Draft Unicode Technical Report \#25
UNICODE SUPPORT FOR MATHEMATICS

Version	1.0
Authors	Barbara Beeton (bnb@ams.org), Asmus Freytag (asmus@unicode.org), Murray Sargent III (murrays@microsoft.com)
Date	$2002-05-08$
This Version	http://www.unicode.org/unicode/reports/tr25/tr25-5.html
Previous Version	http://www.unicode.org/unicode/reports/tr25/tr25-4.html
Latest Version	http://www.unicode.org/unicode/reports/tr25
Tracking Number	5

Summary

Starting with version 3.2, Unicode includes virtually all of the standard characters used in mathematics. This set supports a variety of math applications on computers, including document presentation languages like TeX, math markup languages like MathML, computer algebra languages like OpenMath, internal representations of mathematics in systems like Mathematica and MathCAD, computer programs, and plain text. This technical report describes the Unicode mathematics character groups and gives some of their default math properties.

Status

This document has been approved by the Unicode Technical Committee for public review as a Draft Unicode Technical Report. Publication does not imply endorsement by the Unicode Consortium. This is a draft document which may be updated, replaced, or superseded by other documents at any time. This is not a stable document; it is inappropriate to cite this document as other than a work in progress.

Please send comments to the authors. A list of current Unicode Technical Reports is found on
http://www.unicode.org/unicode/reports/. For more information about versions of the Unicode Standard, see http://www.unicode.org/unicode/standard/versions/.

The References provide related information that is useful in understanding this document. Please mail corrigenda and other comments to the author(s).

Contents

1. Overview
2. Mathematical Character Repertoire
2.1 Mathematical Alphanumeric Symbols Block
2.2 Mathematical Alphabets
2.3 Fonts Used for Mathematical Alphabets
2.4 Locating Mathematical Characters
2.5 Duplicated Characters
2.6 Accented Characters
2.7 Operators
2.8 Superscripts and Subscripts
2.9 Arrows
2.10 Delimiters
2.11 Geometrical Shapes
2.12 Other Symbols
2.13 Symbol Pieces
2.14 Invisible Operators
2.15 Other Characters
2.16 Negations
2.17 Variation Selectors
2.18 Novel Symbols not yet in Unicode
3. Mathematical Character Properties
3.1 Classification by Usage Frequency
3.1.1 Strongly Mathematical Characters
3.1.2 Weakly Mathematical Characters
3.1.3 Other
3.2 Classification by Typographical Behavior
3.2.1 Alphabetic
3.2.2 Operators
3.2.3 Large Operators
3.2.4 Digits
3.2.5 Delimiters
3.2.6 Fences
3.2.7 Combining Marks
3.3 Classification of Operators by Precedence
3.4 Classification Datafile
4. Implementation Guidelines
4.1 Use of Normalization with Mathematical Text
4.2 Input of Mathematical and Other Unicode Characters
4.3 Use of Math Characters in Computer Programs
4.4 Recognizing Mathematical Expressions
4.5 Examples of Mathematical Notation

Appendix A: Mathematical Character Classification
References
Modifications

1 Overview

This technical report starts with a discussion of the mathematics character repertoire incorporating the relevant block descriptions of the Unicode Standard [TUS]. Associated character properties are discussed next, including a number of properties that are not yet part of the Unicode Standard. Character classifications by usage, by typography, and by precedence are given. Some implementation guidelines for input methods and use of Unicode math characters in programming languages are presented next.

2 Mathematical Character Repertoire

Unicode 3.2 provides a quite complete set of standard math characters to support publication of mathematics on and off the web. Specifically, Unicode 3.1 introduced 996 new alphanumeric symbols and Unicode 3.2 introduces 591 new symbols, in addition to the 340 math-specific symbols already encoded in Unicode 3.0, for a total of 1927 mathematical symbols. This repertoire is the result of input from many sources, notably from the STIX Project (Scientific and Technical Information Exchange) [STIX], a cooperation of mathematical publishers. The STIX collection includes, but is not limited to, symbols gleaned from mathematical publications by experts from the American Mathematical Society (AMS) and symbol sets provided by Elsevier Publishing and by the American Physical Society. The new repertoire enables the display of virtually all standard mathematical symbols. Nevertheless this work must remain incomplete; mathematicians and other scientists are continually inventing new mathematical symbols and the plan is to add them as they become accepted in the scientific communities.

Mathematical Markup Language (MathML ${ }^{T M}$ [MathML], an XML application [XML] , is a major beneficiary of the increased repertoire for mathematical symbols and the working group lobbied in favor of the inclusion of the new characters. In addition, the new characters lend themselves to a useful plain text encoding of mathematics (see Sec. 4) that is much more compact than MathML or TEX, the typesetting language and program designed by Donald Knuth [TeX].

2.1 Mathematical Alphanumeric Symbols Block

The Mathematical Alphanumeric Symbols block (U+1D400-U+1D7FF) contains a large extension of letterlike symbols used in mathematical notation, typically for variables. The characters in this block are intended for use only in mathematical or technical notation; they are not intended for use in non-technical text. When used with markup languages, for example with MathML the characters are expected to be used directly, instead of indirectly via entity references or by composing them from base letters and style markup.

Words Used as Variables. In some specialties, whole words are used as variables, not just single letters. For these cases, style markup is preferred because in ordinary mathematical notation the juxtaposition of variables generally implies multiplication, not word formation as in ordinary text. Markup not only provides the necessary scoping in these cases, it also allows the use of a more extended alphabet.

2.2 Mathematical Alphabets

Basic Set of Alphanumeric Characters. Mathematical notation uses a basic set of mathematical alphanumeric characters which consists of:

- the set of basic Latin digits $(0-9)(U+0030-U+0039)$
- the set of basic upper- and lowercase Latin letters (a-z, A - Z)
- the uppercase Greek letters $\mathrm{A}-\Omega(\mathrm{U}+0391-\mathrm{U}+03 \mathrm{~A} 9)$, plus the nabla $\nabla(\mathrm{U}+2207)$ and the variant of theta Θ given by U+03F4
- the lowercase Greek letters $\alpha-\omega(U+03 B 1-U+03 C 9)$, plus the partial differential sign $\partial(U+2202)$ and the six glyph variants of $\epsilon, \theta, \kappa, \phi, \rho$, and π, given by $U+03 F 5, U+03 D 1, U+03 F 0, U+03 D 5, U+03 F 1$, and $U+03 D 6$.

Only unaccented forms of the letters are used for mathematical notation, because general accents such as the acute accent would interfere with common mathematical diacritics. Examples of common mathematical diacritics that can interfere with general accents are the circumflex, macron, or the single or double dot above, the latter two of which are used in physics to denote derivatives with respect to the time variable. Mathematical symbols with diacritics are always represented by combining character sequences, except as required by normalization. See Unicode Standard Annex \#15, "Unicode Normalization Forms" [Normalization] for more information.

For some characters in the basic set of Greek characters, two variants of the same character are included. This is because they can appear in the same mathematical document with different meanings, even though they would have the same meaning in Greek text.

Additional Characters. In addition to this basic set, mathematical notation also uses the four Hebrew-derived characters $(U+2135-U+2138)$. Occasional uses of other alphabetic and numeric characters are known. Examples include $U+0428$ CYRILLIC CAPITAL LETTER SHA , U+306E hiragana letter no , and Eastern Arabic-Indic digits (U+06F0 - U+06F9). However, these characters are used in only the basic form.

Semantic Distinctions. Mathematics has need for a number of Latin and Greek alphabets that on first thought appear to be mere font variations of one another. For example the letter H can appear as plain or upright (H), bold (H), italic (H), and script \mathcal{H}. However in any given document, these characters have distinct, and usually unrelated mathematical semantics. For example, a normal H represents a different variable from a bold H, etc. If these attributes are dropped in plain text, the distinctions are lost and the meaning of the text is altered. Without the distinctions, the well-known Hamiltonian formula:

$$
\mathcal{H}=\int \mathrm{d} \tau\left(\varepsilon E^{2}+\mu H^{2}\right)
$$

turns into the integral equation in the variable H :

$$
\mathrm{H}=\int \mathrm{d} \tau\left(\varepsilon \mathrm{E}^{2}+\mu \mathrm{H}^{2}\right)
$$

By encoding a separate set of alphabets, it is possible to preserve such distinctions in plain text.
Mathematical Alphabets. The alphanumeric symbols encountered in mathematics are given in the following table:
Table 2.1 Mathematical Alphabets

Math Style	Characters from Basic Set	Location
plain (upright, serifed)	Latin, Greek and digits	BMP
bold	Latin, Greek and digits	Plane 1
italic	Latin and Greek	Plane 1*
bold italic	Latin and Greek	Plane 1
script (calligraphic)	Latin	Plane 1*
bold script (calligraphic)	Latin	Plane 1
Fraktur	Latin	Plane 1*
bold Fraktur	Latin	Plane 1
double-struck	Latin and digits	Plane 1*
sans-serif	Latin and digits	Plane 1
sans-serif bold	Latin, Greek and digits	Plane 1
sans-serif italic	Latin	Plane 1
sans-serif bold italic	Latin and Greek	Plane 1
monospace	Latin and digits	Plane 1

* Some of these alphabets have characters in the BMP as noted in the following section.

The plain letters have been unified with the existing characters in the Basic Latin and Greek blocks. There are 25 double-struck, italic, Fraktur and script characters that already exist in the Letterlike Symbols block (U+2100-U+214F). These are explicitly unified with the characters in this block and corresponding holes have been left in the mathematical alphabets.

Compatibility Decompositions. All mathematical alphanumeric symbols have compatibility decompositions to the base

Latin and Greek letters-folding away such distinctions, however, is usually not desirable as it loses the semantic distinctions for which these characters were encoded. See Unicode Standard Annex \#15, "Unicode Normalization Forms" [Normalization] for more information.

2.3 Fonts Used for Mathematical Alphabets

Mathematicians place strict requirements on the specific fonts being used to represent mathematical variables. Readers of a mathematical text need to be able to distinguish single letter variables from each other, even when they do not appear in close proximity. They must be able to recognize the letter itself, whether it is part of the text or is a mathematical variable, and lastly which mathematical alphabet it is from.

Fraktur. The black letter style is often referred to as Fraktur or Gothic in various sources. Technically, Fraktur and Gothic typefaces are distinct designs from black letter, but any of several font styles similar in appearance to the forms shown in the charts can be used.

Math italics. Mathematical variables are most commonly set in a form of italics, but not all italic fonts can be used successfully. In common text fonts, the italic letter vand Greek letter nu are not very distinct. A rounded italic letter vis therefore preferred in a mathematical font. There are other characters, which sometimes have similar shapes and require special attention to avoid ambiguity. Examples are shown in the table below.

italic a	a	α	alpha
italic v (standard)	v	\vee	nu
italic v (preferred)	v	v	upsilon
script X	$\not \subset$	χ	chi
plain Y	Y	Υ	Upsilon

Theorems are commonly printed in a text italic font. A font intended for mathematical variables should support clear visual distinctions so that variables can be reliably separated from italic text in a theorem. Some languages have common single letter words (English a, Scandinavian i, etc.), which can otherwise be easily confused with common variables.

