
CS 161 Lecture 3 Jessica Su (some parts copied from CLRS)

1 Solving recurrences

Last class we introduced recurrence relations, such as T (n) = 2T (bn/2c) + n. Typically
these reflect the runtime of recursive algorithms. For example, the recurrence above would
correspond to an algorithm that made two recursive calls on subproblems of size bn/2c, and
then did n units of additional work.

Today we will be learning about how to solve these recurrences to get bounds on the runtime
(like T (n) = O(n log n)).

1.1 Substitution method

A lot of things in this class reduce to induction. In the substitution method for solving
recurrences we

1. Guess the form of the solution.

2. Use mathematical induction to find the constants and show that the solution works.

1.1.1 Example

Recurrence: T (1) = 1 and T (n) = 2T (bn/2c) + n for n > 1.

We guess that the solution is T (n) = O(n log n). So we must prove that T (n) ≤ cn log n for
some constant c. (We will get to n0 later, but for now let’s try to prove the statement for
all n ≥ 1.)

As our inductive hypothesis, we assume T (n) ≤ cn log n for all positive numbers less than
n. Therefore, T (bn/2c) ≤ cbn/2c log(bn/2c)), and

T (n) ≤ 2(cbn/2c log(bn/2c)) + n

≤ cn log(n/2) + n

= cn log n− cn log 2 + n

= cn log n− cn+ n

≤ cn log n (for c ≥ 1)

Now we need to show the base case. This is tricky, because if T (n) ≤ cn log n, then T (1) ≤ 0,
which is not a thing. So we revise our induction so that we only prove the statement for
n ≥ 2, and the base cases of the induction proof (which is not the same as the base case
of the recurrence!) are n = 2 and n = 3. (We are allowed to do this because asymptotic
notation only requires us to prove our statement for n ≥ n0, and we can set n0 = 2.)

We choose n = 2 and n = 3 for our base cases because when we expand the recurrence
formula, we will always go through either n = 2 or n = 3 before we hit the case where n = 1.

1



CS 161 Lecture 3 Jessica Su (some parts copied from CLRS)

So proving the inductive step as above, plus proving the bound works for n = 2 and n = 3,
suffices for our proof that the bound works for all n > 1.

Plugging the numbers into the recurrence formula, we get T (2) = 2T (1) + 2 = 4 and
T (3) = 2T (1) + 3 = 5. So now we just need to choose a c that satisfies those constraints on
T (2) and T (3). We can choose c = 2, because 4 ≤ 2 · 2 log 2 and 5 ≤ 2 · 3 log 3.

Therefore, we have shown that T (n) ≤ 2n log n for all n ≥ 2, so T (n) = O(n log n).

1.1.2 Warnings

Warning: Using the substitution method, it is easy to prove a weaker bound than the one
you’re supposed to prove. For instance, if the runtime is O(n), you might still be able to
substitute cn2 into the recurrence and prove that the bound is O(n2). Which is technically
true, but don’t let it mislead you into thinking it’s the best bound on the runtime. People
often get burned by this on exams!

Warning: You must prove the exact form of the induction hypothesis. For example, in
the recurrence T (n) = 2T (bn/2c) + n, we could falsely “prove” T (n) = O(n) by guessing
T (n) ≤ cn and then arguing T (n) ≤ 2(cbn/2c) + n ≤ cn + n = O(n). Here we needed to
prove T (n) ≤ cn, not T (n) ≤ (c + 1)n. Accumulated over many recursive calls, those “plus
ones” add up.

1.2 Recursion tree

A recursion tree is a tree where each node represents the cost of a certain recursive sub-
problem. Then you can sum up the numbers in each node to get the cost of the entire
algorithm.

Note: We would usually use a recursion tree to generate possible guesses for the runtime,
and then use the substitution method to prove them. However, if you are very careful when
drawing out a recursion tree and summing the costs, you can actually use a recursion tree
as a direct proof of a solution to a recurrence.

If we are only using recursion trees to generate guesses and not prove anything, we can
tolerate a certain amount of “sloppiness” in our analysis. For example, we can ignore floors
and ceilings when solving our recurrences, as they usually do not affect the final guess.

1.2.1 Example

Recurrence: T (n) = 3T (bn/4c) + Θ(n2)

We drop the floors and write a recursion tree for T (n) = 3T (n/4) + cn2.

2



CS 161 Lecture 3 Jessica Su (some parts copied from CLRS)

The top node has cost cn2, because the first call to the function does cn2 units of work, aside
from the work done inside the recursive subcalls. The nodes on the second layer all have
cost c(n/4)2, because the functions are now being called on problems of size n/4, and the
functions are doing c(n/4)2 units of work, aside from the work done inside their recursive
subcalls, etc. The bottom layer (base case) is special because each of them contribute T (1)
to the cost.

