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Chapter One  

Vector Analysis 

1. Definitions: 
2. A scalar quantity:  is a quantity which is completely characterized by its 

magnitude. Examples of physical quantities that are scalar are mass, time, 

temperature, volume, and work. 

3. A vector quantity: is a quantity which is completely characterized by its 

magnitude and direction. Force, velocity, displacement, and acceleration are 

examples of vector quantities. A vector can be represented geometrically by 

an arrow whose direction is approximately chosen and whose length is 

proportional to the magnitude of the vector. 

4. Field: If at each point of a region there is a corresponding value of some 

physical function, the region is called a field. Fields may be classified as 

either scalar or vector, depending upon the type of function involved. 

If the value of the physical function at each point is a scalar quantity, then the 

field is a scalar function. The temperature of the atmosphere and density of a 

nonhomogeneous body are examples of scalar fields. 

When the value of the function at each point is a vector quantity, the field is a 

vector field. The wind velocity of the atmosphere, the force of gravity on a 

mass in space, and the force on a charged body placed in an electric field, are 

examples of vector fields. 

2. Vector Algebra  

For this purpose a three-dimensional Cartesian coordinate system introduced to 

represent the vector. The variables of this system are 𝑥, 𝑦, 𝑧. 

The sum of two vectors is defined as the vector whose components are the sums of 

the corresponding components of the original vectors. 

𝐶 = 𝐴 + �⃗⃗�                                                                                   (1) 

𝐶𝑥 = 𝐴𝑥 + 𝐵𝑥   ,    𝐶𝑦 = 𝐴𝑦 + 𝐵𝑦  , 𝐶𝑧 = 𝐴𝑧 + 𝐵𝑧                     (2) 

When the order of the operation may be reversed with no effect on the result, the 

operation is said to obey the commutative law: 

𝐴 + �⃗⃗� = �⃗⃗� + 𝐴                                                                           (3) 
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The operation of subtraction is defined as the addition of the negative. This is 

written as  

𝐴 − �⃗⃗� = 𝐴 + (−�⃗⃗�)                                                                        (4) 

The vector addition and subtraction are associative. In vector notation this appears 

as 

𝐴 + (�⃗⃗� + 𝐶) = (𝐴 + �⃗⃗�) + 𝐶 = (𝐴 + 𝐶) + �⃗⃗� = 𝐴 + �⃗⃗� + +𝐶     (5) 

In other words, the parentheses are not needed. 

Multiplication of a scalar and vector: When a vector is multiplied by a scalar,a new 

vector is produced whose direction is the same as the original vector and whose 

magnitude is the product of the magnitudes of the vectors and scalars. Thus, 

𝐶 = 𝑎�⃗⃗�                                                                                          (6) 

𝑎�⃗⃗� is a vector 𝐶, their components are 

𝐶𝑥 = 𝑎𝐵𝑥, 𝐶𝑦 = 𝑎𝐵𝑦,   𝐶𝑧 = 𝑎𝐵𝑧 

If �⃗⃗� is a vector field and 𝑎 a scalar field then 𝐶 is a new vector field. 

A three-dimensional vector is completely described by its projections on the x, y, z 

axes. 

𝐴 = 𝐴𝑥 �̂� + 𝐴𝑦𝑗̂ + 𝐴𝑧�̂�  

Where 𝐴𝑥, 𝐴𝑦, and 𝐴𝑧 are the magnitudes of the projections of the vector on the x, 

y, and z axes respectively, and �̂� , 𝑗̂, and �̂� are unit vectors in the direction of the axes, 

as in the fig.(1). 

If any two vectors 𝐴 and �⃗⃗� are added, the result is 

 𝐴 + �⃗⃗� = 𝐴𝑥 �̂� + 𝐴𝑦𝑗̂ + 𝐴𝑧�̂� + 𝐵𝑥 �̂� + 𝐵𝑦𝑗̂ + 𝐵𝑧�̂� 

𝐴 + �⃗⃗� = (𝐴𝑥 + 𝐵𝑥)�̂� + (𝐴𝑦 + 𝐵𝑦)𝑗̂ + (𝐴𝑧 + 𝐵𝑧)�̂�  

This shows that each of the three components of the resultant vector is found by 

adding the two corresponding components of the individual vectors. 

The vector equation can be written as three separate and distinct equations. For 

example  
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Fig.(1): A three Dimensional vector in rectangular coordinates. 

𝐴 + �⃗⃗� = 𝐶 + �⃗⃗⃗� + �⃗⃗�  

Could be written as three equations 

𝐴𝑥 + 𝐵𝑥 = 𝐶𝑥 + 𝐷𝑥 + 𝐸𝑥  

𝐴𝑦 + 𝐵𝑦 = 𝐶𝑦 + 𝐷𝑦 + 𝐸𝑦  

𝐴𝑧 + 𝐵𝑧 = 𝐶𝑧 + 𝐷𝑧 + 𝐸𝑧  

Scalar Multiplication: Two types of vector multiplication have been defined, 

namely: “scalar product” and “vector product”. 

The scalar product of two vectors is a scalar quantity whose magnitude is equal to 

the product of the magnitudes of the two vectors and the cosine of the angle between 

them. 

𝐴. �⃗⃗� = 𝐴𝐵 cos 𝜃  

The dot product obeys the commutative law, that is, 
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𝐴. �⃗⃗� = �⃗⃗�. 𝐴  

A physical example of the dot product can be found in the relationship between the 

force and the distance in terms of the work 

𝑤𝑜𝑟𝑘 = �⃗�. �⃗⃗⃗�  

Using ordinary algebraic rules 

𝐴 = 𝐴𝑥 �̂� + 𝐴𝑦𝑗̂ + 𝐴𝑧�̂�  and  �⃗⃗� = 𝐵𝑥 �̂� + 𝐵𝑦𝑗̂ + 𝐵𝑧�̂�  

𝐴. �⃗⃗� = 𝐴𝑥𝐵𝑥(�̂�. �̂�) + 𝐴𝑥𝐵𝑦(�̂�. 𝑗̂) + 𝐴𝑥𝐵𝑧(�̂�. �̂�) + 𝐴𝑦𝐵𝑥(𝑗̂. �̂�) + 𝐴𝑦𝐵𝑦(𝑗̂. 𝑗̂) +

𝐴𝑦𝐵𝑧(𝑗̂. �̂�) + 𝐴𝑧𝐵𝑥(�̂�. �̂�) + 𝐴𝑧𝐵𝑦(�̂�. 𝑗̂) + 𝐴𝑧𝐵𝑧(�̂�. �̂�)  

From the dot product law, the unit vectors are satisfied the following 

�̂�. �̂� = 𝑗̂. 𝑗̂ = �̂�. �̂� = 1  and �̂�. 𝑗̂ = 𝑗̂. �̂� = �̂�. �̂� = 𝑗̂. �̂� = �̂�. 𝑗̂ = �̂�. �̂� = 0 

Thus; 

𝐴. �⃗⃗� = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧  

Vector multiplication: The vector (cross) product of two vectors is defined as a 

vector whose magnitude is the product of the magnitudes of the two vectors and the 

sine of the angle between them, and whose direction is perpendicular to the plane 

containing the two vectors. 

