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A General Method of Approximation. Part I

By Staff an Wrigge and Arne Fransen

Abstract. In this paper we study two families of functions, viz. F and H, and show how to

approximate the functions considered in the interval [0,1 ]. The functions are assumed to be

real when the argument is real.

We define

r= {/; (0/(2 + *) =/G - *)> OO/W =/(0 = 0,
(iii) /( x ) is analytic in a sufficiently large neighborhood of x = 0},

H = {h\ (j) h([ + x) = -h{{ - x), (jj) A(0) = *{1) = 0,

ÜÜ) h(x) is analytic in a sufficiently large neighborhood of x = 0}.

The approximations are defined in the interval [0,1] by

minjf1   /(*).- S c„,*[*(l - x)]"\ x"(\-x)qdx

and

min j"'    h(x) - (1 - 2x) ¿ C„k[x(\ - x)]"     xq(\ - x)q dx,

where<¡r G {0,1,2,...}.

The associated matrices are analyzed using the theory of orthogonal polynomials, especially

the Jacobi polynomials G„(p, q, x). We apply the general theory to the basic trigonometric

functions sin(.x) and cos(x).

Introduction. This paper traces its origin from a wish to determine simple, accurate

and rapid approximations of the basic trigonometric functions sin(x) and cos(x).

We encountered this problem when repeatedly applying the Box-Müller transforma-

tion for generating bivariate normally distributed pseudo-random variâtes. But as is

often the case when starting with an analysis of a special example one discovers an

underlying more general pattern. The method found by us in [6], when approximat-

ing sin(x) and cos(x), could thus be applied to a much wider class of functions; see

[7]-
When measuring the "distance" between the functions and their approximations

we use the L2-norm. The required coefficients can then be determined from the

resulting linear equation system.

The calculation of accurate values of the required coefficients is difficult. The

associated Hankel matrices are as usual almost singular. We solve this problem by

explicit calculation of the inverse matrices. The necessary numerical values of the

associated integrals are determined using high-precision techniques.
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568 STAFFAN WRIGGE AND ARNE FRANSEN

Once recognized as "moment-matrices" the resulting Hankel matrices can be

analyzed using the theory of orthogonal polynomials (especially the Jacobi-

polynomials G„(p,q,x) with associated weight function w(x) = (1 — x)p~qxq~x,

x G [0,1]). Empirically observed peculiarities can then be proved, and results can be

generalized.

An even more thorough analysis of the methods used in [7] revealed that Bernstein

polynomials were involved. That made it possible to further generalize the methods

in [7]. The results thus found (see [8]) will be presented in part II.

The approximation method presented here consists of two parts. One can be

solved once and for all (i.e., inversion of the associated matrices), the other part

involves calculation of some integrals associated with the approximated functions.

1. Certain General Expansions.

a. The Symmetric Case. We state the main result of this section in the following

Theorem 1. Let f(x) be a function with the following characteristics:

(0/(i + x) = f(\ — x),f(x) is real when x is real,

(ii)/(0)=/(l) = 0,
(iii) f(x) may be expanded in a Taylor series around x = 0, and the radius of

convergence is greater than 1.

Then f(x) has an expansion of the form f(x) — 2^= x am[x(\ — x)]m valid at least in

the interval [0,1]. Expressions for the coefficient am are given by Eqs. (1.3), (1.6), and

(1.9).

To prove Theorem 1 we expand f(x) in a Taylor series around x = \, i.e.,

oo      f(2n)(\_\

i.i) **>=2   mH*-*) ■n = 0

where we have

(j-ir^ti-Mi-*)]-«=£ j (£)(-i)V[*(i-*)]<
k=0

Putting
oo

(1.2) f(x)=   2 am[x(\-x)T,
m=\

we get

oo      f(2v)(l\

0-3) ««, = (-»"• 2   ̂ #U)4-
v = m      \*"v>-

To proceed we also need the identity

I«/2]

(1.4)        (1-*)■ + *•= 2 -4_("-*)(_i)*[*(i-*)JJ

(1.4) is easily proved using Lagrange's inversion formula; see [6, p. 13].

From (i) we conclude that

(1.5) f(x)+f(\-x) = 2f(x).
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Using (1.5) and the expansion in (1.4) we get

00    f<n)((\\ [n/2]

2/W = ji«2o^I(";*)(-.)'M1-«)]'

An alternative expression of the coefficient am is then

n=2m

Writing

fix)- 1 L^rxV= 2«J*(i-*)]m
v=1 ' m=1

and identifying corresponding powers of x, we get the equation system

/<«>(o)    ["Z2) /■«-■«■ \
(1-7) ^r-=   2   („_2J(-1) «„-„,       «=1,2,3,...

M! ,=o

The solution of this equation system may be obtained using Lagrange's inversion

formula. Thus

,     , 1      dm~x

(1-8) am = —A-
v     ' m     m\ \ dxm~

which may be written

M
(»-*)' x = 0

(19) a   = V (m-l\(^ + ^-l)!/(m-,)(Q)
K     ' m       LA     v     )m\(m-\)]J K)

v = 0

Now suppose that g(x) is any analytic function satisfying only the condition (iii).

Then we may put f(x) = g(x — {-) + g({- — x) — g(— {) — g(|). We notice that

f(x) is symmetric around x = {-, and/(0) = /(l) = 0.

Example. We may expand

(1.10) e'<*-'/2> + e-«*-i/a> = e'/2 + e~'/2 +   f ûm[*(1 - x)]m,
m=l

where the coefficients am satisfy the recurrence relation

(1.11) (n + 2)(n + \)an+2 = (2« + 2)(2n + l)a„+1 + '2a„,

with starting values a0 = 2 coshGi), ai = -2/ sinh(^r).    D

Another more general possibility is to consider

f{x) = G(g(x), g(\ - x)) - G(g(0), g(l)),

where G(x, y) is any regular and symmetric function (i.e. G(x, y) = G(y, x)).

