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THE VARIETY OF MODULAR LATTICES IS NOT

GENERATED BY ITS FINITE MEMBERS
BY

RALPH FREESE1

Abstract. This paper proves the result of the title. It shows that there is a

five-variable lattice identity which holds in all finite modular lattices but not

in all modular lattices. It is also shown that every free distributive lattice can

be embedded into a free modular lattice. An example showing that modular

lattice epimorphisms need not be onto is given.

We prove the result of the title by constructing a simple modular lattice of

length six not in the variety generated by all finite modular lattices. This

lattice can be generated by five elements and thus the free modular lattice on

five generators, FM (5), is not residually finite.

Our lattice is constructed using the technique of Hall and Dilworth [9] and

is closely related to their third example. Let F and K be countably infinite

fields of characteristics p and q, where p and q are distinct primes. Let Lp be

the lattice of subspaces of a four-dimensional vector space over F, Lq the

lattice of subspaces of a four-dimensional vector space over K. Two-dimen-

sional quotients (i.e. intervals) in both lattices are always isomorphic to Mu

(the two-dimensional lattice with « atoms). Thus Lp and Lq may be glued

together over a two-dimensional quotient via [9], and this is our lattice.

Notice that if F and K were finite fields we could not carry out the above

construction since two-dimensional quotients of Lp would have/)" + 1 atoms

and those of Lq would have qm + 1, for some n, m > 1. However these

numbers are never equal. To some extent the proof is based on this fact.

We prove our result by letting / be a homomorphism from a modular

lattice M onto our lattice L. A great deal of the structure of L can be pulled

back through / into M. We then assume M is residually finite and using von

Neumann's theorem arrive at a contradiction similar to the one described

above. K. Baker [1] and R. Wille [20] have constructed varieties of modular

lattices not generated by their finite members. Using a lattice constructed by

E. T. Schmidt [18] the author has shown there is a variety of modular lattices

not even generated by its finite dimensional members [6]. However, Schmidt's
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lattice and the one used by Baker are in the variety generated by all finite

modular lattices.

The result of this paper contrasts with R. A. Dean's result that the variety

of all lattices is generated by its finite members [3].

The first section of the paper studies (von Neumann) «-frames in modular

lattices. The concept of an «-frame of characteristic p is introduced. It is

shown among other things that «-frames of characteristic p are projective in

the sense that they may be pulled back through homomorphisms. The results

of this section will be used in a subsequent paper to show that the lattice of

subgroups of the n-fold direct product of Zp, L(Zp), is a projective modular

lattice if 4 < « < w and/» is a prime. The second section constructs the lattice

L and shows that it is not in the variety generated by the finite modular

lattices by the method outlined above.

Bjarni Jónsson has asked if there are any uncountable distributive

sublattices of free modular lattices. (Recall that the distributive sublattices of

free lattices are at most countable [7].) In the third section we show that for

every infinite cardinal k, there is a quotient sublattice (= interval) of FM(k)

which is distributive and has cardinality k. The lattice L was originally

constructed with this application in mind. In this section it is also shown that

modular lattice epimorphisms, defined as in category theory, are not onto. A

method for obtaining a five variable lattice identity holding in all finite

modular lattices but not in all modular lattices is outlined.

In this paper we use the plus sign for the join operation and juxtaposition

or dot for the meet operation, since this reduces the apparent complexity of

the lattice terms. Notice that von Neumann alternated between both sets of

symbols [19, p. 137]. If a > b in a lattice L, we let a/b = {x G L: b < x <

a) and call a/b a quotient or quotient sublattice of L (alias interval). We say

a/b transposes up to c/d if a + d = c and ad = b. This is denoted

a/b 7> c/'d and we also write c/d \ a/b. The quotients a/b and c/d are said

to be projective if they are connected by a finite sequence of transposes. If

a/b 7 c/d, then a/b is isomorphic to c/d via the map x h> x + d. The

inverse map isy^ya, see [2].

This paper contains some lengthy calculations. The technique usually

involves first introducing an extraneous term using, for example, that if a > b

then a + b = a. Then the modular law is applied and then previously

established relations are applied. Justification is usually given for steps which

are not part of the above scheme.

1. Von Neumann «-frames. Let L be a modular lattice. We say that L

contains an «-frame if there exist a„ . . ., a„, c12, c13, . . ., cln G L such that

(i) the sublattice generated by av ... ,a„ is the Boolean algebra 2" with
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atoms ax, . . . , a„, and (ii) ax + cXj = a, + cXJ = a, + a, and axcXJ = ajCXJ =

a,ay. In this situation we shall simply say that {a¡, cXJ) is an «-frame in L. We

also allow the one element lattice to be a 'degenerate' «-frame. We let 0

denote the least element of this Boolean algebra, i.e., 0 = axa2 and we do not

insist that 0 is the least element of L. We let P(n) denote an «-frame as a

system of elements and relations and we let FM(P(n)) be the modular lattice

freely generated by ax, ... , an, cn, . . . , c,„ subject to the relations described

above which make {ax, . . . , an, cX2, • ■ ■, cln} an «-frame. A great deal of

information about «-frames is contained in [19], [15], [10], [11], [12].

Example. Let R be a ring with 1 and let RR" be the n-fold direct product

of « copies of R as a left R-module. Let L(RR") be its lattice of submodules.

Let

a,. = {(0, ..., 0, x, 0,..., 0): x S R } - R(0, . . . , 0, 1, 0, . . . , 0),

C¡j = R(0,...,- 1,...,1,...,0) G £(**").

One easily checks that (a,, cXj) is an «-frame in L(RR") and that the c,-, satisfy

(1.1) below.

Let {a¡, cXJ; i = 1, . . . , «, j = 2, ...,«} be an «-frame in a modular

lattice L. Let c,, = cXj and for 1, i,j distinct let c# = (c,, + c,y)(a, + aß. In

Lemma 5.3 of [19, p. 118], it is shown that, for distinct i,j, k,

Cik = (cu + cjk)("i + ak). (LI)

In the definition of an «-frame the index 1 plays a special role. However, by

(1.1), we see that this apparent lack of symmetry is only illusionary.

There are several concepts closely related to «-frames (cf. [10]). For

example, a modular lattice is said to contain an (« — l)-diamond if it

contains 2" with atoms a„ . . . , a„ and an element v which is a relative

complement of each a, in a, + • • • + an/axa2- This concept was introduced

by A. Huhn [11]. If {ax, . . . , an,y) is an (« — l)-diamond in a modular

lattice L, then {a¡, cXj} is an «-frame, where cXJ = v(a, + aj). Conversely if

{a¡, cXj) is an «-frame in L then  {a¡,y} is an (n — l)-diamond, where

y = 2;=2 cy [io].

