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INTRODUCTION AND PURPOSE
This report is part of the graduate course FATIGUE AND FRACTURE MECHANICS.
This is a “literature course” during summer of -97. The contents of the course
should be equivalent to 6 weeks of full time work.

The literature in the course is chosen in order to put the emphasis on multi-
axial fatigue and fracture mechanics. In this fatigue initiation part, several
papers on fatigue initiation, mainly with a continuum mechanics approach, are
used.

Note that the comments reflect my thoughts on the paper. I may well
have misunderstood some of the contents etc.  Also, I have included my
own associations and comments in the notes below (not always explicitly
stated). So, read the following with a “suspicious mind”. 

1. EQUIVALENT STRESS CRITERION

1.1. INTRODUCTION (OWN COMMENTS)
This is an attempt to compare and relate some common equivalent stress criteria.
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Consider a general multiaxial state of stress in a material. The state of stress
in a material point is defined by the stress tensor.

(1)

If this matrix is assumed to be symmetric (i.e. ), there are six

components that together defines the current state of stress.

DIRECTION INVARIANT EQUIVALENT STRESS MEASURES

In order to compare this state of stress with experimental data, we need a
scalar measure, that completely defines the stress field. This measure should
be chosen in such a way that it reflects the fatigue behavior of the material. As
a first assumption, could be to use von Mises equivalent stress, which is widely
used in plasticity.

 where (2)

here,  is the deviatoric stress tensor. It is stated that fatigue initiation will

occur if  exceeds a certain threshold value (which is found experimentally

and considered to be a material parameter).

INFLUENCE OF A SUPERPOSED CONSTANT SHEAR STRESS

Experimental data shows that there are no influence of a superposed static
shear stress for fatigue initiation. In order to define what a “static” stress is, the
concept of a stress cycle has to be introduced. That there is no influence of a
static shear stress implies that the mid value of the stress should be eliminated
in some way. 

It is then convenient to express von Mises equivalent stress in terms of
principal stresses. If the direction  of the principal stresses is constant and the
loading is in-phase  (i.e. the principal stresses are varying with the same
frequency and phase angle), the amplitude of the principal stresses could be
used in the von Mises equivalent stress in order to eliminate the influence of a
static shear stress.A modified von Mises equivalent stress could then be
expressed as

(3)

where index a, denotes maximum deviation from mid-value during a stress
cycle.

sij

sxx txy txz

tyx syy tyz

tzx tzy szz

=

sij s ji=

seq
3
2
---sij

dsij
d

= sij
d sij

skk

3
--------Ð=

sij
d

seq

seq
1

2
------- s1 a, s2 a,Ð( )2 s2 a, s3 a,Ð( )2 s3 a, s1 a,Ð( )2

+ +=



 

3

 

 (16)

                       
If the conditions described above are not fulfilled, the mid-value of the stress
tensor has to be found and eliminated. The modified von Mises equivalent
stress could then be expressed as

 where  (4)

and  is the mid value of the deviatoric stress tensor during a stress cycle.

Note that once the mid-value has been eliminated, von Mises equivalent stress
is no longer given as a single value for a load cycle, but is defined for every
instant of time. (Or put in other words, it is no longer obvious when the
maximum equivalent stress will occur).

INFLUENCE OF A SUPERPOSED CONSTANT HYDROSTATIC STRESS

From experiments, it has also been found that a static hydrostatic stress do
have an influence on the fatigue behavior. In order to account for this influence,
von Mises equivalent stress has to be modified

 where (5)

 is the hydrostatic stress and f is a function. Typically, f can be expressed as

 or  or (6)

where a, b and c are material constants and index “mean” and “max” denotes
mean and max-values in a stress cycle.

SHEAR STRESS BASED EQUIVALENT STRESS MEASURES

Fatigue initiation is confined to shear in specific directions (i.e. acting on
intergranular slip bands [and possibly grain interfaces]) in the material. Due
to this, and also in order to achieve a possibility to account for anisotropy, it can
be suitable to use an equivalent stress measure based on the shear strain acting
in a specific direction. The shear stress vector can be computed as

(7)

where n is the normal vector for the shear plane studied. The shear stress
vector can be applied in (5) as a measure of the influence of the shear stress.
This leads to a shear stress based equivalent stress1

1.The influence of a superposed hydrostatic stress can, in such a criterion, also be
represented by the normal stress acting on the considered shear plane. However, this
would predict an influence of a superposed static shear stress, which is in contradiction
to observed fatigue behavior.
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(8)

Where index a denotes the deviation from the mid-value of the shear stress
vector during a load cycle.

