(1) (\#6) Let $a, b, c, d$ be rational numbers and $x$ an irrational number such that $c x+d \neq 0$. Prove that $(a x+b) /(c x+d)$ is irrational if and only if $a d \neq b c$.

Proof. We can prove equivalently that $(a x+b) /(c x+d)$ is rational if and only if $a d=b c$.
First, we show $a d=b c \Rightarrow(a x+b) /(c x+d) \in \mathbb{Q}$.

- If $a=0$ then $b c=0$. If $b=0$, we have $(a x+b) /(c x+d)=0$ is rational; if $c=0$, since $c x+d \neq 0, d \neq 0$ and $(a x+b) /(c x+d)=b / d \in \mathbb{Q}$ since $b, d \in \mathbb{Q}$ and $\mathbb{Q}$ is a field.
- If $a \neq 0$, note that $c \neq 0$ (otherwise, $d=0$ and $c x+d=0$ contradicting to the assumption.). Then $c / a$ is rational and nonzero. By $a d=b c$,

$$
\frac{a x+b}{c x+d} \cdot \frac{c}{a}=\frac{a c x+b c}{a c x+a d}=\frac{a c x+a d}{a c x+a d}=1,
$$

we have

$$
\frac{a x+b}{c x+d}=\frac{a}{c},
$$

which is again rational.
To show the other direction, suppose $(a x+b) /(c x+d) \in \mathbb{Q}$ is given by $m / n$ for some nonzero integers $m, n \in \mathbb{Z}$. Then we have

$$
(a m-c n) x=d n-b m,
$$

which means either $a m-c n=d n-b m=0$ or $x=(d n-b m) /(a m-c n)$. If $a m-c n=$ $d n-b m=0$, then $a m=c n$ and $b m=d n$. Then we have the following cases

- First, from $a m=c n$, we have $a=0 \Leftrightarrow c=0$, in which case $a d=b c=0$.
- Similarly, from $b m=d n$, we have $b=0 \Leftrightarrow d=0$, in which case $a d=b c=0$.
- At last, none of $a, b, c, d$ is zero. Then $a / c=b / d=n / m$ hence, $a d=b c$.
(2) (\#10) Prove that for all $n \in \mathbb{N}$ we have

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \cdots \frac{2 n-1}{2 n} \leq \frac{1}{\sqrt{3 n+1}}
$$

and equality obtains if and only if $n=1$.
Proof. We prove by induction. When $n=1$, both sides are $1 / 2$ hence the inequality and the equality.

When the inequality is true for $n \in \mathbb{N}$, we want to show

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \cdots \frac{2 n+1}{2 n+2} \leq \frac{1}{\sqrt{3 n+4}} .
$$

Using the inequality for $n$, this is to prove

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \cdots \cdot \frac{2 n-1}{2 n} \frac{2 n+1}{2 n+2} \leq \frac{1}{\sqrt{3 n+1}} \frac{2 n+1}{2 n+2} \leq \frac{1}{\sqrt{3 n+4}}
$$

So we want to show

$$
\frac{2 n+1}{2 n+2} \leq \frac{\sqrt{3 n+1}}{\sqrt{3 n+4}}
$$

Taking a square of both sides and eventually it is equivalent to show

$$
(3 n+4)\left(4 n^{2}+4 n+1\right) \leq(3 n+1)\left(4 n^{2}+8 n+4\right)
$$

that is to show

$$
19 n \leq 20 n .
$$

Apparently this is true. So the inequality is proved. Also, since $19 n<20 n$ for all $n+1$ case where $n \in \mathbb{N}$, the equality cannot be obtained for $n>1$. Therefore, the equality is obtained if and only if $n=1$.
(3) (\#23) If $A$ is an infinite set, then $A$ has a countable infinite subset.

Proof. If $A$ is an infinite set, $A$ is nonempty, choose one element $a_{1}$ and let $B_{1}=\left\{a_{1}\right\} \subset A$. Assume we have found a subset $B_{n}$ containing $n$ elements of $A$ for $n \in \mathbb{N}$, note that $A \backslash B_{n}$ is infinite. (Otherwise, $A=B_{n} \cup A \backslash B_{n}$ is finite, a contradiction.) Hence, we can find an element in $A \backslash B_{n}$, denoted by $a_{n+1}$, and let $B_{n+1}=B_{n} \cup\left\{a_{n+1}\right\}$. Therefore, $B_{n+1}$ has $n+1$ elements of $A$. Let

$$
B=\bigcup_{n=1}^{\infty} B_{n} .
$$

We have $B=\left\{x_{n}: n \in \mathbb{N}\right\}$ is countable. And for any $n \in \mathbb{N}$, there are $n$ elements $a_{1}, a_{2}, \ldots, a_{n}$ in $B$. Therefore, $B$ is infinite.
(4) $(\# 25)$