𝐴 × �⃗⃗� = 𝐶  

|𝐴 × �⃗⃗�| = 𝐴𝐵 sin 𝜃  

The vector �⃗⃗� × 𝐴 would have the same magnitude but the opposite direction, that is 

𝐴 × �⃗⃗� = −�⃗⃗� × 𝐴   

The commutative law does not apply  

𝐴 × �⃗⃗� = 𝐴𝑥𝐵𝑥(�̂� × �̂�) + 𝐴𝑥𝐵𝑦(�̂� × 𝑗̂) + 𝐴𝑥𝐵𝑧(�̂� × �̂�) + 𝐴𝑦𝐵𝑥(𝑗̂ × �̂�) + 𝐴𝑦𝐵𝑦(𝑗̂ × 𝑗̂)

+ 𝐴𝑦𝐵𝑧(𝑗̂ × �̂�) + 𝐴𝑧𝐵𝑥(�̂� × �̂�) + 𝐴𝑧𝐵𝑦(�̂� × 𝑗̂) + 𝐴𝑧𝐵𝑧(�̂� × �̂�) 

Thus, by using the definition of the vector product, may be obtain 

�̂� × 𝑗̂ = �̂� = −𝑗̂ × �̂�  
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𝑗̂ × �̂� = �̂� = −�̂� × 𝑗̂  

�̂� × �̂� = 𝑗̂ = −�̂� × �̂�  

�̂� × �̂� = 𝑗̂ × 𝑗̂ = �̂� × �̂� = 0  

Therefore; 

𝐴 × �⃗⃗� = (𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦)�̂� + (𝐴𝑧𝐵𝑥 − 𝐴𝑥𝐵𝑧)𝑗̂ + (𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥)�̂�  

Or using the determinant; 

𝐴 × �⃗⃗� = |

�̂� 𝑗̂ �̂�
𝐴𝑥 𝐴𝑦 𝐴𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

|  

Some useful expressions: 

𝐶 × (𝐴 + �⃗⃗�) = 𝐶 × 𝐴 + 𝐶 × �⃗⃗�    and  𝐴. (�⃗⃗� + 𝐶) = 𝐴. �⃗⃗� + 𝐴. 𝐶  

𝐴. 𝐴 = |𝐴||𝐴| = 𝐴2  

Vector and Scalar Triple Product 

1. Triple Scalar product 

This product can be given by (𝐴 × �⃗⃗�). 𝐶 which can be a volume, i.e., 

𝑉 = (𝐴 × �⃗⃗�). 𝐶  

Which can be written as  

𝑉 = (𝐴 × �⃗⃗�). 𝐶 = (�⃗⃗� × 𝐶). 𝐴 = (𝐶 × 𝐴). �⃗⃗�  

In terms of the components, this product can be written as  

𝐴. (�⃗⃗� × 𝐶) = 𝐴𝑥(𝐵𝑦𝐶𝑧 − 𝐵𝑧𝐶𝑦) + 𝐴𝑦(𝐵𝑧𝐶𝑥 − 𝐵𝑥𝐶𝑧) + 𝐴𝑧(𝐵𝑥𝐶𝑦 − 𝐵𝑦𝐶𝑥)  

Also, this product can be represented in terms of determinant as follows 

 𝐴. (�⃗⃗� × 𝐶) = |

𝐴𝑥 𝐴𝑦 𝐴𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

𝐶𝑥 𝐶𝑦 𝐶𝑧

| 

2. Triple Vector Product 
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Triple vector product defined by  

�⃗⃗� = 𝐴 × (�⃗⃗� × 𝐶) , which satisfies the identity  

𝐴 × (�⃗⃗� × 𝐶) = (𝐴. 𝐶)�⃗⃗� − (𝐴. �⃗⃗�)𝐶             (Prove that) 

Differentiation:  

The del operator ∇⃗⃗⃗ has many important applications in physical problems. In 

Cartesian coordinates is defined as 

∇⃗⃗⃗=
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�   

There are three possible operations with ∇⃗⃗⃗ which are: 

1- If V is a scalar function, then 

∇⃗⃗⃗𝑉 =
𝜕𝑉

𝜕𝑥
�̂� +

𝜕𝑉

𝜕𝑦
𝑗̂ +

𝜕𝑉

𝜕𝑧
�̂�   

This operation is called the gradient of a scalar function, and it is abbreviated as 

∇⃗⃗⃗𝑉 = 𝒈𝒓𝒂𝒅 𝑉  

2- If A⃗⃗⃗ is a vector function, then 

∇⃗⃗⃗. 𝐴 =
𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
   

This operation is called the divergence and is abbreviated  

∇⃗⃗⃗. 𝐴 = 𝑑𝑖𝑣𝐴  

3- If A⃗⃗⃗ is a vector function, then 

∇⃗⃗⃗ × 𝐴 = (
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) �̂� + (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) 𝑗̂ + (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) �̂�  

∇⃗⃗⃗ × 𝐴 = |

�̂� 𝑗̂ �̂�
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐴𝑥 𝐴𝑦 𝐴𝑧

|  

This operation is called the curl and can be written as   

∇⃗⃗⃗ × 𝐴 = 𝑐𝑢𝑟𝑙 𝐴  

Some identities: 
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1- 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙𝐴 = ∇⃗⃗⃗. (∇⃗⃗⃗ × 𝐴) = 0  