The mid value of the shear stress vector for a load cycle can be defined as origo
for the smallest circle that circumscribes the stress path that the tip of the
shear stress vector follows during a stress cycle, see FIG. 1. In the same manner,
the mid value of the second invariant of the deviatoric stress tensor, that is
used in (5) can be found by identifying the smallest hypersphere that encloses
its 5D-path [1]. However, if the stresses are symmetric during the stress cycle,
the mid value during a stress cycle will be this point of symmetry [1].

Fig. 1 Definition of mid shear stress tm for a stress cycle.

Note that (8) defines an equivalent stress measure for every shear plane (i.e.
every possible n). This can be used to take anisotropy into account since
material parameters can be expressed as functions of n. Equation (5), on the
other hand, is based on two stress invariants, namely the second invariant of
the deviatoric stress tensor and the hydrostatic stress (which is the first
invariant of the stress tensor). Thus, this criterion is, in some sense, based on
energy assumptions.

GRADIENT DEPENDENT EQUIVALENT STRESS MEASURES

An other experimental finding, is that the fatigue thresholds for cyclic bending
and cyclic tension/compression differs. This can, to some extent be explained by
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volumetric effects, but some of the effect is due to the influence of stress
gradients, see [2] and [3]. The equivalent stress criterion can then be expressed
as

(9)

where f1 and f2 are functions, and

(10)

Note that f2 should be a function of the hydrostatic stress such that it assures

that the gradient does not have an influence when there is no acting hydrostatic
stress at the material point considered.

2. PHYSICAL JUSTIFICATION FOR EQUIVALENT STRESS 
CRITERIA

Mainly from [4]. In the following section, capital greek letters are used to denote 
macroscopic stresses. In all other sections, small capital greek letters denote 
macroscopic stresses.

2.1. MESOSCOPIC AND MACROSCOPIC STRESSES

Consider stresses acting on a mesoscopic scale under macroscopically elastic
conditions. The macroscopic stresses are then defined by Hooke’s law as

, where S is the stress tensor, C is the stiffness tensor and E is the

strain tensor. On the mesoscopic, scale, we have the similar relation .

Even though the material is macroscopically elastic, we can have plastic strains

on the mesoscopic scale, i.e. . Assuming the macroscopic strain is the

average of the mesoscopic strain gives . Thus, we have the
macroscopic stress as

(11)

Where Hooke’s law on the mesoscopic scale has been used, together with the
fact that the mesoscopic plastic strain is a deviatoric tensor (has isotropic
material been assumed???). Also, it has been assumed that Cc -1=I, where I is
the fourth-order unit-tensor.

Now, the projected shear stress acting in a specified crystal slip direction, m,
on the shear plane can be written as, see (7).
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(12)

where  and it has been used that  due to

symmetry of , ( ).

Also, , since these vectors are orthogonal.

Assuming one active glide system per crystal gives  (since a defines
the orientation of the glide plane and direction). Here, g is the magnitude of
plastic shear strain. Introducing this in (11) gives the mesoscopic stress as 

(13)

The projection of the mesoscopic stress vector ( ) on the normal (n) of the
slip plane is 

(14)

But , since m and n are orthogonal. Thus, we have

(15)

which is equal to the macroscopic normal stress, N, acting on the slip plane.

The mesoscopic shear stress is the projection of the mesoscopic stress vector

( ) on the direction (m) of the slip plane 

(16)

because  since  is

symmetric.

Introducing (13) in (16) gives

(17)

where it was used that
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since n and m are orthogonal unit tensors. Also, . Inserting (12) in
(17) gives

(19)

From (19) and (15), it can be seen that, on a slip line, the mesoscopic normal
stress equals the macroscopic normal stress, whereas the mesoscopic shear
stress is the macroscopic shear stress plus a correction.

2.2. CRYSTAL PLASTICITY

Schmid’s law states that a crystal, is deforming plastically if

 and (20)

where b is the kinematically hardening parameter and

(21)

The plastic shear strain rate is given by 

(22)

Now, introduce isotropic and kinematical hardening rules

 and (23)

where g and c are positive material constants.

The consistency condition is

(24)
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(25)

Apply (19) in rate form as , and insert in (25). This gives

(26)

Thus, the mesoscopic plastic shear strain rate is proportional to the rate of the
macroscopic shear stress acting on the slip line.

