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a b s t r a c t

A high-order spectral difference (SD) method has been further extended to solve the three dimensional
compressible Navier–Stokes (N–S) equations on deformable dynamic meshes. In the SD method, the
solution is approximated with piece-wise continuous polynomials. The elements are coupled with
common Riemann fluxes at element interfaces. The extension to deformable elements necessitates a
time-dependent geometric transformation. The Geometric Conservation Law (GCL), which is introduced
in the time-dependent transformation from the physical domain to the computational domain, has been
discussed and implemented for both explicit and implicit time marching methods. Accuracy studies are
performed with a vortex propagation problem, demonstrating that the spectral difference method can
preserve high-order accuracy on deformable meshes. Further applications of the method to several
moving boundary problems including bio-inspired flow problems are shown in the paper to demonstrate
the capability of the developed method.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Computational fluid dynamics (CFD) has attracted a surge of re-
search activities during the last three decades, and it has become a
routine tool in the aerodynamic design of aircraft, wind turbines,
centrifugal pumps, etc. For general engineering applications, nearly
all production flow solvers are based on at most second-order
numerical methods. Although they proved very useful, the sec-
ond-order methods may not be accurate enough for problems
requiring high accuracy, such as vortex-dominated flows, and
acoustic noise predictions. Therefore, there has been a growing
interest in the development of high-order methods for unstruc-
tured grids in recent years. The reasons for this are obvious.
High-order methods enjoy remarkably high accuracy with low
numerical dissipations, and unstructured grids can provide flexibil-
ity in handling complex geometries. A review of the high-order
methods for the Euler and Navier–Stokes equations can be found
in [31].

The spectral difference (SD) method [12] is a recently developed
high-order method to solve compressible flow problems on sim-
plex meshes. Its precursor is the conservative staggered-grid
Chebyshev multi-domain method [11]. The general formulation
of the SD method was first described in [12] and applied for
computational electromagnetic problems. It is then extended to
2D Euler [33] and Navier–Stokes equations [14,34]. After that,
Sun et al. [22,23] implemented the SD method for 3D N–S
ll rights reserved.

jw@iastate.edu (Z.J. Wang),
equations on unstructured hexahedral meshes. Later, a weak insta-
bility in the original SD method was found independently by
Vanden Adeele et al. [26] and Huynh [8]. Huynh [8] further found
that the use of Legendre–Gauss quadrature points as flux points re-
sults in a stable SD method. This was later proved by Jameson [9]
for the one dimensional linear advection equation. The present
study is based on Sun et al. [22,23] and further extends the method
to 3D deformable meshes. The basic idea to achieve high-order
accuracy in the SD method is to use a high degree polynomial to
approximate the exact solution in a standard element (a local cell).
However, unlike the discontinuous Galerkin (DG) [3] method and
spectral volume (SV) method [32], the SD method is in the differ-
ential form, which is efficient and simple to implement. As all
the computations are performed on the fixed standard element
in the computational domain, it is reasonable to expect that the
SD method can preserve high-order features for moving boundary
problems in the physical domain.

Since a time-dependent curvilinear transformation from the
physical domain to the standard element is needed in the SD meth-
od, the Geometric Conservation Law (GCL), first discussed in [25],
should be strictly enforced in order to eliminate the grid motion
induced errors. For high-order methods, an approach to guarantee
GCL for the finite difference method has been proposed in [27]. It is
straightforward to extend this approach to the present SD method.
In addition, a GCL compliant high-order time integration method is
developed for the implicit scheme with a similar method used in
[13]. Note that there is an alternative way to deal with moving
boundary problems, which is called the arbitrary Lagrangian–
Eulerian (ALE) method [4]. In that approach, a mapping from a
fixed reference configuration to the physical domain is needed. In
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the mapping, a time-dependent GCL is introduced for the reference
domain [17–19]. It is quite similar to the coordinate transforma-
tion approach aforementioned in the SD or the finite difference
methods in [24,27]. It can be shown that the final form of the
time-dependent GCL is exactly the same for both approaches.

The remainder of the paper is organized as follows. In Section 2,
the SD method is briefly reviewed including both the space discret-
ization procedure and time integration approach. The GCL of the
transformation from the physical domain to the computational
one is then discussed in detail. After that, the implementation of
GCL into the numerical schemes is described for different time
marching methods. An algebraic grid deformation method together
with the corresponding blending strategy is given in Section 2 as
well. Then several numerical test cases are presented in Section
3. For a single flapping airfoil, the numerical results are obtained
with both a rigid moving grid and a deformable grid. The compar-
isons of these results with experimental data are also presented.
Moreover, some superior features of high-order methods over the
lower ones are also illustrated in Section 3. Section 4 briefly con-
cludes the paper.

2. Numerical method

2.1. Governing equations

We consider the unsteady compressible Navier–Stokes (N–S)
equations in conservation form in the physical domain (t,x,y,z)

@Q
@t
þ @F
@x
þ @G
@y
þ @H
@z
¼ 0; ð2:1Þ

where Q is the vector of conservative variables, and F, G, H are the
total fluxes including both the inviscid and viscous flux vectors.

After introducing a time-dependent coordinate transformation
(Fig. 1a) from the physical domain (t,x,y,z) to the computational
domain (s,n,g,f), Eq. (2.1) can be rewritten as

@ eQ
@s
þ @

eF
@n
þ @

eG
@g
þ @

eH
@f
¼ 0; ð2:2Þ

whereeQ ¼ jJjQeF ¼ jJjðQnt þ Fnx þ Gny þ HnzÞeG ¼ jJjðQgt þ Fgx þ Ggy þ HgzÞeH ¼ jJjðQft þ Ffx þ Gfy þ HfzÞ

8>>>>><>>>>>:
: ð2:3Þ

Herein, s = t, and (n,g,f) 2 [ � 1,1]3, are the local coordinates in the
computational domain. In the transformation shown above, the
Jacobian matrix J takes the following form:
Fig. 1. (a) Transformation from a moving physical domain to a fixed computational dom
denoted by squares) in a standard quadrilateral element for a third-order SD scheme.
J ¼ @ðx; y; z; tÞ
@ðn;g; f; sÞ ¼

xn xg xf xs

yn yg yf ys

zn zg zf zs

0 0 0 1

26664
37775: ð2:4Þ

For a non-singular transformation, its inverse transformation
must also exist, and the transformation matrix is