Evidently we have/G + x) =/(i — x) and an expansion of the form

00

(1.12) /(*) =   2 am[x(l-x)]m.
m=\

Suppose   that   g(x)   satisfies   a   functional   relation   of   the   form  g(l — x) —

H(g(x), F(x)) where H(x, y) and F(x) are "simple" functions. Approximating in
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the L2-norm, as indicated in Section 2a, we get a relation of the form

G(g(x), H(g(x), F(x))) - G(g(0), g(l)) «   £ c„,,[*(l - x)]".
n=\

If G(x, y) and H(x, y) are simple functions, we may sometimes solve the "identity"

with respect to g(x), which enables us to calculate g(x) even if the function does not

satisfy the conditions (i) and (ii).

Example. We put G(x, y) — x + y and g(x) — 1/T(1 + x). Then g(x) satisfies

the relation g(x)g(\ — x) = sin(trx)/iTx(\ — x).

Approximating in the L2-norm we get a relation of the form

ir(l+,)sm(^2+   |[jc(1 _,)]-.    D

r(l+x) trx(\-x) n=)

b. The Antisymmetric Case. The theorem corresponding to Theorem 1 is

Theorem 2. Let h(x) be a function satisfying the conditions

(j) h(\ + x) = -h({ — x), h(x) is real when x is real,

(jj)«(0) = /I(l) = 0,

(jjj) h(x) may be expanded in a Taylor series around x = 0, and the radius of

convergence is greater than 1.

Then h(x) has an expansion of the form h(x) = (1 — 2x)l™=xbm[x(l — x)]m valid

at least in the interval [0,1]. Different expressions for the coefficients bm are given by

Eqs. (1.16) and (1.19).

To prove Theorem 2 we expand h(x) in a Taylor series around x = {, i.e.,

°°      n(2n+\)(i\

<M4> »w=J0ferrf('-«  '
where we have

1

k = 0

(x - i)2""' = -\(l - 2x)f„ S   (l)(-l)kAk[x(l - x)]k.

Putting

(1.15) h(x) = (l-2x) 2 bm[x(\-x)]m,
m=\

we get

■»      L(2v+\)(l\

0-16) ^ = -K-irjm|^((^)4-

To proceed we will need an identity similar to (1.4), viz.

[<"-l)/2]   , .        .,

(1.17)    (1-*)■-*■ = (1 - 2*)     2        "     k     ])(-\)k[x(\-x)V
k=o     x        K       '

(1.17) follows easily from (1.4) when differentiating with respect to x.

From (j) we conclude that    ■

(1.18) h(x)-h(l-x) = 2h(x).



A GENERAL METHOD OF APPROXIMATION. PART I 571

Using (jjj) and (1.18) we get

A<»)(0)

n=\        "• A: = 0

The coefficient bm in the expansion (1.15) is then given by

I     |       h^Mln-m-\
n=2m+\

Multiplying (1.15) with (1 — 2x) we get, using Lagrange's inversion formula,

2A(*) = -1   ̂ (l-2x)  T   ("-í-1)(-l)*Wl-*)]*•
n=\        "• k = 0       V K '

: coefficient bm in the expansion (1.15) is then given by

(1.20) 6.-4», m-1

(1 - 2x)h(x) - 2h(x)

(l-x)m
x = 0

When the function g(x) does not satisfy the conditions (j) and (jj) we may put

h(x) = g(x - i) - g(-x + i) + (1 - 2*X<?Ü) - g(- i)J. Then A(x) is antisym-

metric around x = { and n(0) = n(^) = h(\) = 0.

If (jj) is not satisfied, then we have h(0) = -h(\) ¥= 0 (which is the case for

h(x) = cos(7tx)). We may avoid this difficulty by substituting hx(x) — h(x) —

(1 - 2x)A(0).

Finally let

h(x) = G(g(x), g(l - x)) - (1 - 2x)G(g(0), g(l)),

where G(x, >^) is a regular, antisymmetric function of x and v. Assuming that

G(x, y) is "regular enough", then h(x) satisfies the conditions (j), (jj), and (jjj). All

the remarks occurring in the end of Section la are relevant also in this case.

c. The General Case. From a study of the proofs of Theorems 1 and 2 it is obvious

that we may formulate

Theorem 3. Let g(x) be a function satisfying the conditions

(k) g(x) is neither symmetric nor antisymmetric but real when x is real,

(kk)g(0) = g(l) = 0,

(kkk) g(x) may be expanded in a Taylor series around x = 0, and the radius of

convergence is greater than 1.

Then g(x) has an expansion of the form

00 oo

g(x) =   2 am[x(\ - x)]m + (1 - 2x) 2 bm[x(l - x)]m
m=\ m=\

valid at least in the interval [0,1]. Expressions for the coefficients am and bm are given

by obvious generalizations of Eqs. (1.3) and (1.16).

When g(x) does not satisfy the condition (kk) we simply substitute

*.(*) = *(*) -U(g(0) + g(l)) + i(g(0) - g(l))(l - 2*)].

2. Approximation in the L2-norm.

a. The Symmetric Case. Lei f(x) be a function which satisfies the conditions (i),

(ii), and (iii) in Section la. In many cases already the truncated series in Eq. (1.2)

may be used for computational purposes. We may however improve this result by
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approximating in the L2-norm, i.e., we consider min D2(w), where

(2.1) D2(w) = ¡X\f(x) -   | cJxO-x)]*!"^!-'»)•*

and q G {0,1,2,...}.

