A- c A-,, ç AÙC;. Since C, is included in an E, -class a £ C,,

and ^4.+1 n C. ^ 0, we have _|[^7+1 I a (^.)] by Lemma 7.7. It follows by

Lemma 7.8 that the range of j has cardinality < \L'\+. This contradiction

confirms that the tree decomposition exhausts Jf' and that the tree / has

ordinal height < \L'\+ .

We have shown that T is tree-decomposable. As we observed in the discus-

sion following Definition 8.1.5 a theory which is tree-decomposable with respect

to one language is tree-decomposable with respect to every language. Hence, T

is also tree-decomposable.

8.6. Corollary. Complete 3V-theories are monadically stable. A fortiori, such

theories are stable.

9. Prime models

In this section we confine consideration to finite relational languages. On one

hand, we give an example to show that not all complete 3V-theories have prime

models over sets; on the other hand we show that each such theory has a prime

model over 0.

Recall Example 1 from the introduction to Part I. Let JÍ* = U,<C(,^ De a

disjoint union of finite trees such that every isomorphism type of finite trees is

represented by some J!,. By "tree" here we mean a graph with no cycles. The

complete 3V-theory we have in mind is T = Th(^#*). Let R be the binary

relation symbol which constitutes the language of graphs. Let yV be a tree

disjoint from Jf* with universe

{0}u{XCco: \X\ = co}U{(X,n,i): i<n, n£X Ceo, \X\ = co}.

Let R    be the symmetric closure of

{(0, X): X ç co, \X\ = co\}u{(X,(X,n,0)):n£XCco, 1*1 = «}

U{(X, n, i), (X, n, i+l): i <n, n £ X Ceo, \X\ = co}.
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Consider the model Jf = Jf*ÙyV of T, and let a denote 0 £ N.

Claim. There is no prime model over {a} .

Proof. Let T0 denote TbiJf, a), the theory obtained by naming a. Let

Ji\{a} denote the graph obtained from Jt by deleting a. Let nn(x,y) be

a formula such that Jf 1= nn(a, ft) means that ft is a neighbor of a, and for

every c e M, if there is a path of length « + 1 from ft to c in .#\{a}, then

c has at most two neighbors. Let an(x, y), xn(x, y) be formulas such that

J! \= on(a, ft) means that there is a unique c £ M with only one neighbour

which lies at distance « + 1 from ft in Ji\{a}, and Jf N 7tn(a, ft) means

there is no c £ M with only one neighbor which lies at distance « + 1 from ft

in Ji\{a}. For X ç co let Zx(x) denote the set

{rc„(a, x): n < co} U {an(a, x): n £ X} U {xn(a, x): n < co, n $. X}.

The crucial point is that, if \X\ = co, then ~Lx(x) generates Tp^(bx\a), where

bx denotes X seen as a member of M. If Z ç Zx is finite, then there exists

infinite yew such that ZcZy and F ^¿ X. Clearly, ZxUliY is inconsistent.

Therefore no neighbor ft of a in M realizes an isolated type over {a} . This

completes the proof of the claim.

We will now show that every complete 3V-theory over a finite language has

a prime model. Before proving this we need some lemmas about rank. For

the rest of this section / denotes a complete 3V-theory over a finite relational

language and I- 6 means that 6 is valid in every model of T. A formula

X(y) is called a V n 3-formula if in / it is equivalent to a V-formula and to a

3-formula; 4>(x) is called almost quantifier-free if it is V n 3 and equivalent to

some quantifier-free formula over M for each /NT.

9.1. Lemma. Let 0(x) be almost quantifier-free in T, Rk((f)(x)) = r, and

6(x,y) be quantifier-free. There exists a V n 3-formula x(y~) such that for all

jf\=T and bçz M, R((f>(x)&8(x, ft)) = r iff Jf 1= /(ft).

This is essentially the same as Lemma 3.1 of [9] so we omit the proof.

9.2. Lemma. Let (p(x) be a formula which in T is nonnull and almost quanti-

fier-free. Let Rk(4>(x)) = r. There exists a nonnull V-formula y/(x) such that

for every /NT and all ä ç M,

Jt N y/(ä) ~ [4>(ä)&Rk(tp(ä\M\ä)) = r].