2- 𝑐𝑢𝑟𝑙𝑔𝑟𝑎𝑑 𝑉 = ∇⃗⃗⃗ × (∇⃗⃗⃗𝑉) = 0 

3- 𝑑𝑖𝑣 𝑔𝑟𝑎𝑑 𝑉 = ∇⃗⃗⃗. (∇⃗⃗⃗𝑉) = ∇2𝑉 

Where the operator ∇2 is called the Laplacian and defined in Cartesian coordinates 

as follows 

∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
  

4- ∇⃗⃗⃗ × ∇⃗⃗⃗ × 𝐴 = ∇⃗⃗⃗(∇⃗⃗⃗. 𝐴) − ∇2𝐴  

5- ∇⃗⃗⃗. A⃗⃗⃗ × �⃗⃗� = �⃗⃗�. ∇⃗⃗⃗ × A⃗⃗⃗ − A⃗⃗⃗. ∇⃗⃗⃗ × B⃗⃗⃗ 

6- ∇⃗⃗⃗(𝑎𝑏) = 𝑎∇⃗⃗⃗𝑏 + 𝑏∇⃗⃗⃗𝑎 

7- ∇⃗⃗⃗. (𝑎B⃗⃗⃗) = �⃗⃗�. ∇⃗⃗⃗𝑎 + 𝑎∇⃗⃗⃗. �⃗⃗� 

8- ∇⃗⃗⃗. (𝑎∇⃗⃗⃗𝑏) = ∇⃗⃗⃗𝑎. ∇⃗⃗⃗𝑏 + 𝑎∇2𝑏 

9- ∇⃗⃗⃗ × (𝑎�⃗⃗�) = ∇⃗⃗⃗𝑎 × �⃗⃗� + 𝑎∇⃗⃗⃗ × �⃗⃗� 

10- ∇⃗⃗⃗ × (A⃗⃗⃗ × �⃗⃗�) = 𝐴(∇⃗⃗⃗. �⃗⃗�) − �⃗⃗�(∇⃗⃗⃗. 𝐴) + (�⃗⃗�. ∇⃗⃗⃗)𝐴 − (𝐴. ∇⃗⃗⃗)�⃗⃗�  

11- ∇⃗⃗⃗(𝐴. �⃗⃗�) = (𝐴. ∇⃗⃗⃗)�⃗⃗� + (�⃗⃗�. ∇⃗⃗⃗)𝐴 + 𝐴 × (∇⃗⃗⃗ × �⃗⃗�) + �⃗⃗� × (∇⃗⃗⃗ × 𝐴) 

3. The Gradient 

The partial derivatives 𝑓𝑥(𝑥, 𝑦) and 𝑓𝑦(𝑥, 𝑦) represent the rates of change of 𝑓(𝑥, 𝑦) 

in directions parallel to the x-and y-axes. In this section we will investigate rates of 

change of  𝑓(𝑥, 𝑦) in other directions. 

The partial derivatives of a function give the instantaneous rates of change of that 

function in directions parallel to the coordinate axes. Directional derivatives allow 

us to compute the rates of change of a function with respect to distance in any 

direction. 

The gradient of a scalar function 𝜑 is a vector whose magnitude is the maximum 

directional derivative at the point being considered and whose direction is the 

direction of the maximum directional derivative at the point. 

The gradient has the direction normal to the level surface of 𝜑 through the point 

being considered. 

If the scalar function 𝜑 represents temperature, then ∇⃗⃗⃗𝜑 = 𝑔𝑟𝑎𝑑𝜑 is a temperature 

gradient, or rate of change of temperature with distance. 
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Temperature 𝜑 is a scalar quantity, the temperature gradient ∇⃗⃗⃗𝜑 is a vector quantity. 

In terms of the gradient the directional derivative is given by 

𝑑𝜑

𝑑𝑠
= |𝑔𝑟𝑎𝑑𝜑| cos 𝜃                                              (1) 

Where 𝜃 is the angle between the direction of 𝑑𝑆 and the direction of the gradient. 

𝑑𝜑

𝑑𝑠
= 𝑔𝑟𝑎𝑑𝜑.

𝑑𝑆

𝑑𝑠
                                                     (2) 

This equation enables us to find the explicit form of the gradient in any coordinate 

system in which we know the form of 𝑑𝑆. 

In rectangular coordinates 

𝑑𝑆 = �̂�𝑑𝑥 + 𝑗̂𝑑𝑦 + �̂�𝑑𝑧  

𝑑𝜑 =
𝜕𝜑

𝜕𝑥
𝑑𝑥 +

𝜕𝜑

𝜕𝑦
𝑑𝑦 +

𝜕𝜑

𝜕𝑧
𝑑𝑧  

From equation (2) and the latter equation, we obtain 

𝜕𝜑

𝜕𝑥
𝑑𝑥 +

𝜕𝜑

𝜕𝑦
𝑑𝑦 +

𝜕𝜑

𝜕𝑧
𝑑𝑧 = (𝑔𝑟𝑎𝑑 𝜑)𝑥𝑑𝑥 + (𝑔𝑟𝑎𝑑 𝜑)𝑦𝑑𝑦 + (𝑔𝑟𝑎𝑑 𝜑)𝑧𝑑𝑧  

Equating coefficients on both sides, we obtain 

 𝑔𝑟𝑎𝑑 𝜑 =
𝜕𝜑

𝜕𝑥
�̂� +

𝜕𝜑

𝜕𝑦
𝑗̂ +

𝜕𝜑

𝜕𝑧
�̂�  this equation represents the gradient in rectangular 

coordinates. 

In the same way, the gradient in spherical coordinates (r, θ, ϕ) is given by 

𝑔𝑟𝑎𝑑 𝜑 = �̂�𝑟
𝜕𝜑

𝜕𝑟
+ �̂�𝜃

1

𝑟

𝜕𝜑

𝜕𝜃
+ �̂�∅

1

𝑟 sin 𝜃

𝜕𝜑

𝜕∅
  

Also, the gradient in cylindrical coordinates (r, θ, z) is given by 

𝑔𝑟𝑎𝑑 𝜑 = �̂�𝑟
𝜕𝜑

𝜕𝑟
+ �̂�∅

1

𝑟

𝜕𝜑

𝜕∅
+ �̂�𝑧

𝜕𝜑

𝜕𝑧 
  

Vector Integration: Consider three kinds of integrals: Line, Surface, and Volume 

integral. The integrand may be either a vector or scalar.   

1-  The line integral: If �⃗� is a vector, the line integral of �⃗� is written as 

∫ �⃗�. 𝑑𝑙
𝑏

𝑎 𝐶
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Where C is the curve along which the integration is performed, a and b the initial 

and final points of the curve, and 𝑑𝑙 is an infinitesimal vector displacement along 

the curve C. Since  �⃗�. 𝑑𝑙 is a scalar, it is clear that the line integral is a scalar. 

The line integral depends not only on the endpoints a and b but also on the curve C 

along which the integration is to be done. 

The line integral around a closed curve is defined by 

∮ �⃗�. 𝑑𝑙
𝐶

   

The integral around a closed curve may or may not be zero. 

2- The Surface integral: If �⃗� is a vector, the line integral of �⃗� is written as 

∫ �⃗�. �⃗⃗�𝑑𝑎
𝑆

          

Where S is the surface over which the integration is be performed, da, is an 

infinitesimal area on S and �⃗⃗� is a unit normal to da. 

The surface integral of �⃗� over a closed surface S is sometimes denoted by 

∮ �⃗�. �⃗⃗�𝑑𝑎
𝑆

   

Note that the surface integral is a scalar. 