Proof. a). Since every polynomial of degree $n \in \mathbb{N}$ has at most $n$ distinct roots in $\mathbb{C}$, to show that the set of all algebraic numbers is countable, it suffices to show that there are countably many polynomials with integer coefficients. For each $k \in \mathbb{N}$, we consider the number of polynomials

$$
a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

such that

$$
n+\left|a_{n}\right|+\left|a_{n-1}\right|+\cdots+\left|a_{1}\right|+\left|a_{0}\right| \leq k .
$$

Since $a_{j}$ and $n$ are integers less and equal than $k$, there are at most $k+1$ possible values for $n(0,1,2, \ldots, k)$ and at most $2 k+1$ (including negative integers) possible values of $a_{j}$. So there are less than $(k+1)(2 k+1)^{k+1}$ (actually much less) polynomials satisfying above condition. Let

$$
A_{k}=\left\{z \in \mathbb{C}: \sum_{j=0}^{n} a_{j} z^{j}=0, n+\sum_{j=0}^{n}\left|a_{j}\right| \leq k\right\}
$$

for each $k \in \mathbb{N}$. Above shows that $A_{k}$ is finite hence countable. Then the set of algebraic numbers is $\bigcup_{k=0}^{\infty} A_{k}$, a countable union of countable sets, hence is countable.
b). This is true because every rational number $m / n(m, n \in \mathbb{Z}, n \neq 0)$ is a root of $n z-m=0$, i.e., $a_{1}=n$ and $a_{0}=-m$.
(5) Let $A, B \subset \mathbb{R}$, denote

$$
A+B=\{a+b: a \in A, b \in B\} .
$$

Show

$$
\inf (A+B)=\inf A+\inf B
$$

Proof. - If one of $A, B$ is empty, without loss of generality let $A=\emptyset$, then $A+B=\emptyset$. And $\inf \emptyset=\infty$. We have

$$
\inf (A+B)=\infty=\inf A+\inf B
$$

- Suppose both $A$ and $B$ are nonempty, $\inf B \neq \infty$. If any of $A, B$ is NOT bounded below, without loss of generality let $A$ unbounded below. Then $\inf A=-\infty$. Pick $b \in B$, for any $n \in \mathbb{N}$, there exists $a_{n} \in A$ such that $a_{n} \leq-n-|b|$. This means for any $n \in \mathbb{N}$, there exists an element $a_{n}+b \in A+B$ such that $a_{n}+b \leq-n$, which proves $\inf (A+B)=-\infty=\inf A+\inf B$.
- If both $A$ and $B$ are bounded below, $s=\inf A$ and $t=\inf B$ are finite. Then $a \in A$, $b \in B$ implies $s \leq a$ and $t \leq b$. Therefore, $s+t \leq a+b$. Moreover, for any $\varepsilon>0$, there exists $a \in A$ and $b \in B$ such that $a<s+\varepsilon / 2$ and $b<t+\varepsilon / 2$. Then $a+b<s+t+\varepsilon$. This proves

$$
\inf (A+B)=s+t=\inf A+\inf B
$$

(6) (\#18) First, since $1<2<3<5$, we have $\frac{1}{5}<\frac{1}{3}<\frac{1}{2}<1$. Then

$$
2^{-(k+1)}=2^{-k} \cdot \frac{1}{2}<2^{-k}, 3^{-(k+1)}=3^{-k} \cdot \frac{1}{3}<3^{-k}, 5^{-(k+1)}=5^{-k} \cdot \frac{1}{5}<5^{-k}
$$

for any $k \in \mathbb{N}$, and one has

$$
2^{-k} \leq \frac{1}{2}, \quad 3^{-k} \leq \frac{1}{3}, \quad 5^{-k} \leq \frac{1}{5}
$$

for any $k \in \mathbb{N}$, which shows $s=\frac{1}{2}+\frac{1}{3}+\frac{1}{5}$ is an upper bound of $E$. Moreover, for any $\varepsilon>0$, $s \in E$ and $s>s-\varepsilon$. Therefore,

$$
\sup E=s
$$

Next, since $5>3>2>0$, by the exponential law (1.24), for any $k, m, n \in \mathbb{N}$, we have $2^{-k}, 3^{-m}$ and $5^{-n}$ are positive. Then 0 is a lower bound of $E$.

Claim: For any $k \in \mathbb{N}$, we have $2^{k} \geq k$.
We prove the claim by induction. For $k=1,2>1$. Assuming $2^{k} \geq k$, we have

$$
2^{k+1}=2^{k} \cdot 2=2^{k}+2^{k} \geq k+k \geq k+1 .
$$

This finishes the proof of the Claim.
Similarly, one also has $3^{m} \geq m$ and $5^{n} \geq n$ for $m, n \in \mathbb{N}$.
For any $\varepsilon>0$, there exists $k, m, n \in \mathbb{N}$ such that

$$
k \varepsilon / 3>1, \quad m \varepsilon / 3>1, \quad n \varepsilon / 3>1
$$

This further implies

$$
2^{-k}<\varepsilon / 3, \quad 3^{-m}<\varepsilon / 3, \quad 5^{-n}<\varepsilon / 3 .
$$

Hence, $2^{-k}+3^{-m}+5^{-n}<\varepsilon$. This proves

$$
\inf E=0 \text {. }
$$

