
MATH 3150 Homework Problem Set 1 Solutions

(1) (#6) Let a, b, c, d be rational numbers and x an irrational number such that cx + d 6= 0.
Prove that (ax + b)/(cx + d) is irrational if and only if ad 6= bc.

Proof. We can prove equivalently that (ax + b)/(cx + d) is rational if and only if ad = bc.
First, we show ad = bc⇒ (ax + b)/(cx + d) ∈ Q.
• If a = 0 then bc = 0. If b = 0, we have (ax + b)/(cx + d) = 0 is rational; if c = 0, since
cx + d 6= 0, d 6= 0 and (ax + b)/(cx + d) = b/d ∈ Q since b, d ∈ Q and Q is a field.
• If a 6= 0, note that c 6= 0 (otherwise, d = 0 and cx + d = 0 contradicting to the

assumption.). Then c/a is rational and nonzero. By ad = bc,

ax + b

cx + d
· c
a

=
acx + bc

acx + ad
=

acx + ad

acx + ad
= 1,

we have
ax + b

cx + d
=

a

c
,

which is again rational.
To show the other direction, suppose (ax + b)/(cx + d) ∈ Q is given by m/n for some

nonzero integers m,n ∈ Z. Then we have

(am− cn)x = dn− bm,

which means either am − cn = dn − bm = 0 or x = (dn − bm)/(am − cn). If am − cn =
dn− bm = 0, then am = cn and bm = dn. Then we have the following cases
• First, from am = cn, we have a = 0⇔ c = 0, in which case ad = bc = 0.
• Similarly, from bm = dn, we have b = 0⇔ d = 0, in which case ad = bc = 0.
• At last, none of a, b, c, d is zero. Then a/c = b/d = n/m hence, ad = bc.

�

(2) (#10) Prove that for all n ∈ N we have

1

2
· 3

4
· 5

6
· · · · · 2n− 1

2n
≤ 1√

3n + 1

and equality obtains if and only if n = 1.

Proof. We prove by induction. When n = 1, both sides are 1/2 hence the inequality and
the equality.

When the inequality is true for n ∈ N, we want to show

1

2
· 3

4
· 5

6
· · · · · 2n + 1

2n + 2
≤ 1√

3n + 4
.

Using the inequality for n, this is to prove

1

2
· 3

4
· 5

6
· · · · · 2n− 1

2n

2n + 1

2n + 2
≤ 1√

3n + 1

2n + 1

2n + 2
≤ 1√

3n + 4
.

So we want to show
2n + 1

2n + 2
≤
√

3n + 1√
3n + 4

.

Taking a square of both sides and eventually it is equivalent to show

(3n + 4)(4n2 + 4n + 1) ≤ (3n + 1)(4n2 + 8n + 4)

that is to show
19n ≤ 20n.
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Apparently this is true. So the inequality is proved. Also, since 19n < 20n for all n + 1
case where n ∈ N, the equality cannot be obtained for n > 1. Therefore, the equality is
obtained if and only if n = 1. �

(3) (#23) If A is an infinite set, then A has a countable infinite subset.

Proof. If A is an infinite set, A is nonempty, choose one element a1 and let B1 = {a1} ⊂ A.
Assume we have found a subset Bn containing n elements of A for n ∈ N, note that A\Bn

is infinite. (Otherwise, A = Bn ∪ A\Bn is finite, a contradiction.) Hence, we can find an
element in A\Bn, denoted by an+1, and let Bn+1 = Bn∪{an+1}. Therefore, Bn+1 has n+1
elements of A. Let

B =

∞⋃
n=1

Bn.

We have B = {xn : n ∈ N} is countable. And for any n ∈ N, there are n elements
a1, a2, . . . , an in B. Therefore, B is infinite. �

(4) (#25)

Proof. a). Since every polynomial of degree n ∈ N has at most n distinct roots in C, to
show that the set of all algebraic numbers is countable, it suffices to show that there are
countably many polynomials with integer coefficients. For each k ∈ N, we consider the
number of polynomials

anz
n + an−1z

n−1 + · · ·+ a1z + a0

such that
n + |an|+ |an−1|+ · · ·+ |a1|+ |a0| ≤ k.

Since aj and n are integers less and equal than k, there are at most k + 1 possible values
for n (0, 1, 2, . . . , k) and at most 2k + 1 (including negative integers) possible values of aj .

So there are less than (k + 1)(2k + 1)k+1 (actually much less) polynomials satisfying above
condition. Let

Ak = {z ∈ C :
n∑

j=0

ajz
j = 0, n +

n∑
j=0

|aj | ≤ k}

for each k ∈ N. Above shows that Ak is finite hence countable. Then the set of algebraic

numbers is
∞⋃
k=0

Ak, a countable union of countable sets, hence is countable.

b). This is true because every rational number m/n (m,n ∈ Z, n 6= 0) is a root of
nz −m = 0, i.e., a1 = n and a0 = −m. �

(5) Let A,B ⊂ R, denote

A + B = {a + b : a ∈ A, b ∈ B}.
Show

inf(A + B) = inf A + inf B.

Proof. • If one of A,B is empty, without loss of generality let A = ∅, then A + B = ∅.
And inf ∅ =∞. We have

inf(A + B) =∞ = inf A + inf B.

• Suppose both A and B are nonempty, inf B 6= ∞. If any of A,B is NOT bounded
below, without loss of generality let A unbounded below. Then inf A = −∞. Pick
b ∈ B, for any n ∈ N, there exists an ∈ A such that an ≤ −n− |b|. This means for any
n ∈ N, there exists an element an + b ∈ A + B such that an + b ≤ −n, which proves
inf(A + B) = −∞ = inf A + inf B.
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• If both A and B are bounded below, s = inf A and t = inf B are finite. Then a ∈ A,
b ∈ B implies s ≤ a and t ≤ b. Therefore, s+ t ≤ a+ b. Moreover, for any ε > 0, there
exists a ∈ A and b ∈ B such that a < s + ε/2 and b < t + ε/2. Then a + b < s + t + ε.
This proves

inf(A + B) = s + t = inf A + inf B.

�

(6) (#18) First, since 1 < 2 < 3 < 5, we have 1
5 < 1

3 < 1
2 < 1. Then

2−(k+1) = 2−k · 1

2
< 2−k, 3−(k+1) = 3−k · 1

3
< 3−k, 5−(k+1) = 5−k · 1

5
< 5−k

for any k ∈ N, and one has

2−k ≤ 1

2
, 3−k ≤ 1

3
, 5−k ≤ 1

5

for any k ∈ N, which shows s = 1
2 + 1

3 + 1
5 is an upper bound of E. Moreover, for any ε > 0,

s ∈ E and s > s− ε. Therefore,

supE = s.

Next, since 5 > 3 > 2 > 0, by the exponential law (1.24), for any k,m, n ∈ N, we have
2−k, 3−m and 5−n are positive. Then 0 is a lower bound of E.

Claim: For any k ∈ N, we have 2k ≥ k.
We prove the claim by induction. For k = 1, 2 > 1. Assuming 2k ≥ k, we have

2k+1 = 2k · 2 = 2k + 2k ≥ k + k ≥ k + 1.

This finishes the proof of the Claim.
Similarly, one also has 3m ≥ m and 5n ≥ n for m,n ∈ N.

For any ε > 0, there exists k,m, n ∈ N such that

kε/3 > 1, mε/3 > 1, nε/3 > 1.

This further implies

2−k < ε/3, 3−m < ε/3, 5−n < ε/3.

Hence, 2−k + 3−m + 5−n < ε. This proves

inf E = 0.