J�1 ¼ @ðn;g; f; sÞ
@ðx; y; z; tÞ ¼

nx ny nz nt

gx gy gz gt

fx fy fz ft

0 0 0 1

26664
37775: ð2:5Þ

It should be noted that all the information concerning grid
velocity ~vg ¼ ðxs; ys; zsÞ is contained in nt, gt and ft, which can be
written as

nt ¼ �~vg � rn

gt ¼ �~vg � rg
ft ¼ �~vg � rf

8><>: : ð2:6Þ
2.2. Space discretization

A brief review of the SD method is given here for completeness.
A more detailed description of this numerical method is available
in [22]. In the SD method, two sets of points are given, namely
the solution and flux points, as shown in Fig. 1b. Conservative vari-
ables are defined at the solution points, and then interpolated to
flux points to obtain local fluxes. In this study the flux points are
selected to be the Legendre–Gauss points plus both end points
�1 and 1.

The fluxes are computed at the flux points using Lagrange inter-
polation polynomials. It should be pointed out that this solution
polynomial is only continuous within a standard element, but dis-
continuous at the cell interfaces. Therefore, for the inviscid flux, a
Riemann solver is necessary to compute a common flux on the
interface. For a moving boundary problem, since the eigenvalues
of the Euler equations are different from those for a fixed boundary
problem by the grid velocity, the design of the Riemann solver
should consider the grid velocity. Taking the Rusanov flux [22] as
an example, the reconstructed fluxes in three directions can be
written aseFi ¼ 1

2 ½
fFi

L þ
fFi

R �ðjVn�vgnjþ�cÞ � ðQ R�QLÞ � jJjjrnj � signð~n �rnÞ�eGi ¼ 1
2 ½
fGi

L þ
fGi

R �ðjVn�vgnjþ�cÞ � ðQ R�QLÞ � jJjjrgj � signð~n �rgÞ�fHi ¼ 1
2 ½
fHi

L þ
fHi

R �ðjVn�vgnjþ�cÞ � ðQ R�Q LÞ � jJjjrfj � signð~n �rfÞ�;

8>>><>>>:
ð2:7Þ
ain. (b) Distribution of solution points (as denoted by circles) and flux points (as
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where superscript i indicates the inviscid flux, subscript n indicates
the normal direction of the interface. It should be noted that Qnt, Qgt

and Qft are included in the inviscid fluxes. The reconstruction of the
viscous flux can be found in [22].

2.3. Geometric Conservation Law (GCL)

The GCL for the metrics of the transformation from the physical
domain to the computational one can be expressed as

@
@n ðjJjnxÞ þ @

@g ðjJjgxÞ þ @
@f ðjJjfxÞ ¼ 0

@
@n ðjJjnyÞ þ @

@g ðjJjgyÞ þ @
@f ðjJjfyÞ ¼ 0

@
@n ðjJjnzÞ þ @

@g ðjJjgzÞ þ @
@f ðjJjfzÞ ¼ 0

@jJj
@t þ @

@n ðjJjntÞ þ @
@g ðjJjgtÞ þ @

@f ðjJjftÞ ¼ 0:

8>>>>><>>>>>:
ð2:8Þ

It is obvious that the first three formula of the GCL only depend
on the accuracy of the space discretization, while the last one is
related to the time evolution of the moving grid. Since the spatial
metrics are computed exactly, the first three equations are
automatically satisfied. If the mesh undergoes rigid-body motion
without deformation, jJj is independent of time. Due to the discret-
ization error, the time-dependent GCL may not be strictly satisfied
if one does not pay attention to how the mesh velocity is com-
puted. However, for a dynamic mesh, spurious flows can be
induced if the GCL is not strictly enforced. Therefore, GCL is a crit-
ical element for dynamic meshes.

In the present study, the GCL error in the numerical simulation
is canceled by adding a source term to the N–S equations in the
computational domain. In [17–19], the enforcement of GCL is
achieved by using the same time integration form for the Jacobian
as the conservative variables. An extra equation for the Jacobian
needs to be solved iteratively. However, the present approach
calculates the Jacobian directly, and then eliminates the errors
generated by the disagreements between Jacobian and the corre-
sponding grid velocity through a source term. Herein, treatments
of the GCL are introduced separately for explicit and implicit
schemes due to their different characteristics.

2.3.1. Explicit scheme
The semi-discrete form of the N–S equation in the computa-

tional domain reads

@ eQ
@t
¼ RðeQ nÞ ¼ � @eF

@n
þ @

eG
@g
þ @

eH
@f

 !
: ð2:9Þ

The equation is solved with a multi-stage strong-stability-preserv-
ing (SSP) Runge–Kutta scheme.

The following equation is obvious by the chain rule,

@ eQ
@t
¼ @jJjQ

@t
¼ jJj @Q

@t
þ Q

@jJj
@t

ð2:10Þ

Substitute the last formula of Eqs. (2.8) into Eq. (2.10), we obtain

@ eQ
@t
¼ jJj @Q

@t
� Q

@

@n
ðjJjntÞ þ

@

@g
ðjJjgtÞ þ

@

@f
ðjJjftÞ

� �
ð2:11Þ

Thus Eq. (2.9) is changed to the following form,

@Q
@t
¼ 1
jJj �

@eF
@n
þ@

eG
@g
þ@

eH
@f

 !
þQ

@

@n
ðjJjntÞþ

@

@g
ðjJjgtÞþ

@

@f
ðjJjftÞ

� �( )

¼ 1
jJj �

@eF
@n
þ@

eG
@g
þ@

eH
@f

 !
þ source

( )
ð2:12Þ

where
source ¼ Q
@

@n
ðjJjntÞ þ

@

@g
ðjJjgtÞ þ

@

@f
ðjJjftÞ

� �
: ð2:13Þ

Note that @eF
@n þ @eG

@g þ @eH
@f contains a term as Q @

@n ðjJjntÞ þ @
@g ðjJjgtÞþ

h
@
@f ðjJjftÞ�. It is clear that GCL is satisfied strictly as this term will
be canceled by the ‘source’ term when Q is a constant (i.e. the free
stream flow). The benefits of this method are that the source term
is easy to compute and implement for the original solver for
stationary grids and the calculation of @jJj/@t can be avoided, which
might generate additional errors and increase the computational
cost.