3- The Volume integral:  

If �⃗� is a vector and 𝜑 a scalar, then the two volume integrals in which we are 

interested are: 

𝐽 = ∫ 𝜑𝑑𝑣
𝑣

          and       �⃗⃗⃗� = ∫ �⃗�𝑑𝑣
𝑣

 

𝐽 is a scalar and �⃗⃗⃗� is a vector. 

4. The Divergence of a Vector and Gauss Theorem 

The divergence of a vector �⃗� written as 𝑑𝑖𝑣�⃗�, which is defined as follows: 

𝑑𝑖𝑣�⃗� = lim
𝑣→0

1

𝑣
∮ �⃗�. �⃗⃗�𝑑𝑎

𝑆
  

The divergence is a scalar point function (scalar field) 

The divergence in rectangular coordinates is found to be 
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𝑑𝑖𝑣 �⃗� = ∇⃗⃗⃗. �⃗� =
𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧

𝜕𝑧
                                        (Prove that) 

The divergence in spherical coordinates is found to be 

𝑑𝑖𝑣 �⃗� =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝐹𝑟) +

1

𝑟 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃𝐹𝜃) +

1

𝑟 sin 𝜃

𝜕𝐹𝜑

𝜕𝜑
      (Prove that)  

While the divergence in cylindrical coordinates is  

𝑑𝑖𝑣 �⃗� =
1

𝑟

𝜕

𝜕𝑟
(𝑟𝐹𝑟) +

1

𝑟

𝜕𝐹𝜑

𝜕𝜑
+

𝜕𝐹𝑧

𝜕𝑧
                                         (Prove that) 

 

Divergence Theorem: 

This theorem states that the integral of the divergence of a vector over a volume V 

is equal to the surface integral of the normal component of the vector over the surface 

bounding V. That is, 

∫ 𝑑𝑖𝑣 �⃗�𝑑𝑣 = ∮ �⃗�. �⃗⃗�𝑑𝑎
𝑆𝑉

  

In other words, the divergence theorem states that the flux of a vector field across a 

closed surface with outward orientation is equal to the triple integral of the 

divergence over the region enclosed by the surface, i.e., 

 ∬ �⃗�. �⃗⃗�𝑑𝑆 = ∭ 𝑑𝑖𝑣 �⃗�𝑑𝑣
𝐺𝜎

 

5. The Curl and Stokes Theorem 

The third interesting vector differential operator is the curl. The curl of a vector 

written as 𝑐𝑢𝑟𝑙 �⃗� which is defined as: 

𝑐𝑢𝑟𝑙 �⃗� = lim
𝑉→0

1

𝑉
∮ �⃗⃗� × �⃗�

𝑆
 𝑑𝑎   

In rectangular coordinates the curl is given by: 

𝑐𝑢𝑟𝑙 �⃗� = ∇⃗⃗⃗ × �⃗� = |

�̂� 𝑗̂ �̂�
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐹𝑥 𝐹𝑦 𝐹𝑧

|  

In cylindrical coordinates the curl is given by: 
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𝑐𝑢𝑟𝑙 �⃗� = ∇⃗⃗⃗ × �⃗� =
1

𝑟
|

�̂�𝑟 𝑟�̂�𝜑 �̂�
𝜕

𝜕𝑟

𝜕

𝜕𝜑

𝜕

𝜕𝑧

𝐹𝑟 𝑟𝐹𝜑 𝐹𝑧

|  

In spherical coordinates the curl is given by: 

𝑐𝑢𝑟𝑙 �⃗� = ∇⃗⃗⃗ × �⃗� =
1

𝑟2 sin 𝜃
|

�̂�𝑟 𝑟�̂�𝜃 �̂�𝜑

𝜕

𝜕𝑟

𝜕

𝜕𝜃

𝜕

𝜕𝜑

𝐹𝑟 𝑟𝐹𝜃 𝑟 sin 𝜃 𝐹𝜑

|  

 

Stokes’ theorem:  

The line integral of a vector around a closed curve is equal to the integral of the 

normal component of its curl over any surface bounded by the curve. That is 

∮ �⃗�. 𝑑𝑙
𝐶

= ∫ 𝑐𝑢𝑟𝑙 �⃗�. �⃗⃗�𝑑𝑎
𝑆

     

Where C is a closed curve which bounds the surface S. 

H.W: Write the curl of a vector in cylindrical and spherical coordinates. 

6. Laplacian Operator ∇2: 

The operator that results by taking the dot product of the del operator with itself 

is denoted by ∇2and is called the Laplacian operator. This operator has the 

form. 

∇2= ∇⃗⃗⃗. ∇⃗⃗⃗=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2   

When applied to ∅(𝑥, 𝑦, 𝑧) the Laplacian operator produces the function. 

∇2∅ =
𝜕2∅

𝜕𝑥2 +
𝜕2∅

𝜕𝑦2 +
𝜕2∅

𝜕𝑧2  

∇2∅ can also be expressed as 𝑑𝑖𝑣(∇⃗⃗⃗∅), the equation ∇2∅ = 0, or  

𝜕2∅

𝜕𝑥2 +
𝜕2∅

𝜕𝑦2 +
𝜕2∅

𝜕𝑧2 = 0 is known as Laplace’s equation. 
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7. Some Operations Involving del Operator 

I. ∇⃗⃗⃗. (∇⃗⃗⃗∅) = ∇2∅ = ∇⃗⃗⃗. (𝑔𝑟𝑎𝑑∅) = 𝑑𝑖𝑣𝑔𝑟𝑎𝑑∅  or 

 ∇2∅ =
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
+

𝜕2∅

𝜕𝑧2
 

II. ∇2∅ is a scalar operator can operate on a vector, as follows:  

∇2𝐴 =
𝜕2�⃗�

𝜕𝑥2
+

𝜕2�⃗�

𝜕𝑦2
+

𝜕2�⃗�

𝜕𝑧2
  

III. ∇⃗⃗⃗(∇⃗⃗⃗. 𝐴) = 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝐴 

IV. ∇⃗⃗⃗ × (∇⃗⃗⃗∅) = 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 ∅ = |
|

�̂� 𝑗̂ �̂�
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕∅ 

𝜕𝑥

𝜕∅ 

𝜕𝑦

𝜕∅ 

𝜕𝑧

|
| = 0 

Thus, the curl of the gradient of any scalar field is zero.  

Where 
𝜕2

𝜕𝑥𝜕𝑦
=

𝜕2

𝜕𝑦𝜕𝑥
 

The cross product of the operator ∇⃗⃗⃗ with any vector 𝐴 equal zero, ∇⃗⃗⃗ × 𝐴 = 0, this 

means that the vector 𝐴 must be a gradient of a scalar function, i.e., 𝐴 = ∇⃗⃗⃗∅ , in this 

case the vector 𝐴 is called non rotation vector.  