The resulting linear equation system yielding the coefficients cnk will be (with

r=l,2,...,*)

(2.2) £ cn^r+q=(Xf(x)[x(\-x)]r+Ux,
-1

n=\ '0

where

1
(2.3) h,j=( [x(l - x)]'+Jdx =

l%2;

The inversion of the matrices Dns = {«;,} (with /' = 0,\,2,...,n;j = s, s + 1,...,

s + n; s G {0,1,2,...}) will be treated in Sections 4 and 5.

A remaining problem, with many solutions, is how to determine numerical high

precision values of the integrals

(2.4) L= flf(x)[x(l-x)]Jdx;      j= 1,2,3,....
•'0

That problem will be treated in Section 3.

b. The Antisymmetric Case. Let h(x) be a function satisfying the conditions (j),

(jj), and (jjj) in Section lb. We consider min D2(w), where

(2.5) D2(w)=f \h(x) - (1 - 2x) i Qi*(l - x)A x"(\ - x)"dx

and 4 G {0,1,2,...}.

The resulting linear equation system yielding the coefficients C„ k will be (with

r= \,2,...,k)

(2-6) 2 Cn,kUn,r+q = fh(x)(\ - 2x)[x(l - x)Y+«dx,

where

(2.7)

Uu= f (I - 2x)2[x(l - x)]'+idx

(2i + 2f + 3)(2i + 2j+l)í[2Í.++2jj]j

The inversion of the matrices E„, = {Utj} (with i = 0,l,2,...,n; j = t, t + 1,...,

t + n; t G {0,1,2,...}) will be treated in Sections 4 and 5.

In Section 3 we will consider different techniques to determine numerical values of

the integrals

(2.8) I'= f]h(x)(\-2x)[x(l-x)]Jdx,      7=1,2,....
•'0
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c. The General Case. Let the function g(x) satisfy the conditions (k), (kk), and

(kkk) in Section lc and consider min D2(w), where q G {0,1,2,...} and

D2(w)

f k 1 2

(2'9) = /0 {«W"  S«,,+ (l-2x)C„',J[x(l-x)]j   x<{\-xYdx.

The resulting equation systems yielding the coefficients c'nk and C'nk will be (with

r= 1,2,. ...Jfc)

(2.10)

and

(2.11)

k

2lc'„,kun,r+q = fg(x)[x(\-x)Y+Ux
Jn

ÏCikUn,r+q = fg(x)(\-2x)[x{\-x)r dx.
n=\

The equations (2.10) and (2.11) will be considered in detail in part II in connection

with Bernstein polynomials.

d. Approximations in L2 With Certain Restrictions. In many cases it is natural to

consider min D2(w), min D2(w), and min D2(w) given certain restrictions. We may,

e.g., consider

(2.12)

mm

k

1
n=\

f\M- 2c„i*(i-*)rU«(i-*rdx

¿J   Cn,k An  ~f\2j-
n=\

When/(jc) is a probability density function it is natural to consider

(2.13)

min /'/(*)- 2 *„.*[*(!-*)]"\xH\-xy dx
n=\

1

-i       (2«+l)(2;)
1.

We will consider (2.12) and (2.13) in part II, when approximating f(x) = sin(7rjc)

with restrictions.

Another natural approximation technique would be to equalize all the moments.

We then get the equation system

. K

(2.14)     f xjf(x)dx=  2 c„
1

-=i  "lk(2n +j+l)( ln+j\
f = 0,\,2,...,k- 1.
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3. Calculation of the Associated Integrals. We will consider different techniques to

determine numerical values of the associated integrals occurring in (2.4) and (2.8).

We start with

a. The Symmetric Case. In some cases we may use a recursion formula for l} or a

closed expression (See Application in Section 6, (6.22).) When it is easy to determine

numerically the coefficients am defined by (1.2), (e.g., by using a recursion formula)

then
00 ,

(3.1) Ij=   la
= '      (2m + 2j+\)   2m+J.J

\   m+j

Expanding/(x) in a Taylor series around x = 0, we get

/(">(0)_1

(« + 2; + l)(i

Putting u = x(l — x) and making use of the symmetry, we get

(3.3)       ^jr/ö-M.-.n^*.

j

Making an obvious expansion of f({ — {-(\ — «)     ) in (3.3), we obtain

(3.4)        t=l   f^ (2n)
'     „~o    (2«)!      n2n.x(2n + 2f+2\(n+j+l

n+f+l    !\    n+\
)(«+!)

In some cases we may also use a Fourier expansion. For reasons of symmetry we

must have

00

(3.5) f(x) = ß0 + 2   Ksin((2« - 1)t7x) + ßncos(2nvx)],
n=\

where ß0 + 2n°=xß„ = 0 and x G [0,1].

The expansion in (3.5) is of special importance when an and ßn converge fast

towards zero. That is, e.g., the case when/(x) = sn(2K(k)x, k); see [7, p. 25].

To calculate IJt making use of the expansion (3.5), we must know how to calculate

the integrals

(3.6) S2n   = f] cos(2«77x)[x(l - x)]jdx

and

(3-7) T2n_XJ = C sin((2n - 1)t7x)[x(1 - x)]Jdx.

However S2nJ and T2n_ Xj satisfy the recurrence relations

/. fiN c       _ 27(27 - 1) f(f- 1)
^•») ^2n,j- 2       *2n,j-\ 2^2n.j-2

(2mr) (2/777)
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;(;-i)   T
(2»-i)V 2n~hJ~2'

and

(39)        t       = 2J(2j ~ !) T
V^.*) y2„-l.y 2    2J2»-l,j-l

(2n - 1) 7T

Starting values are given by

^2n,0 = 0> ^2n,l

T        =_I_        T
2-U°     (2" "I)-' 2-U      (2„-l)V

c. The Antisymmetric Case. We consider next the integrals E defined by (2.8).