Proof Consider Jf 1= T and a ç M such that Jf 1= (¡>(a). If _Rk(tp(ä|M\ä))

< r, then there exist a quantifier-free formula 6(x,y) and ft ç M\d such

that Jf N 6(a~, ft) and Rk(<rj(x)&f?(x, ft)) < r. Moreover, such 6(x, y) may

be found which is the intersection of at most Mt(</3(x)) basic formulas. Now

fix a quantifier-free formula 6(x, y ). From the last lemma there exists a Vfl3-

formula ^ö(y) such that for any J( £ T and aç M

Jt^Vy[ynä = 0&6(ä,y).^ Xg(y)]
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iff no instance of 6(x, y) witnesses Rk(tp(ä"|M\ä")) < r. Since L(T) is finite

there are at most a finite number of formulas 6(x, y) which are the intersection

of at most Mt(</>(x)) basic formulas. Taking the conjunction of (¡>(x) and of

Vy[ynx = 0&6(x, y). -* /e(y)] over all such 6 we obtain the desired formula

y/(x).

It remains to show that y/(x) is nonnull. It is easy to find models .#, yV

of T and a £ N such that J? >yV\= (f>(a) andRk(tp^(ä|vW)) = r. Let JfUa

denote the substructure of yV with universe MUa~. By Lemma 0.2, for any

formula /(3c) over M

Rk^(/(x)) < Rk^u5(/(x)) < Rk^(X(x)),

and Rk^(/(3c)) = Rk^(/(3c)) since Jf <yV. Hence,

^^u-a(x(x)) = RkJ,(x(x))

which means that Rk^-ítpíalTt/A/í)) = r. Thus, y/(x) has a solution in JfUd

which suffices since Jf U a N T. This completes the proof.

The formula </>(x) is totally nonalgebraic in T if

h <f>(x) -» /\{x, £ acl(0): 1 < i < «},

where x = (x,, ... , xn).

A formula ^(3c) is called T-complete if it isolates an elementary /(x)-type

over 0.

Let y/(x) be a V-formula which is /-complete. From ^(3c) we construct an

extension T' = T[y/(x)] of T as follows. From L(T') by adjoining new unary

relation symbols, one for each entry in x . Let p(x) denote the conjunction of

all atomic formulas R(u), where u is an entry of 3c and R is the correspond-

ing unary relation symbol. The axioms of T' are those of T, universal and

existential sentences saying that the interpretation of each of the new relation

symbols is a singleton, and Vx[p(x) —> y/(x)]. Notice that T[y/(x)] is a com-

plete 3V-theory. Every model Jf of T can be expanded to a model ^#[a]

of T' by picking a solution a = (a,, ... , a/(-,) of y/(x) in JÍ and letting a,

be the unique solution of R, the unary predicate symbol corresponding to x,.

Clearly every model of T   arises in this way.

For-each formula 6(y) of T1 in which no entry of 3c occurs, denote by

6 (3c, y) the formula obtained from 6(y) by substituting for each atomic for-

mula R(u), with R one of the new unary predicates, the formula x, = u,

where x( is the entry of x corresponding to R. Denote by 6T(x,y) the

formula y/(x)&6 (x, y). Observe that, if \-T> 6(y) -* /(y), where /(y) is a

formula of T, then I- 6T(x, y) —> x(y) ■ Further, if 6(y) is r'-complete, then

6T(x,y) is T-complete.

9.3. Lemma. Let <p(x) be a formula of T which is nonnull and almost quantifier-

free. There is a T-complete V-formula y/(x) which implies <f>(x).

Proof. We need the following claims:
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Claim 1. Let Jf 1= T and a £ acl^(0). Tp(a) is isolated by a Vn 3-formula.

Proof of Claim 1. Since it makes no difference we assume 1(a) = 1 and write

a for a~. From Lemma 4.1, a is the solution of a 3-formula which has only a

finite number of solutions. Let y/(x) be a 3-formula such that Jf 1= y/(a) and

y/(x) has as few solutions as possible. By Lemma 3.1, / has a 3V-saturated

model yV. From Corollary 3.9 two elements realize the same elementary type

in yV iff they realize the same 3-type. Thus, if yi(x) does not isolate Tp(a),

there is an existential formula 6(x) suchthat y/(x)&6(x) is satisfiable but .# 1=

-10(a). Now there is a 3-formula equivalent to ^(x)&3y[^(y)&0(y)&x ^ y] ;

such a formula contradicts the choice of y/(x) since it has fewer solutions.