Hard-to-distinguish Letters. Not all sans-serif fonts allow an easy distinction between lowercase /, and uppercase /and not all monospaced (fixed width) fonts allow a distinction between the letter 1 and the digit 1 . Such fonts are not usable for mathematics. In Fraktur, the letters I and J in particular must be made distinguishable. Overburdened Black Letter forms like I and J are inappropriate. Similarly, the digit zero must be distinct from the uppercase letter O, and the empty set \varnothing must be distinct from the letter o with stroke for all mathematical alphanumeric sets. Some characters are so similar that even mathematical fonts do not attempt to provide distinguished glyphs for them, e.g. uppercase A and uppercase Alpha (A). Their use is normally avoided in mathematical notation unless no confusion is possible in a given context.

Font Support for Combining Diacritics. Mathematical equations require that characters be combined with diacritics (dots, tilde, circumflex, or arrows above are common), as well as followed or preceded by super- or subscripted letters or numbers. This requirement leads to designs for italic styles that are less inclined, and script styles that have smaller overhangs and less slant than equivalent styles commonly used for text such as wedding invitations.

Typestyle for Script Characters. In some instances, a deliberate unification with a non-mathematical symbol has been undertaken; for example, $\mathrm{U}+2133$ is unified with the pre-1949 symbol for the German currency unit Mark and $\mathrm{U}+2113$ is unified with the common non-SI symbol for the liter [SI]. This unification restricts the range of glyphs that can be used for this character in the charts. Therefore the font used for the reference glyphs in the code charts uses a simplified 'English Script' style, as per recommendation by the American Mathematical Society. For consistency, other script characters in the Letterlike Symbols block are now shown in the same typestyle.

Double-struck Characters. The double-struck glyphs shown in earlier editions of the standard attempted to match the design used for all the other Latin characters in the standard, which is based on Times. The current set of fonts was prepared in consultation with the American Mathematical Society and leading mathematical publishers, and shows much simpler forms that are derived from the forms written on a blackboard. However, both serifed and non-serifed forms can be used in mathematical texts, and inline fonts are found in works published by certain publishers. There is no intention to support such stylistic preference via character encoding, therefore only one set of double struck mathematical alphanumeric symbols have been encoded.

2.3.1 Reference Glyphs for Greek Phi

With Unicode 3.0 and the concurrent second edition of ISO/IEC 10646-1, the reference glyphs for U+03C6 GREEK LETTER SMALL PHI and U+03D5 GREEK PHI SYMBOL were swapped. In ordinary Greek text, the character U+03C6 is used exclusively, although this characters has considerably glyphic variation, sometimes represented with a glyph more like the
representative glyph shown for U+03C6 (the "loopy" form) and less often with a glyph more like the representative glyph shown for U+03D5 (the "straight" form).

For mathematical and technical use, the straight form of the small phi is an important symbol and needs to be consistently distinguishable from the loopy form. The straight form phi glyph is used as the representative glyph for the symbol phi at U+03D5 to satisfy this distinction.

The reversed assignment of representative glyphs in versions of the Unicode Standard prior to Unicode 3.0 had the problem that the character explicitly identified as the mathematical symbol did not have the straight form of the character that is the preferred glyph for that use. Furthermore, it made it unnecessarily difficult for general purpose fonts supporting ordinary Greek text to also add support for Greek letters used as mathematical symbols. This resulted from the fact that many of those fonts already used the loopy form glyph for U+03C6, as preferred for Greek body text; to support the phi symbol as well, they would have had to disrupt glyph choices already optimized for Greek text.

When mapping symbol sets or SGML entities to the Unicode Standard, it is important to make sure that codes or entities that require the straight form of the phi symbol be mapped to $\mathrm{U}+03 \mathrm{D} 5$ and not to $\mathrm{U}+03 \mathrm{C} 6$. Mapping to the latter should be reserved for codes or entities that represent the small phi as used in ordinary Greek text.

Fonts used primarily for Greek text may use either glyph form for U+03C6, but fonts that also intend to support technical use of the Greek letters should use the loopy form to ensure appropriate contrast with the straight form used for U+03D5.

2.3.2 Reference Glyphs for 2278 and 2279

In Unicode 3.2 the reference glyphs for 2278 neIther less-THAN NOR GREATER-THAN and 2279 NEITHER GREATER-THAN NOR LESS-THAN are changed from using a vertical cancellation to using a slanted cancellation. This change was made in order to match their the long standing canonical decompositions for these characters, which use 0338 Combining long solidus OVERLAY. Irrespective of this change to the reference glyphs, the symmetric forms using the vertical stroke are acceptable glyph variants. Using 2278 or 2279 followed by FEOO VARIATION SeLECTOR-1 (VS1) will request these upright variants explicitly, as will using 2275 or 2276 followed by 20D2 Combining long vertical line overlay.

Unless fonts are created with the intention to add support for both forms (via VS1 for the upright forms) there is no need to revise the glyphs for 2287 and 2279 in existing fonts: the glyphic range implied by using the base character alone encompasses both shapes.

2.4 Locating Mathematical Characters

Mathematical characters can be located by looking in the blocks that contain such characters or by checking the Unicode MATH property, which is assigned to characters that naturally appear in mathematical contexts (see Section 3 "Mathematical Character Properties"). Mathematical characters can be found in the following blocks:

Table 2.2 Locations of Mathematical Characters

Block Name	Range	Characters
Basic Latin	U+0021-U+007E	Variables, operators, digits*
Greek	$\mathrm{U}+0370-\mathrm{U}+03 \mathrm{FF}$	Variables*
General Punctuation	U+2000-U+206F	Invisible operators*
Letterlike Symbols	$\mathrm{U}+2100-\mathrm{U}+214 \mathrm{~F}$	Variables*
Arrows	$\mathrm{U}+2190-\mathrm{U}+21 \mathrm{FF}$	Arrows, arrow-like operators
Mathematical Operators	$\mathrm{U}+2200-\mathrm{U}+22 \mathrm{FF}$	Operators
Miscellaneous Technical Symbols	$\mathrm{U}+2300-\mathrm{U}+23 \mathrm{FF}$	Braces, operators*
Geometrical Shapes	$\mathrm{U}+25 \mathrm{~A} 0-\mathrm{U}+25 \mathrm{FF}$	Symbols
Misc. Mathematical Symbols-A	$\mathrm{U}+27 \mathrm{C} 0-\mathrm{U}+27 \mathrm{EF}$	Symbols and operators
Supplemental Arrows-A	U+27F0-U+27FF	Arrows, arrow-like operators
Supplemental Arrows-B	U+2900-U+297F	Arrows, arrow-like operators
Misc. Mathematical Symbols-B	$\mathrm{U}+2980-\mathrm{U}+29 \mathrm{FF}$	Braces, symbols
Suppl. Mathematical Operators	$\mathrm{U}+2 \mathrm{~A} 00-\mathrm{U}+2 \mathrm{AFF}$	Operators
Mathematical Alphanumeric Symbols	U+1D400-U+1D7FF	Variables and digits
Other blocks	\ldots	Characters for occasional use

*This block contains non-mathematical characters as well.

2.5 Duplicated Characters

Some Greek letters are re-encoded as technical symbols. These include U+00B5 μ mICRO SIGN, U+2126 Ω OHM SIGN, and several characters among the APL functional symbols in the Miscellaneous Technical block. U+03A9 GREEK LETTER CAPITAL OMEGA is the canonical equivalent of $\mathrm{U}+2126$ and its use is preferred. Latin letters duplicated include 212 A KELVIN SIGN and U+212B ANGSTROM SIGN. As in the case of the OHM SIGN, the corresponding regular Latin letters are the canonical equivalents and therefore their use is preferred.

The left and right angle brackets at $\mathrm{U}+2328$ and $\mathrm{U}+2329$ have long been canonically equivalent with the CJK punctuation characters at $\mathrm{U}+3008$ and $\mathrm{U}+3009$, which implies that the use of the latter code points is preferred and that the characters are 'wide' characters. See Unicode Standard Annex \#11, "East Asian Width" [EAW]. Unicode 3.2 adds two new mathematical angle bracket characters (U+27E8 and U+27E9) that are unequivocally intended for mathematical use.

2.6 Accented Characters

Mathematical characters are often enhanced via use of combining marks in the ranges U+0300-U+036F and the combining marks for symbols in the range U+20D0-U+20FF. These characters follow the base characters as in non-mathematical Unicode text. This section discusses these characters and preferred ways of representing accented characters in mathematical expressions. If a span of characters is enhanced by a combining mark, e.g., a tilde over $A B$, typically some kind of higher-level markup is needed as is done in MathML. Unicode does include some combining marks that are designed to be used for pairs of characters, e.g., $\mathrm{U}+0360-\mathrm{U}+0362$. However, their use for mathematical text is not encouraged.

For some mathematical characters there are multiple ways of expressing the character: as precomposed or as a sequence of base character and combining mark. It would be nice to have a single way to represent any given character, since this would simplify recognizing the character in searches and other manipulations. Selecting a unique representation among multiple equivalent representations is called normalization. Unicode Standard Annex \#15 "Unicode Normalization Forms" [Normalization] discusses the subject in detail; however, due to requirements of non-mathematical software, the normalization forms presented there are not ideal from the perspective of mathematics.

Ideally, one always uses the shortest form of a math operator symbol wherever possible. So U+2260 should be used for the not equal sign instead of the combining sequence $U+003 \mathrm{D} U+0338$. This rule concurs with Normalization Form C (NFC) used on the web. If a negated operator is needed that does not have a precomposed form, the character U+0338 COMBINING LONG SOLIDUS OVERLAY can be used to indicate negation.

On the other hand, for accented alphabetic characters used as variables, ideally only decomposed sequences are used since there are no precomposed math alphanumerical symbols.

Mathematics uses a multitude of combining marks that greatly exceeds the predefined composed characters in Unicode. Accordingly, it is better to have the math display facility handle all of these cases uniformly to give a consistent look between characters that happen to have a fully composed Unicode character and those that do not. The combining character sequences also typically have semantics as a group, so it is handy to be able to manipulate and search for them individually without having to have special tables to decompose characters for this purpose. Note that this approach does not concur with Normalization Form C for the upright alphabetic characters (ASCII letters). To facilitate interchange on the web, accented characters should conform to NFC when interchanged.

However, to achieve consistent results, a mathematical display system should transiently decompose such letters when used in mathematical expressions and use a single algorithm to place embellishments.

2.7 Operators

The Unicode blocks U+2200-U+22FF and U+2A00 - U+2AFF contain many mathematical operators, relations, geometric symbols and other symbols with special usages confined largely to mathematical contexts. In addition to the characters in these blocks, mathematical operators are also found in the Basic Latin (ASCII) and Latin-1 Supplement Blocks. A few of the symbols from the Miscellaneous Technical block and characters from General Punctuation are also used in mathematical notation

Semantics. Mathematical operators often have more than one meaning different subdisciplines or different contexts. For example, the "+" symbol normally denotes addition in a mathematical context, but might refer to concatenation in a computer science context dealing with strings, or incrementation, or have any number of other functions in given contexts. Therefore The Unicode Standard only encodes a single character for a single symbolic form. There are numerous other instances in which several semantic values can be attributed to the same Unicode value. For example, U+2218 RING OPERATOR may be the equivalent of white small circle or composite function or ap/ jot. The Unicode Standard does not attempt to distinguish all possible semantic values that may be applied to mathematical operators or relational symbols. It is up to the application or user to distinguish such meanings according to the appropriate context. Where information is available about the usage (or usages) of particular symbols, it has been indicated in the character annotations in Chapter 14, Code Charts in The Unicode Standard, Version 3.0 [TUS] and in the online code charts [Charts].