When it is easy to calculate the coefficients bm in the expansion (1.15) we easily get

(2«77)2

(3.10) /; = 2 K i
m=\ (2m + 2j + 3)(2m + 2j + 1)

2m + 27

m +j

But we may also use the expansion in (1.14). After a routine calculation we get

/i<2"+1>Q)   _
(3.11)  /; = -2

In + 2
n+ 1

n% (2n + l)!    22n{n + 2)i-

«+7 + 2

Expanding h(x) in a Taylor series around x = 0, we obtain

00 rt(n)(0)

(3.12)   i;=2      *   0)+,,
y     „=1 "!(« + 27 + 2)

1 1

« + 27 + 1 \       / « + 27 + 1

Even in this case we may sometimes use a Fourier series. For reasons of asymmetry

we must have

(3.13) n(x) — 2   [y„sin(2«ffx) + ô„cos((2« — 1)77*)],
«=1

where 2^=, 8„ = 0 and x G [0,1].

To calculate Ij, using the expansion (3.13), we must be able to calculate

(3.14) ß2n_, j = \' (1 - 2x)cos((2« - 1)t7x)[x(1 - x)]Jdx

and

(3.15) R2n , = (' (1 - 2x)sin(2«77x)[x(l - x)]J dx.

However, Q2n- x¡ and R2nJ satisfy the recurrence relations

(3.16) Ö2„-i,y-—--¿ïQin-\,j-\
(2n — 1) 77

;(;-i)

(2n - 1)277-
Ô2„-l, 7-2
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and

(3.17) R _ 27(27 + 1) R
2n.j . ,2      /V2«,>-1

yln-n)

Starting values are given by

4
Ô2n-1,0

(2n - 1)2772

Ä2«,0

Ô2n-l,l

ÄJ -   1)  »

(2«77)

24

(2« - 1)4774      (2« - 1)V

«77
Ä2n,l -

2«J77
3„3

4. Analysis of the Associated Matrices and Determinants. We now turn to the most

difficult section of this paper, namely the analysis of the associated Hankel matrices

occurring in (2.2) and (2.6). A well-known and well-analyzed example of a Hankel

matrix is the Hubert matrix H„ with general element hjk — (j + k — l)"1 (j,k —

1,2,...,«). Both the determinant detH„ and the inverse matrix H"1 are exactly

known. (See Savage and Lukacs [5].) The Hubert matrix has a settled bad reputation

in regard to numerical difficulties. The matrices occurring in (2.2) and (2.6) are no

better.

Consider the finite square Hankel matrix D    of order (« + 1) defined by

(4.1) D„

*0,j

•2,j

'O.i+I

M,j+1

'2,j+l

*0,j + n

«1

'2,5 + n s£ {0,1,2,...},

where

Uu = f[x(l-x)]i+Jdx =
Jn

1

(2i + 27+I)
2i + 27

i+J

We wish to calculate explicitly D^1 = {dJk} (j, k = 0,1,...,«) and Dns =

Det(D„ s). This may be done noting that the Hankel matrix D„ s is also a moment

matrix. To see this we rewrite the coefficients m,7 in the following way, putting

x(l — x) = z,

«,.,=/ [*(i - *)V+Jdx =2f   Wi - x)]i+J
J       Jn Jn

dx

(4.2) -L1/4     zi+J~sZs
dz.

The coefficients w,7 may thus be interpreted as moments belonging to the weight

function w(z) = zs'(\ - z)^l/2; z G [0, \\ i+j> s.
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Let Qns(x) and qn s(x) be the associated orthogonal and orthonormal polynomi-

als defined by the determinants (see, e.g., Cramer [3, p. 132])

(4.3)

(4.4)

Qn,s(X)

1n,s(X)

U0,s U0,s+\ '0,s + n

»1,1

1

«i,f+i u \,s + n

*n-l,s+n

Q„ÂX)
Dn,s = Det(D„A

(4m4,-.,,)'/2'

The polynomials Qns(x) and <?nj(x) satisfy the following equations, where i #7,

(i-*)

(4.6) 1 = f'V,^)-^-77¡d* = ~4t¡ ÍWt)-^-177^-
v     y ^0 (i_x)'/2 22í+1 ^0      \ 4' (1 - x) f

The orthogonal polynomials associated with the weight function w(x) =

(1 — x)p~qxq~x are known as Jacobi polynomials and are denoted by Gn(p, q, x).

They may be standardized so that the coefficients of x" equal 1 [1, p. 774]. The

explicit expression is then

(4.7) Gn(p,q,x)-T{p + 2n)lJ    I)   [J  T{q + n_m)x      .

The normalizing constant «„ is in this case determined by

¡a q\    u   -(xnll \  (   \a   - "!F(" + <?)r(" + p)T(n + P - <1+ 1)(4.8) «„- / G2(p,q,x)w(x)dx-- -.
•'0 (2« + p)T (2« + p)

Using (4.5) and (4.6), we may identify the polynomials and get

'n-\,s

An identification of the coefficients of x" in (4.10) yields

(4.9) GB(i + i>J+l,x) = 5~- Mf)'

(4.11)
1 D.n— 1 ,.y (2n + s + ^)r2(2« + 5 + j)

22î+142n A,,,     «ir(« + í+ i)r(« + í + 2-)r(« + 2-)

We note the special case s = 2, which corresponds to q = 0 in (2.1) (w(x)

x"(\ - x)q - 1). We get, after a little algebra,

(4.12) A,,2 = A,-,,2 ^»(ZXWWY
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i.e.,

(4.13) ^=Í^4t:i)(4r2+r4)-

We will now show how to find explicit expressions of the elements of D"^. Of

special importance is the case s = 2, which we will use to find approximations of

sin(7rx) when x G [0,1]; see Section 6.