2.3.2. Implicit scheme
At each cell ‘c’, using the backward Euler scheme for the time

derivative,fQ c
nþ1 � fQc

n

Dt
� RcðeQ nþ1Þ � RcðeQ nÞ
h i

¼ RcðeQ nÞ; ð2:14Þ

further performing the Taylor expansion and keeping the first-order
term, we obtain

RcðeQ nþ1Þ � RcðeQ nÞ ¼ @Rc

@fQc

DfQ c þ
X
nb–c

@Rc

@gQ nb

DgQ nb ; ð2:15Þ

where DfQc ¼ fQc
nþ1 � fQc

n, ‘nb’ indicates all the neighboring cells
contributing to the residual of cell‘c’.

Combining (2.14) and (2.15), we obtain

I
Dt
� @Rc

@fQ c

 !
DfQ c �

X
nb–c

@Rc

@gQ nb

DgQ nb ¼ RcðeQ nÞ: ð2:16Þ

However, it is expensive in memory to store the full LHS impli-
cit Jacobian matrices. Therefore, a preconditioned LU-SGS scheme
is adopted in the development of the implicit scheme. Herein, we
just introduce a preconditioning matrix as

D ¼ I
Dt
� @Rc

@fQ c

 !
; ð2:17Þ

and the iterative scheme becomes

DDfQc
ðkþ1Þ ¼ I

Dt
� @Rc

@fQ c

 !
DfQ c

ðkþ1Þ

¼ RcðeQ nÞ þ
X
nb–c

@Rc

@gQnb

DgQ nb
�; ð2:18Þ

where superscript (k + 1) is an iterative index, and ⁄ indicates the
most recently updated solutions. It should be noted that DfQc

ðkþ1Þ

can be written as

DfQ c
ðkþ1Þ ¼ fQc

ðkþ1Þ � fQ c
n

¼ fQ c
ðkþ1Þ � fQ c

ðkÞ
� �
þ fQ c

ðkÞ � fQ c
n

� �
; with fQ c

ðkÞ ¼ fQ c
�: ð2:19Þ

Since we do not want to store the matrices @Rc=@gQ nb , (2.18) is
further manipulated as follows:

Rcð eQ nÞþ
X
nb–c

@Rc

@gQ nb

DgQ nb
� ¼ Rc

eQ n
c ;feQ n

nbgnb–c

� �
þ
X
nb–c

@Rc

@gQnb

DgQ nb
�

� Rcð eQ n
c ;f eQ �nbgnb–cÞ

� Rcð eQ �c ;f eQ �nbgnb–cÞ�
@Rc

@fQ c

DfQc
�

¼ Rcð eQ �Þ� @Rc

@fQ c

DfQc
� or Rcð eQ �Þ� @Rc

@fQ c

DfQ c
ðkÞ

 !
ð2:20Þ
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In (2.20), note that both approximations can be obtained using the
first-order Taylor series expansion. Combining (2.18)–(2.20), we
obtain

D fQ c
ðkþ1Þ � fQc

ðkÞ
� �

¼ I
Dt
� @Rc

@fQ c

 ! fQc
ðkþ1Þ � fQ c

ðkÞ
� �

¼ Rc
eQ �� �
� DfQ c

�

Dt
; ð2:21Þ
Fig. 2. (a) Pressure coefficient distribution and grid deformation; (b) comparison betwee
solid line denotes the analytical result, and the dash–dot line with triangles indicates th

Fig. 3. The convergence of the vortex propagation problem using the deformable grid w
displays results from the third-order and fourth-order SD methods respectively. In both c
by L2) and infinity-norm (as denoted by L1) are given.

Fig. 4. The convergence of the free stream preservation test using the deformable grid w
explicit SSP-RKS and (b) implicit BDF2 time integration schemes are displayed. In both cas
L2) and infinity-norm (as denoted by L1) are given.
Since matrix D merely serves as a preconditioner, the accuracy
of the iteration will be determined by the right-hand side (RHS) of
the Eq. (2.21).

Note that

@eF
@n
¼
@ jJjðQnt þ Fnx þ Gny þ HnzÞ
� �

@n

¼ Q
@jJjnt

@n
þ jJjnt

@Q
@n
þ
@ jJjðFnx þ Gny þ HnzÞ
� �

@n
; ð2:22Þ
n numerical and analytical solutions of pressure coefficient along y = 0 at t = 0.1. The
e numerical result.

ith and without GCL correction, as well as for the stationary grid. Figure (a) and (b)
ases, four mesh sizes are used and error representations in both 2-norm (as denoted

ith and without GCL correction. Results from the fourth-order SD method with (a)
es, four time steps are used and error representations in both 2-norm (as denoted by



Fig. 5. Pitching angle evolution during the hold-pitch-up-hold-pitch down process.
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which is contained in RðeQ Þ.
Thus, the GCL is introduced in the RHS as follows.

