MATH 3150 Homework Problem Set 1 Solutions

(1) (#6) Let a,b,c,d be rational numbers and x an irrational number such that cx + d # 0.
Prove that (az + b)/(cx 4 d) is irrational if and only if ad # bc.

Proof. We can prove equivalently that (ax + b)/(cx + d) is rational if and only if ad = bc.
First, we show ad = bc = (ax +b)/(czx + d) € Q.
o If a =0 then bec = 0. If b = 0, we have (ax + b)/(cz + d) = 0 is rational; if ¢ = 0, since
cx+d#0,d#0and (ax+b)/(cx +d) =b/d € Q since b,d € Q and Q is a field.
e If a # 0, note that ¢ # 0 (otherwise, d = 0 and cz + d = 0 contradicting to the
assumption.). Then c¢/a is rational and nonzero. By ad = be,

ar +b c acz + be _acx—i—ad_

ca:—i—d.a_aca:#—ad_ac:c—i-ad_

Y

we have
ar+b a

cx+d ¢

i

which is again rational.
To show the other direction, suppose (ax + b)/(cx + d) € Q is given by m/n for some
nonzero integers m,n € Z. Then we have

(am — cn)x = dn — bm,

which means either am —cn = dn —bm = 0 or z = (dn — bm)/(am — cn). If am —cn =
dn — bm = 0, then am = cn and bm = dn. Then we have the following cases

e First, from am = cn, we have a = 0 < ¢ = 0, in which case ad = bc = 0.

e Similarly, from bm = dn, we have b = 0 < d = 0, in which case ad = bc = 0.

e At last, none of a,b,c,d is zero. Then a/c = b/d = n/m hence, ad = be.

(2) (#10) Prove that for all n € N we have
1 3 5 2n—1 < 1

2 46 2n T /3n+1

and equality obtains if and only if n = 1.

Proof. We prove by induction. When n = 1, both sides are 1/2 hence the inequality and
the equality.
When the inequality is true for n € N, we want to show

1 35 2n+1 1

< .
2 46 2n+2 7 /3n+4

Using the inequality for n, this is to prove
1 35 2n—12n+1< 1 2n+1 1
2 4 6 2n 2n+2 7 \Bn+12n+2 " Bn+4

So we want to show
2n+1 < Van+1
2n+2 = 3Bn+4

Taking a square of both sides and eventually it is equivalent to show

(3n+4)(4n® +4n +1) < 3n 4 1)(4n% 4 8n + 4)

that is to show
19n < 20n.
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(3)

(4)

Apparently this is true. So the inequality is proved. Also, since 19n < 20n for all n + 1
case where n € N, the equality cannot be obtained for n > 1. Therefore, the equality is
obtained if and only if n = 1. O

(#23) If A is an infinite set, then A has a countable infinite subset.

Proof. If A is an infinite set, A is nonempty, choose one element a; and let B; = {a1} C A.
Assume we have found a subset B, containing n elements of A for n € N, note that A\B,
is infinite. (Otherwise, A = B,, U A\ B, is finite, a contradiction.) Hence, we can find an
element in A\B,,, denoted by a,+1, and let B, 41 = B, U{an+1}. Therefore, B, 11 hasn+1
elements of A. Let

o0
B=|] B
n=1
We have B = {z,, : n € N} is countable. And for any n € N, there are n elements
ai,as,...,a, in B. Therefore, B is infinite. O

(#25)

Proof. a). Since every polynomial of degree n € N has at most n distinct roots in C, to
show that the set of all algebraic numbers is countable, it suffices to show that there are
countably many polynomials with integer coefficients. For each k € N, we consider the
number of polynomials

anz" 4+ apn_12" L 4 arz+ag
such that
n+ |an| + |an—1| + - + |a1| + |ao| < k.
Since a; and n are integers less and equal than k, there are at most k + 1 possible values
for n (0,1,2,...,k) and at most 2k + 1 (including negative integers) possible values of a;.

So there are less than (k + 1)(2k + 1)¥*! (actually much less) polynomials satisfying above
condition. Let

A, ={z EC:Zajzj :0,n+Z]aj] <k}
j=0 j=0
for each k € N. Above shows that A, is finite hence countable. Then the set of algebraic

o
numbers is U Aj, a countable union of countable sets, hence is countable.
k=0
b). This is true because every rational number m/n (m,n € Z, n # 0) is a root of
nz —m =0, i.e., a1 =n and ag = —m. ]

Let A, B C R, denote
A+B={a+b: a€ Abe B}.
Show
inf(A + B) = inf A + inf B.
Proof. e If one of A, B is empty, without loss of generality let A = (), then A + B = 0.
And inf ) = co. We have
inf(A+ B) = oo = inf A + inf B.

e Suppose both A and B are nonempty, inf B # oco. If any of A, B is NOT bounded
below, without loss of generality let A unbounded below. Then inf A = —oco. Pick
b € B, for any n € N, there exists a,, € A such that a,, < —n — |b|. This means for any
n € N, there exists an element a, + b € A + B such that a,, + b < —n, which proves
inf(A + B) = —oo = inf A + inf B.
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e If both A and B are bounded below, s = inf A and ¢ = inf B are finite. Then a € A,
b € B implies s < a and t < b. Therefore, s+t < a+b. Moreover, for any € > 0, there
exists a € A and b € B such that a < s+¢/2and b<t+¢/2. Thena+b<s+t+e.
This proves

inf(A+ B) =s+t=inf A+ inf B.

O
(6) (#18) First, since 1 <2 <3 <5, we have 1 < £ <1 < 1. Then
o~ (k+1) — o=k % <27k 3=+ — 3=k, % <37k p(ktl) — 5=k, % <57k
for any k£ € N, and one has

1 1 1

27k<Z 3h<Z 5h<C

-2 -3 -5
for any k € N, which shows s = % + % + % is an upper bound of E. Moreover, for any € > 0,

s € F and s > s — e. Therefore,

Next, since 5 > 3 > 2 > 0, by the exponential law (1.24), for any k,m,n € N, we have
27k 37™ and 5™ are positive. Then 0 is a lower bound of E.

Claim: For any k € N, we have 2 > k.

We prove the claim by induction. For k =1, 2 > 1. Assuming 2¥ > k, we have

oftl — ok 9 9ok L ok > bt k> k4 1.

This finishes the proof of the Claim.
Similarly, one also has 3™ > m and 5" > n for m,n € N.

For any € > 0, there exists k, m,n € N such that
ke/3>1, me/3>1, ne/3>1.
This further implies
27h<g/3, 3 ™M<e/3, 5" <e/3.
Hence, 27% 437 + 57" < ¢. This proves