Some of the elements of D",1 may be obtained quite easily. Let D'n-J be the first

minor obtained by deleting the ith row and the^th column of the determinant Dn s.

We expand the polynomial Qn s(x) (defined by the determinant in (4.3)) with respect

to the last row, i.e., with respect to powers of x. Then

n+l,n+l
n.s D.n— \,s '(4.14)     e„,(x)= 2 (-i)"+xr'°+I*r;    D,

o=0

Using (4.9) and (4.11), we get, upon identifying corresponding powers of x,

(4.15)
D,n+l,*+l (4« + 2s + l)As+k+T(2n + s + \)T(s + {- + « + k) ( «

A, «!r(n + s + \)T(n + \)T(s + 1 + k) (Ï).
Now define

(4.16)

4o,,(x)

<l\,s(X)

l2,s(X)

<]n,s(X)

zoo      0       0

-10       ¿11

\ Ln0      Ln\       Ln2

Putting

(4.17) L-J={2y},

we may use the Choleski factorization [6, p. 8] and get the important relation

(4.18) D-; = L-JL-J.

Let the general element of D~x be dj k ( j, k = 0,1,2,..., «). Then

(4.19) j.k 2j ZrjZrk-
r = max(y, k)

We therefore have to determine the elements zrk. This may be done using (4.4) and

(4.15). After some calculation we get

/42m _ [ nW(n + s + 1)(4» + 2s+\)\ '/2 22*+T(, + { + n + k)(n] +k

(4.2U)  zmk-\    r(f| + i + i)r(i| + I)    j       r(a + i + *)ni    UJ(  ■>    ■

Inserted in (4.19), this yields

di.k -    2
r(r + i+ l)(4r + 2j+ l)4k+J+sT(s + { +r + k)T(s + {+r + j)

ÍA 2\) r=max{j,k)

x(i)(;)(-'/"

T(r + s + \)V(r + {)T(s + 1 + k)T(s + 1 + j)r\
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For s — 2 the elements djk (and dkJ) are given by

= (-0 ,ik
2        (Ar + 5)

r=maoí(j, k)

(4.22) (r + k + 2\(r+j + 2\(2r + 2k + 4\(lr + 2j + 4\ir\lr\

\    k + 2    )\    y + 2    J\   r + k + 2   )\    r+j + 2   )\k)\j)

(Accurate values of D~2 (n = 0,1,... ,6) and D~2 (« = 0,1,... ,9) are given in [7,

pp. 30-34].) In Table I we give the matrices D~2' for « = 0,1,..., 5.

Table I

Table of the matrices D ~2X

U52 =

D...

I 240240
-10210200

155195040
- 1086365280

3569485920
-4461857400

J_
30

I

140

I

630

I

2772

I

12012

I

I

140

1

630

I

2772

I

12012

_l_

51480

I
630

1

2772

_J_
12012

218790

1

2772

_l_
12012

_l_

51480

923780

I

51480

I

218790

I

923780

I

3879876

I

»,

D0j = (30)

/  840  -3780\

1-3780  17640/

51480

I

923780

I

3879876

I

16224936

I

51480  218790  923780  3879876  16224936  67603900

Oil =

90090
-2702700

27567540
116396280

6300        -69300 180180
-69300 803880     -2162160

180180     -2162160        5945940

27720 -540540 3243240 -6126120
-540540 11171160 -69549480 134774640

3243240 -69549480 443963520 -876035160
-6126120 134774640 -876035160 1752070320/

-2702700 27567540 -116396280 174594420'

86126040 -912791880 3957473520 -6052606560
-912791880 9930440520 -43881397560 6809I82380O

3957473520 -43881397560 196709713200 -308682934560
174594420     -6052606560 68091823800 -308682934560 488747979720'

-10210200

461501040
-7294166880

52455923520
-175797181560

223092870000

155195040
-7294166880

118413815520
- 868355047560

2953749598800
-3792578790000

-1086365280

52455923520
- 868355047560

6462709453200
-22239682024560

28823598804000

3569485920
-175797181560

2953749598800
-22239682024560

77247244794720
100882595814000

-4461857400

223092870000
-3792578790000

288235988O4O0O
100882595814000
132588554498400 '

In a similar way we consider the matrix E„, defined by

Vu    uu^---Uu+n

(4-23)

where

n,t
u2.Í v2,t+] u,

U/i.t       Un,t+\  '     ' "n.t + r,

uJ = f(l-2xf[x(l-x)]t
•>n

+j
dx

?G{0,1,...},

1

(2/ + 27 + 3)(2i + 27+l)
2Z + 27

i+J   .
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Let the general element of E„ 2 be e., k (j, k = 0,1,2,... ,n). We may then prove, in a

similar way as for D~2\ that

">.*

(4-24)

(-0
t+k

r=max(y, k)

<-')(2;++,6)(v++,2)

(Accurate values of En ¡ (n = 0,1,... ,4) and E„ \ (n = 0,1,... ,9) are given in [7,

pp. 35-40].)
In Table II we give the matrices E„¿ for n = 0,1,... ,5. Those interested in details

may read Wrigge, Fransen and Borenius [6, pp. 20-22, 26-28].