I
Dt
� @Rc

@fQ c

 !
ðfQc

ðkþ1Þ �fQ c
ðkÞÞ

¼ RcðeQ �Þ�DfQc
�

Dt
þQ �c

DjJj�

Dt
þ @

@n
ðjJj�n�t Þþ

@

@g
ðjJj�g�t Þþ

@

@f
ðjJj�f�t Þ

� 	
ð2:23Þ
Fig. 6. (a) Overview of the deformable grid; (b) close-up view of the deformab
It should be noted that in the above equation the discrete form
of DjJj⁄/Dt is exactly the same as DfQc

�=Dt. This consistency can
help minimize the errors induced by discretization schemes. For
example, the second-order backward difference scheme (BDF2)
for the two derivatives can be written as below,

DfQ c
�

Dt
¼ 3fQ c

� � 4fQc
n þ fQ c

n�1

2Dt
;

DjJj�

Dt
¼ 3jJj� � 4jJjn þ jJjn�1

2Dt
ð2:24Þ
2.4. General grid deformation strategies

In order to solve problems with moving grids, it is necessary to
design a grid moving algorithm. As the first step, the boundary
motion of the physical domain is specified according to the
physical problem. Then traditionally two methods can be used to
manipulate the rest of the mesh nodes. The first one is to use the
algebraic procedure to smooth the whole field [5,17–19,30]. An-
other approach is to solve differential equations (usually elliptic,
like equations of linear elasticity) with the specified boundary
conditions [21,30]. For the sake of computational efficiency, an
algebraic methodology is performed in the present study, which
has been widely used by other researchers [17–19].

The first implementation of the algebraic method is to make the
whole physical domain perform a rigid-body motion. Obviously,
this approach cannot handle relative motions among several
le grid near the moving boundary; (c) overview of the rigidly moving grid.
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components. Another implementation is to use blending functions
to reconstruct the whole physical domain. In the present study, a
fifth-order polynomial blending function proposed in [19],

r5ðsÞ ¼ 10s3 � 15s4 þ 6s5; s 2 ½0;1� ð2:25Þ

is adopted. It is obvious that r05ð0Þ ¼ 0; r05ð1Þ ¼ 0, which can generate
a smooth variation at both end points during the mesh reconstruc-
tion. Herein, ‘s’ is a normalized arc length, which reflects the ‘dis-
tance’ between the present node and the moving boundaries.
Specifically, s = 0 means that the present node will move with the
moving boundary, while s = 1 means that the present node will
not move. Therefore, for any motion (transition, rotation), the
change of the position vector ~P is

D~Ppresent ¼ ð1� r5ÞD~Prigid: ð2:26Þ

After these manipulations, a new set of mesh nodes can be
calculated based on D~P. In the present study, for the deformable
grid approach, in order to maintain the grid quality near the wall
Fig. 7. Comparison between numerical and experimental results for Re = 10,000, k = 0.2, a
to right: flow visualization with dye; u velocity contour (PIV); vorticity contour in the sp
contour (u/U1); right: vorticity contour in the spanwise direction. (c) Numerical results
spanwise direction.
boundaries, rigid motions are enforced in the vicinity of the wall
boundaries. The outer boundaries far from the wall are specified
as stationary reference. Between the rigidly displaced grid and
the stationary grid, the blending function (2.25) is used to interpo-
late and smooth the grid motion.

It should be mentioned that the same smoothing method can
also be used in problems with two or more objects with relative
motions. In the present study, a tandem airfoil problem is investi-
gated using this approach, as will be discussed in the next section.
In that case, the change of the position vector ~P can be written as

D~Ppresent ¼D~Prigid1; if s1¼0

D~Ppresent ¼D~Prigid2; if s2¼0

D~Ppresent ¼
sn

2
sn

1
þsn

2
½1� r5ðs1Þ�D~Prigid1þ

sn
1

sn
1
þsn

2
½1� r5ðs2Þ�D~Prigid2; otherwise

ð2:27Þ

and it is made sure that there is no region with both s1 = 0 and
s2 = 0.
= 20� when tU1/C = 1.8725. (a) Experimental results (courtesy of OL [15]). From left
anwise direction (PIV). (b) Numerical results with deformable grids. Left: u velocity

with rigidly moving grids. Left: u velocity contour; right: vorticity contour in the



Fig. 8. Comparison between numerical and experimental results for Re = 10000, k = 0.2, a = 40� when tU1/C = 2.745. (a) Experimental results (courtesy of OL [15]). From left
to right: flow visualization with dye; u velocity contour (PIV); vorticity contour in the spanwise direction (PIV). (b) Numerical results with deformable grids. Left: u velocity
contour (u/U1); right: vorticity contour in the spanwise direction. (c) Numerical results with rigidly moving grids. Left: u velocity contour; right: vorticity contour in the
spanwise direction.

Fig. 9. (a) Drag coefficient history and (b) lift coefficient history for Re = 10,000, k = 0.2, calculated using both the rigidly moving grid (as denoted by the solid line) and the
deformable grid (as denoted by the dash–dot line with triangles).

90 M.L. Yu et al. / Computers & Fluids 48 (2011) 84–97
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Another point is that if ‘s’ in the blending function (2.25) is set to
be 0 at any grid point, then a rigidly moving grid approach is
achieved. In this case, the whole domain will have the same motion.
Generally speaking, a rigid grid is only suitable for simple motions
of one object. For the case of multiple objects with relative motions,
it will generate overset cells. From a numerical perspective, the
Jacobian of the transformation from the physical domain to the
computational domain will be the same all the time, and theoreti-
cally this will introduce less error when performing simulations,
as Jacobian needs to be calculated only once. On the other hand, a
deformable grid is desirable in more general cases. But extra efforts
are needed to calculate the changing Jacobian as the grid evolves.