Lemma 1.1 (Herrmann and Huhn [10]). Let {a¡, cXJ) be an n-frame in a

modular lattice L. Let bx G L satisfy axa2 = 0 < bx < ax. Define b¡ = {bx +

cx¡)a¡ and b = 2"=1 b¡. Then [a[, c'XJ} and {a", cXj) are both n-frames in L

where a[ = a¡ + b, c'y = cXj + b, a" = b¡, and cXj = bcXj. Moreover, in the

primed frame, c'¡¡, which is defined to be (c'1( + c'y)(a'¡ + a,'), is equal to c¡j + b.

Similarly c"j = bCy.
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Proof. Using modularity and bk < ak and the independence of the a,, we

have

(«,. + b)t (a, + b) = b + J 2  a, + b)

û 2   Oj + fil)

= b + bi + ai 2  a-]

= b.

Hence {a,• + b: i = 1, ...,«} are independent over b and thus generate 2".

Now notice that, for í ^ I,

¿i + c,¡ = c„. + a¡(bx + cXi)

= (Cu + a){bx + c„)

= (c„. + a,)fc-, + c„.

= («i + û,-)ôi + c\t

= bx + cx, (1.2)

Using (1.2) we obtain the following for i,j, 1 distinct:

b, + Cij = b, + (cu + cXJ)(a¡ + aß

= (b, +  CXi +  Cy)(<% + A>)

= (¿i + c„ + cl7)(a,. + aß

= (¿> + cu + cXj)(ai + a,)

= bj + ciy (1.3)

For í =fc 1 we have

(a,. + ¿>)(c„. + b) = 6 + a,(c„. + b)

= b + «,(*! + «,)(c„ + 6, + 6,- +   2   M

= 6 + a,(cu + 6, + 6,. + (a, + a,) 2   M

= £> + £,+ a¡{cXi + bx)

= b + b, + b, = 2>.
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Using (1.2) we have

(a, + b)(cXi + b) = b + ax(cXi + bx + b()

= b + ax(cXi + bx)

= b + bx + axcXi = b.

Clearly a\ + c'Xj = a¡ + c'Xj = a\ + Oj and thus {a¡, c'Xj) is an «-frame. It is

also clear that {a") = {b¡} is independent over 0, and calculations similar to

those above complete the proof that {a", cXj) is an «-frame.

Let i,j, 1 be distinct. Then by definition c'y = {c'y + c'y)(a¡ + aj). By (1.2),

bx < b¡ + cu. Thus

c\j = (cu + cv + b)(a¡ + aj + b)

= b + (c„. + cXJ + b){a, + «y)

= b + \cXi + cXJ + 2   bk\(ax + a, + a^ + aj)

- b + leu + cy + bx + bt + bj + y    2     **J(fli + a, + «,))(«, + aj)

= b + (c„. + c„. + 6,. + 6,)(a,. + aj)

= b + è,- + 6, + (cu + <;„)(«, + a,)

- b + cr

Similar calculations show that c¿- = fee«, completing the proof,   fj

Let {a,, cly} be an «-frame in a modular lattice L, « > 3. Then for /',,/', A:

distinct we have the following projectivity:

a, + etf/O/'a, + a¡ + ak/ak\cik + a,/0

S «i + % + ak/cJk \ a,- + aj/0. (1.4)

This projectivity defines an automorphism atJ of a¡ + a,/0 given by

«/,(*) = ((* + ö*X«ft + a;) + cjx)(ai + a> (L5)

The above formula is a special case of von Neumann's addition defined on

p. 142 of [19]. In fact, a¡j(x) corresponds to "adding one" to x. By Lemma 7.8

of [19], ay is independent of the choice of k distinct from i andj.

Let b¡, i = 1, . . . , «, and b be the elements of L given in Lemma 1.1 and

let {a¡, c'y) be the frame given by that lemma. Let a'y be the automorphism

corresponding to atJ using the primed frame; that is

<#*) - ((* + 4X4 + ¿j) + &)« + «;)•
Let 0' = b.
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Lemma 1.2. // x G a¡ + a,/0, then x + b G a¡ + a¡/0' and a¡j(x + b) =

av(x) + b.

Proof. First we show for distinct i,j, k that

(x + ak + b)(cik + aj+ b) = b + (x + ak){cik + aj).

Using b¡ < bk + cik we calculate

(x + ak + b)(cik + aj + b) = b +

= b +

= b +

= b +

= b +

= b +

= b +

= b +

= b +

(x + ak + b)(cik + aj)

(x + ak + b)(at + a¡ + ak)(cik + aj)

(x + ak + b¡ + bj){cik + aj)

(x + ak + b,){cik + aj) + bj

(x + ak + b)(cik + bk + aj)(cik + aj)

(b¡ + (x + ak){cik + bk + ajj){cik + aj)

(b, + bk + (x + ak)(cik + ajj){cik + aj)

(b¡ + bk)(cik + aj) + (x + ak)(cik + aj)

(x + ak)(cik + aj).

Using this and bk < bj + cjk and letting w = (x + ak)(cik + aj) we see that

agx + b)= [(x + ak + b)(cik + aj + b) + cJk + b](at + a} + b)

= [(x + ak){cik + aj) + cJk + b](a¡ + aj + b)

= b + [(x + ak){cik + aj) + Cjk](a¡ + aj + b)

= b + (w + cjk){ai + a, + ak)(a, + a¡ + b)

= b + (w + Cjk){a¡ + aj + bk)

= b + (w + cJk)(w + cjk + bj)(ai + aj + bk)

= b + (w + cjk)[bk + (a,. + aj){w + cjk + bj)]

= b + (w + cJk)[bk + bj + (a: + aj)(w + cJk)]

= b + (w + cJk)(bk + bj) + (a, + aj){w + cjk)

= b + (a, + aj)(w + cJk)

= b + a0(x).   □

Again   maintaining  the   notation   of   Lemma   1.1,   we  let  a?   be   the

automorphism of aj + aj /0 obtained from atJ by doubly priming everything.

Lemma 1.3. If x G a¡ + a,/0, then xb G aj + aj'/O and a¡j(xb) = ba0(x).



VARIETY OF MODULAR LATTICES 283

Proof. First note that

xb = x(a¡ + aj)b = x(b¡ + bj) < b, + bj = aj + aj.

Now

b(cik + aj) = (¿>,. + bj + bk){cik + aj)

= bj + (b, + bk)(a¡ + ak)(cik + aj)

= bj + (6, + bk)(cik + (a,- + ak)aj)

= bj + (b, + bk)cik

= bj + bcik

= aj + c;k.

Furthermore

b(x + ak) = (bt + bj + bk){x + ak)

= bk + (¿>,- + bj)(a¡ + aj)(x + ak)

= bk + (6, + bj)x

= bk + bx

= bx + aj.