Analysis: First we find the height of the recursion tree. Observe that a node at depth
i reflects a subproblem of size n/4i. The subproblem size hits n = 1 when n/4i = 1, or

3



CS 161 Lecture 3 Jessica Su (some parts copied from CLRS)

i = log4 n. So the tree has log4 n+ 1 levels.

Now we determine the cost of each level of the tree. The number of nodes at depth i is 3i.
Each node at depth i = 0, 1, . . . , log4 n− 1 has a cost of c(n/4i)2, so the total cost of level i
is 3ic(n/4i)2 = (3/16)icn2. However, the bottom level is special. Each of the bottom nodes
contribute cost T (1), and there are 3log4 n = nlog4 3 of them.

So the total cost of the entire tree is

T (n) = cn2 +
3

16
cn2 +

(
3

16

)2

cn2 + · · ·+
(

3

16

)log4 n−1

cn2 + Θ(nlog4 3)

=

log4 n−1∑
i=0

(
3

16

)i
cn2 + Θ(nlog4 3)

The left term is just the sum of a geometric series. So T (n) evaluates to

(3/16)log4 n − 1

(3/16)− 1
cn2 + Θ(nlog4 3)

This looks complicated but we can bound it (from above) by the sum of the infinite series

∞∑
i=0

(
3

16

)i
cn2 + Θ(nlog4 3) =

1

1− (3/16)
cn2 + Θ(nlog4 3)

Since functions in Θ(nlog4 3) are also in O(n2), this whole expression is O(n2). Therefore, we
can guess that T (n) = O(n2).

1.2.2 Back to the substitution method

Now we can check our guess using the substitution method. Recall that the original recur-
rence was T (n) = 3T (bn/4c) + Θ(n2). We want to show that T (n) ≤ dn2 for some constant
d > 0. By the induction hypothesis, we have that T (bn/4c) ≤ dbn/4c2. So using the same
constant c > 0 as before, we have

T (n) ≤ 3T (bn/4c) + cn2

≤ 3dbn/4c2 + cn2

≤ 3d(n/4)2 + cn2

=
3

16
dn2 + cn2

≤ dn2 (when c ≤ (13/16)d, i.e. d ≥ (16/13)c)

4



CS 161 Lecture 3 Jessica Su (some parts copied from CLRS)

Note that we would also have to identify a suitable base case and prove the recurrence is
true for the base case, and we don’t have time to talk about this in lecture, but you should
do that in your homework.

1.3 Master theorem

The master theorem is a formula for solving recurrences of the form T (n) = aT (n/b) + f(n),
where a ≥ 1 and b > 1 and f(n) is asymptotically positive. (Asymptotically positive means
that the function is positive for all sufficiently large n.)

This recurrence describes an algorithm that divides a problem of size n into a subproblems,
each of size n/b, and solves them recursively. (Note that n/b might not be an integer, but in
section 4.6 of the book, they prove that replacing T (n/b) with T (bn/bc) or T (dn/be) does not
affect the asymptotic behavior of the recurrence. So we will just ignore floors and ceilings
here.)

The theorem is as follows:

The master theorem compares the function nlogb a to the function f(n). Intuitively, if nlogb a

is larger (by a polynomial factor), then the solution is T (n) = Θ(nlogb a). If f(n) is larger
(by a polynomial factor), then the solution is T (n) = Θ(f(n)). If they are the same size,
then we multiply by a logarithmic factor.

Be warned that these cases are not exhaustive – for example, it is possible for f(n) to be
asymptotically larger than nlogb a, but not larger by a polynomial factor (no matter how
small the exponent in the polynomial is). For example, this is true when f(n) = nlogb a log n.
In this situation, the master theorem would not apply, and you would have to use another
method to solve the recurrence.

5



CS 161 Lecture 3 Jessica Su (some parts copied from CLRS)

1.3.1 Examples:

To use the master theorem, we simply plug the numbers into the formula.

Example 1: T (n) = 9T (n/3)+n. Here a = 9, b = 3, f(n) = n, and nlogb a = nlog3 9 = Θ(n2).
Since f(n) = O(nlog3 9−ε) for ε = 1, case 1 of the master theorem applies, and the solution is
T (n) = Θ(n2).

Example 2: T (n) = T (2n/3)+1. Here a = 1, b = 3/2, f(n) = 1, and nlogb a = n0 = 1. Since
f(n) = Θ(nlogb a), case 2 of the master theorem applies, so the solution is T (n) = Θ(log n).

Example 3: T (n) = 3T (n/4) + n log n. Here nlogb a = nlog4 3 = O(n0.793). For ε = 0.2, we
have f(n) = Ω(nlog4 3+ε). So case 3 applies if we can show that af(n/b) ≤ cf(n) for some
c < 1 and all sufficiently large n. This would mean 3n

4
log n

4
≤ cn log n. Setting c = 3/4

would cause this condition to be satisfied.