Table II

Table of the matrices En
-i

EÍ.Í   '

EiJ

150150
-5105100

58198140
271591320

\     446185740

18018

I

4157010

I

19399380

_ !_
89237148

1

: (210)

2520
- 13860

-13860)

83160 J

13860       -180180 540540)
-180180        2522520     -7927920

540540     -7927920       25765740/

875160

I

4157010

I
19399380

I

89237148

_  I  __
405623400

1

875160      4157010       19399380      89237148       405623400       1825305300

51480
1158300
7876440

\ -16628040

-5105100

185825640
-2211529320

IO63086024O
-17847429600

-1158300 7876440 -16628040 \
27953640 -198661320 432329040

-198661320 1456266240 -3242467800

432329040 -3242467800 7349593680'

58198140 -271591320 446185740
-2211529320 10630860240 -17847429600

27120333240 -133273740600 227554727400
-133273740600 666174709200 - 1152943952160

227554727400 -1152943952160 2017651916280

371280
-17635800

296281440
-2271491040

8112468000
-10951831800

- 17635800

895898640
-15702916320

123958511040

T45227009I0O0
620603802000

296281440
-15702916320

283456686240
-22864991Û580O

8481585294000
-11791472238000

-2271491040

123958511040
-2286499105800

18753267776880
-70486800711600

99048366799200

8I124680O0
-45227009IOOO

8481585294000
-70486800711600

267797436160800
- 379685406063600

-10951831800

620603802000
-11791472238000

99048366799200
- 379685406063600

542407722948000

The result of this section may be summed up in

Theorem 4. Let utJ = }0X [x(l - x)]t+'dx and UQ = f0x (1 - 2x)2[x(l - x)]i+Ux.

Define the matrices Dn s = {(m,v)}, i = 0,1,2,.. .,n;j = s, s + 1,.. .,s + «, and E„ ,

= [(U,j)}, / = 0, l,...,«;7 = f, f + 1,...,/ + «; j, í G {0,1,2,...,«}. Let dji and
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e"'k be the general elements ofDnx and E„J, withj, k — 0,1,2,...,«. Then

" T(r + s+ \)(4r + 2s+ \)4k+J+sr(s + { + r +k)T(s + { + r+j)

"j.k

r = max(y, k)

X

T(r + s + {)T(r + {)T(s + 1 + k)T(s + 1 + j)r\

i'M-T-
„n.l
ej.k

T(r + t + l)(4r + 2t + 3)4k+J+'T(t + 3/2 + r + k)T(t + 3/2 + r +j)

r-Mfc) T(r + t + 3/2)T(r + 3/2)T(t + 1 + *)r(/ + 1 + j)r\

X
.k+J(i)0)<->

jDe//'«e i«e determinants Dns = Det(D„ 5) and Enl = Det(E„,). 77ie«

A,
_ «¡r(« + 5 + i)r(« + 5 + j)r(« + \)

22s+xA2n(2n + s + ^)r2(2« + j + \)
D.n—\,s'

_ «¡r(« +1 + i)r(« +1 + 3/2)r(« + 3/2)
M~   22'+,42"(2« + i + 3/2)r2(2« + i + 3/2)    w_,,r

5. Calculation of Determinants and Inverse Matrices. The determinants D„ -, and

En 2 are calculated using the formulae

(5.2)      «-ic+*)(ïr2Mîîî)-

«,2

See [6, p. 22].

When calculating the inverse matrices we may choose one of several methods. We

may, e.g., use a recursion technique (i.e., Householder's method).

Let C„ 2 denote any one of the square matrices D„ 2 and E„ 2 of order (« + 1). We

start making a partition of C„ 2, i.e.,

(5.3) ->>,2
-n-1,2

yn

Here cn is a column vector (of order n) and y„ a rational number. Denoting

Q,2 = ^et Q,2> we finally get the recursion formula

(5.4)
C~x = :„-,,2   o

o     o
+

c.n-1,2

c,11,2

-c, "'   c

1
[-^c-_',j2   l].

(See e.g. F. Ayres [2, pp. 56-58].)

Thus we may start with C^2' = D^2' or E^2'. A repeated use of (5.4) then yields the

matrices D¿¿ and Ek2 (k — 2,3,...,«). (See [7, pp. 29-40], where « = 9.)

Alternatively, we may also use the formulae (4.22) and (4.24) which give explicit

expressions of the general elements of D~2 and E~-.

But we can do better. The drawback of the recursion method given by (5.4) is that

to calculate, e.g., D6~2 we have to calculate all D^J with k < 5. Therefore a direct

method is to be preferred. Such a method may be obtained by a clever use of the

Christoffel-Darboux formula [1, p. 785], which applied to the orthonormal functions
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qn s(x) (Eq. (4.4)) may be stated as

(5-5)      2 amÁx)qmÁy) =     '-      ̂ U^M ~ iMl^M] .
m=o zn+i,«+i x   y

Multiplying both sides of (5.5) with (x — y) and identifying the coefficients of xjyk,

we get

(5.6) dftj - dlU = —^-^n^j^k - z„,,Vh.*)>
z«+l,«+l

where we have written dj k = d"'k to point out the dependence of the parameters «

and s. Putting s — 2, we get

rf,_w-*,.»_, =(-\)k+i

(s.7)x ('-^^')c^)(;)(;)("::^4)(2::f+v)(-+r;)(-+r2)
2(, + 1-,)(» + 1-*)(2;;2-)(2;)

The corresponding formula for ek (with / = 2) is

ei-\.k - ej.k-\ = (-•)

(5.8) (k-M»+l)[j)\k)[    n+j + 3   }{   n + k + 3   ){    j + 2    j{    k + 2    )

2(B+i-7)(«+i-*)(2;++36)(2;++12)

The calculation of d k may be given by

Algorithm D. Let the general matrix element of D„ 2 be dj. k (j, k = 0,1,2,...,«).

The steps in the calculation of dk are then as follows:

I.