V. ∇⃗⃗⃗. (∇⃗⃗⃗ × 𝐴) = 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 𝐴 = 0  

If there is a vector such �⃗⃗�, where ∇⃗⃗⃗. �⃗⃗� = 0, this means that �⃗⃗� must be a curl of a 

vector, such that 𝐴, i.e., �⃗⃗� = ∇⃗⃗⃗ × 𝐴, and the vector �⃗⃗� is called a rotational vector. 

  

VI. ∇⃗⃗⃗ × (∇⃗⃗⃗ × 𝐴) = 𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝐴 = 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝐴 − ∇2𝐴 = ∇⃗⃗⃗(∇⃗⃗⃗. 𝐴) − ∇⃗⃗⃗. ∇⃗⃗⃗𝐴 

 

8. Some Formulas Involving Differential Operators 

1- ∇⃗⃗⃗(𝜑 + 𝜓) = ∇⃗⃗⃗𝜑 + ∇⃗⃗⃗𝜓  

2- ∇⃗⃗⃗𝜑𝜓 = 𝜑∇⃗⃗⃗𝜓 + 𝜓∇⃗⃗⃗𝜑  

3- 𝑑𝑖𝑣(�⃗� + �⃗�) = 𝑑𝑖𝑣�⃗� + 𝑑𝑖𝑣�⃗�  

4- 𝑐𝑢𝑟𝑙(�⃗� + �⃗�) = 𝑐𝑢𝑟𝑙�⃗� + 𝑐𝑢𝑟𝑙�⃗�  

5- ∇⃗⃗⃗(�⃗�. �⃗�) = (�⃗�. ∇⃗⃗⃗)�⃗� + (�⃗�. ∇⃗⃗⃗)�⃗� + �⃗� × 𝑐𝑢𝑟𝑙 �⃗� + �⃗� × 𝑐𝑢𝑟𝑙 �⃗�  
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6- 𝑑𝑖𝑣 𝜑�⃗� = 𝜑 𝑑𝑖𝑣 �⃗� + �⃗�. ∇⃗⃗⃗𝜑  

7- 𝑑𝑖𝑣 (�⃗� × �⃗�) = �⃗�. 𝑐𝑢𝑟𝑙 �⃗� − �⃗�. 𝑐𝑢𝑟𝑙 �⃗�  

8- 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 𝐹⃗⃗⃗⃗ = 0  

9- 𝑐𝑢𝑟𝑙 𝜑�⃗� = 𝜑 𝑐𝑢𝑟𝑙 �⃗� + ∇⃗⃗⃗𝜑 × �⃗�  

10- 𝑐𝑢𝑟𝑙 (�⃗� × �⃗�) = �⃗� 𝑑𝑖𝑣 �⃗� − �⃗� 𝑑𝑖𝑣 �⃗� + (�⃗�. ∇⃗⃗⃗)�⃗� − (�⃗�. ∇⃗⃗⃗)�⃗�  

11- 𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 �⃗� = 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 �⃗� − ∇2�⃗�  

12- 𝑐𝑢𝑟𝑙 ∇⃗⃗⃗𝜑 = 0  

13- ∮ �⃗�. �⃗⃗�𝑑𝑎 = ∫ 𝑑𝑖𝑣 �⃗� 𝑑𝑣
𝑉𝑆

  

14- ∮ �⃗�. 𝑑𝑙 = ∫ 𝑐𝑢𝑟𝑙 �⃗�. �⃗⃗�𝑑𝑎
𝑆𝐶

  

15- ∮ 𝜑�⃗⃗�𝑑𝑎 = ∫ ∇⃗⃗⃗𝜑𝑑𝑣
𝑉𝑆

  

16- ∮ �⃗�(�⃗�. �⃗⃗�)𝑑𝑎 = ∫ �⃗� 𝑑𝑖𝑣 �⃗� 𝑑𝑣 + ∫ (�⃗�. ∇⃗⃗⃗)�⃗�𝑑𝑣
𝑉𝑉𝑆

  

17- ∮ �⃗⃗� × �⃗�𝑑𝑎
𝑆

= ∫ 𝑐𝑢𝑟𝑙 �⃗� 𝑑𝑣
𝑉

  

18- ∮ 𝜑𝑑𝑙 = ∫ �⃗⃗� × ∇⃗⃗⃗𝜑𝑑𝑎
𝑆𝐶

  

 

9. Differential Length, Area, and Volume 

Differential elements in length, area, and volume are useful in vector calculus. They 

are defined in the Cartesian, cylindrical, and spherical coordinate systems. 

 

A. Cartesian Coordinates 

From fig.(2), we notice that  

(1) Differential displacement is given by 

 

𝑑𝑙 = 𝑑𝑥�̂� + 𝑑𝑦𝑗̂ + 𝑑𝑧�̂�  

(2) Differential normal area is given by  

𝑑𝑆 = 𝑑𝑥𝑑𝑦�̂�   ,    𝑑𝑆 = 𝑑𝑦𝑑𝑧�̂�      ,      𝑑𝑆 = 𝑑𝑥𝑑𝑧𝑗̂    

(3) Differential volume is given by  

𝑑𝑣 = 𝑑𝑥𝑑𝑦𝑑𝑧  
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Fig.2: Differential elements in the right-handed Cartesian coordinates system. 

 

B. Cylindrical Coordinates 

Notice from fig.(3), that in cylindrical coordinates, differential elements can be 

found as follows: 

(1) Differential displacement is given by 

𝑑𝑙 = 𝑑𝑟�̂�𝑟 + 𝑟𝑑𝜑�̂�𝜑 + 𝑑𝑧�̂�𝑧  

(2) Differential normal area is given by 

𝑑𝑆 = 𝑟𝑑𝜑𝑑𝑧�̂�𝑟  ,     𝑑𝑆 = 𝑑𝑟𝑑𝑧�̂�𝜑     ,    𝑑𝑆 = 𝑟𝑑𝜑𝑑𝑟�̂�𝑧  

(3) Differential volume is given by   

𝑑𝑣 = 𝑟𝑑𝑟𝑑𝜑𝑑𝑧  
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Fig.(3): Differential elements in cylindrical coordinate system. 