Similar glyphs. The Standard does include many characters that appear to be quite similar to one another, but that may well convey different meaning in a given context. On the other hand, mathematical operators, and especially relation symbols, may appear in various standards, handbooks, and fonts with a large number of purely graphical variants. Where
variants were recognizable as such from the sources, they were not encoded separately.
For relation symbols, the choice of a vertical or forward-slanting stroke typically seems to be an aesthetic one, but both slants might appear in a given context. However, a back-slanted stroke almost always has a distinct meaning compared to the forward-slanted stroke. See Section 2.17 "Variation Selector" for more information on some particular variants.

Unifications. Mathematical operators such as implies \Leftrightarrow and if and only if \leftrightarrow have been unified with the corresponding arrows ($\mathrm{U}+21$ D2 RIGHTWARDS DOUbLE ARROW and $\mathrm{U}+2194$ LEFT RIGHT ARROw, respectively) in the Arrows block.

The operator U+2208 ELEMENT OF is occasionally rendered with a taller shape than shown in the code charts. Mathematical handbooks and standards consulted treat these characters as variants of the same glyph. U+220A SMALL ELEMENT OF is a distinctively small version of the element of that originates in mathematical pi fonts.

The operators U+226B MUCH GREATER-THAN and U+226A MUCH LESS-THAN are sometimes rendered in a nested shape. Because no semantic distinction applies, the Unicode Standard provides a single encoding for each operator.

A large class of unifications applies to variants of relation symbols involving equality, similarity, and/or negation. Variants involving one- or two-barred equal signs, one- or two-tilde similarity signs, and vertical or slanted negation slashes and negation slashes of different lengths are not separately encoded. Thus, for example, U+2288 NEITHER A SUBSET OF NOR EQUAL TO, is the archetype for at least six different glyph variants noted in various collections.

In two instances, essentially stylistic variants are separately encoded: U+2265 GREATER-THAN OR EQUAL TO is distinguished from U+2267 GREATER-THAN OVER EQUAL TO ; the same distinction applies to U+2264 LESS-THAN OR EQUAL TO and U+2266 LESS-THAN OVER EQUAL TO. This exception to the general rule regarding variation results from requirements for character mapping to some Asian standards that distinguish the two forms.

Several mathematical operators derived from Greek characters have been given separate encodings since they are used differently than the corresponding letters. These operators may occasionally occur in context with Greek-letter variables. They include U+2206 InCREMENT, U+220F N-ARY PRODUCT, and U+2211 N-ARY SUMMATION. The latter two are large operators that take limits. Some typographical aspects of operators are discussed in Section 3.2 "Classification by Typographical Behavior". For example, the n-ary operators are distinguished from letter variables by their larger size and the fact that they take limit expressions.

The unary and binary minus sign is preferably represented by $\mathrm{U}+2212$ minUs sign rather than by the ASCII-derived U+002D HYPHEN-MINUS, both because the former is unambiguous and because it is rendered with a more desirable length. (For a complete list of dashes in the Unicode Standard, see Table 6-2 in [TUS]).

Miscellaneous Symbols. U+22EE - U+22F1 are a set of ellipses used in matrix notation.

2.8 Superscripts and Subscripts

The Unicode block $\mathrm{U}+2070-\mathrm{U}+209$ F plus $\mathrm{U}+00 \mathrm{~B} 2$, $\mathrm{U}+00 \mathrm{~B} 3$, and $\mathrm{U}+00 \mathrm{~B} 9$ contain sequences of superscript and subscript digits and punctuation that can be useful in mathematics. If they are used, it is recommended that they be displayed with the same font size as other subscripts and superscripts at the corresponding nested script level. For example, a^{2} and a<super $>2</$ super $>$ should be displayed the same. However, these subscript/superscript characters are not used in MathML or TEX and their use with XML documents is discouraged, see Unicode Technical Report \#20, "Unicode in XML and other Markup Languages" [UXML].

2.9 Arrows

Arrows are used for a variety of purposes in mathematics and elsewhere, such as to imply directional relation, to show logical derivation or implication, and to represent the cursor control keys. Accordingly Unicode includes a fairly extensive set of arrows (U+2190-U+21FF and U+2900-U+297F), many of which appear in mathematics. It does not attempt to encode every possible stylistic variant of arrows separately, especially where their use is mainly decorative. For most arrow variants, the Unicode Standard provides encodings in the two horizontal directions, often in the four cardinal directions. For the single and double arrows, the Unicode Standard provides encodings in eight directions.

Unifications. Arrows expressing mathematical relations have been encoded in the arrows block as well as in Supplemental Arrows-A and Supplemental Arrows-B. An example is U+21D2 rightwards double arrow, which may be used to denote implies. Where available, such usage information is indicated in the annotations to individual characters in the Unicode Standard, Chapter 14, Code Charts.

Long Arrows. The long arrows encoded in the range U+27F5..U+27FF map to standard SGML entity sets supported by MathML. Long arrows represent distinct semantics from their short counterparts, rather than mere stylistic glyph differences. For example, the shorter forms of arrows are often used in connection with limits, whereas the longer ones are associated with mappings. The use of the long arrows is so common that they were assigned entity names in the ISOAMSA entity set, one of the suite of mathematical symbol entity sets covered by the Unicode Standard.

2.10 Delimiters

The mathematical white square brackets, angle brackets, and double angle brackets encoded at U+27E6-U+27EB are intended for ordinary mathematical use of these particular bracket types. They are unambiguously narrow, for use in mathematical and scientific notation, and should be distinguished from the corresponding wide forms of white square brackets, angle brackets, and double angle brackets used in CJK typography. (See the CJK Symbols and Punctuation block.) Note especially that the "bra" and "ket" angle brackets, U+2329 LEFT-POINTING ANGLE BRACKET and U+232A RIGHT-POINTING ANGLE BRACKET, are now deprecated for use with mathematics because of their canonical equivalence to CJK angle brackets, which is likely to result in unintended spacing problems if used in mathematical formulae.

2.11 Geometrical Shapes

The basic geometric shapes (circle, square, triangle, diamond, and lozenge) are used for a variety of purposes in mathematical texts. Because their shapes are distinct and they are easily available in multiple sizes from a variety of widely available fonts, they are also often used in an ad-hoc manner.

Ideal sizes. Mathematical usage requires at least four distinct sizes of simple shapes, and sometimes more. The size gradation must allow each size to be recognized, even when it occurs in isolation. In other words shapes of the same size should ideally have roughly the same visual "impact" as opposed to same nominal height or width. For mathematical usage simple shapes ideally share a common center. The following diagram shows which size relationship across shapes of the same nominal size is considered ideal.

Please note that neither the current set of glyphs in the standard nor the glyphs from many commonly available non-mathematical fonts show this kind of size relation.

Actual sizes. The sizes of existing characters and their names are not always consistent. For mathematical usage, therefore, the MEDIUM SMALL SQUARE should be used together with the MEDIUM size of the other basic shapes, and correspondingly for the other sizes. (The basic shapes from the Zapf Dingbats font match the unmarked size for triangle, diamond and circle and the MEDIUM size for the square.) To achieve the correct size relation, mathematical fonts may need to deviate in minor amounts from the sizes shown in the character charts. [ED: TBD: summary picture]

Sizes of derived shapes. Circled and squared operators and similar derived shapes are more constrained in their usage than "plain" geometric shapes. They tend to occur in two generic sizes based on function: a smaller size for operators and large size for n -ary operators.

Positioning. For a mathematical font, the centerline should go through the middle of a parenthesis, which should go from bottom of descender to top of ascender. This is the same level as the minus or the middle of the plus and equal signs. For correct positioning, the glyph will descend below the baseline for the larger sizes of the basic shapes as in the following schematic diagram:

The standard triangles used for mathematics are also center aligned. This is different from the positioning for the reference glyphs of existing characters shown in the charts. Mathematical fonts may need to deviate in positioning of these triangles.

2.12 Other Symbols

Other symbols of use in mathematics are contained in the Miscellaneous Technical block ($\mathrm{U}+2300-\mathrm{U}+23 \mathrm{FF}$), the Geometric Shapes block (U+25A0 - U+25FF), the Miscellaneous Symbols block (U+2600 - U+267F), and the General Punctuation block (U+2000-U+206F).

Generally any easily recognized and distinct symbol is fair game for mathematicians faced with the need of creating notations for new fields of mathematics. For example, the card suits, $\boldsymbol{\bullet}, \boldsymbol{\oplus}$, etc. can be found as operators as well as subscripts.

2.13 Symbol Pieces

The characters from the Miscellaneous Technical block in the range $U+239 B-U+23 B 3$, plus $U+23 B 7$, comprise a set of bracket and other symbol fragments for use in mathematical typesetting. These pieces originated in older font standards, but have been used in past mathematical processing as characters in their own right to make up extra-tall glyphs for
enclosing multi-line mathematical formulae. Mathematical fences are ordinarily sized to the content that they enclose. However, in creating a large fence, the glyph is not scaled proportionally; in particular the displayed stem weights must remain compatible with the accompanying smaller characters. Thus, simple scaling of font outlines cannot be used to create tall brackets. Instead, a common technique is to build up the symbol from pieces. In particular, the characters U+239B LEFT PARENTHESIS UPPER HOOK through U+23B3 SUMMATION BOTTOM represent a set of glyph pieces for building up large versions of the fences (,), [,], \{, and \}, and of the large operators Σ and \int. These brace and operator pieces are compatibility characters. They should not be used in stored mathematical text, but are often used in the data stream created by display and print drivers.

The following table shows which pieces are intended to be used together to create specific symbols.
Table 2.3 Use of Symbol Pieces

	2-row	3-row	5-row
Summation	23B2, 23B3		
Integral	2320, 2321	2320, 23AE, 2321	$2320,3 \times 23 \mathrm{AE}, 2321$
Left Parenthesis	239B, 239D	239B, 239D	239B, 3×239C, 239D
Right Parenthesis	239E, 23A0	239E, 239F, 23A0	$239 \mathrm{E}, 3 \times 239 \mathrm{~F}, 23 \mathrm{AO}$
Left Bracket	23A1, 23A3	23A1, 23A2, 23A4	$23 \mathrm{~A} 1,3 \times 23 \mathrm{~A} 2,23 \mathrm{AB}$
Right Bracket	23A4, 23A6	23A4, 23A5, 23A6	23A4, 3×23A5, 23A6
Left Brace	23B0, 23B1	23A7, 23AB, 2389	23A7, 23AA, 23A8, 23AA, 2389
Right Brace	23B1, 23B0	23AB, 23AC, 23AD	23AB, 23AA, 23AC, 23AA, 23AD

For example, an instance of $\mathrm{U}+239 \mathrm{~B}$ can be positioned relative to instances of $\mathrm{U}+239 \mathrm{C}$ and $\mathrm{U}+239 \mathrm{D}$ to form an extra-tall (three or more line) left-parenthesis. The center sections encoded here are meant to be used only with the top and bottom pieces encoded adjacent to them, since the segments are usually graphically constructed within the fonts so that they match perfectly when positioned at the same x coordinates.