Thus, y/(x) isolates the type of a . Suppose that y/(x) has «i solutions. Then

^•••vym    A  yt*yfi- A wty--*- V *=yt
l<i<j<m l<i<m l<i<m

also isolates the type of a and is equivalent to a V-formula. This completes

the proof of the claim.

Claim 2. In the statement of the lemma we can suppose that (¡)(x) is totally

nonalgebraic.

Proof of the Claim 2. In proving the lemma we can proceed by induction on

/(3c). Suppose (t>(x) has a solution ä in a model Jf of T in which one of

the entries is algebraic. Let x = xx1 and a = aa with a £ acl(0). Let 6(x)

be a V-formula isolating Tp(a), T1 = T[6(x)], and R denote the new unary

relation symbol R . Let Jf' = Jf[a\ be the model of T' obtained from J( by

letting {a} be the interpretation of R. Clearly, T1 is a complete 3V-theory.

Let </>'(x) be the formula 3x[R(x)&(ß(x, x7)] which is equivalent in T1 to

Vx[R(x)&4>(x ,x')]. Clearly, Jf'^^!(a) and <p'(x) is almost quantifier-free.

By the induction hypothesis there is a /'-complete V-formula y/'(x) which

implies <p'(x) in T'. Without loss of generality, x does not occur in y/'(x).

Let y/(x) be a V-formula equivalent to (y/')T(x). Then y/(x) satisfies the

conclusion of the lemma. This completes the proof of the claim.

We now recall an idea used in [9, Definition 3.1]. Fix the formula 4>(x)

which is now assumed to be totally nonalgebraic. Let (Rk, Mt)(</>(x)) = (r, m).

Consider a 3V-saturated model Jf of T. A tuple a ç M is called independent

if J( 1= (f)(a) and Rk(<7J(3c)&0(3c, ft)) = r for every quantifier-free formula

0(3c, ft) such that ft ç M\ä and Jf 1= <p(ä)&6(ä, ft). Let I(Jf) denote the
set of all independent tuples a ç M. Define the binary relation E on I(Jf)

by: dEa if Jf N 6(a~, ft) <-> 6(a', ft) for every atomic formula 0(x, y) and

all ft cM\(äUa).

The next claim corresponds to Proposition 3.2 of [9].

Claim 3. (1) I(Jf) is definable by a V-formula.

(2) I(Jt)¿0.
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(3) E is definable by a V-formula.

(4) For all a~ £ I(£) and B ç M there exists a such that äEa , Tp(a) =

Tp(a) ,anaaf\B = 0.

(5) E is an equivalence relation with m classes.

(6) If a~0E~ax, then Tp(a0) = Tp(a,).

Proof of Claim 3. (1) and (2) follow from the previous lemma and (3) is im-

mediate since the language is finite and relational.

(4) First notice that the conclusion holds if we drop the requirement that

äEa . Otherwise there are a £ I(Jf) and a finite set B ç M such that for all

a CM

Tp(a ) = Tp(o~) -> a n B ± 0.

Since Jf is 3V-saturated, and elementary types are determined by 3-types in

Jf, there exists 0(x) a conjunction of a 3-formula and a V-formula such that

0(3c) e Tp(ä) and

J?\=Vx[6(x)-+xnB¿0].

From Sublemma 5.2.1 such B can be found ç acl(0). This contradicts the

fact that <f>(x) is totally nonalgebraic.

Now we can choose a, CM (i < co) such that Tp(ä~.) = Tp(ä") and ä-flä". =

0 (i < j < co). By Ramsey's Theorem the a, can be chosen such that either

ä,Eäj (i < j < co) or ^(ä,E~äj) (i < j < co). In the former case dQ clearly

has the property desired for a. Since ./# is KQ-homogeneous by Lemma 3.2

and Tp(ä) = Tp(ä"0), ~ä also has the property. It remains to consider the

case in which -i(a~,Ea~j)   (i < j < co).   From the definition of E for each

pair (/', j) wiht i < j < co there exists a basic formula 6,..(3c, ft,..) such that

ft..n(a,,Ua~j) = 0 and ^f N 0, (a-, ft. )&-i0. (a , ft..). By another application

of Ramsey's Theorem we can suppose that ft. n afc = 0   (i < j < co, k < co).

Let D denote UiA,: l < J ^ m} ■ Then ä~0, ... , am realize distinct types of

rank r over D. This contradicts Mt(</3(3c)) = m .