C. Spherical Coordinates 
From fig.(4), we notice that in spherical coordinates, 

(1) The differential displacement is 

𝑑𝑙 = 𝑑𝑟�̂�𝑟 + 𝑟𝑑𝜃�̂�𝜃 + 𝑟 sin 𝜃 𝑑𝜑�̂�𝜑  

(2) The differential normal area is  

𝑑𝑆 = 𝑟2 sin 𝜃 𝑑𝜃𝑑𝜑�̂�𝑟   ,   𝑑𝑆 = 𝑟 sin 𝜃 𝑑𝑟𝑑𝜑�̂�𝜃 ,   𝑑𝑆 = 𝑟𝑑𝑟𝑑𝜃�̂�𝜑  

(3) The differential volume is 

𝑑𝑣 = 𝑟2 sin 𝜃𝑑𝑟𝑑𝜃𝑑𝜑  
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Fig.(4): Differential elements in spherical coordinate system. 
Differential volume, surface, and line elements. 

Coordinates System Rectangular  Cylindrical Spherical 

Line element  𝑑𝑙 = 𝑑𝑥𝑖̂ + 𝑑𝑦𝑗̂ + 𝑑𝑧�̂�  𝑑𝑙 = 𝑑𝑟�̂�𝑟 + 𝑟𝑑𝜑�̂�𝜑 + 𝑑𝑧�̂�𝑧 𝑑𝑙 = 𝑑𝑟�̂�𝑟 + 𝑟𝑑𝜃�̂�𝜃 +
𝑟 sin 𝜃 𝑑𝜑�̂�𝜑  

Volume element 𝑑𝑣 = 𝑑𝑥𝑑𝑦𝑑𝑧 𝑑𝑣 = 𝑟𝑑𝑟𝑑𝜑𝑑𝑧 𝑑𝑣 = 𝑟2 sin 𝜃𝑑𝑟𝑑𝜃𝑑𝜑  

Surface element 𝑑𝑆 = 𝑑𝑥𝑑𝑦�̂�  

𝑑𝑆 = 𝑑𝑦𝑑𝑧𝑖̂  

𝑑𝑆 = 𝑑𝑥𝑑𝑧𝑗̂  

𝑑𝑆 = 𝑟𝑑𝜑𝑑𝑧�̂�𝑟  

𝑑𝑆 = 𝑑𝑟𝑑𝑧�̂�𝜑  

𝑑𝑆 = 𝑟𝑑𝜑𝑑𝑟�̂�𝑧  

𝑑𝑆 = 𝑟2 sin 𝜃 𝑑𝜃𝑑𝜑�̂�𝑟  

𝑑𝑆 = 𝑟 sin 𝜃 𝑑𝑟𝑑𝜑�̂�𝜃  

𝑑𝑆 = 𝑟𝑑𝑟𝑑𝜃�̂�𝜑  

 

H.W: Obtain each of the element in the table. 

10. Green’s Theorem 

This theorem given by the following  

∫ (𝜓∇2𝜑 − 𝜑∇2𝜓)𝑑𝑣 = ∮ (𝜓 𝑔𝑟𝑎𝑑 𝜑 − 𝜑𝑔𝑟𝑎𝑑 𝜓)
𝑆𝑉

. �⃗⃗�𝑑𝑎  

This theorem follows from the application of the divergence theorem to the vector 

�⃗� = 𝜓 𝑔𝑟𝑎𝑑 𝜑 − 𝜑𝑔𝑟𝑎𝑑 𝜓  



Electromagnetic Theory                     2018-2019            Prof. dr. Ali Hadi Hassan Al-Batat 1-23 

17 
 

 Examples: 

Example.1: If 𝑟 a vector starting from the origin. Show that 

1- ∇⃗⃗⃗. 𝑟 = 3        ,    

2- ∇⃗⃗⃗ × 𝑟 = 0 

3- ∇⃗⃗⃗(𝐴. 𝑟) = 𝐴 

4- (𝐴. ∇⃗⃗⃗)𝑟 = 𝐴 

Solution: 

1- ∇⃗⃗⃗. 𝑟 = 3     

Since, ∇⃗⃗⃗=
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�    and r⃗ = 𝑥�̂� + 𝑦𝑗̂ + 𝑧�̂�        

∇⃗⃗⃗. 𝑟 = (
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�) . (𝑥�̂� + 𝑦𝑗̂ + 𝑧�̂�)   

      =
𝜕𝑥

𝜕𝑥
+

𝜕𝑦

𝜕𝑦
+

𝜕𝑧

𝜕𝑧
= 3 

2- ∇⃗⃗⃗ × 𝑟 = 0 

 

∇⃗⃗⃗ × 𝑟 = |

�̂� 𝑗̂ �̂�
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥 𝑦 𝑧

| = �̂� (
𝜕𝑧

𝜕𝑦
−

𝜕𝑦

𝜕𝑧
) + 𝑗̂ (

𝜕𝑥

𝜕𝑧
−

𝜕𝑧

𝜕𝑥
) + �̂� (

𝜕𝑦

𝜕𝑥
−

𝜕𝑥

𝜕𝑦
) = 0   

Example.2: If 𝑟 a vector starting from the origin. Show that  

1- ∇2 (
1

𝑟
) = 0 

2- ∇⃗⃗⃗𝑟 =
𝑟

𝑟
 

3- ∇⃗⃗⃗ × (
𝑟

𝑟3) = 0 

4- ∇⃗⃗⃗. (
𝑟

𝑟3) = 0 

5- ∇⃗⃗⃗ (
1

𝑟
) = −

𝑟

𝑟3
  

Solution: 

1- ∇⃗⃗⃗𝑟 =
𝑟

𝑟
 

H.W 
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Since     r⃗ = 𝑥�̂� + 𝑦𝑗̂ + 𝑧�̂�     and   𝑟 = (𝑥2 + 𝑦2 + 𝑧2)1/2 = √𝑥2 + 𝑦2 + 𝑧2      

∇⃗⃗⃗𝑟 = (
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�) (𝑥2 + 𝑦2 + 𝑧2)1/2     

      =
𝜕

𝜕𝑥
(𝑥2 + 𝑦2 + 𝑧2)1/2�̂� +

𝜕

𝜕𝑦
(𝑥2 + 𝑦2 + 𝑧2)1/2𝑗̂ +

𝜕

𝜕𝑧
(𝑥2 + 𝑦2 + 𝑧2)1/2�̂�  

=
1

2
(𝑥2 + 𝑦2 + 𝑧2)−1/2(2𝑥�̂�) +

1

2
(𝑥2 + 𝑦2 + 𝑧2)−1/2(2𝑦𝑗̂)

+
1

2
(𝑥2 + 𝑦2 + 𝑧2)−1/2(2𝑧�̂�) 

      =
𝑥�̂�

(𝑥2+𝑦2+𝑧2)1/2
+

𝑦�̂�

(𝑥2+𝑦2+𝑧2)1/2
+

𝑧�̂�

(𝑥2+𝑦2+𝑧2)1/2
  

=
1

(𝑥2+𝑦2+𝑧2)1/2 (𝑥�̂� + 𝑦𝑗̂ + 𝑧�̂�) =
𝑟

𝑟
  

 