2.14 Invisible Operators

In mathematics some operators or punctuation are often implied, but not displayed. U+2063 INVISIBLE SEPARATOR or invisible comma is intended for use in index expressions and other mathematical notation where two adjacent variables form a list and are not implicitly multiplied. In mathematical notation, commas are not always explicitly present, but need to be indicated for symbolic calculation software to help it disambiguate a sequence from a multiplication. For example, the double $i j$ subscript in the variable $a_{i j}$ means $a_{i, j}$ - that is, the i and j are separate indices and not a single variable with the name $i j$ or even the product of i and j. Accordingly to represent the implied list separation in the subscript $i j$ one can insert a non-displaying invisible separator between the i and the j. In addition, use of the invisible comma would hint to a math layout program to typeset a small space between the variables.

Similarly an expression like $m c^{2}$ implies that the mass m multiplies the square of the speed c. To represent the implied multiplication in $m c^{2}$, one inserts a non-displaying $U+2061$ INVISIBLE TIMES between the m and the c. A related case is the use of $U+2062$ fUNCTION APPLICATION for an implied function dependence as in $f(x+y)$. To indicate that this is the function f of the quantity $x+y$ and not the expression $f x+f y$, one can insert the non-displaying function application symbol between the f and the left parenthesis.

Another example is the expression $f^{j} j(\cos (a b))$, which means the same as $f^{i j} j(\cos (a \times b))$, where \times represents multiplication, not the cross product. Note that the spacing between characters may also depend on whether the adjacent variables are part of a list or are to be concatenated, that is, multiplied.

2.15 Other Characters

These include all remaining Unicode characters. They may appear in mathematical expressions, typically in spelled-out names for variables in fractions or simple formulae, but they most commonly appear in ordinary text. An English example is the equation

$$
\text { distance }=\text { rate } \times \text { time },
$$

which uses ordinary ASCII letters to aid in recognizing sequences of letters as words instead of products of individual symbols. Such usage corresponds to identifiers, discussed elsewhere.

2.16 Negations

Many negated forms, particularly of relations, can be encoded by using the base symbol, together with a combining overlay. Occasionally, both a vertical and a slanted negation are used, which one is often a matter of style. Sometimes the negation is only indicated for part of a symbol. In these cases, the negated relations are encoded directly, and variants can be accessed via the variation selector method described in the next section.

The following table lists variants of negated mathematical symbols that can be realized via composition, by using U+20D2 COMBINING LONG VERTICAL LINE OVERLAY for negation instead of the slanted U+0338 combining LONG solidus overlay .

This contrasts to the use of U+FEOO VARIATION SELECTOR-1 for those symbols for which only a partial vertical stroke is used, and for which the use of U+20D2 would not give the intended result. The part of the description in SMALL CAPS is the character name of the corresponding standard character, with the part in lower case indicating the variation in appearance.

Table 2.4 Negated relations using vertical line overlay

Std Symbol		Alternate Symbol		Description
$\not \subset$	2209	\bigoplus	2208,20D2	NOT AN ELEMENT OF with vertical stroke
\nexists	220C	\ddagger	220B,20D2	DOES NOT CONTAIN AS MEMBER with vertical stroke
x	2241	\downarrow	223C,20D2	NOT TILDE WITH VERTICAL STROKE
\nsim	2244	\neq	2243,20D2	NOT ASYMPTOTICALLY EQUAL TO WITH VERTICAL STROKE
\nsubseteq	2247	\neq	2245,20D2	NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO with vertical stroke
\nsim	2249	\neq	2248,20D2	NOT ALMOST EQUAL TO WITH VERTICAL STROKE
\neq	2260	\neq	003D,20D2	NOT EQUAL TO with vertical stroke
\neq	2262	三	2261,20D2	NOT IDENTICAL TO WITH VERTICAL STROKE
\%	226D	〒	224D,20D2	NOT EQUIVALENT TO with vertical stroke
<	226E	<	003C,20D2	NOT LESS-THAN WITH VERTICAL STROKE
	226F		003E,20D2	NOT GREATER-THAN with vertical stroke
\$	2270	5	2264,20D2	NEITHER LESS-THAN NOR EQUAL TO with vertical stroke
\rangle	2271	\geq	2265,20D2	NEITHER GREATER-THAN NOR EQUAL TO with vertical stroke
4	2280	K	227A,20D2	DOES NOT PRECEDE WITH VERTICAL STROKE
	2281		227B,20D2	DOES NOT SUCCEED WITH VERTICAL STROKE
$\not \subset$	2284	(1)	2282,20D2	NOT A SUBSET OF WITH VERTICAL STROKE
D	2285	D	2283,20D2	NOT A SUPERSET OF with vertical stroke
$\not \subset$	2288	Φ	2286,20D2	Neither a subset Of NOR EQUAL TO with vertical stroke
D	2289	\pm	2287,20D2	NEITHER A SUPERSET OF NOR EQUAL TO with vertical stroke
	22E0	\leqslant	227C,20D2	DOES NOT PRECEDE OR EQUAL with vertical stroke
$\not \underset{z}{\not z}$	22 El	\neq	227D,20D2	DOES NOT SUCCEED OR EQUAL WITH VERTICAL Stroke

The following table lists negated forms of mathematical relations that can only be encoded by using U+0338 COMBINING LONG SOLIDUS OVERLAY or U+20D2 COMBINING LONG VERTICAL LINE OVERLAY. The part of the description that is in SMALL CAPS reflects the Unicode character name of the non-negated symbol. Since these are not glyph variants of existing characters, the word "negated" is used instead of "NOT" as in the list above, to indicate that the negation is expressed by the combining character sequence, and not inherent in the character.

Table 2.5 Using vertical line or solidus overlay

Glyph $/$ Sequence		Description
\notin	$220 \mathrm{~A}, 0338$	negated SMALL ELEMENT OF
\notin	$220 \mathrm{~A}, 20 \mathrm{D} 2$	negated SMALL ELEMENT OF WITH VERTICAL STROKE
\nsupseteq	$220 \mathrm{D}, 0338$	negated SMALL CONTAINS AS MEMBER

2.17 Variation Selector

The variation selector VS1 is used to represent well-defined variants of particular math symbols. The variations include: different slope of cancellation element in some negated symbols, changed orientation of an equating or tilde operator element, and some well-defined different shapes. These mathematical variants are all produced with the addition of Variation Selector 1 (VS1 or U+FE00) to mathematical operator base characters. To select one of the predefined variations, follow the base character with the variation selector. Only the valid, recognized combinations are listed in the table of standardized variants. All combinations not listed here are unspecified and are reserved for future standardization; no conformant process may interpret them as standardized variants. For more information, see Section 13.7, Variation Selectors, in Unicode 3.2 [U3.2].

Using a variation selector allows users and font designers to make a distinction between alternate glyphs shapes both of which are ordinarily acceptable glyphs for generic, non-distinguishing usage of the standalone character code. This situation is somewhat analogous to the variants of Greek letterforms used as symbols. See Section 2.31, "Reference Glyphs for Greek phi".

It is important to further note that the variation selector only selects a different appearance of an already encoded character. It is not intended as a general code extension mechanism. At this time the variations encoded with the variation selector are thought to be primarily glyphic variations. Should their usage or interpretation change-over time, or because of better evidence about how these shapes are actually used in mathematical notation-it is likely that another character would be coded so that the distinction in meaning can be kept directly in the character code.

In extremis, the Unicode Standard considers the variation selector somewhat optional. Processes or fonts that cannot support it should yield acceptable results by ignoring the variation selector.

Table 2.6 Variants of Mathematical Symbols using VS1

2268 + VS 1	LESS-THAN BUT NOT EQUAL TO - with vertical stroke
2269 + VS 1	GREATER-THAN BUT NOT EQUAL TO - with vertical stroke
22DA + VS1	LESS-THAN slanted EQUAL TO OR GREATER-THAN
$22 \mathrm{DB}+\mathrm{VSI}$	GREATER-THAN slanted EQUAL TO OR LESS-THAN
$2272+$ VS 1	LESS-THAN OR EQUIVALENT TO - following the slant of the lower leg
2273 + VS1	GREATER-THAN OR EQUIVALENT TO - following the slant of the lower leg
2A9D + VS1	SIMILAR OR LESS-THAN - following the slant of the upper leg - or less-than
2A9E + VS1	SIMILAR OR GREATER-THAN - following the slant of the upper leg - or greater-than
2AAC + VSI	SMALLER THAN OR slanted EQUAL
2AAD + VSI	LARGER THAN OR slanted EQUAL
$228 \mathrm{~A}+\mathrm{VS} 1$	SUBSET OF WITH NOT EQUAL TO - variant with stroke through bottom members
$228 \mathrm{~B}+\mathrm{VS} 1$	SUPERSET OF WITH NOT EQUAL - ${ }^{\text {a - variant with stroke through bottom members }}$
$2 \mathrm{ACB}+\mathrm{VS} 1$	SUBSET OF ABOVE NOT EQUAL TO - variant with stroke through bottom members
$2 \mathrm{ACC}+\mathrm{VSI}$	SUPERSET OF ABOVE NOT EQUAL TO - variant with stroke through bottom members
$2 \mathrm{~A} 3 \mathrm{~B}+\mathrm{VS} 1$	INTERIOR PRODUCT - tall variant with narrow foot
$2 \mathrm{~A} 3 \mathrm{C}+\mathrm{VS} 1$	RIGHTHAND INTERIOR PRODUCT - tall variant with narrow foot
2278 + VS1	NEITHER LESS-THAN NOR GREATER-THAN with vertical stroke (*)
2279 + VS 1	NEITHER GREATER-THAN NOR LESS-THAN with vertical stroke (*)
2295 + VS 1	CIRCLED PLUS with white rim
2297 + VS1	CIRCLED TIMES with white rim
$229 \mathrm{C}+\mathrm{VS} 1$	CIRCLED EQUALS - equal sign inside and touching the circle
2225 + VS 1	Slanted PARALLEL TO
2225 + VS1 + 20E5	Slanted PARALLEL TO with reverse slash
2229 + VS 1	INTERSECTION with serifs
$222 \mathrm{~A}+\mathrm{VS} 1$	UNION with serifs
2293 + VS 1	SQUARE CAP with serifs
2294 + VS 1	SQUARE CUP with serifs

* The reference glyphs shown in the code charts [Charts] have been revised to show the slanted forms - this matches their existing decomposition using U+0338 COMBINING LONG SOLIDUS OVERLAY (see section 2.32 for more information).

2.18 Novel Symbols not yet in Unicode

Mathematicians are by their nature inventive people and will continue to invent new symbols to express their concepts. Until these symbols are used by a number of people, they should not be standardized. Nevertheless, one needs a way to handle these novel symbols even before they are standardized.

