(1) (#6) Let a, b, c, d be rational numbers and x an irrational number such that $cx + d \neq 0$. Prove that (ax + b)/(cx + d) is irrational if and only if $ad \neq bc$.

Proof. We can prove equivalently that (ax + b)/(cx + d) is rational if and only if ad = bc. First, we show $ad = bc \Rightarrow (ax + b)/(cx + d) \in \mathbb{Q}$.

- If a = 0 then bc = 0. If b = 0, we have (ax + b)/(cx + d) = 0 is rational; if c = 0, since $cx + d \neq 0$, $d \neq 0$ and $(ax + b)/(cx + d) = b/d \in \mathbb{Q}$ since $b, d \in \mathbb{Q}$ and \mathbb{Q} is a field.
- If $a \neq 0$, note that $c \neq 0$ (otherwise, d = 0 and cx + d = 0 contradicting to the assumption.). Then c/a is rational and nonzero. By ad = bc,

$$\frac{ax+b}{cx+d} \cdot \frac{c}{a} = \frac{acx+bc}{acx+ad} = \frac{acx+ad}{acx+ad} = 1,$$

we have

$$\frac{ax+b}{cx+d} = \frac{a}{c}$$

which is again rational.

To show the other direction, suppose $(ax + b)/(cx + d) \in \mathbb{Q}$ is given by m/n for some nonzero integers $m, n \in \mathbb{Z}$. Then we have

$$(am - cn)x = dn - bm,$$

which means either am - cn = dn - bm = 0 or x = (dn - bm)/(am - cn). If am - cn = dn - bm = 0, then am = cn and bm = dn. Then we have the following cases

- First, from am = cn, we have $a = 0 \Leftrightarrow c = 0$, in which case ad = bc = 0.
- Similarly, from bm = dn, we have $b = 0 \Leftrightarrow d = 0$, in which case ad = bc = 0.
- At last, none of a, b, c, d is zero. Then a/c = b/d = n/m hence, ad = bc.

(2) (#10) Prove that for all $n \in \mathbb{N}$ we have

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \le \frac{1}{\sqrt{3n+1}}$$

and equality obtains if and only if n = 1.

Proof. We prove by induction. When n = 1, both sides are 1/2 hence the inequality and the equality.

When the inequality is true for $n \in \mathbb{N}$, we want to show

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n+1}{2n+2} \le \frac{1}{\sqrt{3n+4}}.$$

Using the inequality for n, this is to prove

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \frac{2n+1}{2n+2} \le \frac{1}{\sqrt{3n+1}} \frac{2n+1}{2n+2} \le \frac{1}{\sqrt{3n+4}}.$$

So we want to show

$$\frac{2n+1}{2n+2} \le \frac{\sqrt{3n+1}}{\sqrt{3n+4}}.$$

Taking a square of both sides and eventually it is equivalent to show

$$(3n+4)(4n^2+4n+1) \le (3n+1)(4n^2+8n+4)$$

that is to show

$$19n \leq 20n$$

Apparently this is true. So the inequality is proved. Also, since 19n < 20n for all n + 1 case where $n \in \mathbb{N}$, the equality cannot be obtained for n > 1. Therefore, the equality is obtained if and only if n = 1.

(3) (#23) If A is an infinite set, then A has a countable infinite subset.

Proof. If A is an infinite set, A is nonempty, choose one element a_1 and let $B_1 = \{a_1\} \subset A$. Assume we have found a subset B_n containing n elements of A for $n \in \mathbb{N}$, note that $A \setminus B_n$ is infinite. (Otherwise, $A = B_n \cup A \setminus B_n$ is finite, a contradiction.) Hence, we can find an element in $A \setminus B_n$, denoted by a_{n+1} , and let $B_{n+1} = B_n \cup \{a_{n+1}\}$. Therefore, B_{n+1} has n+1 elements of A. Let

$$B = \bigcup_{n=1}^{\infty} B_n.$$

We have $B = \{x_n : n \in \mathbb{N}\}$ is countable. And for any $n \in \mathbb{N}$, there are *n* elements a_1, a_2, \ldots, a_n in *B*. Therefore, *B* is infinite.