Let w = (x + ak)(cik + aj) as before. Since bj + bk = bj + bcJk, w < a, + cik,

and Cjk(Oj + cik) = 0, we have

b{™ + cjk) = (bt + bj + bk)(w + cjk)

= (bcik + bj + bcJk)(w + cjk)

= bcJk + (bcik + bj)(w + cJk)

= bcJk + (bcik + bj)(aj + cik)(w + cjk)

= bcJk + {bj + bcik)w

< bcjk + bw

< b(w + cjk).

Hence we have equality all the way across. Thus

ai(xb) = ((xb + bk)(bcik + bj) + bcjj)^ + bj)

= b((x + ak){cik + aj, + cJk)b(a¡ + aj)

= bay(x).    □

Lemma 1.4. a¡j(a¡) = c¡j and <x¡j(aj) = a,. Consequently, if x is a relative

complement of a¿ in a¡ + a,/0, then so is ot¡j(x).
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Proof. This follows from easy calculations.   □

Let [a¡, Cy\ i = 1, . . . , n,j = 2, ...,«} be an «-frame in a modular lattice

L, n > 3, and let r be a natural number. We say that {a¡, cXj) is an n-frame of

characteristic r if a[2(aj) = ax where ax2 is given in (1.5) and a[2 is ax2 iterated

r times.

Example. In L = L(RR") it is easy to see that the submodules

R(—l,t,0,...,0) correspond in a one-to-one fashion to the elements of R.

By   elementary   linear   algebra,   aX2(R(— 1, /, 0.0)) = R(— 1, t +

1, 0, ... , 0). Since ax = R(— 1, 0, . . . , 0), the equation a[2(ax) = ax holds in

L if and only if r divides the characteristic of R.

Now let {a¡, cXJ) be an «-frame in an arbitrary modular lattice L and let r

be a natural number. Let b2 = a2(arX2(ax) + aj) and let

b\ = ax(b2 + cX2),   b¡ = a¡{bx + cx¡),   i = 3, . . ., «.

Note that b2 = a2(bx + c12) as

a2(bi + cX2) = a2(ax(b2 + cx2) + c12)

= a2(a, + cx2)(b2 + cx2) = a2{b2 + cx2) = ¿>2.

Let ¿> = 2?= ,£>,..

Lemma 1.5. Let [a¡, c'y) = {a¡ + b, cXj + b) be the n-frame given by

Lemma 1.1 using the b defined above. Let a'X2 be the automorphism (1.5)

obtained by using the frame {a'¡, c'y). Then

(«'i2)r(ö,') = a'x.

Proof. By Lemma 1.2

(a'X2)r(ax + b) = a'x2(ax) + b

= arX2(ax) + b + a2{a[2{ax) + aj)

= («Í2(a,) + a2)«2(ai) + ax) + b

= (ax + aj)(arX2(ax) + ax) + b

= a¡2(ax) + ax + b

since aX2(ax) + a2 = ax + a2 by Lemma 1.4. However,

ax + b2 = (ax + a2)(ax + arX2(ax)) = ax + arX2(ax).

Thus a, + b > ax2(ax). Hence (a'i2)r(ai) = ax + b = a\, as desired.    □

Theorem 1.6. Let M and L be modular lattices and let f be a homomorphism

from M onto L. If {a¡, cXJ} is an n-frame of characteristic r in L, then there is

an n-frame {a¡, cXj) of characteristic r in M such thatf(aj) = a, andf(c¡j) = ctj,

i,j =  1, ...,«,/ 7¿= /.
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Proof. The corresponding result for «-frames (without regard to

characteristic) was proved by András Huhn [11] (a proof is also given in [5]).

Using this result we see that there is an «-frame {¿r„ cXj) in M such that

f(a~j) = a, and/(Cy) = ty. Let ax2 be the automorphism of ax + a2/0 given by

(1.5) using the frame [a¡, cXJ). Define b2 = ä2(ä[2(ä,) + äj) and

n

b\ = ax(b2 + c12),   bj = ai(bx + cxj),   i = 3, . . . , n,   b = 2  b¡.
i=i

By Lemmas 1.1 and 1.5, (ö, + b, cXJ + b) is an «-frame of characteristic r in

M. Since {a¡, cXJ) has characteristic r by hypothesis,

f{b2) = /((«i2(«i) + âj)â2) = (arX2(ax) + aj)a2 = (a, + aj)a2 = 0.

Since b~/0 is projective to b2/0 in M,f(b~) = 0. Thus/(¿) = 0. Consequently,

f(a¡ + b) = a¡ and /(c« + b) = c», proving the theorem.   □

Theorem 1.7. Let {a¡, cXJ) be an n-frame in a modular lattice L. Suppose

0 < bx < c, < ax. Let

b¡ = at{bx + cXi),   c, = ö,.(c, + cXi),       i = 2, . . . , «;

6 = 2"=i ¿,-, c = 2"=i c,. Then {a¡c + b, cXJc + b) is also an n-frame.

Moreover, if {a¡, cXj) is an n-frame of characteristic r, then so is {acc + b, CyC

+ b). Furthermore

ax + a2/0 D cx + c2/bx + b2S c(ax + b) + c(a2 + b)/b

/n n n .   n

2 c(a, + b) ^ c, + c2 + 2 fl,/*i + b2 + 2 «, Q 1/2  «<•
, = 3 1 = 3 1-3 '    /-3

Proof. Since (a, + b)c = a,c + ¿> = c, + ¿>, (c,y + è)c = c,yc + b, the first

statement follows from two applications of Lemma 1.1. If {a,, cXj) has

characteristic r, then so does {ca¡, ccXj) by Lemma 1.3. By Lemma 1.2

{ca¡ + b, ccy + b) has characteristic r as well. Straightforward calculations

establish the last part of the theorem,   fj

2. The main result. Let F and K be countably infinite fields with char F =

p and char # = q for distinct primes /> and q. Let Lp = L(FF4) be the lattice

of subspaces of the /"-vector space F4. Similarly Lq = L(KK4). Lp contains

the «-frame described in the example of §1. Namely, let a¡ G Lp, i =

1, 2, 3, 4, be the subspace of vectors which are zero in every coordinate

except possibly i. Let ctJ, i,j = 1, 2, 3, 4, / ¥=j, be the subspace of those

vectors which are zero in all coordinates except / andy' and whose coordinates

sum to zero. Thus c,2 is the subspace generated by (— 1, 1, 0, 0). Let a\, c'y be

the corresponding elements in Lq. It is easy to see that {a¡, cXj) is a 4-frame of

characteristic/) and {a[, c'XJ) is a 4-frame of characteristic q. Since |F| = \K\

= w, the two-dimensional quotient sublattices ax + a2 + a3 + a4/a3 + a4 of
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Lp and a\ + a'2/0' of Lq are both isomorphic to Mu (the countable two-

dimensional lattice). Let 0 be a lattice isomorphism from ax + a2 + a3 +

aj a3 + a4 onto a\ + a'2/0' such that

a(ax + a2 + a3 + aj) = a\ + a2,

a(a3 + aj) = 0\

o(ax + a3 + aj) = a\,

a(a2 + a3 + aj) = a'2,

a(cx2 + a3 + aj) = c'x2. (2.1)

(The first two equations must hold.) Our lattice L is defined on the disjoint

union of Lp and Lq. The order on L is the transitive closure of the order on

Lp, the order on Lq, and the order x < a(x), x G a, + a2 + a3 + a4/a3 + a4.