(5) We wish to show that E is an equivalence relation. Towards a con-

tradiction suppose that â~0 E ax , axEa2, and -ia"0 Ed~2. There exists a basic

formula 0(3c, ft) such that ft n (â0 U ~ä2) = 0 and JÍ t= 0(SO, b)&^6(d2, ft).

Permuting the entries of ft we can write ft = ft0ft, such that ft0 ç a, and

ft, na, = 0. From (4) there exist aQ and o^ such that a0Ea~0, a2Ea~2,

and (a0 Uâ2)n(èuâl) = 0. Let x( be an entry of x. Since 4>(x) is totally

nonalgebraic, Rk(0(x)&x( = c) < r for all c £ M. Therefore we can find a1,

such that tp(ax |ft, uaju ä^) = tp(ä, |ft, u aQ U~a2) and a{ n (â0 Uâ2 U ft0) = 0 .

Let ft0 bear the same relation to ax as ft0 to a, , and ft denote ft0ft, . Now

Ji \= 6(a0, b)&.^6(a2, ft) since ä0E~aQ, a2Ea2, and bn(d~0U~äJ()Ua~2Ua2) = 0.

Hence, J( 1= 0(0^, ft )&-i0(ö'2, ft ) since tp(ft lâ^ U a2) = tp(ft|ä^ U a2). Since

äQEaü and d~2E~a2, we have ^# 1= 0(ä~o, ft )&->0(a"2, ft ) with ft  disjoint from
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each of ä~0, ä,, ä~2. So ft witnesses that either dQEdx or a", Ed2 fails. This

completes the proof that E is an equivalence relation.

Let a, (i < m) represent distinct /s-classes. For each pair (i, j) with

i < j < m there is a basic formula 0/--(3c, ft,..) such that ft,..n(ä,.uä.) = 0 and

Jf t= 6,j(a,, ft, )&->0, (ä , ft,). Using (4) we obtain a, such that a,Eä, and

ä^ n ft ¿ = 0 (i < m, j < k < m). Let Z) denote LKftj* : /' < A: < m}. Now

o'q , ... , ä^ realize explicitly contradictory types of rank r over D, which

contradicts Mt(0(x)) = m. Therefore there are at most m ^-classes. The

argument used for ( 1 ) may easily be refined to show that there are at least m

^-classes. This completes the proof of (5).

(6) Suppose that a~0Edx. By (4) choose a in the same £-class as â~0 and

a", such that än(ä0Uä,) = 0. Since a~Ea~0, we have tp(a"|M\aa"0) =

tp(a"0|jW\a~â~0), and so there is an automorphism of J( which switches a

and a"0 and fixes M\dd0 pointwise. Hence, Tp(a"0) = Tp(ä). Similarly,

Tp(â,) = Tp(a).

We are now ready to prove the lemma. Let /(x) be a V-formula whose

solution set in .<# is I(Jf). From (6) of the previous claim, over 0 there are

at most m elementary /(x)-types which contain /(3c). By Corollary 3.9, in Jf

the elementary type of a tuple is determined by its 3-type. Clearly, there is a

maximal V-type containing /(3c) which is isolated by some V-formula y/(x).

Since in Jf every solution of y/(x) has the same elementary type, y/(x) is

T-complete. Since y/(x) implies /(x) and /(x) implies 4>(x), the proof of

the lemma is complete.

In the next lemma we exploit again the idea which gave us the key lemma,

Lemma 3.7.

9.4. Lemma. Let (p(x, y) be a quantifier-free formula such that h 3xVy <t5(x, y)

and let y, (/ < <tj) be disjoint tuples of variables with l(y,) = l(y). There ex-

ist k £ co and a nonnull quantifier-free formula y/(y0, ... ,yk,~z) such that, if

yf^T andb, ft,., cCN, then

yV h y/(b0, ... , bk , c) -► Rk I ̂ (3c, ft)& A <Kx, ft,)

<Rk[A^,ft,)
\i<k

Proof. Let Jf be a 3V-saturated model of /. We study finite sequences

b = (b0, ... , bk) such that /(ft,) = l(y). The set of all such sequences is de-

noted by B. To establish notation let B, denote the solution set of </>(x, ft,),

(i < k), r,.(b) denote Rk^f]^,Bj)\B,) (1 < i < k), and i/(b) denote

(/■,(b), ... , rk(b)). The sequence b is called good if r,(b) > Rk(f),<,ß,) for

all i, 1 < / < k . The range of v is ordered lexicographically. Using the same

idea as in the proof of Lemma 3.7 we can prove
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Claim. Amongst the good sequences b is one for which v(b) is maximum.