The Private Use Area (U+E000 - U+F8FF) can be used for such nonstandard symbols. It is a tricky business, since the Private Use Area (PUA) is used for many purposes. Hence when using the PUA, it is a good idea to have higher-level backup to define what kind of characters are involved. If they are used as math symbols, it would be good to assign them a math attribute that is maintained in a rich-text layer parallel to the plain text.

3 Mathematical Character Properties

Unicode assigns a number of mathematical character properties to aid in the default interpretation and rendering of these characters. Such properties include the classification of characters into operator, digit, delimiter, and variable. These properties may be overridden, or explicitly specified in some environments, such as MathML [MathML], which uses specific tags to indicate how Unicode characters are used, such as $<$ mo> for operator, <md> for one or more digits comprising a number, and $<\mathrm{mi}>$ for identifier. TeX [TeX] is a higher-level composition system that uses implicit character semantics. In the following, these properties are described in greater detail.

In particular, many Unicode characters nearly always appear in mathematical expressions and are given the generic mathematics property. For example, they include the math operators in the ranges U+2200-U+22FF and U+29B0U +2 AFF, the math combining marks U+20D0 - U+20FF, the math alphanumeric characters (some of the Letterlike Symbols and the mathematics alphanumerics range U+1D400-U+1D7FF). Other characters may occur in mathematical usage depending on context. The math property is useful in heuristics that seek to identify mathematical expressions in plain text.

3.1 Classification by Usage Frequency

[ED: This classification is a work in progress.]

3.1.1 Strongly Mathematical Characters

Strong mathematical characters are all characters that are primarily used for mathematical notation. This includes all characters with the math property [Sec. 4.9 of The Unicode Standard] [ED: Check that this is true after extension of the properties to the new characters.] with the following exceptions:

002D HYPHEN-MINUS

and the following additions [ED: any?]

3.1.2 Weakly Mathematical Characters

These characters often appear in mathematical expressions, but they also appear naturally in ordinary text. They include the ASCII letters, punctuation, as well as the arrows and many of the geometric and technical shapes. The ASCII hyphen minus ($\mathrm{U}+002 \mathrm{D}$) is a weakly mathematical character that may be used for the subtraction operator, but $\mathrm{U}+2212$ is preferred for this purpose and looks better. Geometric shapes are frequently used as mathematical operators.

3.1.3 Other

All other Unicode characters. Many of these may occur in mathematical texts, though often not as part of the mathematical expressions themselves.

3.2 Classification by Typographical Behavior

Math characters fall into a number of subcategories, such as operators, digits, delimiters, and identifiers (constants and variables). This section discusses some of the typographical characteristics of these subcategories. These characteristics and classifications are useful in the absence of overriding information. For example, there is at least one document that uses the letter P as a relational operator.

3.2.1 Alphabetic

In general italic Latin characters are used to represent single-character Latin variables. In contrast, mathematical function names like sin, cos, tan, tanh, etc., are represented by upright serifed text to distinguish them from products of variables. Such names should not use the math alphanumeric characters. The upright uppercase Greek are favored over the italic ones. In Europe, upright d, D, e, and i are used for the two differential, exponential, and imaginary part functionalities, respectively. In common American mathematical practice, these quantities are represented by italic quantities. Products of italicized variables have slightly wider spacing than the letters in italicized words in ordinary text.

3.2.2 Operators

Operators fall into one or more categories. These include:
Table 3.1 Some Operator Categories

Category	Notes
binary unary n-ary	some spacing around binary operators closer to modified character than binary operators often called "large" operators, take limits ordinarily above/below when displayed out-of-line and right top/bottom when displayed in-line
arithmetic	arithmetic includes binary and unary operators logical set-theoretic relational
inclusion, exclusion, in a variety of guises binary operators like less/greater than in many forms	

3.2.3 Large Operators

These include n-ary operators like summation and integration. These may expand in size to fit their associated expressions. They generally also take limits. The placement of the limits on an operator is different when it is used in-line compared to its use in displayed formulae. For example $\sum_{n=1}^{\infty} a_{n}$ versus $\sum_{n=1}^{\infty} a_{n}$.

Specifying a particular layout for limit expressions is outside the scope of the Unicode Standard.

3.2.4 Digits

Digits include 0-9 in various styles. All digits of a particular style have the same width.

3.2.5 Delimiters

Delimiters include punctuation, opening/closing delimiters such as parentheses and brackets, braces, and fences. Opening and closing delimiters and fences may expand in size to fit their associated expressions. Some bracket expressions do not appear to be "logical" to readers unfamiliar with the notation, e.g., $] x, y[$.

3.2.6 Fences

Fences are similar to opening and closing delimiters, but are not paired.

3.2.7 Combining Marks

Combining marks are used with mathematical alphabetic characters (see Section 2.6 "Accented Characters"), instead of precomposed characters. Use U+0061 U+0308 for the second derivative of acceleration with respect to time, not the precomposed letter ä. On the other hand, precomposed characters are used for operators whenever they exist. Combining slash (solidus) or vertical overlays can be used to indicate negation for operators that do not have precomposed negated forms.

Where both long and short combining marks exist, use the long, e.g., use $\mathrm{U}+0338$, not $\mathrm{U}+0337$ and use $\mathrm{U}+20 \mathrm{D} 2$, not $\mathrm{U}+20 \mathrm{D} 3$. The actual shape or position of a combining mark is a typesetting problem and not specified in plain text. When using combining marks, the composite characters have the same typesetting class as the base character.

3.3 Classification of Operators by Precedence

Operator precedence reduces the notational complexity of expressions and is commonly used for this purpose in computer programming languages, calculus, and algebra. Assigning consistent default precedence to the operators allows software to autmoate the transition from data input (or plain text) to fully marked up forms of mathematical data such as TeX or MATHML.

Operands in subscripts, superscripts, fractions, roots, boxes, etc. are defined in part in terms of operators and operator precedence. While such notions are very familiar to mathematically oriented people, some of the symbols that are defined here as operators might surprise one at first. Most notably, the character SPACE is an important operator when interpreting mathematical text encoded in plain text.

Table A. 1 A list of common operators ordered by precedence

Operators By Precedence
FF CR \backslash
([\{
)] \} ।
Space " . = + + LF Tab

```
| * × . . . 1/2
! \sqrt{}{}
\int\Sigma\Pi
\downarrow
```

Here Tab $=\mathrm{U}+0009$, $\mathrm{LF}=\mathrm{U}+000 \mathrm{~A}, \mathrm{FF}=\mathrm{U}+000 \mathrm{C}$, and $\mathrm{CR}=\mathrm{U}+000 \mathrm{D}$.
As in arithmetic, operators have precedence, which streamlines the interpretation of operands. The operators are grouped above in order of increasing precedence, with equal precedence values on the same line. For example, in arithmetic, $3+1 / 2$ $=3.5$, not 2 . Similarly the plain-text expression $\alpha+\beta / \gamma$ means

$$
\alpha+\frac{\beta}{\gamma} \text { not } \frac{\alpha+\beta}{\gamma}
$$

As in arithmetic, precedence can be overruled by explicit delimitation, so $(\alpha+\beta) / \gamma$ gives the latter.
The following gives a list of the syntax for a variety of mathematical constructs.

expl / exp2	Create a built-up fraction with numerator exp1and denominator exp2. Numerator and denominator expressions are terminated by operators such as / *]) $\dagger \downarrow$. and blank (can be overruled by enclosing in parentheses). The "/" is given by $\mathrm{U}+2044$.
${ }^{\dagger}$ exp 1	Superscript expression expl. The superscripts $0-9+-()$ exist as Unicode symbols. Sub/superscripts expressions are terminated by / *]) ${ }^{\uparrow}$. and blank. Sub/superscript operators associate right to left.
¢exp 1	Subscript expression expl. The subscripts $0-9+-$ () exist as Unicode symbols.
[exp1]	Surround expl with built-up brackets. Similarly for \{ \} and ().
$\left[\right.$ expl ${ }^{\dagger}$ exp2	Surround exp1 with built-up brackets followed by superscripted exp2 (moved up high enough). Similarly for \{ \} and ().
$\sqrt{ }$ exp1	Square root of expl.
	Small raised dot that is not intended to print. It is used to terminate an operand, such as in a subscript, superscript, numerator, or denominator, when other operators cannot be used for this purpose. Similar raised dots like • and • also terminate operands, but they are intended to print.
$\sum \downarrow$ exp 1^{\dagger} exp 2	Summation from expl to exp2. \expl and ${ }^{\dagger}$ exp 2 are optional.
Π_{\dagger} exp 1^{\dagger} exp 2	Product from expl to exp2.
$\int_{\uparrow \text { exp } 1}{ }^{\dagger}$ exp 2	Integral from expl to exp2.
exp $1^{1 / 2}$ exp 2	Align exp1 over exp2 (like fraction without bar). Useful for building up matrices as a set of columns.

Diacritics are handled using Unicode combining marks ($\mathrm{U}+0300-\mathrm{U}+036 \mathrm{~F}, \mathrm{U}+20 \mathrm{DO}-\mathrm{U}+20 \mathrm{FF}$). Note that many more operators can be added to fill out the capabilities of the approach in representing mathematical expressions in Unicode plain (or almost plain) text.

4 Implementation Guidelines

4.1 Use of Normalization with Mathematical Text

If Normalization Form C is applied to mathematical text, some accents or overlays used with BMP alphabetic characters may be incorrectly composed with their base character. Parsers should allow for this. Normalization forms KC or KD remove the distinction between different mathematical alphabets. These forms cannot be used with mathematical texts. For more details on Normalization see Unicode Standard Annex \#1 5, "Unicode Normalization Forms" [Normalization] and the discussion in Section 2.6 "Accented Characters".

4.2 Input of Mathematical and Other Unicode Characters

In view of the large number of characters used in mathematics, it is useful to give some discussion of input methods. The ASCII math symbols are easy to find, e.g., $+-/ *[]()\{ \}$, but often need to be used as themselves.

Post-entry correction. From a syntax point of view, the official Unicode minus sign (U+2212) is certainly preferable to the ASCII hyphen-minus (U+002D) and the prime ($\mathrm{U}+2032$) is preferable to the ASCII apostrophe ($\mathrm{U}+0027$), but users may locate the ASCII characters more easily. Similarly it is easier to type ASCII letters than italic letters, but when used as
mathematical variables, such letters are traditionally italicized in print. Accordingly a user might want to make italic the default alphabet in a math context, reserving the right to overrule this default when necessary. Other post-entry enhancements include automatic-ligature and left-right quote substitutions, which can be done automatically by some word processors. Suffice it to say that intelligent input algorithms can dramatically simplify the entry of mathematical symbols.

Math keyboards. A special math shift facility for keyboard entry could bring up proper math symbols. The values chosen can be displayed on an on-screen keyboard. For example, the left Alt key could access the most common mathematical characters and Greek letters, the right Alt key could access italic characters plus a variety of arrows, and the right Ctrl key could access script characters and other mathematical symbols. The numeric keypad offers locations for a variety of symbols, such as sub/superscript digits using the left Alt key. Left Alt CapsLock could lock into the left-Alt symbol set, etc. This approach yields what one might call a "sticky" shift. Other possibilities involve the NumLock and ScrollLock keys in combinations with the left/right Ctrl/Alt keys. Pretty soon one realizes that this approach rapidly approaches literally billions of combinations, that is, several orders of magnitude more than Unicode can handle!