It is easy to see that x < y holds in L if and only if x and v are both in Lp or

Lq and x < y holds there, or x G Lp, y G Lq and there is a z G a, + a2 + a3

+ a4/a3 + a4 such that x < z and a(z) < v. In L we let

1 = ax + a2 + a3 + a4,       1' = a\ + a'2 + a'3 + a'4,

0' = a'xa'2,       0 = a,a2.

Note that 0 is the least element of L and 1' is the greatest. Also note that

1/0 = Lp and l'/0' = Lq in L. Let 9 be the congruence generated by

{(x, a(x)): x G \/a3 + aj). L/6 is the lattice obtained from L by identifying

x and a(x), i.e., L/9 is the lattice obtained from Lp and Lç using the usual

Hall-Dilworth construction. The reader can check that L/9 is a simple lattice

of length six. Moreover L is a subdirect product of L/9 and the two element

lattice. Thus, once we have shown that L is not in the variety generated by

finite modular lattices, it will follow that L/9 is also not in this variety.

0

Figure 1
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The sublattice of L generated by {a¡, a\: i = 1, 2, 3, 4} is a finite distribu-

tive lattice D, diagrammed in Figure 1.

Notice that \/a3 + a4 s a'x + a'2/0'.

Theorem 2.1. L is a modular lattice not in the variety generated by all finite

modular lattices.

Proof. L is a modular lattice by [4] and [9]. Let cDlc/ be the class of all

finite modular lattices. By Birkhoffs theorem the variety generated by 9Hy is

HSPi^lLf), the class of all homomorphic images of sublattices of direct

products of lattices in 91t,-. If L G HSPi^lf), then there would be an

M G SPi^ílf) and a homomorphism from M onto L. We will show that this

is impossible by showing that whenever M is a modular lattice mapping

homomorphically onto L then M is not residually finite (= a subdirect

product of finite lattices). Of course, M G SPCdtj) implies M is residually

finite.

Thus we suppose M is a modular lattice and /is a homomorphism from M

onto L. Most of this section will be occupied in showing that a great deal of

the structure of L can be pulled back through / into M. To begin with we

note that the sublattice D of L diagrammed in Figure 1 is a projective

modular lattice. This follows from Mitschke's and Wille's result that a finite

distributive lattice is a projective modular lattice if the join-irreducible

elements are closed under meets and the partially ordered set of these

elements contains no crown [17]. Alternately D is a direct product of the four

element Boolean algebra and the lattice diagrammed in Figure 2.

O
Figure 2

It is easy to see that both these lattices are projective modular lattices and

that the class of finite projective modular lattices is closed under finite direct

products [5]. Hence there exist a¡ and 3¡ in M, i — 1, 2, 3, 4, which generate a

sublattice isomorphic to D and such that f(a¡) = a¡ and fiä'j) = a'¡. In Lq ç L

we let e' = 2/^yC^. Notice that

e' = [(vx, v2, v3, v4) G K4: vx + v2 + v3 + v4 = 0)
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and that e' is a relative complement of a¡ in a\ + a'2 + a3 + a'4/0\ i =

1, . . . , 4, and that c'u = e'(a'¡ + aj), i ¥= j. Choose ê' G M such that

0' = ä'xä'2 < ë' < ä'x + ä'2 + â3 + ä'4

and/(¿O = e'. Set b' = 24_,ô,'ë', c = IT*_,(a7 + ê'), and

_ 4 _ _ 4

o" = 2 («? + &')*' = ¿' + 2 â;c'.
;=1 (=1

It is shown in [5] using straightforward calculations that {5¡c' + b', 1 < i <

4} generates a copy of 24 with b' and J' as least and greatest elements

respectively. Since a[e' = 0' in L, f(à~[ê') = 0' and thus f(b') = 0'. Similarly

/(c') = 1' and hence /(¿Je' + b') = a¡, i = 1, 2, 3, 4. Moreover, it is shown

that ê'd' is a relative complement of each a[c' + ¿T' in d'/b'. Furthermore,

fië'd') = e'. Hence if we define c'Xj = (a'xc + aje' + b')ë'd', then it is easy to

calculate that/(ciy) = c'y and that c'y is a relative complement of ñ\c' + b'

and 5jC' + b' in 5,'c' + ö,'c' + b'/b'. Consequently {a'¡c' + b'} U {c'x} forms

a 4-frame mapping to {a'¡, c'y] under/.

Now consider the elements äxd' + (5, + äj)b', ä2d' + (5X + ä2)b', ä3 + (äx

+ ä2)b', ä4 + (äx + äj)b'. Since fib') = 0', these four elements map under /

to a,, a2, a3, a4, respectively. Since d' < c', ä3 + ä4 < Ö' < b', äx < ä\, ä2 <

ä'2, and {a'¡c' + b', c'XJ} is a 4-frame, we have

(äxd' + (äx + a~2)b'}(ä2d' + ä3 + ä4 + (äx + ä2)b'}

< (d\c' + b')(ä'2c' + b') = 9.

Since the left-hand side is less than or equal to ax + â2, it is less than or equal

to (ä, + ä2)b'. But the other inequality is obvious. Now

[a3 + (a, + ä2)6')(ä, d' + ä2d' + ä4 + (Ö, + â2)è')

= (ä, + ä2)b' + ä3(äxd' + ä2d' + ä4 + (jäx + äj)b'j

= (äx + äj)b',

since äxd' +_ä2d' + ä4 + (äx + ä2)b~ < äx + ä2 + ä4. These calculations

show that dxd' + (ä, + äj)b', ä2d' + (äx + äj)b', ä3 + (ä, + äj)b', ä4 + (äx

+ äj)b' are independent over (jäx + äj)b', and hence generate a copy of 24.

Moreover,

(dx d' + a2d' + a3 + a4 + (ax + a2)b'"j + b' = ä',J' + ä'2d' + b'.

Clearly the right-hand side is larger, but

axd' + 9 > axd' + & = [äx + Ö')^' = ä\d',
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from which the opposite inclusion follows. Now

(äxd' + ä2d' + ä3 + ¿4 + (äx + äj)b')b'

= ä3 + ä4 + {jäx + ä2)b' + (äxd' + ä2d'}b'

= ä3 + ä4 + (äx + a~j)b'.