2(n-*)(2n + 2* + 5) . ,      „ , „
^+1-(*+l)(* + 3)       *">"'       k = °'1'2'--'" - L

Starting values are given by

¿..o = (-ir
(2;)

II. Calculate the elements of the lower right-half of the matrix using

dJ-i,k-dM.x = (-\)k+J

j'-/x^'K"^»(;)(;)(2::2r2,)(2;t^4)("+r2)(-+r2)

2(.+,-,,<„+, -*)(2;++24)(ï)

III. Calculate dJ0 = d0 ■ (7 = 0,1,2,...,«) using

_ n/^J, (2W + 3 + 2/)(2/i +4-2/)
y'°     l     } 4(7 + 3)!7!

IV. Use step II to calculate the elements of the upper left-half of the matrix.

V. In all steps we make use of the symmetry dj k = dk j.



A GENERAL METHOD OF APPROXIMATION. PART I 583

A similar scheme of calculation exists for the elements ejk of the matrix E~2, viz,

Algorithm E. Let the general matrix element of E~2 be ejk (j, k — 0,1,2,...,«).

The steps in the calculation of ejk are then as follows:

I.

= _2(« - k)(2n + 2k + 7)
e"^+1 (*+l)(* + 3) "'*' ü,1¡2."

Starting values are given by

(a    , 7\/4« + 6\/2« + 3Wn + 3

e»,o- ("O -
2« + 2\
« + 1 /

II. Calculate the elements of the lower right-half of the matrix using

ej-\,k~ej,k-\ = (_1)

2(. + 1 -^)<. + 1 - *>(2.v,*)( V+Í )
III. Calculate ejfi — e0 . using

,_ vn/^,(2« + 5 + 2Q(2« + 4-2/)
'"     l    U_ 47! (7+ 3)!

IV. Use step II to calculate the elements of the upper left-half of the matrix.

V. In all steps we make use of the symmetry e k = ek .

We managed to find still another method to calculate the elements of D~2 and

E~2 making use of a special partition technique. The great advantage of this method

is that we can describe both cases with one formula using an idempotent number ß

(i.e. ß2 = ß). This result may be summarized in

Theorem 5. Let C~2' denote any one of the matrices D~2 and E~], and let the

general element ofC^2 beyj k (j, k = 0,1,2,...,«). Then

(_ y+* n/u, (2« + 3 + 2ß + 2Q(2« + 4-2/)
yj'k     l     '        2(f + k+ l)\(j + k + 3)\k\(k + 2)\ Xj-k'

where
k

xj,k= 2 R.T.Ü - k + l + 2v)
v = 0

k o-l

x n (j+1+00+3+0 n {k-i)(k+2-i)
1=0+1 1=0

a«J
7+1+m

Rm=    Il     (2n + 3 + 2/3 + 2/)(2n + 4-2i);
;=/+2

fc+l-m

Tm =     II     (2« + 1 + 2ß + 2/)(2« + 6 - 2/).
( = 2

77ie case ß = 0 corresponds to D~2, a«d" i«e case ß = 1 corresponds to E~2'.
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(The products in Theorem 5 are interpreted as 1 if the upper index is less than the

lower.)

6. Application. In this section we will apply our method to the case/(x) = sin(Trx),

f(x) = cos(2ttx) and h(x) = sin(2irx), h(x) = cos(?rx); x G [0, l]. (In [7, pp. 23-26]

we successfully approximated the Jacobian elliptic function sn(2Ä^(A:)x, k) for

0 =£ k < 0.25.) Consider the expansions

00

(6.1) sim>x)=  2 *„[*(! "*)]";
n=\

(see Lyusternik et al. [4, p. 82]) and
oc

(6.2) sin(27Tx) = (1 - 2x) 2 b„[x(\ - x)]".
n=l

We will also need the coefficients An defined by

00

(6.3) sin2(Wx)=  2 An[x(\ - x)]n.
n = 2

Since d2sin(trx)/dx2 = -vT2sin(77x), we get, differentiating (6.1) twice and identify-

ing the coefficients of [x(l — x)]", the recurrence relation

(6.4) (« + 2)(«+ l)a„+2 = (2« + 2)(2« + l)a„+1 - tr2an;       ax=a2 = v.

Exact and approximate values of a, (/ = 1(1)10 and / = 1(1)20) are given in [6, p. 35]

and [7, p. 41]. Note that an converges fast towards zero. We have, e.g., a20 «* 9.1 X

10~29. We solve the recurrence relation (6.4) using (1.9). Thus

U« a        -      *       V   /2« + 2t;\(-ir^2"-2''
(f.5) a2n+x - 2n + 1   Zq \     2v     J     (2n-2v)\     '

and

2« + 2t; + 2)(-l)""'

„=0 ' (2n-2tj)!

Using (1.3) we obtain

tK*\ -      m       V   /2« + 2ü + 2\(-l)"  V2"~:
(6-6) ^,«-2^+2^1     2»+l      )     (2n-2o)!

("i a-=^"i;1in!~wr-

( 1.6) yields the alternative form

/6Rx    „=ULy _(-i)V*+1_
y-}       "      2-«! ¿n (2k)(2k - \) ■ ■ ■ (2k-n+ \)(2k - 2n + 1)! "

To obtain a recurrence relation for the coefficients bn we use the coefficients An

defined by (6.3). We note that

d2
—- sin2(7rx) = 2w2 — 47T2sin2(7rx).
dx2

Then

(« + 2)(« + l)An+2 = (2« + 2)(2« + \)A„+X - A-n2An;

t2
(6.9)

A-, = 7T2,       A-, = 2tr2.



A GENERAL METHOD OF APPROXIMATION. PART I 585

Differentiating (6.3) with respect to x and identifying coefficients, we get

(6.10) bn_x=^An.

bn thus satisfies the recurrence relation

(6.11) «(«+ 1)6,,+ , =2«(2«+ \)bn-Air2bn_x;    bx=2tr,   b2 = 6ir.