Macros. The autocorrect and keyboard macro features of some word processing systems provide other ways of entering mathematical characters for people familiar with TeX. For example, typing \alpha inserts α if the appropriate autocorrect entry is present. This approach is noticeably faster than using menus.

Hexadecimal input. A handy hex-to-Unicode entry method works with recent Microsoft text software (similar approaches are available on other systems) to insert Unicode characters in general and math characters in particular. Basically one types a character's hexadecimal code (in ASCII), making corrections as need be, and then types Alt+x. The hexadecimal code is replaced by the corresponding Unicode character. The Alt $+x$ can be a toggle, that is, type it once to convert a hex code to a character and type it again to convert the character back to a hex code. If the hex code is preceded by one or more hexadecimal digits, one needs to "select" the code so that the preceding hexadecimal characters aren't included in the code. The code can range up to the value 0×10 FFFF, which is the highest character in the 17 planes of Unicode.

Pull-down menus. Pull-down menus are a popular method for handling large character sets, but they are slow. A better approach is the symbol box, which is an array of symbols either chosen by the user or displaying the characters in a font. Symbols in symbol boxes can be dragged and dropped onto key combinations on the on-screen keyboard(s), or directly into applications. On-screen keyboards and symbol boxes are valuable for entry of mathematical expressions and of Unicode text in general.

Unicode plain-text mathematics. One use of the plain-text format is as a math input method, both for search text and for general editing.

4.3 Use of Math Characters in Computer Programs

It can be very useful to have typical mathematical symbols available in computer programs (see Section A. 3 "Using Plain-Text Mathematics in Programming Languages" for a more detailed discussion). A key point is that the compiler should display the desired characters in both edit and debug windows. A preprocessor can translate MathML, for example, into $\mathrm{C}++$, but it will not be able to make the debug windows use the math-oriented characters unless it can handle the underlying Unicode characters. Java has made an important step in this direction by allowing Unicode variable names. The mathematical alphanumeric symbols allow this approach to go further with relatively little effort for compilers.

The advantages of using the Unicode plain text in computer programs are at least threefold: 1) many formulas in document files can be programmed simply by copying them into a program file and inserting appropriate multiplication dots. This dramatically reduces coding time and errors. 2) The use of the same notation in programs and the associated journal articles and books leads to an unprecedented level of self-documentation. 3) In addition to providing useful tools for the present, these proposed initial steps should help one figure out how to accomplish the ultimate goal of teaching computers to understand and use arbitrary mathematical expressions.

4.4 Recognizing Mathematical Expressions

It is possible to use a number of heuristics for identifying mathematical expressions and treating them accordingly, for example to tag expressions input as plain text with a rich-text math style. Such heuristics are not foolproof, but they lead to the most popular choices. Ultimately the approach could be used in post-entry correction. The user could then override cases that were tagged incorrectly. A math style would connect in a straightforward way to appropriate MathML tags.

The basic idea is that math characters identify themselves as such and potentially identify their surrounding characters as math characters as well. For example, the fraction ($\mathrm{U}+2044$) and ASCII slashes, symbols in the range $\mathrm{U}+2200$ through U+22FF, the symbol combining marks (U+20D0 - U+20FF), and in general, Unicode characters with the mathematics property, identify the characters immediately surrounding them as parts of math expressions.

If English letter mathematical variables are already given in one of the math alphabets, they are considered parts of math expressions. If they are not, one can still have some recognition heuristics as well as the opportunity to italicize appropriate variables. Specifically ASCII letter pairs surrounded by whitespace are often mathematical expressions, and as such should be converted to using math italics. If a letter pair fails to appear in a list of common English and European two-letter words, it is treated as a mathematical expression and converted to italics. Many Unicode characters are not
mathematical in nature and suggest that their neighbors are not parts of mathematical expressions.
Strings of characters containing no white space but containing one or more unambiguous mathematical characters are generally treated as mathematical expressions. Certain two-, three-, and four-letter words inside such expressions should not use italics. These include trigonometric function names like sin and cos, as well as In , cosh, etc. Words or abbreviations that are often used as subscripts, also should not be italicized, even when they clearly appear inside mathematical expressions.

4.5 Some Examples of Mathematical Notation

[This section is still preliminary]
This section gives some additional, but still relatively straightforward examples of mathematical notation for the benefit of readers not familiar with it. The simple built-up fraction

$$
\frac{a b c}{d}
$$

appears in inline text as $(a b c) / d$, similar the inline text $(a+c) / d$ appears as

$$
\frac{a+c}{d}
$$

For the ratio

$$
\frac{\alpha_{2}^{3}}{\beta_{2}^{3}+\gamma_{2}^{3}}
$$

the inline format is reads $\alpha_{2}{ }^{3} /\left(\beta_{2}{ }^{3}+\delta 2^{3}\right)$. In equations such as:

$$
W_{\delta_{1} \rho_{1} \sigma_{2}}^{3 \beta}=U_{\delta_{1} \rho_{1}}^{3 \beta}+\frac{1}{8 \pi^{2}} \int_{\alpha_{1}}^{\alpha_{2}} d \alpha_{2}^{\prime} \cdot\left[\frac{U_{\delta_{1} \rho_{1}}^{2 \beta}-\alpha_{2}^{\prime} U_{\rho_{1} \sigma_{2}}^{1 \beta}}{U_{\rho_{1} \sigma_{2}}^{0 \beta}}\right]
$$

the size of the integral or bracket scales with the size of the enclosed text. This example also shows the positioning of multiple sub and superscripts as well as the positioning of limit expressions on the integral.

Appendix A: Mathematical classification

The classes used in this appendix are

Class	Name	Comments
N	Numeric	This includes all the digits, but a lot of symbols
A	Alphabetic	
B	Binary	
C	Close	Paired with opening delimiter
D	Diacritic	
F	Fence	Unpaired delimiter
O	Open	Paired with closing delimiter
L	Large	N-Ary or Large operator, often takes limits
P	Punctuation	
R	Relation	Includes arrows

The following listing provides an early draft of the classification. [Please ignore the non-standard notation in the first column, format content and presentation of this listing will change in future versions].

uniq xref	C entity	set description	
+0021	P excl	ISONUM exclamation mark	
+0021	N fact		factorial
0023	N num	ISONUM number sign	

$03 \mathrm{B7}$	A eta	ISOGRK small eta, Greek
03B8	A theta	ISOGRK straight theta, small theta, Greek
03B9	A iota	ISOGRK small iota, Greek
03BA	A kappa	ISOGRK small kappa, Greek
03BB	A lambda	ISOGRK small lambda, Greek
03BC	A mu	ISOGRK small mu, Greek
03BD	A nu	ISOGRK small nu, Greek
03BE	A xi	ISOGRK small xi, Greek
03BF	A $\circ \mathrm{ogr}$	ISOGRK small omicron, Greek
03 CO	A pi	ISOGRK small pi, Greek
$03 \mathrm{C1}$	A rho	ISOGRK small rho, Greek
03 C 3	A sigma	ISOGRK small sigma, Greek
03 C 4	A tau	ISOGRK small tau, Greek
03 C 5	A upsi	ISOGRK small upsilon, Greek
03 C 6	A phi	ISOGRK /straightphi - small phi, Greek
$03 \mathrm{C7}$	A chi	ISOGRK small chi, Greek
03 C 8	A psi	ISOGRK small psi, Greek
03 C 9	A omega	ISOGRK small omega, Greek
03D1	A thetav	ISOGRK /vartheta - curly or open theta
03D2	A Upsi	ISOGRK GREEK UPSILON WITH HOOK SYMBOL
03 D 5	A phiv	ISOGRK curly or open small phi, Greek
03D6	A piv	ISOGRK rounded small pi (pomega), Greek
\&03D8	N	GREEK LETTER ARCHAIC KOPPA
\&03D9	N	greek SmAll letter Archaic koppa
03DA	A	capital stigma
03 DB	A stigma	Greek small letter stigma
03DC	A Gammad	ISOGRK capital digamma
03DD	A gammad	ISOGRK old Greek small letter digamma
03 E 0	A	capital sampi
03 E 1	A sampi	Greek small letter sampi
03 F 0	A kappav	ISOGRK rounded small kappa, Greek
03 F 1	A rhov	ISOGRK rounded small rho, Greek
\&03F4	A Thetav	GREEK CAPITAL THETA SYMBOL
\&03F5	A epsi	ISOGRK GREEK LUNATE EPSILON SYMBOL
\&03F6	N bepsi	ISOAMS GREEK Reversed Lunate Epsilon Symbol
0429	A SHCHcy	ISOCYR Cyrillic capital letter SHCHA
2002	ensp	ISOPUB en space (half an em)
2003	emsp	ISOPUB em space
2010	P hyphen	ISONUM hyphen (true graphic)
2012	P dash	ISOPUB figure dash
2013	P ndash	ISOPUB en dash
2014	P mdash	ISOPUB em dash
2016	F Verbar	ISOTEC double vertical bar
+2020	R dagger	ISOAMS dagger relation
+2020	N dagger	ISOPUB dagger
+2021	R Dagger	ISOAMS double dagger relation
+2021	N Dagger	ISOPUB double dagger
2022	B bull	ISOPUB /bullet B: round bullet, filled
2026	N hellip	ISOPUB ellipsis (horizontal)
2032	N prime	ISOTEC prime or minute
2033	N Prime	ISOTEC double prime or second
+02034	N tprime	ISOTEC triple prime
2035	N bprime	ISOAMS reverse prime
2036	N bPrime	double reverse prime
2037	N btprime	triple reverse prime
203B	N	reference mark = Japanese kome
2040	B	Character tie, Z NOTATION SEQUENCE CONCATENATION
\& 204 E	N lowast	ISOTEC LOW ASTERISK
\%204F	R bsemi	ISOAMS REVERSED SEMICOLON
\& 2050	R closur	Close Up
\&2051	N Ast	TWO ASTERISKS ALIGNED VERTICALLY
\& 2057	N qprime	ISOTEC QUADRUPLE PRIME
\& 205F	N	MEDIUM MATHEMATICAL SPACE
\&2061		FUNCTION APPLICATION
\&2062		INVISIBLE TIMES
\&2063		INVISIBLE SEPARATOR
20D0	D	combining left harpoon above
20D1	D	combining right harpoon above
20D2	D	combining long vertical line overlay
20D6	D	combining left arrow above
20D7	D	combining right arrow above
20DB	D tdot	ISOTEC combining three dots above
20DC	D DotDot	ISOTEC combining four dots above
20E1	D	combining left right arrow above
20E4	D	COMBINING ENCLOSING UPWARD POINTING TRIANGLE
\&20E5	D	COMBINING REVERSE SOLIDUS OVERLAY
\& 20E6	D	COMBINING DOUBLE VERTICAL STROKE OVERLAY
\& 20E7	D actuary	COMBINING ANNUITY SYMBOL
\&20E8	D	COMBINING TRIPLE UNDERDOT
\&20E9	D	COMBINING WIDE BRIDGE ABOVE
\& 20EA	D	COMBINING LEFTWARDS OVERLAY
2102	A Copf	ISOMOP /Bbb C, open face C
2107	N	Euler constant
210A	A gscr	ISOMSC /scr g, script letter g
+210B	A Hscr	ISOMSC /scr H, script letter H
210C	A Hfr	ISOMFR /frak H, upper case H
210D	A Hopf	ISOMOP /Bbb H, open face H
210E	N	Planck constant
\#210F 210F	N plankv	ISOAMS /hslash - variant Planck's over 2pi
2110	A Iscr	ISOMSC /scr I, script letter I
+2111	A image	ISOAMS imaginary part
+2112	A lagran	ISOTEC Lagrangian (script capital L)
+2113	A ell	ISOAMS cursive small l
2115	A Nopf	ISOMOP /Bbb N , open face N
2118 2119	A weierp A Popf	ISOAMS Weierstrass p ISOMOP /Bbb P, open face P