It is clear that for systems with complex relative motions, the
algebraic algorithm for the grid motion can be hard to design.
However, for many cases this method enjoys its remarkable sim-
plicity and efficiency. Several examples will be shown in the next
section.
3. Numerical results

3.1. Accuracy study using an isentropic vortex propagating problem

In order to verify that the SD method can preserve its high-
order accuracy for deformable meshes, a 2D Euler vortex propaga-
Fig. 10. Grids used for the simulations of the sinusoidally pitching airfoil. (a) Overview
boundary; (c) overview of the rigidly moving grid; (d) airfoil surface grid for the 3D sim
tion case is performed in the present study. SSP third-order
RungeKutta (SSP-RK3) time integration is used for this study. The
definition of the isentropic vortex and its evolution process can
be described as [7]
uðrÞ ¼ U0max

b
re

1
2 1�r2

b2

� �
; qðrÞ ¼ 1� 1

2
ðc� 1ÞU02maxe1�r2

b2

� 	1=ðc�1Þ

; pðrÞ

¼ 1� 1
2
ðc� 1ÞU02maxe1�r2

b2

� 	c=ðc�1Þ

;

and

qðx; y; tÞ
uðx; y; tÞ
vðx; y; tÞ
pðx; y; tÞ

0BBB@
1CCCA ¼

0
U0

V0

0

0BBB@
1CCCAþ

qðrÞ
�uðrÞ sin h

uðrÞ cos h

pðrÞ

0BBB@
1CCCA;

where u(r), q(r), p(r) are the velocity, density and pressure
distribution of the vortex respectively; U0 and V0 are the advection
velocities of the main stream in the x- and y -directions; r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� U0tÞ2 þ ðy� V0tÞ2

q
, is the radial distance from the vortex

center; b is a constant.
of the deformable grid; (b) close-up view of the deformable grid near the moving
ulations.



Fig. 11. (a) Convergence history of the energy error for the steady solution of the flow over a stationary NACA0012 airfoil with implicit (LU-SGS) time integration; (b) pressure
coefficient contours for the converged steady flow.

Fig. 12. Vorticity field for Re = 12600, k = 11.5, St = 0.19. (a) Phase-averaged experimental results (courtesy of Bohl and Koochesfahani [2]). (b) Instantaneous numerical
results with deformable grid. (c) Instantaneous numerical results with rigidly moving grid.

Fig. 13. Averaged flow fields for Re = 12600, k = 11.5, St = 0.19. (a) Vorticity field, experimental results, (courtesy of Bohl and Koochesfahani [2]); (b) vorticity field, numerical
results; (c) u velocity field, experimental results, (courtesy of Bohl and Koochesfahani [2]); (d) u velocity field, numerical results.
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The isentropic vortex was originally centered at(0,0), with the
initial condition given by (U0,V0) = (0.5,0), U0max = 0.5U0, b = 0.2.
The physical domain of this problem is set to be [ � 2,2] �
[ � 2,2] with one cell in the z -direction. The grid deformation
strategy follows [13], which analytically defines the grid motion as

~xðtÞ ¼~xðtÞ þ d~xðtÞ

with

dxðtÞ ¼ AxLxdt=tmax sinðfntÞ sinðfxxÞ sinðfyyÞ
dyðtÞ ¼ AyLydt=tmax sinðfntÞ sinðfxxÞ sinðfyyÞ

for 2D problems. Herein, Ax,y is the amplitude in x and y directions;
Lx,y and tmax depict the reference length and time; dt is the time
step, and

fn ¼ ntp=tmax; f x ¼ nxp=Lx; f y ¼ nyp=Ly:

The motion control parameters of the deformable grid are set as
Lx = Ly = 4, tmax = 0.1, and nx = ny = 2, nt = 1, and Ax = Ay = 0.2. Since
at t = 0.1 the grid has the largest deformation, the errors are ana-
lyzed at that instance. In order to ensure that the time integration
errors have no effects on the accuracy analyses, a fixed time step is
chosen as Dt = 5 � 10�5. Pressure coefficient (defined as Cp ¼
Fig. 14. (a) Thrust coefficient history and (b) lift coefficient history for Re = 12600, k = 1
line with squares) and the deformable grid (as denoted by the dash–dot line with trian

Fig. 15. Instantaneous spanwise vorticity field for Re = 12,600, k = 11.5, St = 0.33. (a) 2D s
(c) 3D simulation with the rigidly moving grid; (d) iso-surface of Q colored by the span
ðp� p1Þ=ð0:5qU2
1ÞÞ distribution of the vortex is displayed in

Fig. 2a at t = 0.1. From Fig. 2b, it is obvious that the analytical result
agrees well with the numerical one. Results of the grid refinement
study are displayed in Fig. 3, which demonstrate the accuracy of
the SD method for the deformable domain. The errors are mea-
sured with both L2 and L1norms, and an optimal convergence
has been achieved in all cases. It is also found that the schemes
with and without GCL for the isentropic vortex propagation tests
almost obtain the same error values and accuracy. However, for
the free stream preservation test, it is obvious from Fig. 4 that
for both explicit (SSP-RK3) and implicit (BDF2) schemes, if the
GCL is not enforced, the error level can reachup to nine-orders lar-
ger than machine zero. But with a GCL compliant scheme, machine
zero can be achieved. In this test, the fourth-order scheme is used
on the grid with 19 � 19 � 1 cells, and the errors are computed at
t = 0.1 as well.
3.2. Bio-inspired flow simulations

Recently, there is a growing interest in the study of bio-inspired
flows in the fluid dynamics community. One of the major objec-
tives is to investigate the wake structures after flapping airfoils
1.5, St = 0.19, calculated using both the rigidly moving grid (as denoted by the solid
gles).

imulation with the deformable grid; (b) 2D simulation with the rigidly moving grid;
wise vorticity from the 3D simulation results.
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or wings [1,2,6,10,15,16,20,28,29,35]. The reason is that based on
the evolution of these wake structures, the thrust and lift genera-
tion mechanism in agile flight can be clearly revealed. As men-
tioned before, such flows are unsteady vortex-dominated flows.
In order to resolve the subtle vortex structures, a high-order meth-
od is necessary, as first- and second-order flow solvers may dissi-
pate the unsteady vortices quickly. Moreover, these problems all
involve moving boundaries. Therefore, several numerical simula-
tions of the flapping-related motions are carried out to examine
the performance of the high-order SD method for deformable
meshes. Unless otherwise noted, the default numerical scheme
Fig. 16. (a) Thrust coefficient convergence history and (b) lift coefficient convergence hi
grid (as denoted by the solid line with squares) and the deformable grid (as denoted by
denoted by the dash line with diamonds). (c) and (d) are the corresponding close-up vi

Fig. 17. (a) Overview of the deformable grid; (b) close-up view o
used in the simulations is the third-order SD scheme. For the two
dimensional simulations, the implicit BDF2 time integration is
used; and for the three dimensional simulations, the explicit SSP-
RK3 time integration is employed. For all the simulations pre-
sented in this section, the free stream Mach number is chosen as
0.1.