Example 4: T (n) = 2T (n/2)+n log n. Here the master method does not apply. nlogb a = n,
and f(n) = n log n. Case 3 does not apply because even though n log n is asymptotically
larger than n, it is not polynomially larger. That is, the ratio f(n)/nlogb a = log n is asymp-
totically less than nε for all positive constants ε.

2 Maximum subarray problem

Now we will present another divide and conquer algorithm.

Suppose you are given the price of a stock on each day, and you have to decide when to buy
and when to sell to maximize your profit. Note that you cannot sell before you buy (so you
can’t just sell on the highest day and buy on the lowest day).

Naive strategy: Try all pairs of (buy, sell) dates, where the buy date must be before the
sell date. This takes Θ(n2) time.

bestProfit = -MAX_INT

bestBuyDate = None

bestSellDate = None

for i = 1 to n:

for j = i + 1 to n:

if price[j] - price[i] > bestProfit:

bestBuyDate = i

bestSellDate = j

bestProfit = price[j] - price[i]

return (bestBuyDate, bestSellDate)

6



CS 161 Lecture 3 Jessica Su (some parts copied from CLRS)

2.1 Divide and conquer strategy

Instead of the daily price, consider the daily change in price, which (on each day) can be
either a positive or negative number. Let array A store these changes. Now we have to find
the subarray of A that maximizes the sum of the numbers in that subarray.

Now divide the array into two. Any maximum subarray must either be entirely in the first
half, entirely in the second half, or it must span the border between the first and the second
half. If the maximum subarray is entirely in the first half (or the second half), we can find
it using a recursive call on a subproblem half as large.

If the maximum subarray spans the border, then the sum of that array is the sum of two
parts: the part between the buy date and the border, and the part between the border and
the sell date. To maximize the sum of the array, we must maximize the sum of each part.

We can do this by simply (1) iterating over all possible buy dates to maximize the first part
(2) iterating over all possible sell dates to maximize the second part. Note that this takes
linear time instead of quadratic time, because we no longer have to iterate over buy and sell
dates simultaneously.

7



CS 161 Lecture 3 Jessica Su (some parts copied from CLRS)

2.1.1 Runtime analysis

Note that we are omitting the correctness proof, because the main point is to give an example
of the divide and conquer strategy. In the homework, you would normally need to provide a
correctness proof, unless we say otherwise.

First we analyze the runtime of FindMaxCrossingSubarray. Since each iteration of each of
the two for loops takes Θ(1) time, we just need to count up how many iterations there are
altogether. The for loop of lines 3-7 makes mid− low+ 1 iterations, and the for loop of lines
10-14 makes high−mid iterations, so the total number of iterations is high− low + 1 = n.
Therefore, the helper function takes Θ(n) time.

Now we proceed to analyze the runtime of the main function.

For the base case, T (1) = Θ(1), since line 2 takes constant time.

For the recursive case, lines 1 and 3 take constant time. Lines 4 and 5 take T (bn/2c)
and T (dn/2e) time, since each of the subproblems has that many elements. The FindMax-
CrossingSubarray procedure takes Θ(n) time, and the rest of the code takes Θ(1) time. So
T (n) = Θ(1) + T (bn/2c) + T (dn/2e) + Θ(n) + Θ(1) = 2T (n/2) + Θ(n) (ignoring the floors
and ceilings).

By case 2 of the master theorem, this recurrence has the solution T (n) = Θ(n log n).

8



CS 161 Lecture 3 Jessica Su (some parts copied from CLRS)

3 If we have extra time

3.1 Change of variables (substitution method)

T (n) = 2T (b
√
nc) + log n.

For now don’t worry about rounding off values to be integers.

Let m = log n, i.e. n = 2m. Then T (2m) = 2T (2m/2) +m.

Now let S(m) = T (2m). Then S(m) = 2S(m/2) +m.

This recurrence has the solution S(m) = O(m logm).

So T (n) = T (2m) = S(m) = O(m logm) = O(log n log log n).

3.2 Extra recursion tree problem

Consider the recurrence T (n) = T (n/3) + T (2n/3) + O(n). Let c represent the constant
factor in the O(n) term.

The longest simple path from the root to a leaf is n→ (2/3)n→ (2/3)2n→ · · · → 1. Since
(2/3)kn = 1 when k = log3/2 n, the height of the tree is log3/2 n.

We get that each level costs at most cn, but as we go down from the root, more and more
internal nodes are absent, so the costs become smaller. Fortunately we only care about an

9



CS 161 Lecture 3 Jessica Su (some parts copied from CLRS)

upper bound.

Based on this we can guess O(n log n) as an upper bound, and verify this by the substitution
method.

when d ≥ c/(log 3− (2/3)).

Note that we should be proving that the claim holds for the base case as well. You should
do this in your homework.

10