Let v be the maximum value of i/(b) referred to in the Claim. Fix a good

sequence d = (d0, ... , dk) £ B such that i/(d) = v. Let D, denote the

solution set of <¡>(x,d¡). Let r, denote r,(d) (1 < i < k) and r denote

Rk(n/<fcö,). Notice that r is the same for any d such that i/(d) = v. From

Lemma 0.2 there is a set of existential formulas r(y0, ... ,yk) such that for

any sequence b = (b0, ... , bk) in an L(/^-structure yV, yV N T(ft0, ... ,bk)

iff r,.(b) > r, (I < i < k). Similarly, there is a set A(y0, ... ,yk,y) of

existential formulas such that for any b and ft in an L(/^-structure yV, yV 1=

A(ft0, ... ,bk,b) iff Rk((n,<i.73,)\5) > r, where t5 denotes the solution set

of 4>(x, ft). Note that the set of formulas r(y0, ... ,yk)U A(y0, ... ,yk,y)

is not satisfiable in Jf, and hence not satisfiable in any model of T since

Jf is 3V-saturated. For, if there are b~0, ... , bk, ft ç M such that Jf (=

r(ft0, ... , bk) U A(ft0, ... , bk, ft), we can find a good sequence b' £ B such

that v(b') > v , a contradiction.

By compactness there are y(y0, ... ,yk), the conjunction of a finite subset

of T(y0, ... ,yk), and ¿(y0, ... , yk, y), the conjunction of a finite subset

of A(y0 ,...,yk,y), such that 1= y(y0 ,...,yk) -» -¿(y0, ... , yfc, y). Let

VC^o ' • • • ' y~k > z) De a quantifier-free formula such that 31 y/(y0, ... , yk, 1) is

equivalent to y(y0, ... , y k). From above ^# N T^, ... , dk) and so there ex-

ists ? such that Jf 1= i/y(öf0, ... , dk,ë), whence y/(y0, ... , yk , 1) is nonnull.

Further, if yf" N T and ft,, c ç A are tuples such that yV 1= y/(b0, ... , bk,c),

then yf 1= y(b0, ... ,bk) and so yV \= Vy^S(b0, ... , bk,y). Thus for all

ft C A, yT\= A(ft0, ... ,bk,b) fails, which means that Rk((f|,<fcB,)\B) < r.

Towards a contradiction suppose that Rk(f|,</t B¡) < r. By the definability

of rank, Rk(f|/<À.B,) < r is implied by some V-sentence /(ft0, ... ,bk) true

in yf. Since j€ = yV there must exist b' = (ft0, ... , bk) in y% such that

^# 1= /(ft0, ... ,bk) and hence such that Rk(f|,<A.5,') < r, where v3,' denotes

the solution set of 4>(x, ft,). This contradicts the choice of v. Therefore,

Rk(n,<i:Bj) > r and so y/(y0, ... ,yk,~z) has the desired properties.

9.5. Lemma. Let (p(x,y) be a quantifier-free formula. There is a quantifier-

free formula <j)*(x,y) suchthat

h [Vy 0(x, y) - Vy4>*(x, y)]&[Vy[y nx = 0 -» 0*(x, y)] -» Vy 0(x, y)].

Since it is easy we omit the proof of Lemma 9.5. The next lemma provides

the tool we need to build prime models.

9.6. Lemma. If 4>(x, y) is a quantifier-free formula and \- 3x Vy <f>(x, y), then

there is a T-complete V-formula y/(x, ïï) which implies Vy (f>(x, y).

Proof. From Lemma 9.5 we can suppose that Vy[y n3c = 0 —► (f>(x, y)] implies

Vy~(j)(x, y). Let y/(y0, ... ,yk,l) be a nonnull quantifier-free formula satis-

fying the conclusion of Lemma 9.4. From Lemma 9.3 there is a /-complete
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V-formula / = /(y0, ... ,yk, z) which implies y/(y0, ... ,yk, z). Let t =

/[/] and p = p(y0, ... ,yk,l) be the conjunction of all the atomic formulas

R(u), where u is an entry of y0, • • -ykz~ and R is the corresponding unary

relation introduced in the formation of L(T'). Let (¡)'(x) denote the formula

3y0 • • • 3y, 3z p(yQ, ■■■ ,yk,z)&/\(j)(x,yi)

i<k

and r denote Rk(<r5'(x)). Note that 4>'(x) is almost quantifier-free in /'.