Consequently,

äxd' + ä2d' + ä3 + ä4 + (äx + ä2)b'/ä3 + ä4 + (äx + äj)b'

/> a\d' + ä'2d' + 9/9 = a\c' + d'2c' + 9/9.

Here we have used ä'xc' = ä\d' which follows easily from the definitions (cf.

[5]). It now follows that the sublattice of M generated by {a¡c' + b'} u

{äxd' + (äx + ä2)9, ä2d' + {äx + ä-^b', ä3 + (äx + äj)9, ä4 + (â, + ä^b'}
is the lattice D diagrammed in Figure 1.

Thus, changing notation, we see that there exist {äj} U {a'¡} u {c'y} C M

such that

f(d) = di,  f(5¡)-5¡,  /(%)-%,

and {aj c'Xj} is a 4-frame, and {a¡, a¡} generates D. Let ä'x2 be the

automorphism of â'x + â'2/Q' given by (1.5) relative to the frame {a'¡, c'y). Let

b'i = ä'2(ä'x + a'x\(ä\)) and

b\ = ä'x(92 + c'X2),     b; = ä;(9x + c\),     9 = 2 bj
i=i

Then by Lemma 1.5 {a¡ + P, c'XJ + b'} forms a 4-frame of characteristic q.

Since the frame {a'x, c'XJ) in L has characteristic q, it follows that/(¿>') = 0'

and thus

f(á¡ + 9) = a¡,       f(c¡j + 9) = c¡j.

Moreover f{a¡ + (äx + äj)b') = a¡, i = 1, 2, 3, 4, and calculations similar to

the above show that {a¡ + (¿z, + a2)b'} u {a¡ + 9} generates a sublattice

isomorphic to D.

Changing notation again we see that there exist a'¡, c¡,, a¡ such that their

images under/are a'¡, c'y, a¡ and {a'¡, c'XJ} is a 4-frame of characteristic q, and

{ai, äj) generates a copy of D.

Since c23 + c24 < a2 + a3 + a4, it is possible to choose ë G M such that

f(ë) = c23 + £34 and Ö < ë < ä2 + ä3 + ä4. Let cX2 = c'x2(äx + äj) and

notice that/(c12) _= c12 since c'x2(ax + aj) = c12 by the construction of L. Let

ë = cx2 + ë. Let 9 = 24=, a¡e, c = n4_ ,(ô, + ë) and
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4

I
;=1

d = 2 (ai + b)c = 2 a,c.

cij = {aic +ajc +b)ed = (a,c +äjd +b)e = (a,c + a,c)e +Z>.

As before {a¡c + é, c,7} is a 4-frame mapping to (a,, cXj) under /. Easy

calculations show that

âxc+â2c +b/b s d/ä3c +ä4c +b  /> d +0'/b +0'

= âxc +â2c +Ô'/âxë +â2ë +Ö'

ç r, + ä2/Ö'.

This last quotient is illustrated in Figure 3.

a\ + a',

Note that

cx2 + Ô' = c'X2(äx + äj) + 0' = c'12(öi + ä2 + Ö') = c'x2(ä'x + äj) = c'x2.

Also

«i + ?i2 - ¿"i + eJi(ä| + ä2) = (äx + c'12)(ä, + ä2)

= (ä, + Ö' + c'12)(ä, + ö2) = (ä; + J2)(ä! + äj) = o", + »j.

Similarly J2 + c12 = äx + ä2 and äxcX2 = 0 = ä2cx2. Now since ë12 < ë,

ë12 + äxe = (c12 + â,)ê= (c12 + â2)ë = c12 + ä2e.

Similarly, since ëI2 < ë < c,

C,2 + Ö,C = cx2 + ä2c.
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Define b\ = axe + 0\  b¡ = a[{b\ + c'Xi), c\ = äxc + 0', c'¡ = a¡(c\ + c'y).

Then, since ë'12 = 0' + ë12

b'2 = â'2(âxë +Ö' + c'x2) = â'2(âxë + W + ëX2)

= â'2(â2ë +Ö' + cX2) = â'2(â2ë + c'X2)

= â2ë + â'2c'X2 = â2ë + 5'.

Similarly

c'-, = a,c + 0'.

Let b' = b\ + b2 + b3 + b'4, c' = ë', + c2 + c3 + c^. By Theorem 1.7 {a¡c'

+ b', c'yc' + b'} is a 4-frame of characteristic q. Moreover

d/ä3c + ä4c + 9/1 ä'xe' + ä'2c' + 9/9, (2.2)

(¿,-ë + 9) + 9 = ä\e' + 9,       i = 1, 2, (2.3)

ë12 + 9 = ë'I2ë' + 9. (2.4)

To see these first note that

ä\c' = ä'Aäxc +ä2c + 0' + ë3 + c'j) = ¿",ë + 0',

since ä2c + c3 + c'4 < ä'2 + ä'3 + ä'4. Similarly ô"2ë' = â2ë + 0'. Thus, since

â3ë + ä4c < b'

4 4

d +b' = 2 ^c + b' = 2 ap +0' + é'
(-1 ;=1

= ä\c' + â2c' + 9,

d-9 = d(ä'x + ä'2)(äxe +a2ë + 5' + 9'3 + bj)

= d{axë +a2ë + Ö' + (ä\ + ä'2){9'3 + 94)\

= d(axë +a2ë + Ö')

= axë + a2ë + (äxc + ä2c + ä3c + ä4c)0'

= âxë +ä2e + (äxc +ä2c)0' + ä3c +ä4c

= â3ë + â4ë + b.

_ Since a¡c + 9 + 9 = a¡c + Ö' + 9 = a'¡c' + 9, (2.3) holds. Now, since
ë < ä2 + ä3 + ä4 and ë < ë < ë,
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c12 = (axc +a2c)e +b

= (äxc +ä2c)(äx + äj)ycx2 + ë) + 9

= (äxc +ä2c)(cX2 + (äx + äj)e\ + b

= (äxc + ä2c)(cX2 + â2ë) + b

= cX2(äxc + ä2c) + â2ë +b

< c'X2c' + 9.

In the last step we have used ë,2 < ë'12, äxc + ä2c < ë', and â2ë < b < b'.

Thus cX2 + b' < c'X2c' + 9. However {âxc + b, à2c + b, cx2) and {ä'xc' +

b, ä2c' + 9, c'X2c' + 9} generate M3 (since they are each a part of a frame).

Using (2.2) and (2.3) one can check that äxc + ä2c + b/b /> ä'xc' + ä'2c' +

9/9 with the image of à)c + b equalling ñ'¡c + 9, i = 1, 2. Thus ä'xc' + b',

ä'2c' + 9, cx2 + 9 also generates M3. Since cX2 + 9 < c'X2c' + 9 modularity

implies they are equal, proving (2.4).