19 of 34

211A		A Qopf	ISOMOP	/Bbb Q, open face Q
211B		A Rscr	ISOMSC	/scr R, script letter R
+211C		A real	ISOAMS	real part
211D		A Ropf	ISOMOP	/Bbb R, open face R
2124		A Zopf	ISOMOP	/Bbb Z, open face Z
2126		N ohm	ISONUM	ohm sign (deprecated in math, use greek letter)
2127		N mho	ISOAMS	conductance
2128		A Zfr	ISOMFR	/frak Z, upper case Z
2129		N iiota	ISOAMS	inverted iota
212B		A angst	ISOTEC	Angstrom capital A, ring (deprecated in math)
+212C		A bernou	ISOTEC	Bernoulli function (script capital B)
212D		A		black-letter capital C
212F		A escr	ISOMSC	/scr e, script letter e
2130		A Escr	ISOMSC	/scr E, script letter E
2131		A Fscr	ISOMSC	/scr F, script letter F
2132		N		turned capital F
+2133		A phmmat	ISOTEC	physics M-matrix (script capital M)
+2134		A order	ISOTEC	order of (script small o)
2135		A aleph	ISOTEC	aleph, Hebrew
2136		A beth	ISOAMS	beth, Hebrew
2137		A gimel	ISOAMS	gimel, Hebrew
2138		A daleth	ISOAMS	daleth, Hebrew
\&213D		A opfgamma		DOUBLE-STRUCK SMALL GAMMA
\&213E		N opfGam		DOUBLE-STRUCK CAPITAL GAMMA
\&213F		A opfPi		DOUBLE-STRUCK CAPITAL PI
\&2140		L opfsum		DOUBLE-STRUCK N-ARY SUMMATION
\&2141		N Game		TURNED SANS-SERIF CAPITAL G
\&2142		N		TURNED SANS-SERIF CAPITAL L
\&2143		N		REVERSED SANS-SERIF CAPITAL L
\&2144		N		TURNED SANS-SERIF CAPITAL Y
\&2145		N		DOUBLE-STRUCK ITALIC CAPITAL D
\&2146		N		DOUBLE-STRUCK ITALIC SMALL D
\&2147		N		DOUBLE-STRUCK ITALIC SMALL E
\&2148		N		DOUBLE-STRUCK ITALIC SMALL I
\&2149		N		DOUBLE-STRUCK ITALIC SMALL J
\&214B		N turnamp		TURNED AMPERSAND
*2190	2190	R larr	ISONUM	/leftarrow /gets A: leftward arrow
*2191	2191	R uarr	ISONUM	upward arrow
*2192	2192	R rarr	ISONUM	/rightarrow /to A: rightward arrow
*2193	2193	R darr	ISONUM	downward arrow
2194		R harr	ISOAMS	left and right arrow
2195		R varr	ISOAMS	up and down arrow
2196		R nwarr	ISOAMS	NW pointing arrow
2197		R nearr	ISOAMS	NE pointing arrow
2198		R searr	ISOAMS	SE pointing arrow
2199		R swarr	ISOAMS	SW pointing arrow
219A		R nlarr	ISOAMS	not left arrow
219B		R nrarr	ISOAMS	not right arrow
*219C		R larrw		left arrow-wavy
\#219C		R larrw		left arrow-wavy
*219D		R rarrw	ISOAMS	right arrow-wavy
\#219D		R rarrw	ISOAMS	right arrow-wavy
219E		R Larr	ISOAMS	left two-headed arrow
219F		R Uarr	ISOAMS	up two-headed arrow
21A0		R Rarr	ISOAMS	right two-headed arrow
21A1		R Darr	ISOAMS	down two-headed arrow
21A2		R larrtl	ISOAMS	left arrow-tailed
21A3		R rarrtl	ISOAMS	right arrow-tailed
21A4	21A4	R mapstoleft		maps to, leftward
21A5		R mapstoup		maps to, upward
21A6	21A6	R map	ISOAMS	maps to, rightward
21A7		R mapstodown		maps to, downward
*21A8		R varrb		up and down arrow, bar under
21A9		R larrhk	ISOAMS	left arrow-hooked
21AA		R rarrhk	ISOAMS	right arrow-hooked
21AB		R larrlp	ISOAMS	left arrow-looped
21AC		R rarrlp	ISOAMS	right arrow-looped
*21AD		R harrw	ISOAMS	left and right arr-wavy
\#21AD		R harrw	ISOAMS	left and right arr-wavy
*21AE	21AE	R nharr	ISOAMS	not left and right arrow
21AF		R zigdarr		downwards zigzag arrow
21B0		R lsh	ISOAMS	/Lsh A:
21B1		R rsh	ISOAMS	/Rsh A:
21B2		R ldsh	ISOAMS	left down angled arrow
21B3		R rdsh	ISOAMS	right down angled arrow
21B6		R cularr	ISOAMS	left curved arrow
21B7		R curarr	ISOAMS	right curved arrow
21BA	21BA	R		anticlockwise open circle arrow
21BB	21BB	R		clockwise open circle arrow
21BC		R lharu	ISOAMS	left harpoon-up
21BD		R lhard	ISOAMS	left harpoon-down
21BE		R uharr	ISOAMS	/upharpoonright /restriction A: up harpoon-right
21BF		R uharl	ISOAMS	up harpoon-left
21C0		R rharu	ISOAMS	right harpoon-up
21C1		R rhard	ISOAMS	right harpoon-down
21C2		R dharr	ISOAMS	down harpoon-right
21C3		R dharl	ISOAMS	down harpoon-left
21C4		R rlarr	ISOAMS	right arrow over left arrow
21C5		R udarr	ISOAMS	up arrow, down arrow
21C6		R lrarr	ISOAMS	left arrow over right arrow
$21 \mathrm{C7}$		R llarr	ISOAMS	two left arrows
21C8		R uuarr	ISOAMS	two up arrows
21C9		R rrarr	ISOAMS	two right arrows
21CA		R ddarr	ISOAMS	two down arrows
21 CB		R lrhar	ISOAMS	left harpoon over right
21 CC		R rlhar	ISOAMS	right harpoon over left

2237		Colon	ISOAMS	two colons
2238		B minusd	ISOAMS	minus sign, dot above
2239		excess		excess (-:)
223A		B mDDot	ISOAMS	minus with four dots, geometric properties
223B		R homtht	ISOAMS	homothetic
*223C	223C	R sim	ISOTEC	similar
223D		R bsim	ISOAMS	reverse similar
223 E		R ac	ISOAMS	most positive [inverted lazy S]
223F				Sine wave
2240		B wreath	ISOAMS	wreath product
*2241	2241	R nsim	ISOAMS	not similar
2242		R esim	ISOAMS	equals, similar
2243		R sime	ISOTEC	similar, equals
2244		R nsime	ISOAMS	not similar, equals
2245		R cong	ISOTEC	congruent with
2246		R simne	ISOAMS	similar, not equals [vert only for 9573 entity]
2247		R ncong	ISOAMS	not congruent with
*2248	2248	R ap	ISOTEC	approximate
*2249	2249	R nap	ISOAMS	not approximate
224A		R ape	ISOAMS	approximate, equals
224B		R apid	ISOAMS	approximately identical to
224 C	224C	R bcong	ISOAM	ALL EQUAL TO
224D		R asymp	ISOAMS	asymptotically equal to
224 E		R bump	ISOAMS	bumpy equals
224 F		R bumpe	ISOAMS	bumpy equals, equals
2250		R esdot	ISOAM	equals, single dot above
2251		R eDot	ISOAMS	/doteqdot /Doteq R: equals, even dots
2252		R efDot	ISOAMS	equals, falling dots
2253		erDot	ISOAMS	equals, rising dots
2254		R colone	ISOAMS	colon, equals
2255		R ecolon	ISOAMS	equals, colon
2256		R ecir	ISOAMS	circle on equals sign
2257		R cire	ISOAMS	circle, equals
2258		R arceq		arc, equals; corresponds to
2259		R wedgeq	ISOTEC	corresponds to (wedge, equals)
225A	225A	R veeeq	ISOTE	logical or, equals
225B		R		STAR EQUALS
225C		R trie	ISOAMS	triangle, equals
225D		R eqdef		equals by definition
225E		R measeq		measured by (m over equals)
225F		R equest	ISOAMS	equal with questionmark
2260		R ne	ISOTEC	/ne /neq R: not equal
2261		R equiv	ISOTEC	identical with
2262		R nequiv	ISOAMS	not identical with
2263		R Equiv		strict equivalence (4 lines)
2264	2264	R le	ISOTEC	/leq /le R: less-than-or-equal
2265	2265	R ge	ISOTEC	/geq /ge R: greater-than-or-equal
2266		R lE	ISOAMS	less, double equals
2267		gE	ISOAM	greater, double equals
*2268	2268	R lnE	ISOAMS	less, not double equals
+2269	2269	R gnE	ISOAMS	greater, not double equals
226A	226A	R		much less than, type 2
226B	226B	R		much greater than, type 2
226C		R twixt	ISOAMS	between
226D		R nasymp		not asymptotically equal to
226E	226E	R nlt	ISOAMS	not less-than
226F	226 F	R ngt	ISOAMS	not greater-than
2270	2270	R nle	ISOAM	not less-than-or-equal
2271	2271	R nge	ISOAMS	not greater-than-or-equal
2272	2272	R lsim	ISOAMS	less, similar
2273	2273	R gsim	ISOAMS	greater, similar
2274		R nlsim	ISOAMS	not less, similar
2275		R ngsim	ISOAMS	not greater, similar
2276		R 1 g	ISOAMS	less, greater
2277		R gl	ISOAM	greater, less
*2278	2278	R ntvlg		not, vert, less, greater
+2279	2279	R ntvgl		not, vert, greater, less
227A		R pr	ISOAMS	precedes
227B		R sc	ISOAMS	succeeds
227C	227C	R prcue	ISOAMS	precedes, curly equals
227D	227D	R sccue	ISOAMS	succeeds, curly equals
227 E	227E	R prsim	ISOAMS	precedes, similar
227 F	227 F	R scsim	ISOAMS	succeeds, similar
2280		R npr	ISOAMS	not precedes
2281		R nsc	ISOAMS	not succeeds
2282		R sub	ISOTEC	subset or is implied by
2283		R sup	ISOTEC	superset or implies
2284	2284	R vnsub	ISOAMS	not subset, variant [slash negation]
2285	2285	R vnsup	ISOAMS	not superset, variant [slash negation]
2286	2286	R sube	ISOTEC	subset, equals
2287	2287	R supe	ISOTEC	superset, equals
2288	2288	R		not subset, equals
2289	2289	R		not superset, equals
228A	228A	R subne	ISOAMS	subset, not equals
228B	228B	R supne	ISOAMS	superset, not equals
228C		B		Multiset
228 D		B cupdot	ISOAMS	union, with dot
228 E	228E	B uplus	ISOAMS	plus sign in union
228 F		R sqsub	ISOAMS	square subset
2290		R sqsup	ISOAMS	square superset
2291		R sqsube	ISOAM	square subset, equals
2292		R sqsupe	ISOAM	square superset, equals
2293	2293	B sqcap	ISOAMS	square intersection
2294	2294	B sqcup	ISOAMS	square union
2295	2295	B oplus B ominus	ISOAMS ISOAM	plus sign in circle minus sign in circle