2- ∇⃗⃗⃗ (
1

𝑟
) = −

𝑟

𝑟3
 

∇⃗⃗⃗ (
1

𝑟
) = (

𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�) (𝑥2 + 𝑦2 + 𝑧2)−

1

2  

  = −
1

2
(𝑥2 + 𝑦2 + 𝑧2)−

3

2(2𝑥�̂�) −
1

2
(𝑥2 + 𝑦2 + 𝑧2)−

3

2(2𝑦𝑗̂) −
1

2
(𝑥2 + 𝑦2 +

𝑧2)−
3

2(2𝑧�̂�) 

= − [
𝑥�̂�

(𝑥2 + 𝑦2 + 𝑧2)
3
2

+
𝑦𝑗̂

(𝑥2 + 𝑦2 + 𝑧2)
3
2

+
𝑧�̂�

(𝑥2 + 𝑦2 + 𝑧2)
3
2

] 

             = −
1

[(𝑥2+𝑦2+𝑧2)
1
2]

3 (𝑥�̂� + 𝑦𝑗̂ + 𝑧�̂�) = − −
𝑟

𝑟3
  

3- ∇⃗⃗⃗. (
𝑟

𝑟3) = 0 

We have |𝑟| = (𝑥2 + 𝑦2 + 𝑧2)
1

2 = √𝑥2 + 𝑦2 + 𝑧2  and 𝑟3 = (𝑥2 + 𝑦2 + 𝑧2)
3

2  

∇⃗⃗⃗. (
𝑟

𝑟3) = (
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�) . (

𝑥�̂�+𝑦�̂�+𝑧�̂�

(𝑥2+𝑦2+𝑧2)
3
2

)  
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 = (
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�) . {

𝑥�̂�

(𝑥2+𝑦2+𝑧2)
3
2

+
𝑦�̂�

(𝑥2+𝑦2+𝑧2)
3
2

+
𝑧�̂�

(𝑥2+𝑦2+𝑧2)
3
2

}  

=
𝜕

𝜕𝑥
(

𝑥

(𝑥2+𝑦2+𝑧2)
3
2

) +
𝜕

𝜕𝑦
(

𝑦

(𝑥2+𝑦2+𝑧2)
3
2

) +
𝜕

𝜕𝑧
(

𝑧

(𝑥2+𝑦2+𝑧2)
3
2

)  

Each term can be evaluated alone as follows: 

Taking the first term 

𝜕

𝜕𝑥
(

𝑥

(𝑥2+𝑦2+𝑧2)
3
2

) =
(𝑥2+𝑦2+𝑧2)

3
2.1−𝑥(

3

2
)(𝑥2+𝑦2+𝑧2)

1
2.2𝑥

[(𝑥2+𝑦2+𝑧2)
3
2]

2   

=
(𝑥2+𝑦2+𝑧2)

3
2−3𝑥2(𝑥2+𝑦2+𝑧2)

1
2

(𝑥2+𝑦2+𝑧2)3
  

The same procedure can be carryout to y and z terms, therefore 

∇⃗⃗⃗. (
𝑟

𝑟3) =

[(𝑥2+𝑦2+𝑧2)
3
2−3𝑥2(𝑥2+𝑦2+𝑧2)

1
2]+[(𝑥2+𝑦2+𝑧2)

3
2−3𝑦2(𝑥2+𝑦2+𝑧2)

1
2]

+[(𝑥2+𝑦2+𝑧2)
3
2−3𝑧2(𝑥2+𝑦2+𝑧2)

1
2]

(𝑥2+𝑦2+𝑧2)3
  

=
(𝑥2 + 𝑦2 + 𝑧2)

1
2[𝑥2 + 𝑦2 + 𝑧2 − 3𝑥2 + 𝑥2 + 𝑦2 + 𝑧2 − 3𝑦2 + 𝑥2 + 𝑦2 + 𝑧2 − 3𝑧2]

(𝑥2 + 𝑦2 + 𝑧2)3
 

=
(𝑥2+𝑦2+𝑧2)

1
2[3𝑥2+3𝑦2+3𝑧2−3𝑥2−3𝑦2−3𝑧2]

(𝑥2+𝑦2+𝑧2)3
= 0  

Thus, ∇⃗⃗⃗. (
𝑟

𝑟3) = 0 

Example.3: Show that the following two vectors are perpendicular 

𝐴 = �̂� + 4𝑗̂ + 3�̂�   

�⃗⃗� = 4�̂� + 2𝑗̂ − 4 �̂�     

Solution: 

Using the dot product law 𝐴. �⃗⃗� = |𝐴||�⃗⃗�| cos 𝜃 
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To be the vectors perpendicular, the angle between them must be 900 , therefore, the 

result of the dot product of the two vectors must be zero, i.e., 𝐴. �⃗⃗� = 0  

𝐴. �⃗⃗� = (�̂� + 4𝑗̂ + 3�̂�). (�⃗⃗� = 4�̂� + 2𝑗̂ − 4 �̂�) = 4 + 8 − 12 = 0  

∴ 𝐴 and �⃗⃗� are perpendicular. 

Example.4 : If 𝑟 is a vector from the origin to the point (x, y, z), prove that (�⃗⃗⃗�. ∇⃗⃗⃗)𝑟 =

�⃗⃗⃗�, where  �⃗⃗⃗� is any vector. 

Solution:  

Let �⃗⃗⃗� = 𝑈𝑥 �̂� + 𝑈𝑦𝑗̂ + 𝑈𝑧�̂�   and   r⃗ = 𝑥�̂� + 𝑦𝑗̂ + 𝑧�̂�   

�⃗⃗⃗�. ∇⃗⃗⃗= (𝑈𝑥 �̂� + 𝑈𝑦𝑗̂ + 𝑈𝑧�̂�). (
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�)  

       = 𝑈𝑥
𝜕

𝜕𝑥
+ 𝑈𝑦

𝜕

𝜕𝑦
+ 𝑈𝑧

𝜕

𝜕𝑧
  

(�⃗⃗⃗�. ∇⃗⃗⃗)𝑟 = (𝑈𝑥
𝜕

𝜕𝑥
+ 𝑈𝑦

𝜕

𝜕𝑦
+ 𝑈𝑧

𝜕

𝜕𝑧
) (𝑥�̂� + 𝑦𝑗̂ + 𝑧�̂�)   

              = 𝑈𝑥
𝜕

𝜕𝑥
(𝑥�̂� + 𝑦𝑗̂ + 𝑧�̂�) + 𝑈𝑦

𝜕

𝜕𝑦
(𝑥�̂� + 𝑦𝑗̂ + 𝑧�̂�) + 𝑈𝑧

𝜕

𝜕𝑧
(𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧�̂�)  

              = 𝑈𝑥 �̂� + 𝑈𝑦𝑗̂ + 𝑈𝑧�̂� = �⃗⃗⃗�  

Example.5: Use the divergence theorem to find the outward flux of the vector field 

�⃗�(𝑥, 𝑦, 𝑧) = 2𝑥�̂� + 3𝑦𝑗̂ + 𝑧2�̂� across the unit cube in fig.(5). 