Thus changing notation again we see that there exist a\, a'¡, ëy, c'y in M with

f(äj) = a¡, etc., {äj, cXj) a 4-frame, {a'¡, c'y) a 4-frame of characteristic q.

Moreover, the sublattice generated by {a¡, a'¡) is D by (2.2) and (2.3) and, by

(2.4), cX2 + Ö' = ë'12.

Let äX2 be the automorphism of äx + ä2/0 given by (1.5) relative to the

frame {a¡, cXJ). Let

_4_

b2 = ä2(äx + âf2(â,)),   bx = äx(b2 + ë12),    b¡ = ¿¿(ô, + ë,,),   6 = 2 b,.
i= 1

By Lemma 1.5 {a¡ + b, cx¡ + b) is a 4-frame of characteristic/?. Moreover

f(ä, + 9) = a,, etc. Let b\ = bx + 5', b'¡ = á'¡(b'x + c'Xi), and 9 = 24_,¿/.

Since b2 + c12 = bx + cx2, and c'x2 = c12 + Ö'

b'\ + c']2 = è, + 5' + c12 = ¿2 + c12 + 5'.

So that

¿2 = ä'2{9\ + ë'12) = ä'2{92 + ë12 + ö')

= ¿2 + Ö' + â2c12 = ¿2 + Ö'.

By Theorem 1.7 (with c, = ax) {ä[ + 9, c'y + 9} is a 4-frame of character-

istic q. Moreover

äx + ä2 + ä3 + ä4/ä3 + äj + b /> ä\ + ä'2 + b'/b'

and the image of a¡ + ä3 + ä4 + b under this map is a'¡ + 9, i = 1, 2. To see

this note that 5X + 52 + ä3 + a4 + 9 = a', + 52 + 6', since (X < 6' and ô"3 +

ä4 < è'. Also
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(ö, + ä2 + ä3 + äj)9 = (ä, + ä2 + ä3 + ä4)(bx + b2+ b'3 + b'j)

= bx + 92 + (äx + ä2 + ä3 + ä4){ä'3 + ä'4){9'3 + 9j)

= bx + b2 + ä3 + ä4 = ä3 + ä4 + b.

Since b' > Ö' and ö, + Ö' = ä[, i = 1, 2, we have

ä, + b' - à) + 9.

Thus with our final change in notation we have elements a„ a'¡, ëy, c'y in M

such that f(äj) = a¡, etc., {a¡, ä[) generates D, {a¡, cXJ} is a 4-frame of

characteristic/), and {ä[, cXj) is a 4-frame of characteristic q.

We will now show that M is not residually finite. This will be done with the

aid of von Neumann coordinatization. We now review the results from [19]

which we will require. In Part II of [19], von Neumann coordinatizes

complemented modular lattices containing an «-frame with « > 4. In the first

part of the proof he uses the lattice to construct a ring (the auxiliary ring) and

shows that it is in fact a ring with 1 (cf. [19, pp. 130-157, especially Theorem

8.4]). This part of the proof does not use complementation. Thus associated

with any «-frame, « > 4, in a modular lattice is an auxiliary ring.

Now suppose our lattice M is residually finite. Since a¡, ä[, cXj, c'y are

inverse images of the cooresponding elements in L, they are distinct elements

in M. Since there are only finitely many of them, there is a homomorphism g

mapping M to a finite modular lattice A which is one-to-one on the set

{ä), a¡, Cy, c'Xj: i = 1, 2, 3, 4, / = 2, 3, 4}. Since g is a homomorphism

{g(ñj), g(Cy)} is a 4-frame of characteristic/? in A. The auxiliary ring defined

by this frame has for its underlying set

R = { x G A : x + g(ä2) = g(äx) + g(äj) and xg{äj) = g(Ö)}    (2.5)

(cf. Definition 6.1 and Lemma 6.1 of [19, p. 130], Ly is defined on p. 95 of

[19]). If x, y G R, then their sum in R, denoted here x © v, is defined to be

[(* + g{äj)){g{äj) + g(cX3)) + {y + g(cx3)){g(3j) + g(â3))]

■ U(ä,) + g(äjj)

(cf. Definition 7.5 and Theorem 7.1 of [19]). The element g(äj) G R is the

null element of R and g(ë12) G R is the unit of R. Since (c12 + e13)(ä2 + äj)

= ë23, we see upon comparing the addition in R to the definition of ax2 given

in (1.5) that if x S R, aX2(x) = x © 1. Since the frame {g(a¡), g(cXj)} has

characteristic p, ctx2(g(äx)) = g(äx). This says that R satisfies 0 = 0+1

+ • • • + 1 (p l's), i.e., R has characteristic/?. Since A is finite, R is finite by

(2.5). This implies \R\ = p", for some «, since the underlying group of R is a

/?-group. Moreover, since g(äx) ^ g{cxj) are both in R, \R\ > 2.
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{g(a!)> g(c\j)} is also a 4-frame in A. This frame determines a ring R' with

underlying set

R' = [x G A: x + g(ä'j) = g(ä'x) + g(ä'j) and xg(ä'j) = g(Ö')}.

Since {g(â/)> g(c'xj)} is a 4-frame of characteristic q, arguments as above

show that \R'\ = qm for some m.

Since (ä„ a'¡] generates the sublattice D in M, we have the transposition

äx + ä2/0sä\ + ¿yÖ'.

Thus ä, + ä2/Ö s ä\ + ä2/0' via the map x\-*x + Ô'. Note that ä2\-+ä'2.

Since g is a homomorphism, xh>x + g(O') is an isomorphism from g(äx) +

g(äj)/g(0) onto g(5'x) + g(ä2)/g(Ö') which sends g(aj) to g^^. Note that

R C g(äx) + g(ä2)/g(Ö) and R' Ç g(ä') + g(ä')/g(Ö'). Checking the defini-

tion of R and R' one sees that the above isomorphism restricted to R is a

bijection from R onto R'. Thus/?" = \R\ = \R'\ = qm, a contradiction since

\R\ > 2. This completes the proof.

3. Further results. If T is a variety of lattices, we let Fc^k) denote the free

T-algebra on k generators. FL(k),FM(k) and FD(k) denote the free, free

modular, and free distributive lattices, respectively. If k is infinite note that

every proper quotient sublattice of F^k) has cardinality k. It is not hard to

see that every proper quotient sublattice of FL(u>) satisfies no nontrivial

lattice identities. The corresponding result for modular lattices is false. It is

shown in [8] that if M3 is a sublattice of a modular lattice L then a/b (see

Figure 4) is Arguesian.