Introducing (19) in the yield criterion for the crystal (20) and applying (23),
gives

(27)

Both T and  acts along m. Thus, (27) can be rewritten as

(28)

which is a segment of this line, centered at  and with length . At

cyclic loading, the shear stress vector T will act along m. The plastic mesostrain
can be expressed as

(29)

where (26) has been applied.

When T acts along a path , where O denotes a relaxed state of stress, the
resulting plastic strain will consequently be

(30)

where  denotes the length of the vector TA, exceeding . Due to

isotropic hardening, according to (23), the yield limit when the shear stress

reverses its direction, at TA, will be

(31)
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at TB. The accumulated plastic strain for  is (note that the behavior is
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plastic in the region ) 

(32)

where .

The new yield limit will be

(33)

Completing the stress cycle, by loading the shear stress from the first peak

value at TB to its starting peak value at TA, results in a additional induced
plastic strain

(34)

thus, the increment of plastic strain over the first cycle ( )is

(35)

where  according to (33) has been used.

By repeating the calculations above, the plastic strain increment for the N:th
cycle can be expressed as

(36)
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(37)

And finally adding the plastic strain from the first loading , from (30), and

 from (31),gives the total accumulated strain as

(38)

Where Ta is the amplitude of the macroscopic shear strain acting on the slip

line. ty can often be neglected, since it is the yield stress of the weakest crystal

plane and thus very small.

It has thus been shown that the amplitude of the macroscopic shear stress can
be connected to plastic flow of the crystals. The hydrostatic stress in the
equivalent stress expressions is the average of the macroscopic normal stress
acting at a material point (which is equal to the average of the mesoscopic
stresses acting on the same point, see (15)). The hydrostatic stress term is used
to account for the fact that no true “initiation” can be distinguished. In practice,
initiation is a mix of this true “initiation” (which is only due to applied shear
stresses according to the reasoning above) and the propagation of microcracks,
which are influenced by a hydrostatic stress.

3. EQUIVALENT STRESS CRITERIA FOR PREDICTION OF 
FATIGUE INITIATION

Comment: The criteria described below are primarily aimed at predicting fatigue initiation, 
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i.e. the load levels at which fatigue could be expected. However, their limits of use 
can be extended by introducing the calculated equivalent stresses in a Wöhler 
relation and thus predict a limited fatigue life. However, since the criteria are 
developed for fatigue threshold values, this approach should only be defendable if 
the stresses in the component studied are close to these threshold values.

3.1. THE DANG VAN CRITERION

The Dang van criterion [5] states that fatigue damage will occur when, for a
shear plane, the following inequality is fulfilled

(39)

where te is the fatigue treshold in pure shear and aDV is a material parameter

that can be evaluated, for instance, from the expression

(40)

where se is the fatigue treshold amplitude in alternating bending (or in tension/

compression). ta is the shear stress “amplitude”, which in this case is the

deviation from the mid value during a stress cycle of the shear stress vector
acting in a plane specified by the normal vector n, see FIG. 2.

Fig. 2 Definition of shear stress “amplitude” in the Dang Van criterion

Comment: The Dang Van-criterion does not take gradient effects into account and is based on 
a “Tresca-type” condition. I.e. the fatigue limit is dependent on the most stressed 
slip direction. No stress redistributions are assumed to take place.
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3.2. PAPADOPOULOS CRITERION

The Papadopoulos criterion states that fatigue occurs if the following inequality
holds

(41)

Where  is defined as

(42)

and is the root mean square value (for all possible slip lines in a material point)
of the amplitude of the shear stress acting along the slip line, i.e.

.

 is the maximum (algebraic) value of the hydrostatic stress (positive in

tension) during a stress cycle, i.e. 

(43)

a is a material parameters, that can be evaluated from fatigue tests as (for
example)

 (44)

In order to achieve a beneficial effect of a compressive hydrostatic stress, this

criterion can only be applied to materials for which the inequality  holds

(this is fulfilled for “hard metals”).

Comment: Papadopoulos criterion is aimed at predicting fatigue initiation. It seems 
reasonable to adopt an approach where the accumulated plastic strain in a 
material point (regarding all slip directions) should not exceed a limiting value. 
The results obtained seem to fit experimental data very well (see [1]). If a criterion 
is aimed at predicting initiation/propagation however, it would perhaps be more 
suitable to apply a direction dependent criterion, since the propagation phase is 
very sensitive to direction of loading.

