[Hungerford] Section 4.3, \#1. Find a monic associate of:
(a) $3 x^{3}+2 x^{2}+x+5$ in $\mathbb{Q}[x]$
(b) $3 x^{5}-4 x^{2}+1$ in $\mathbb{Z}_{5}[x]$
(c) $i x^{3}+x-1$ in $\mathbb{C}[x]$

Solution. In all these examples, the coefficient ring is a field, so you can just divide all coefficients by the leading coefficient. Doing so yields:
(a) $x^{3}+\frac{2}{3} x^{2}+\frac{1}{3} x+\frac{5}{3}$
(b) $x^{5}-3 x^{2}+2$ or $x^{5}+2 x^{2}+2$
(c) $x^{3}-i x+i$ or $x^{3}+\frac{1}{i} x-\frac{1}{i}$
[Hungerford] Section 4.3, \#11 Show that $x^{3}-3$ is irreducible in $\mathbb{Z}_{7}[x]$.
Solution. We will do a proof by contradiction. So suppose that $x^{3}-3$ is reducible in $\mathbb{Z}_{7}[x]$. Then it can be factored as a product of two non-constant polynomials of degree less than 3 . This leaves two possibilities:

- $x^{3}-3$ splits into 3 linear factors
- $x^{3}-3$ factors into a linear factor and a quadratic irreducible

In both cases, there must be a linear factor. But this would mean that there is a root $x^{3}-3$ in \mathbb{Z}_{7}, or equivalently, that $x^{3}=3$ for some $x \in \mathbb{Z}_{7}$. But we can easily check that this is not the case:

- $0^{3}=0$
- $1^{3}=1$
- $2^{3}=8=1$
- $3^{3}=27=-1=6$
- $4^{3}=(-3)^{3}=-27=1$
- $5^{3}=(-2)^{3}=-8=-1=6$
- $6^{3}=(-1)^{3}=-1=6$
[Hungerford] Section 4.3, \#12 Express $x^{4}-4$ as a product of irreducibles in $\mathbb{Q}[x], \mathbb{R}[x]$, and $\mathbb{C}[x]$.
Solution. In $\mathbb{Q}[x]$, we can factor $x^{4}-4$ using the "difference of squares" formula:

$$
x^{4}-4=\left(x^{2}-2\right)\left(x^{2}+2\right)
$$

Both of these factors are irreducible in $\mathbb{Q}[x]$, since neither have rational roots. In $\mathbb{R}[x]$, however, the first factor has two roots $\pm \sqrt{2}$, so we can further factor it as

$$
x^{4}-4=(x-\sqrt{2})(x+\sqrt{2})\left(x^{2}+2\right)
$$

Finally, if we consider this as a polynomial in $\mathbb{C}[x]$, it will completely split into linear factors, since \mathbb{C} is algebraically closed. Namely, $x^{2}+2$ has two roots $\pm i \sqrt{2}$, so we get

$$
x^{4}-4=(x-\sqrt{2})(x+\sqrt{2})(x-i \sqrt{2})(x+i \sqrt{2})
$$