Figure 4

Hence FM(k) contains quotients satisfying the Arguesian identity. In this

section we show that FM (k) has a proper distributive quotient and thus there

are arbitrarily large distributive lattices which can be embedded into free

modular lattices. This should be compared with the result of Galvin and

Jónsson that there are no uncountable distributive lattices embeddable in free

lattices. The above result has the corollary that FD(k) is embeddable into

FM(k) for each infinite k. To see this let a/b be a proper distributive quotient

of FM(k). Let k' «■ k — (var(a) u var(è)). Then \k'\ = \k\ and it is not hard to

prove that the sublattice generated by {ax + b: x G k'} is isomorphic to
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FD(k). (This also follows from a more general unpublished result of Joel

Berman.) We mention one contrasting example. Let °V be the variety gener-

ated by all subspace lattices of vector spaces over a fixed field F. Then the

proper quotients of Fa^u) satisfy no identities other than those of CV.

Theorem 3.1. Let k be a cardinal, k > 5. Then FM(k) contains a proper

distributive quotient.

Proof. Let L be the lattice constructed in §2. We shall see below that L

can be generated by five elements. Thus let / be a homomorphism from

FM(k) onto L. By the proof of Theorem 2.1, with FM(k) in place of M,

FM(k) contains two 4-frames {a¡, cXj} and {a'¡, c'Xj}, the first of characteristic

p, the second of characteristic q such that the sublattice generated by {a¡, aj.

i = 1, 2, 3, 4} is D (see Figure 1) and c'X2 = cX2 + a\a'2. Here we have omitted

the bars on a¡, etc. As before we let 0 = axa2 and 0' = a'xa'2; but note that

neither of these elements is the least element of FM(k). We shall show that

ax/0 is distributive. If this is not the case, then a,/0 contains M3 as a

sublattice. We may assume that ax is the greatest element of M3 and 0 is the

least element. For if this is not the case then, using Theorem 1.7, we can

adjust the elements at, cXj, a[, c'XJ so that it is true. This type of argument was

given several times in §2 and so will not be repeated here.

Let bx, b5, dX5 be the atoms of M3. Thus bx + b5 = bx + dX5 = b5 + dX5 =

ax and bxb5 = bxdX5 = b5dl5 = 0. Define b2, . . . , bs as follows

b¡ = 0,(6, + cx¡),       i = 2, 3, 4,

b, = a,_4(bs + c„._4),       i = 6, 7, 8. (3.1)

It is easy to see that bx, . . . , bs are independent over 0. Let e = cx2 + c13 +

cX4 and let e* = e + dX5. As was mentioned earlier, e is a relative complement

of a¡, i = 1, 2, 3, 4, in ax + a2 + a3 + a4/0 and thus e(ax + aj) = cXJ (cf. [10]).

From this one can show that e* is a relative complement of each bj in the

same quotient. If we now define dXJ = e*(bx + bj), / = 2, . . . , 8, it is easy to

see that {b¡, dXJ: i — 1, . . . , 8,/ = 2, . . . , 8} is an 8-frame. Furthermore, for

j = 2, 3, 4, dy = Cy(bx + bj). To see this note since cXj < e < e*, dXJ = e*(bx

+ bj) > Cy(bx + bj). However using equation (3.1) one can check that dXJ

and Cy(bx + bj) are both relative complements of bx in bx + ¿?,/0. Now

modularity yields dXj = cXj(bx + bj). From this observation and Theorem 1.7

it follows that {bx, b2, b3, b4, dx2, dX3, dX4) is a 4-frame of characteristic p,

since {a¡, cXj} has characteristic/?.

By Theorem 5.1 of [19, p. 127], there is a projective isomorphism from

bx + b2 + b3 + b4/0 onto bx + b2 + b5 + b6/0 = ax + a2/0 (as bx + b5 =

ax, b2 + b6 = aj). Moreover this isomorphism maps dx2 to dX2, dX3 to dX5, and

dX4 to dX6. Thus {bx, b2, b5, b6, dx2, dX5 dX6) is also a 4-frame of characteristic

P-
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Since ax/0/< a'x/0', the elements b\ = ¿?, + a'xa'2, b'5 = b5 + aja2, ff"i5 = ff1^

+ a\a'2 together with a\ and 0' form a copy of M3. Elements

b\, . . . , b's, d'X2, . . . , d'xi can be defined in a manner similar to

bx, . . . , bs, dx2, . . . , dxs. Arguments similar to those given above show that

{b\, b'2, b'5, b'6, d'X2, d'X5, d[6} is a 4-frame of characteristic q.

We claim that b¡ = b¡ + 0' for i = 1, 2, 5, 6 and ff"í2 = dX2 + 0', d'X5 = dx5 +

0', and d{6 = dX6 + 0'. For ¿?'„ b'5 and d'X5 the above hold by definition. By

definition b'6 = (b'5 + c'x2)a'2. Thus, as 0 = (a, + ajß',

K = (b5 + cx2 + 0')(a2 + 0')

= (b5 + eI2 + 0')(ax + aj)a2 + 0'

= (b5 + cX2)a2 + 0'

= b6 + 0'.

Similarly b'2 = b2 + 0'. To handle the remaining formulas we shall first prove

that dx2 + dX5 + dX6 = cX2 + dX5. Indeed, since bx + e* = ax + a2 + a3 + a4,

and i/15 + bx = ax, b2 + b6 = a2,

dX5 + ff*I2 + dX6 = rfls + e*(bx + bj) + e*(bx + bj)

= dx5 + e*(bx + b2+ e*(bx + b6))

= dx5 + e*(b2 + (e* + bx)(bx + b6))

= dx5 + (dX5 + cX2 + cX3 + cX4)(b2 + bx + bj)

= (dX5 + cX2 + cX3 + cX4)(dX5 + b2 + bx + b6)

= (dX5 + cX2 + cx3 + cX4)(ax + aj)

= dX5 + cx2 + (c13 + cX4)(ax + a2)

= dx5 + cx2.

(The reader can verify (c13 + cX4)(ax + aj) = 0.) Now by definition

d'x6 = (d'X5 + c'X2 + c'X3 + c'x4)(b'x + b'j)

= (dx5 + cX2 + c'X3 + c'X4)(bx + b6) + 0'

= (dX5 + cX2 + c'i3 + c'X4)(ax + a2)(bx + b6) + 0'

= (dx5 + cx2)(bx + b6) + 0'

= (dx5 + dx2 + dX6)(bx + b6) + 0'

= dX6 + 0'.

Similarly, d'X2 = dX2 + 0'.

We know that ax + a2/0/1 a'x + a2/0'. Thus x^*x + 0' is an isomorphism

of these quotients. The above calculations show that this isomorphism sends

the 4-frame {bx, b2, b5, b6, dx2, dX5, dX6) onto the 4-frame

{b[, b'2, b'5, b'6, d'X2, d'X5, d'Xfj). It follows that the sublattices generated by these
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two 4-frames are isomorphic, and hence that {bx, b2, b5, b6, dx2, dX5, dX6) is a

4-frame of characteristic q as well as characteristic /?. In this frame ax5 (cf.