3.2.1. Flat plate pitch-up process
A series of canonical unsteady experimental studies on the flat

plate pitch-up problem was conducted in [15,16]. This problem is
also studied using the high-order SD method. The aim of the study
story for Re = 12,600, k = 11.5, St = 0.33, for 2D simulations using the rigidly moving
the dash–dot line with triangles) and 3D simulations using rigidly moving grid (as

ews of (a) and (b).

f the deformable grid between the two moving boundaries.
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is to investigate the aerodynamic responses of maneuvering flights,
such as perching. The main features of these problems can be gen-
eralized as high-frequency and high-amplitude pitching processes,
which can be used to verify the efficiency of the SD method for
deformable meshes. In order to compare the numerical results
with the experimental ones, the functions and parameters used
in the present study are defined to be consistent with the
experiment.

The maximum pitching angle am is set to be 40�, and a is com-
puted according to

aðTÞ ¼ am
GðTÞ

MaxðGðTÞÞ ;

with a smoothing function defined in [6] as

GðTÞ ¼ ln
coshðaðT � T1ÞÞ coshðaðT � T4ÞÞ
coshðaðT � T2ÞÞ coshðaðT � T3ÞÞ

� �
;

where a is a function shape parameter, which is set to be 11.0,
T1 = DTs, T2 = T1 + DTpu, T3 = T2 + DTh and T4 = T3 + DTpd as shown in
Fig. 5. Herein, T is a non-dimensional time with respect toC/U1,
where ‘C’ stands for the chord length. The start-up interval DTs is
set to be 1.0, the reduced pitch rate K = (Cam/DTpu,d)/2U1 is speci-
fied as 0.2, and the hold interval DTh is set to be 0.05. The Reynolds
number based on the plate chord length is 10,000. The non-dimen-
sional time step used for the simulations is DtU1/C = 7.5 � 10�5.

Fig. 6 shows the details of the deformable grid and the rig-
idly displaced grid. The grid has 77 � 78 � 1 cells, and the
Fig. 18. Instantaneous vorticity fields of a tandem airfoil configuration. (a) and (c) display
position using the third-order and second-order accuracy schemes respectively; (b) and (
plate up position using the third-order and second-order accuracy schemes respectively
minimum cell size normalized by the plate chord length in
the transverse direction is 0.0015. The numerical results for
two instances during the pitch-up process, namely tU1/
C = 1.8725 (corresponding pitch angle 20�) and tU1/C = 2.745
(corresponding pitch angle 40�), are compared with the experi-
mental results. From Figs. 7 and 8, it is obvious that the com-
puted instantaneous vorticity and velocity fields agree well
with the experimental data. The corresponding force histories
for both deformable and rigidly moving grids are displayed in
Fig. 9. Note that the results with different grid deformation algo-
rithms are nearly identical.

3.2.2. Flow over a sinusoidally pitching airfoil
An experimental investigation of the flow over a NACA-0012

airfoil performing a pitching motion with small amplitude and
high reduced frequency has been conducted in [2]. The aim of
the study is to find the critical point at which the von Karman vor-
tex street turns into a reverse von Karman street and to study the
parameter dependencies of the thrust generation during the pitch-
ing motion. Following this experimental study, a numerical re-
search is completed with the same parameter setting. And some
cases are verified both with rigidly moving and deformable grid
strategies.

In the present study, the airfoil performs a pitching motion ex-
pressed as

aðtÞ ¼ am þ a0 sinðxt þ /Þ; x ¼ 2pf
the vorticity fields calculated at the phase of the fore plate up and hind plate down
d) display the vorticity fields calculated at the phase of the fore plate down and hind
.
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where am is the mean angle of attack, a0 is the amplitude of the
pitching angle, / is the initial phase. Also, the reduced frequency
k and the Strouhal number St are defined respectively as

k ¼ xC
2U1

; St ¼
fA

U1
;

where C is the chord length of the airfoil, A is the pitching ampli-
tude. The Reynolds number based on the airfoil chord length for
all the simulations in this section is 12,600. The non-dimensional
time step used for the two dimensional simulations is D tU1/
C = 1 � 10�4; while that for the three dimensional simulations is
DtU1/C = 1 � 10�5.

For the rigidly moving grid approach, the computational grid
moves with the body and is updated using

xpresent � xc ¼ ðxformer � xcÞ cosðDaÞ � ðyformer � ycÞ sinðDaÞ
ypresent � yc ¼ ðxformer � xcÞ sinðDaÞ þ ðyformer � ycÞ cosðDaÞ

(
;

where (xc,yc) is the pitching center, and Da = a0(sin(x(t + dt) +
/0) � sin(xt + /0)).

The deformable grid and the rigidly moving grid at maximum
displacements for the St = 0.33 case are displayed in Fig. 10. There
the grid with 341 � 47 � 1 cells for the two dimensional simula-
tions and that with 341 � 47 � 10 cells for the three dimensional
simulations are shown. The minimum cell size normalized by the
airfoil chord length in the transverse direction is 0.001 and that
in the spanwise direction for the three dimensional simulations
is 0.02. A grid refinement study has been performed in [35] to
determine this grid setup. The initial conditions for all simulations
on the dynamic grids in the present section are set as the steady
solutions of the flow fields under the same Reynolds number
(Re = 12600) and inlet Mach number (Ma = 0.1). The effects of ini-
tial conditions on the bio-inspired flow simulations are discussed
in [35], and it is found that the present initial conditions can best
imitate the general experimental setups. The convergence history
of the steady flow over the stationary NACA 0012 airfoil and the
pressure coefficient (defined as Cp ¼ ðp� p1Þ=ð0:5qU2

1ÞÞ contour
are shown in Fig. 11.