Let yV \= T, ft0 ■ • ■ bkc be a solution of /(y0, ... , yk , 1) in yV, and yV'

yV[b§---bkc] be the corresponding model of /'. Note that

yf >V3c <t>\x)~ l\4>(x,b,)
i<k

Since yV f y/(b0, ... , bk, c), for any ft ç A

Rk(-.0pc, b)Su/>(x)) = Rk   ^(x, b)& /\ </>{x, ft,.)
i<k

<Rk lf\(t>(x,bj)\ =Rk(0'(x)).

By Lemma 9.2 let y/'(x) be a nonnull V-formula of T1 such that for every

Jf' t= T' and a CM'

Jf' N y/'(ä) ~ [f>'(a")&Rk(tp(ä|M'\ä)) = /•].

Fix a ç iV_such that yV' N /(S). Then yT' N </>'{a) and Rk(tp(ä|A\ä)) = r.

Consider ft ç A\ä\ Since Rk(-K7y(x, ft)&(/)'(x)) < /* and yT' 1= (f> (a), we have

yV \= (p(a~, ft). Therefore, Vy[y Da = 0 -> 0(a, y)], and hence also Vytf)(ä~, y),
are true in yV. Thus \=T, y/'(x) —> Vytj>(x, y).

Notice that ^'(ä) says that a is independent with respect to </>'(x) in the

sense of the proof of Lemma 9.3. Repeating the final part of the argument for

Lemma 9.3 we see that there is a V-formula y/"(x) of T1 which is /"'-complete

and implies y/'(x). To finish we take for y/(x, Û) a V-formula equivalent to

(y/")T(y0, ... ,yk,z ,x). That y/(x, ïï) is suitable follows from the discussion

immediately preceding Lemma 9.3

9.7. Theorem. Let T be a complete 3V-theory over a finite relational language.

T has a prime model.

Proof. Let </7,(3c,, y) (/' < co) be quantifier-free formulas such that {3x,vy,

4>j(x, y,): i < co} is an axiomatization of /. By induction on i we will find

/-complete universal formulas 0,(xo,... ,x¡,z0,

for all i < co

F (7,.(Xq , . . . , X,-, Zq ,

. , Xj, zQ,... , Zj)   (i < co) such that

,z~¡)-+Vy~j<l>j(Xj,yj)
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and

"i+l(X0 ' • • • ' Xi+l ' Z0' • • • ' Zi+V ~~* ̂ /'X0 '■■■■' x¡, z0, ... , z,).

0o(xo, z0) is obtained by applying Lemma 9.6 to </>0(x0, y0).

Suppose an appropriate 0, = 0,(xo, ... , x., l0, ... , 1,) has been found.

Let T' = T[6j]. As pointed out above T1 is a complete 3V-theory. Applying

Lemma 9.6 there is a V-formula y/' = yf'(xi+x, 1,+,) complete in T1 such that

Fr, /(x,+,, z,+1) -» Vy,+, 0,+1(3c,+1, y,.+1).

Without loss of generality none of the entries of x0, ... , x,l0 •••!,. occurs in

y/'. Let 0,+, = 0/+1(3co, ... , x,+,, 10, ... , 1,+,) be a V-formula equivalent to

(y/')T. Now 0,+, is T-complete and 0,+, implies Vy,+, 0,+,(x,.+,, y,+,) since

(/ does. Finally, 0,+, implies 0, since 0, is a conjunct of (y/')T. It is clear

that 0,+, has the desired properties and so the induction is complete.

Let J? N /. Choose ä,, c¡CM  (i < co) such that

^# f 0,(a"o,... ,â~j,c0, ... ,c¡)   for all i < co.

Let yF ç „# be the structure with universe A = LK^,- *' < wl • Since

Jf f Vy,. (/J,.(ä,., y,.), we have yV N Vy,. (/),.(ä,-, y,) (/ < co). Hence /NT. Also,

since 6j is universal, we have yV f 0,.(a~o, ... , a,., c0, ... , c,) for all i < co.