3.3. GRADIENT DEPENDENT CRITERION (Papadopoulos and Panoskaltis)
DIRECTION DEPENDENT FORMULATION

This criterion has been expressed in two different ways. In [2], the criterion is
expressed as
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(45)

Where Nmax is the maximum value of normal stress acting on the shear plane

studied. Ta is the shear stress amplitude on this shear plane. <x> denotes that

values £ 0 should be replaced by zero. Also,

(46)

is the gradient of the normal stress acting on the shear plane.

The material parameters can be evaluated as

 and (47)

Here, se is the fatigue threshold amplitude in fully reversed tension/

compression and fe the fatigue threshold amplitude in fully reversed, constant

moment, bending. R is half the height of the component.

Comment: In [2], the fatigue limits have been defined as the stress range, i.e. se (in this paper) 
= s/2 (in [2]). Also, the use of Nmax (instead of a hydrostatic stress) should imply a 
dependence on the fatigue treshold of a superposed static shear stress. However, 
the critical plane is chosen as the plane of the maximum shear stress amplitude. If 
it is taken as the plane of maximum equivalent stress according to (45), this 
dependence would (probably) have (see [1] and compare the Findley and the 
Matake-criteria).

INVARIANT BASED FORMULATION

In [3] an invariant formulation of a gradient dependent criterion is proposed.
The criterion is then written as

(48)

where J2,a is the amplitude of the second invariant and Pmax is the maximum

value of the hydrostatic stress. The material parameters can be calculated as

 and (49)

The value of n is not given in [3], since the applications studied lead to
expressions where n could be omitted. However, in the general case, this
criterion involves four material constants.

The criterion is based on the Crossland criterion (which is equals with b=0).
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4. CRITERIA FOR PREDICTION OF LIMITED FATIGUE LIFE

4.1. SOCIES SHEAR STRESS/STRAIN BASED CRITERION

In [7], Socie presents an equivalent stress criteria for limited fatigue life. The
criteria is aimed at fatigue where the majority of fatigue life is spent in
initiating cracks (or actually growing cracks from some 0.01 to 1.0 mm). This
process is mainly shear based, but there is an influence of the stresses and
strains acting perpendicular to the crack. According to Socie, this influence is
mainly due to the ability of these strains (stresses) to prevent mechanical
interlocking, see FIG. 3.

Fig. 3 Interlocking in shear crack growth and the influence of a normal strain (stress)

Since the fatigue life model is intended for both low cycle fatigue (LCF) and
high cycle fatigue (HCF), which are best described by strain- and stress-
components respectivly, the criterion is a mix of this measures and can be
expressed as

(50)

where  is the maximum shear strain amplitude,  is the tensile strain

perpendicular to the maximum shear strain amplitude,  is the mean stress

perpendicular to the maximum shear strain amplitude. As for material
parameters, E is Young’s modulus, G is the shear modulus, c is a fatigue
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ductility exponent, b is a fatigue strength exponent,  is a shear fatigue

ductility coefficient,  is a shear fatigue strength coefficient. Finally, N is the

number of load cycles (i.e. 2N is the number of load reversals) needed to initiate
a 1.0 mm surface crack. Note that there are three fatigue material parameters
in this criterion. These parameters are found by curve-fitting the outcome of
several limited fatigue life experiments.

For a specific loading (and given material parameters), the fatigue life N can be

evaluated from (50). The criterion has been used for fatigue lifes of N=103 - 106.

4.2. SMITH-WATSON-TOPPER CRITERION

For fatigue conditions, where fatigue cracks tend to occur on planes of
maximum principal strain, Socie [7] proposed the use of the Smith-Watson-
Topper (SWT) criterion. Since the criterion should be applicable for both LCF
and HCF conditions, both stresses and strains are included. The criterion can
be expressed as

(51)

where  is the maximum principal strain amplitude,  is the maximum

principal stress on the maximum principal strain plane. As for material
parameters, E is Young’s modulus, c is a fatigue ductility exponent, b is a

fatigue strength exponent,  is a tensile fatigue ductility coefficient,  is a

tensile fatigue strength coefficient. Finally,N is the number of load cycles
needed to initiate a 1.0 mm surface crack. Note that there are three fatigue
material parameters in this criterion.

The criterion has been used for fatigue lifes of N=103 - 106.
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APPENDIX
MATLAB code used to plot diagrams in the text above.
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