(4) (#25)

Proof. a). Since every polynomial of degree $n \in \mathbb{N}$ has at most n distinct roots in \mathbb{C} , to show that the set of all algebraic numbers is countable, it suffices to show that there are countably many polynomials with integer coefficients. For each $k \in \mathbb{N}$, we consider the number of polynomials

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

such that

$$n + |a_n| + |a_{n-1}| + \dots + |a_1| + |a_0| \le k.$$

Since a_j and n are integers less and equal than k, there are at most k + 1 possible values for n (0, 1, 2, ..., k) and at most 2k + 1 (including negative integers) possible values of a_j . So there are less than $(k + 1)(2k + 1)^{k+1}$ (actually much less) polynomials satisfying above condition. Let

$$A_k = \{ z \in \mathbb{C} : \sum_{j=0}^n a_j z^j = 0, n + \sum_{j=0}^n |a_j| \le k \}$$

for each $k \in \mathbb{N}$. Above shows that A_k is finite hence countable. Then the set of algebraic numbers is $\bigcup_{k=0}^{\infty} A_k$, a countable union of countable sets, hence is countable.

b). This is true because every rational number m/n $(m, n \in \mathbb{Z}, n \neq 0)$ is a root of nz - m = 0, i.e., $a_1 = n$ and $a_0 = -m$.

(5) Let $A, B \subset \mathbb{R}$, denote

$$A + B = \{a + b : a \in A, b \in B\}$$

Show

$$\inf(A+B) = \inf A + \inf B.$$

Proof. • If one of A, B is empty, without loss of generality let $A = \emptyset$, then $A + B = \emptyset$. And $\inf \emptyset = \infty$. We have

$$\inf(A+B) = \infty = \inf A + \inf B.$$

• Suppose both A and B are nonempty, $\inf B \neq \infty$. If any of A, B is NOT bounded below, without loss of generality let A unbounded below. Then $\inf A = -\infty$. Pick $b \in B$, for any $n \in \mathbb{N}$, there exists $a_n \in A$ such that $a_n \leq -n - |b|$. This means for any $n \in \mathbb{N}$, there exists an element $a_n + b \in A + B$ such that $a_n + b \leq -n$, which proves $\inf(A + B) = -\infty = \inf A + \inf B$.

• If both A and B are bounded below, $s = \inf A$ and $t = \inf B$ are finite. Then $a \in A$, $b \in B$ implies $s \leq a$ and $t \leq b$. Therefore, $s + t \leq a + b$. Moreover, for any $\varepsilon > 0$, there exists $a \in A$ and $b \in B$ such that $a < s + \varepsilon/2$ and $b < t + \varepsilon/2$. Then $a + b < s + t + \varepsilon$. This proves

$$\inf(A+B) = s+t = \inf A + \inf B.$$

(6) (#18) First, since 1 < 2 < 3 < 5, we have $\frac{1}{5} < \frac{1}{3} < \frac{1}{2} < 1$. Then

$$2^{-(k+1)} = 2^{-k} \cdot \frac{1}{2} < 2^{-k}, 3^{-(k+1)} = 3^{-k} \cdot \frac{1}{3} < 3^{-k}, 5^{-(k+1)} = 5^{-k} \cdot \frac{1}{5} < 5^{-k}$$

for any $k \in \mathbb{N}$, and one has

$$2^{-k} \le \frac{1}{2}, \quad 3^{-k} \le \frac{1}{3}, \quad 5^{-k} \le \frac{1}{5}$$

for any $k \in \mathbb{N}$, which shows $s = \frac{1}{2} + \frac{1}{3} + \frac{1}{5}$ is an upper bound of E. Moreover, for any $\varepsilon > 0$, $s \in E$ and $s > s - \varepsilon$. Therefore,

$$\sup E = s.$$

Next, since 5 > 3 > 2 > 0, by the exponential law (1.24), for any $k, m, n \in \mathbb{N}$, we have 2^{-k} , 3^{-m} and 5^{-n} are positive. Then 0 is a lower bound of E.

<u>Claim</u>: For any $k \in \mathbb{N}$, we have $2^k \ge k$.

We prove the claim by induction. For k = 1, 2 > 1. Assuming $2^k \ge k$, we have

$$2^{k+1} = 2^k \cdot 2 = 2^k + 2^k \ge k+k \ge k+1.$$

This finishes the proof of the Claim.

Similarly, one also has $3^m \ge m$ and $5^n \ge n$ for $m, n \in \mathbb{N}$.

For any $\varepsilon > 0$, there exists $k, m, n \in \mathbb{N}$ such that

$$k\varepsilon/3 > 1$$
, $m\varepsilon/3 > 1$, $n\varepsilon/3 > 1$.

This further implies

$$2^{-k} < \varepsilon/3, \quad 3^{-m} < \varepsilon/3, \quad 5^{-n} < \varepsilon/3.$$

Hence, $2^{-k} + 3^{-m} + 5^{-n} < \varepsilon$. This proves

$$\inf E = 0.$$