Since the formula 0, is /-complete, a~0 • ■ ■ ä,c0 • • • c, realizes an isolated type

in yV . Therefore, every tuple ft ç A realizes an isolated type in yV. Clearly

yV is a prime model of /.

10. Conclusion

In this paper and its predecessor we have collected a substantial body of

information about complete coinductive theories. However, there are many

aspects of the subject which remain obscure. We hope to stimulate further

interest by listing some conjectures.

Recall the notion of independence based on 3 : V-formulas developed in §7.

The negation of independence gives us a forking notion based on 3 : V-formulas.

By analogy with the usual forking notion, if B ç C and 3 : V-tp(ä~|C) forks

over B, then the type forks via some 3 : V-formula over C. In this context we

have

10.1.    Conjecture. Every type which forks forks via some 3-formula.

A question we have left wholly unexplored is the relation between forking

with respect to 3 : V-formulas and forking with respect to all formulas. It

appears that, if a", ft, C ç M and JÍ is a model of a complete coinductive

theory 3V-saturated over C, then ä J. ft (C) means the same whether we work

with all formulas or just 3 : V-formulas.

There are some interesting questions about prime models. To avoid trivial

counterexamples for the rest of the paper we confine consideration to finite

relational languages.
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10.2. Conjecture. Let Jf be a model of a complete coinductive theory which is

3V-saturated over A ç M. Then there exists a prime model over A.

From Lemma 7.7 there is an equivalence relation Ee defined by the (not

necessarily first-order) formula x = y V -<[x | y (0)]. The Zs0-classes are

called the components of a model. It is not hard to show that in the prime

model of Theorem 9.7 all components are finite.

10.3. Conjecture. If Jt is a countable model of a complete coinductive theory

in which all components are finite, then .£ is a prime model.

10.4. Conjecture. If T\\.(Jf) is coinductive and all the components of J£ are

finite, then Jf is ^^-categorical.

Before stating our final conjecture we need some notation and a lemma. Let

y> = (p(x) be a formula with one free variable which has a solution in the

structure Jf . By J£m we denote the substructure of Jt whose universe is the

solution set of <p in JÍ.

10.5. Lemma. Let Th(^#) be coinductive and q> = <p(x) be a V-formula which

has a solution in Jf. Then Th(^#) is also coinductive.

Proof. Note that T = Th(^# ) is determined by T = Th(^#). From the

Claim used in the proof of Lemma 0.1 it is sufficient to find a model yV of T

such that for any yV' > yV every structure lying between yV and yV' is also

a model of T . To this end let yV be a saturated model of T , of cardinality

X say. Without loss of generality we can suppose that yV' > yV is saturated

of cardinality p > X. We can choose the cardinals X and p such that T has

saturated models in both powers. Let Jf be saturated of power X. Then J(

is also saturated of power X. Thus we may suppose that yV = Jf Since

up to automorphisms of the large model a saturated model of power X can

sit in only one way in a saturated model of power p, there exists Jf' £ J?

such that Jf' is saturated of power p and (./#') = JV'. Consider yV* such

that yV ç yV* ç yV', and let Jf* denote Jf u A*. Since T is coinductive,

Jf* 1= T. the members of A* satisfy <p(x) in Jf* since they satisfy q>(x) in

yV1. The members of M*\N* = M\N satisfy -><p(x) in Jf* since they satisfy

-^<p(x) in Jf. Therefore, yV* = (£*). \r~ T which completes the proof of the

lemma.

10.6. Conjecture. Let J£ be a prime model of a complete coinductive theory.

There exist V-formulas (p,(x) (i < co) such that cp, implies <pj+x, J( is N0-

categorical (i < co), and M = \J{£a : i < co}.

If this last conjecture were true, it would yield a clear picture of the prime

model. Let T be the first example of a complete coinductive theory found in

the introduction to Part I of this paper, where the prime model is a countable

disjoint union of finite graphs without cycles. Notice that in this case there are

two quite different ways of approximating the prime model. We can take p,(x)
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to mean " x belongs to a component of size < / + 1 " or to mean " x belongs

to a component of diameter < i ". The latter meaning does not satisfy the

conclusion of the last conjecture because Jf has arbitrarily large components.

However, it yields what in some sense is a better approximation. Thus, it may

well be fruitful to consider approximations to the prime model via V-formulas

other than those contemplated in the conjecture.
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