The phase-averaged vorticity field from the experiment [2] and
the corresponding instantaneous vorticity fields from the numeri-
cal simulations with different grid deformation algorithms are
displayed in Fig. 12. In addition, the experimental and numerical
results for the time-averaged vorticity and velocity fields are
shown in Fig. 13. The numerical results are found to agree well
with the experimental results. Thrust and lift coefficient histories
for both deformable and rigidly moving grids are plotted in
Fig. 14. According to [2], the mean thrust coefficient for the case
Re = 12600, k = 11.5, St = 0.19 is around 0.024. In the present study,
Fig. 19. (a) Thrust coefficient convergence history and (b) lift coefficient convergence his
with triangles) and the second-order scheme (as denoted by the solid line with squares
the mean thrust coefficient is calculated to be 0.031, and it is
obtained by averaging the data in the continuous four cycles after
twenty-four cycles. In addition, an interesting phenomenon
discovered in the numerical simulation is that if the pitching
amplitude is further increased, which means that the Strouhal
number is increased, an asymmetric wake structure appears dur-
ing the pitching motion. This was first reported in [10] for the
plunging motion and has been experimentally studied in [29].
The vorticity fields with both deformable and rigidly moving grid
are described in Fig. 15. The initial phase / is set to be 180�. A three
dimensional simulation is then conducted using the same param-
eters as that of the two dimensional simulations, except that in
the spanwise direction, periodic boundary conditions are specified.
From Fig. 15c and d and Fig. 16, it can be found that results from
the 3D simulation are almost the same as those from the 2D sim-
ulations. This demonstrates that under the flow conditions speci-
fied in the present study, the flow is laminar and 2D simulations
can predict the flow features well. The vortex structures in
Fig. 15d are indicated by Q-criterion, which is described by

Q ¼ 1
2
ðRijRij � SijSijÞ ¼

1
2
@ui

@xj

@uj

@xi
;

where Rij ¼ 1
2

@ui
@xj
� @ui

@xj

� �
is the angular rotation tensor, and

Sij ¼ 1
2

@ui
@xj
þ @ui

@xj

� �
is the rate-of-strain tensor. It also can be discovered

from Fig. 16a that the thrust generation process appears certain
unsteady features accompanying with the asymmetric wake struc-
tures. Again, it can be found from Fig. 16 that the numerical results
do not depend on the grid deformation algorithms.

3.2.3. Flow over Tandem airfoils with inverse initial plunging phases
In order to enhance the thrust or lift generation and increase the

propulsive efficiency, the tandem airfoil configuration has been
studied by some researchers [1,20]. In these problems, the two air-
foils have relative motions, which can be utilized to verify the grid
deformation strategy for the SD method. Two flat plates perform-
ing plunging motions are studied here. The Reynolds number
based on the plate chord length is 10,000. The motions of the
two plates are specified as follows.

Fore plate : y ¼ h sinðxt þ /1Þ
Hind plate : y ¼ h sinðxt þ /2Þ

where h/C = 0.2, the reduced frequency k = 1.5, /1 = 0�, and
/2 = 180�. The non-dimensional time step used for the simulations
is DtU1/C = 2 � 10�4.

The deformable grid is displayed in Fig. 17. In order to compare
the performances of high-order methods and their low-order
tory calculated using both the third-order scheme (as denoted by the dash–dot line
).
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counterparts, two sets of grids with almost the same degrees of
freedom (DOFs) for the third- and second-order schemes are used
in the simulations. A grid with 46,270 cells (185,080 DOFs) is de-
signed for the second-order scheme; while another grid with
20,056 cells (180,504 DOFs) is designed for the third-order scheme.
The computed vorticity fields from both third- andsecond-order
accuracy schemes are shown in Fig. 18, and remarkable differences
of small vortex structures near the moving wall boundaries can be
observed for different accuracy approaches. Further, Fig. 19 dis-
plays the different aerodynamic force convergence histories for
methods of different accuracy. The second-order scheme shows
certain quasi-steady features after several cycles, which is not
found from the results of the third-order scheme. This can be ex-
plained as follows. Due to the relatively high numerical dissipation,
the second-order scheme can only capture the large vortex struc-
tures as seen from Fig. 18. As a comparison, the third-order scheme
can resolve fine vortex structures near the wall boundaries with
the same DOFs. These observations further demonstrate the neces-
sity of high-order methods in vortex-dominated flows.

4. Conclusions

A high-order spectral difference method has been extended to
solve compressible Navier–Stokes equations on deformable
meshes. Since the present method is based on unstructured grids,
it can handle complex geometries. Moreover, the differential form
of the SD method makes the implementation straightforward even
for high-order curved boundaries. Because a time-dependent
transformation from the physical domain to the computational
one has been made in the application of the method, the Geometric
Conservation Law (GCL) has been carefully considered during the
process and implemented for both the explicit and implicit time
integration methods. It has been demonstrated that the developed
algorithm preserved the high-order accuracy and works efficiently
for several bio-inspired flow problems. Numerical tests clearly
show that the high-order method with low numerical dissipation
can resolve much more elaborate vortex structures than the low-
order method, and can then help better illuminate the underlying
physics of the vortex-dominated flow.

References

[1] Akhtar I, Mittal R, Lauder GV, Drucker E. Hydrodynamics of a biologically
inspired tandem flapping foil configuration. Theor Comput Fluid Dyn
2007;21:155–70.

[2] Bohl DG, Koochesfahani MM. MTV measurements of the vertical field in the
wake of an airfoil oscillating at high reduced frequency. J Fluid Mech
2009;620:63–88.

[3] Cockburn B, Shu C-W. TVB Runge–Kutta local projection discontinuous
Galerkin finite element method for conservation laws II: general framework.
Math Comput 1989;52:411–35.

[4] Donea J. Arbitrary Lagrangian–Eulerian finite element methods. Computational
methods for transient analysis (A84-29160 12-64). Amsterdam: North-
Holland; 1983. p. 473–516.

[5] Dubuc L, Cantariti F, Woodgate M, Gribben B, Badcock KJ, Richards BE. A grid
deformation technique for unsteady flow computations. Int J Numer Methods
Fluids 2000;32:285–311.
[6] Eldredge JD, Wang CJ and OL MV. A computational study of a canonical pitch-
up, pitch-down wing maneuver. AIAA Paper, 2009-3687; 2009.