(1.5)) is given by

«is (*) = ((* + bj)(dx2 + b5) + d52)(bx + b5).

Thus af5(bx) = bx and af5(bx) = bx. Since p and q are relatively prime, it

follows that a15(¿?j) = bx. However, by Lemma 1.4, a15(¿?i) = dX5. Thus bx =

dX5, a contradiction.   □

The above proof yields the following corollary.

Corollary 3.2. Let M be a modular lattice containing 4-frames {a¡, cXJ) and

{aj, c'y) of characteristics p and q, respectively, for distinct primes p and q. Also

suppose that ax + a2/axa2/1 a\ + a'2/a'xa'2 and a\ = ax + a\a'2, a'2 = a2 +

a\a'2, and c'X2 = cX2 + a'xa'2. Then ax/axa2 is a distributive sublattice of M.   □

We shall use this corollary and the lattice L of §2 to show that

epimorphisms in the category of modular lattices need not be onto. Let

A = {(x, y) G L X L: x < v} and let B be the sublattice of L X L genera-

ted by A and (ax, 0). Let/ be the natural embedding of A into B. We shall

show that / is an epimorphism, although it clearly is not onto. Let g be a

homomorphism from B to a modular lattice C. We shall show that g is

determined by its values on A. It then follows easily from the categorical

definition of epimorphism that/is an epimorphism. Since B is generated by A

and (a,, 0), g is determined by its values on A and (a„ 0). The lattice L is

embedded into A, and hence into B by the diagonal embedding, x -* (x, x).

Thus B contains elements ((a„ aj), etc.) satisfying the hypotheses of Corollary

3.2. Since these hypotheses are preserved by homomorphisms, this corollary

implies that g(ax, aj)/g(0, 0) in C is distributive. Now (a,, 0) is a relative

complement of (0, aj) in the quotient (ax, ax)/(0,0). Thus g(a„ 0) is

determined by g(0, ax) since relative complements are unique in distributive

lattices. Hence g is determined by its restriction to A. Thus we have proved

the following theorem.

Theorem 3.3. Epimorphisms in the category of modular lattice and lattice

homomorphisms are not necessarily onto.    □

Theorem 3.4. FM (5) is not residually finite, and there is a lattice identity

with five variables which holds in all finite modular lattices but not in all

modular lattices.

Proof. First recall that L depends on the choice of the fields F and K and

the isomorphism a from ax + a2 + a3 + a4/a3 + a4 to a\ + a'2/(y. The proof

of Theorem 2.1 depends only on L having the two frames {a¡, cXj) and

{a'¡, c'y). Thus we need really only consider the sublattice L' of L generated
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by {a¡, Cy, a'¡, c'y', i = 1, 2, 3, 4,j = 2, 3, 4}. It is easy to see that L' has the

same form as L, for certain subfields F' Ç F and K' C K. Thus we may

assume that L is generated by {a¡, cXj, a'¡, c'Xj}. We mention that for any fields

F and K such that \F\ ™ \K\ «■ a and char(F) = p =£ q = char(AT) one can

choose the map a so that the L thus obtained is generated by {a¡, cXj, a\, c'xj).

We shall complete the proof by showing that a¡, cXj, a'¡, and c'y are in the

sublattice of L generated by

G = {a'3 + a'4, c'23, c'X3 + c'24, ax + a2, c13 + c24).

First

(a'3 + a'j)c'23 = (a'3 + a'j)(a'2 + a'j)c'23 = a'3c'23 = 0'.

Thus 0' G <G>. Hence ax + a2 + 0' = a'x + a'2 G <G>. Now

(c23 + «3 + a4)(fl'i + aj) = (a2 + a3 + a;)(ff', + a2) = a2 G <G>

and

(c23 + ai + a2)(a3 + a4) = a3G<G>.

Moreover,

(c'n + c'24)(c'23 + a\ + a'j) = (c'13 + c'24){a\ + a'2 + a'3)

=  C'l3 +  C24(ai  +  a2 + a3) =  C'\3 G  <G>.

and

c'24 = (Ct3 + c'14){c'23 + a'3 + a'4) G <G>.

Now

fl'l  " (a'l  + a2)(c'l3 + ö3)> Ai   = («3 + Ö4)(C24 + «i).

c'i2 = («Î3 + c23)(«i + a2)    and   CÍ4 = (cía + c24)(«'i + a'j)

are all in <G>. Thus {o/, c'u} Ç <G>. Now

ax + a2 + cX3 + c24 = ax + a2 + a3 + a4 = 1 G <G>

so a3 + a4 = 1 • 0' G <G>. Also a, = a'x(ax + aj), a2 = a'x(ax + aj), and cx2

= c'12(a, + a2) are in <G>. So

(c« + c24 + ax)(a3 + aj) = (a, + a3 + c24)(a3 + a4) = a3 G <G>.

Similarly

a4 = (c13 + c24 + aj)(a3 + a4),       c34 = (c12 + c13 + c24)(a3 + a4),

c13 = (c13 + c24)(a3 + a4+ ax),

and

^24 - (C13 + ^24)(«3 +  «4 + «2)

are in <G>. Finally c14 = (ax + aj)(cx3 + c34) is in <G>. Thus a„ a2, a3,

a4, c12, c,3, and c14 are all in <G>, showing that L is five-generated. The

theorem now follows.    □
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It is possible to construct explicitly the identity alluded to in the above

theorem. Let / be a homomorphism from FM (5) onto L. As in the proof of

Theorem 2.1, it is possible to choose a¡, cXj, a'¡, c'y G FM (5) such that/(ö,) =

a¡, and {ñ¡, cXj), {5¡, c'XJ} are 4-frames of characteristic /? and q, and the

sublattice generated by {à), ä'j) is D. The proof began by choosing inverse

images of a¡, etc., and modifying these, eventually obtaining the a¡, etc. Each

of these modifications can be explicitly carried out. In this manner a term for

äj can be constructed. By the last part of the proof of Theorem 2.1, the

equation äx = ä2 holds in all finite modular lattices but fails in L.

We close this paper with some open problems. The first one was suggested

to the author by Kirby Baker. Is the variety of modular lattices generated by

its finite dimensional members? (Cf. [6].) Does FM{d) have any infinite,

subdirectly irreducible sublattices? e.g. MJl The existence of such a sublattice

would of course imply that <31t is not generated by its finite members and if

such a sublattice had infinite length the answer to the first problem would be

no. Are there any infinite subdirectly irreducible projective modular lattices?

It is possible to show that the rational projective plane is projective in the

variety it generates, although it is not projective in 9H,. Are the finitely

generated free modular lattices weakly atomic? (Weakly atomic means that

every proper quotient contains a prime quotient. Alan Day has proved the

corresponding result for free lattices.) Is every splitting modular lattice (cf.

[16]) finite? The results of this paper show that the answer to at least one of

the last two questions must be no.
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