Using (1.8), we get

ffil2) a        -      «       v   /2« + 2t;-lU-iri,(2.)2"-2"+1
(6.12) A2n+x-2n+l¿^     2v_]      j      (2n-2v+l)\

and

«      / ~ ~       .    . \   I      \\n~vl*\    \2n —2o+I
r« n)        a        -     v      v     2« + 2ü+ 1   (-1)     (2g)
(6.13) ^2„+2 - 2n + 2 ¿0 I 2v j      (2n-2v+\)\      '

From (6.10), (6.12), and (6.13) we get finite expressions for b2n and 62«+i-

The expansions for cos(ttx) and cos(2ttx) are deduced in a similar way. We put

00

(6.14) cos(Trx) = (1 - 2x) 2 &[*0 - X)Y
n=0

and
00

(6.15) cos(2w*) = 2 ««[*(! - *)]"•
n = 0

Differentiating (6.1) with respect to x, we get

(6.16) ßn_x=nan/TT.

Using (6.4), it is easy to prove that ßn satisfies the recurrence relation

(6.17) «(«+l)/?„+1 = 2«(2«+l)/?„-772pVi;    t%=h   0i = 2.

A differentiation of (6.15) with respect to x yields

(6.18) bn_x = -nan/2ir.

Using (6.11), we get the recurrence relation

(6.19) (« + 2)(«+ l)a„+2 = (2« + 2)(2«+ l)a„+,-4772a„;    a0=l,    «, = 0.

We next turn our interest to approximations in L2, i.e., we consider min D2(w) and

min D2(w), where

(6.20) *>,»=£ |sin(™) -  2 cnM\ - x)] j  dx

and

(6.21) Di(w) = fisw&vx) - (I - 2x) 2 C„*{x(l - x)]n\ dx.

The associated integrals
'i

/ = /   sin(77x)[x(l — x)Ydx
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/' = /"' (1 - 2x)sin(27Tx)[x(l - x)]Jdx
•'n

are calculated from the recurrence formulae

ÄJ-l)
(6.22)

and

,_ 27(27-1).
V~        „2       f/-i ll-2'

2
7T .3'

ifi,^      r_ 27(27+1) 7(7-1),,   .   „_1     „_J
(6-23) 7>"        4.2       7-      l^'-2'    7°--'    7l"^'

Solving the equation systems (2.2) and (2.6) by inverting the matrices as described in

Sections 4 and 5 we may formulate

Theorem 6. Let x G [0,1], then we have the approximations

sin(77x)
3.141583993[x(l - x)] + 3.141891945[x(l - x)]2

+ 1.112123058[x(l -x)]3 + 0.219850867[x(l - x)f

and

sin(7Tx)

3.141592715257[x(l - x)] + 3.141589575603[x(l - x)]2

+ 1.115524716287[x(l - x)]3 + 0.204430015076[x(l - x)]4  .

+ 0.024416348195[x(l -x)]5.

The absolute errors are less than 8 X 10^8, respectively A X 10~10.

The corresponding relations for sin(27rx) are formulated in

Theorem 7. Let x G [0,1], then we have the approximations

(1 - 2x){6.281856[x(l - x)] + 18.90220l[x(l - x)]2)

(1 - 2x){20.829857[x(l - x)]3 + 16.439719[x(l - x)]4}
sin(27Tx)

and

sin(27Tx)

(1 - 2x){6.283217166[x(l - x)] + 18.847760765[x(l - x)]2}

+ (1 - 2x)21.523970874[x(l - x)]3

+ (1 - 2x){ 12.922874461 [x(l - x)]4 + 6.154478369[x(l - x)]5}.

The absolute errors are less than 10"5, respectively 2 X 10~7

To carry through the corresponding approximations for cos(wx) and cos(2ttx) we

must calculate the integrals

(6.24) -       "

and

(6.25)

I. = (  [cos(2ttx) - 1] [x(l - x)Y
Jn

dx

I' = P (1 - 2x)[cos(trx) - (1 - 2x)] [x(l - x)]7^x.
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We introduce the complementary integrals 7y and Jj defined by

(6.26) J. = /"'cos(2vtx)[x(1 - x)]Jdx
Jn

and

'0
(6.27) J' = p (1 - 2x)cos(ttx)[x(1 - x)]Jdx.

Jn

The integrals Jj and Jj satisfy the recurrence relations

(6,8) ^m^Aj^àt^ï^
Am Air

and

(6-29) j^mplr-áizAj,
m2 J~] „2 J-1'77 IT

Starting values are given by

i - n     i l a    v - 4       v     24      2y0 = 0,   /, = -—-j    and   /0 = ^>   •/i=~~~-
27T 17 77 77

We finally get the following expressions for the integrals I, and IJ

(6-30) ij = Jj-x-j-r'.    i; = j;-!——

(27 + l)(y) (27 + 3)(27+l)(y

The approximations for cos(77x) are given in

Theorem 8. Let x G [0, l], then

\(\ - 2x){l + l.999999230 |>(l - x)] + l.065228532[x(l - x)f)
C0S( 77X ) « \ A^

[ + (1 - 2x){0.260400939[x(l - x)f + 0.038640515[x(l - x)]4)

and

cos(t7x)

(1 - 2x){l + 2.000000004489[jc(1 - x)] + 1.065197545425[x(l - x)]2}

+ (1 - 2x){0.260796014285[x(l - x)]3 + 0.036638801083[x(l - x)Y)

+ (1 - 2x)0.003502999395[x(l - x)]5.

The absolute errors are less than 0.6 X 10~8, respectively 0.3 X 10~10.

We have found the approximations of cos(2wx) of less value and prefer to

compute cos(277x) from the formula cos(277x) = 2 cos2(77x) — 1, thereby using

Theorem 8 to compute cos(77x).
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