Solution:  

Let σ denoted the out-ward-oriented surface of the cube and G the region that it 

encloses.  

𝑑𝑖𝑣 �⃗� =
𝜕

𝜕𝑥
(2𝑥) +

𝜕

𝜕𝑦
(3𝑦) +

𝜕

𝜕𝑧
(𝑧2) = 5 + 2𝑧  

The flux across σ is 

Φ = ∬ �⃗�. �⃗⃗�𝑑𝑆 = ∭ (5 + 2𝑧)𝑑𝑣 = ∫ ∫ ∫ (5 + 2𝑧)𝑑𝑧𝑑𝑦𝑑𝑥
1

0

1

0

1

0𝐺𝜎
  

= ∫ ∫ [5𝑧 + 𝑧2]𝑧=0
1 𝑑𝑦𝑑𝑥 = ∫ ∫ 6𝑑𝑦𝑑𝑥 =

1

0

1

0

1

0

1

0
6  
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Fig(5): A unit cube in rectangular coordinates. 

Example.6: Use the divergence theorem to find the outward flux of the vector field 

�⃗�(𝑥, 𝑦, 𝑧) = 𝑥3�̂� + 𝑦3𝑗̂ + 𝑧2�̂� across the surface of the region that is elncloed by the 

circular cylinder 𝑥2 + 𝑦2 = 9 and the planes z=0 and z=2 as in fig(6). 

Solution:  

  𝑑𝑖𝑣 �⃗� =
𝜕

𝜕𝑥
(𝑥3) +

𝜕

𝜕𝑦
(𝑦3) +

𝜕

𝜕𝑧
(𝑧2) = 3𝑥2 + 3𝑦2 + 2𝑧 

The flux across σ is  

Φ =  ∬ �⃗�. �⃗⃗�𝑑𝑆 = ∭ (3𝑥2 + 3𝑦2 + 2𝑧)𝑑𝑣 
𝐺𝜎

  

     = ∫ ∫ ∫ (3𝑟2 + 2𝑧)𝑟𝑑𝑧𝑑𝑟𝑑𝜑
2

0

3

0

2𝜋

0
     using cylindrical coordinates 

     = ∫ ∫ [3𝑟3𝑧 + 𝑧2𝑟]𝑧=0
2 𝑑𝑟𝑑𝜑

3

0

2𝜋

0
 

    = ∫ ∫ (6𝑟3 + 4𝑟)𝑑𝑟𝑑𝜑
3

0

2𝜋

0
      

    = ∫ [
3𝑟4

2
+ 2𝑟2]

0

3

𝑑𝜑
2𝜋

0
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   = ∫
279

2
𝑑𝜑 = 279𝜋

2𝜋

0
 

 

 

 

 

 

     

 

 

 

 

 

 

 

Fig.(6): Circular cylinder.  

Example.7: Find the divergence and curl of the vector field 

 �⃗�(𝑥, 𝑦, 𝑧) = 𝑥2𝑦�̂� + 2𝑦3𝑧𝑗̂ + 3𝑧�̂�. 

Solution:  

𝑑𝑖𝑣 �⃗� = ∇⃗⃗⃗. �⃗� = (
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�) . (𝑥2𝑦�̂� + 2𝑦3𝑧𝑗̂ + 3𝑧�̂�)  

                      =
𝜕

𝜕𝑥
(𝑥2𝑦) +

𝜕

𝜕𝑦
(2𝑦3𝑧) +

𝜕

𝜕𝑧
(3𝑧) 

𝑑𝑖𝑣 �⃗� = 2𝑥𝑦 + 6𝑦2𝑧 + 3  

𝑐𝑢𝑟𝑙 �⃗� = |

�̂� 𝑗̂ �̂�
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥2𝑦 2𝑦3𝑧 3𝑧

| = −2𝑦3�̂� − 𝑥2�̂�  



Electromagnetic Theory                     2018-2019            Prof. dr. Ali Hadi Hassan Al-Batat 1-23 

23 
 

Example.8: Show that the divergence of the inverse-square field  

 �⃗�(𝑥, 𝑦, 𝑧) =  
𝑐

(𝑥2+𝑦2+𝑧2)
3
2

(𝑥�̂� + 𝑦𝑗̂ + 𝑧�̂�) is zero. 

Solution:  

For simplicity let 𝑟 = (𝑥2 + 𝑦2 + 𝑧2)
1

2 , then 

�⃗�(𝑥, 𝑦, 𝑧) =
𝑐𝑥�̂�+𝑐𝑦�̂�+𝑐𝑧�̂�

𝑟3
=

𝑐𝑥

𝑟3
�̂� +

𝑐𝑦

𝑟3
𝑗̂ +

𝑐𝑧

𝑟3
�̂� 

𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
 , 

𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
 , 

𝜕𝑟

𝜕𝑧
=

𝑧

𝑟
 

𝑑𝑖𝑣 �⃗� = 𝑐 [
𝜕

𝜕𝑥
(

𝑥

𝑟3) +
𝜕

𝜕𝑦
(

𝑦

𝑟3) +
𝜕

𝜕𝑧
(

𝑧

𝑟3)]  

𝜕

𝜕𝑥
(

𝑥

𝑟3) =
𝑟3−𝑥(3𝑟2)(

𝑥

𝑟
)

(𝑟3)2
=

1

𝑟3
−

3𝑥2

𝑟5
  

𝜕

𝜕𝑦
(

𝑦

𝑟3) =
𝑟3−𝑦(3𝑟2)(

𝑦

𝑟
)

(𝑟3)2
=

1

𝑟3
−

3𝑦2

𝑟5
  

𝜕

𝜕𝑧
(

𝑧

𝑟3) =
𝑟3−𝑧(3𝑟2)(

𝑧

𝑟
)

(𝑟3)2
=

1

𝑟3
−

3𝑧2

𝑟5
  

𝑑𝑖𝑣 �⃗� = 𝑐 [
3

𝑟3
−

3𝑥2+3𝑦2+3𝑧2

𝑟5
] = 𝑐 [

3

𝑟3
−

3𝑟2

𝑟5
] = 0  

 

 

 

 

 

 

 