[7] Hu FQ, Li XD, Lin DK. Absorbing boundary conditions for nonlinear Euler and
Navier–Stokes equations based on the perfectly matched layer technique. J
Comput Phys 2008;227:4398–424.

[8] Huynh HT. A flux reconstruction approach to high-order schemes including
discontinuous Galerkin methods. AIAA Paper, 2007-4079; 2007.

[9] Jameson A. A proof of the stability of the spectral difference method for all
orders of accuracy. J Sci Comput 2010, doi:10.1007/s10915-009-9339-4.

[10] Jones KD, Dohring CM, Platzer MF. Experimental and computational
investigation of the Knoller–Betz effect. AIAA J 1998;36(7):1240–6.

[11] Kopriva DA, Kolias JH. A conservative staggered-grid Chebyshev multi-domain
method for compressible flows. J Comput Phys 1996;125(1):244–61.

[12] Liu Y, Vinokur M, Wang ZJ. Discontinuous spectral difference method for
conservation laws on unstructured grids. J Comput Phys 2006;216:780–801.

[13] Mavriplis DJ, Nastase CR, On the geometric conservation law for high-order
discontinuous GalerkinDiscretizations on dynamically deforming meshes.
AIAA Paper, 2008-778; 2008.

[14] May G, Jameson A. A spectral difference method for the Euler and Navier–
Stokes Eqs. AIAA Paper No. 2006–304; 2006.

[15] OL MV. The high-frequency, high-amplitude pitch problem: airfoils, plates and
wings. AIAA Paper, 2009-3686; 2009.

[16] OL MV, Altman A, Eldredge JD, Garmann DJ, Lian YH. AIAA Paper, Résumé of
the AIAA FDTC low Reynolds number discussion group’s canonical cases. 2010-
1085; 2010.

[17] Ou K, Jameson A. On the temporal and spatial accuracy of spectral difference
method on moving deformable grids and the effect of geometric conservation
law. AIAA Paper, 2010-5032; 2010.

[18] Ou K, Liang CH and Jameson A. A high-order spectral difference method for the
Navier–Stokes equations on unstructured moving deformable grids. AIAA
Paper, 2010-541; 2010.

[19] Persson PO, Peraire J, Bonet J. Discontinuous Galerkin solution of the Navier–
Stokes equations on deformable domains. Comput Methods Appl Mech Eng
2009;198:1585–95.

[20] Platzer MF, Jones KD, Young J, Lai JCS. Flapping-wing aerodynamics: progress
and challenges. AIAA J 2008;46(9):2136–49.

[21] Stein K, Tezduyar T, Benney R. Mesh moving techniques for fluid–structure
interactions with large displacements. J Appl Mech 2003;70(1):58–63.

[22] Sun YZ, Wang ZJ, Liu Y. High-order multidomain spectral difference method for
the Navier–Stokes equations on unstructured hexahedral grids. Commun
Comput Phys 2006;2(2):310–33.

[23] Sun YZ, Wang ZJ, Liu Y. Efficient implicit non-linear LU-SGS approach for
compressible flow computation using high-order spectral difference method.
Commun Comput Phys 2009;5(2–4):760–78.

[24] Tannehill J, Anderson D, Pletcher R. Computational fluid mechanics and heat
transfer. 2nd ed. Taylor & Francis; 1997.

[25] Thomas PD, Lombard CK. Geometric conservation law and its application to
flow computations on moving grids. AIAA J 1979;17:1030–7.

[26] Vanden Abeele K, Lacor C, Wang ZJ. On the stability and accuracy of the
spectral difference method. J Sci Comput 2008;37(2):162–88.

[27] Visbal MR, Gaitonde DV. On the use of high-order finite-difference schemes on
curvilinear and deforming meshes. J Comput Phys 2002;181:155–85.

[28] Visbal MR. High-fidelity simulation of transitional flows past a plunging airfoil
(2009), AIAA Paper No. 2009-391; 2009.

[29] von Ellenrieder KD, Pothos S. PIV measurement of the asymmetric wake of a
two dimensional heaving hydrofoil. Exp Fluids 2007;43(5).

[30] Wuilbaut T. Algorithmic developments for a multi-physics framework, PhD.
Thesis; 2008.

[31] Wang ZJ. High-order methods for the Euler and Navier Stokes equations on
unstructured grids. Prog Aerosp Sci 2007;43:1–41.

[32] Wang ZJ. Spectral(finite)volume method for conservation laws on
unstructured grids: basic formulation. J Comput Phys 2002;178:210–51.

[33] Wang ZJ, Liu Y, May G, Jameson A. Spectral difference method for unstructured
grids II: extension to the Euler equations. J Sci Comput 2007;32:45–71.

[34] Wang ZJ, Sun Y, Liang C, Liu Y. Extension of the SD method to viscous flow on
unstructured grids. In: Proceedings of the 4th international conference on
computational fluid dynamics, Ghent, Belgium, July 2006.

[35] Yu ML, Hu H, Wang ZJ. A numerical study of vortex-dominated flow around an
oscillating airfoil with high-order spectral difference method. AIAA Paper,
2010-726; 2010.

http://dx.doi.org/10.1007/s10915-009-9339-4

	A high-order spectral difference method for unstructured dynamic grids
	1 Introduction
	2 Numerical method
	2.1 Governing equations
	2.2 Space discretization
	2.3 Geometric Conservation Law (GCL)
	2.3.1 Explicit scheme
	2.3.2 Implicit scheme

	2.4 General grid deformation strategies

	3 Numerical results
	3.1 Accuracy study using an isentropic vortex propagating problem
	3.2 Bio-inspired flow simulations
	3.2.1 Flat plate pitch-up process
	3.2.2 Flow over a sinusoidally pitching airfoil
	3.2.3 Flow over Tandem airfoils with inverse initial plunging phases


	4 Conclusions
	References