2297	2297	B otimes	ISOAMS multiply sign in circle
2298		B osol	ISOAMS solidus in circle
2299	2299	B odot	ISOAMS middle dot in circle
229A		B ocir	ISOAMS small circle in circle
229B		B oast	ISOAMS asterisk in circle
229C		B oeq	equal in circle
229D		B odash	ISOAMS hyphen in circle
229E		B plusb	ISOAMS plus sign in box
229F		B minusb	ISOAMS minus sign in box
22A0		B timesb	ISOAMS multiply sign in box
22A1		B sdotb	ISOAMS /dotsquare /boxdot B: small dot in box
*22A2	22A2	R vdash	ISOAMS vertical, dash
22A3		R dashv	ISOAMS dash, vertical
22A4		N top	ISOTEC top
*22A5	22A5	R perp	ISOTEC perpendicular
22A6		R	assertion (vertical, short dash)
22A7		R models	ISOAMS models (vertical, short double dash)
22A8		R vDash	ISOAMS vertical, double dash
22A9		R Vdash	ISOAMS double vertical, dash
22AA		R Vvdash	ISOAMS triple vertical, dash
22AB		R VDash	ISOAMS double vert, double dash
22AC		R nvdash	ISOAMS not vertical, dash
22AD		R nvDash	ISOAMS not vertical, double dash
22AE		R nVdash	ISOAMS not double vertical, dash
22AF		R nVDash	ISOAMS not double vert, double dash
22B0	22B0	R prurel	ISOAMS element precedes under relation
22B1	22B1	R scurel	succeeds under relation
22B2		R vltri	ISOAMS left triangle, open, variant
22B3		R vrtri	ISOAMS right triangle, open, variant
22B4		R ltrie	ISOAMS left triangle, equals
22B5		R rtrie	ISOAMS right triangle, equals
22B6		R origof	ISOAMS original of
22B7		R imof	ISOAMS image of
22B8		R mumap	ISOAMS /multimap A:
22B9		R hercon	ISOAMS hermitian conjugate matrix
22BA		B intcal	ISOAMS intercal
22BB	22BB	B	logical or, bar below (large vee); exclusive disjunction
22BC	22BC	B	bar, wedge (large wedge)
*22BD	22BD	B	bar, vee (large vee)
22BE	22BE	N angrtvb	ISOAMS right angle-measured [with arc]
22BF		N	RIGHT TRIANGLE
22C0		L xwedge	ISOAMS logical or operator
22C1		L xvee	ISOAMS logical and operator
22C2		L xcap	ISOAMS intersection operator
22C3		L xcup	ISOAMS union operator
22C4		B diam	ISOAMS white diamond
22C5		B sdot	ISOAMS small middle dot
22C6		B sstarf	ISOAMS small star, filled, low
22C7		B divonx	ISOAMS division on times
22C8		R bowtie	ISOAMS bowtie
22C9		B ltimes	ISOAMS times sign, left closed
22CA		B rtimes	ISOAMS times sign, right closed
22 CB		B lthree	ISOAMS left semidirect product
22CC		B rthree	ISOAMS right semidirect product
22CD		R bsime	ISOAMS reverse similar, equals
22CE		B cuvee	ISOAMS curly logical or
22CF		B cuwed	ISOAMS curly logical and
22D0		R Sub	ISOAMS double subset
22D1		R Sup	ISOAMS double superset
22D2		B Cap	ISOAMS /Cap /doublecap B: double intersection
22D3		B Cup	ISOAMS /Cup /doublecup B: double union
22D4		R fork	ISOAMS pitchfork
22D5		R epar	ISOTEC parallel, equal; equal or parallel
22D6		R ltdot	ISOAMS less than, with dot
22D7		R gtdot	ISOAMS greater than, with dot
22D8		R Ll	ISOAMS /Ll /lll /llless R: triple less-than
22D9		R Gg	ISOAMS /ggg /Gg /gggtr R: triple greater-than
22DA	22DA	R leg	ISOAMS less, equals, greater
22DB	22DB	R gel	ISOAMS greater, equals, less
22DC	22DC	R el	ISOAMS equal-or-less
22DD	22DD	R eg	ISOAMS equal-or-greater
22DE		R cuepr	ISOAMS curly equals, precedes
22DF		R cuesc	ISOAMS curly equals, succeeds
22E0		R nprcue	ISOAMS not precedes, curly equals
22E1		R nsccue	ISOAMS not succeeds, curly equals
22E2		R nsqsube	ISOAMS not, square subset, equals
22E3		R nsqsupe	ISOAMS not, square superset, equals
22E4		R sqsubne	square subset, not equals
22E5		R sqsupne	square superset, not equals
22E6		R lnsim	ISOAMS less, not similar
22E7		R gnsim	ISOAMS greater, not similar
22E8	22E8	R prnsim	ISOAMS precedes, not similar
22E9	22E9	R scnsim	ISOAMS succeeds, not similar
22EA		R nltri	ISOAMS not left triangle
22EB		R nrtri	ISOAMS not right triangle
22EC	22EC	R nltrie	ISOAMS not left triangle, equals
22ED	22ED	R nrtrie	ISOAMS not right triangle, equals
22EE		R vellip	ISOPUB vertical ellipsis
22EF		R ctdot	ISOTEC three dots, centered
22F0		R utdot	ISOTEC three dots, ascending
22F1		R dtdot	ISOTEC three dots, descending
\&22F2		R disin	ISOTEC ELEMENT OF WITH LONG HORIZONTAL STROKE
\&22F3		R isinsv	ISOTEC ELEMENT OF WIth vertical bar at end of horizontal Stroke
\& 22F4		R isins	ISOTEC SMALL ELEMENT OF WITH VERTICAL BAR AT END OF Horizontal Stroke
\& 22F5		R isindot	ISOTEC ELEMENT OF WITH DOT ABOVE
\&22F6		R notinvc	ISOTEC ELEMENT OF WITH OVERBAR

\& 22 F 7		R notinvb	ISOTEC	SMALL ELEMENT OF WITH OVERBAR
\& 22 F 8		R isinvb		ELEMENT OF WITH UNDERBAR
\& 22 F 9		R isine	ISOTEC	ELEMENT OF WITH TWO HORIZONTAL STROKES
\& 22 FA		R nisd	ISOTEC	CONTAINS WITH LONG HORIZONTAL STROKE
\& 22 FB		R xnis	ISOTEC	CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
\& 22FC		R nis	ISOTEC	SMALL CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
\& 22FD		R notnivc	ISOTEC	CONTAINS WITH OVERBAR
\& 22 FE		R notnivb	ISOTEC	SMALL CONTAINS WITH OVERBAR
\& 22 FF		R		z NOTATION BAG MEMBERSHIP
+2300	2205	N diameter		diameter sign
2302		N		House
2305	22BC	B barwed	ISOAMS	/barwedge B: logical and, bar above [projective (bar over small wedge)]
2306	2306	B Barwed	ISOAMS	/doublebarwedge B: logical and, double bar above [perspective (double bar over small wedge)]
2308		- lceil	ISOAMS	left ceiling
2309		C rceil	ISOAMS	right ceiling
230A		O lfloor	ISOAMS	left floor
230B		C rfloor	ISOAMS	right floor
2310		N bnot	ISOTEC	reverse not
2311		N		square lozenge
2319	2319	N		turned not sign
231 C		- ulcorn	ISOAMS	upper left corner
231D		C urcorn	ISOAMS	upper right corner
231 E		O dlcorn	ISOAMS	lower left corner
231F		C drcorn	ISOAMS	lower right corner
\#2322	2322	R frown	ISOAMS	down curve
\#2323	2323	R smile	ISOAMS	up curve
2329		O lang	ISOTEC	left angle bracket
232A		C rang	ISOTEC	right angle bracket
2336		N topbot	ISOTEC	top and bottom
233 D		B ovbar	ISOAMS	circle with vertical bar
233 F		R solbar	ISOAMS	solidus, bar through
2394		N hbenzen	ISOCHE	horizontal benzene ring [hexagon flat open]
\&23B0		R lmoust	ISOAMS	UPPER LEFT OR LOWER RIGHT CURLY BRACKET SECTION
\&23B1		R rmoust	ISOAMS	UPPER RIGHT OR LOWER LEFT CURLY BRACKET SECTION
\&23B4		N tbrk	ISOAMS	TOP SQUARE BRACKET
\&23B5		N bbrk	ISOAMS	BOTTOM SQUARE BRACKET
\&23B6		N bbrktbrk	ISOAMS	BOTTOM SQUARE BRACKET OVER TOP SQUARE BRACKET
2460.	. 02468	N		CIRCLED DIGIT ONE..NINE
24B6.	. $024 \mathrm{C7}$	N		CIRCLED LATIN CAPItAL LEtter A..R
24 C 8		N OS	ISOAMS	capital S in circle
24C9..	. 024 E 9	N		CIRCLED LATIN CAPITAL LETTER T..SMALL LETTER Z
24 EA		N		CIRCLED DIGIT ZERO
+25A0		N squarf	ISOPUB	square, filled
+25A1		N square	ISOPUB	square, open
=25AA ?		N squf	ISOPUB	/blacksquare - sq bullet, filled
\%25AB		N		white small square
\%25AD		N		horizontal rectangle, open
\%25AE		N marker	ISOPUB	histogram marker
\%25AF		N rect	ISOPUB	rectangle, white (vertical)
\%25B1		N		parallelogram, open
25B2		B		black up-pointing triangle
25B3		B xutri	ISOAMS	big up triangle, open
25B4		B utrif	ISOPUB	up triangle, filled
25B5		B utri	ISOPUB	/triangle - up triangle, open
25B6		B vrtrif		(large) right triangle, filled
25B7		B vrtri		(large) right triangle, open; Z NOTATION RANGE RESTRICTION
\%25B8		B rtrif	ISOPUB	right triangle, filled
\%25B9		B rtri	ISOPUB	right triangle, open
25BC		B		big down triangle, filled
25BD		B xdtri	ISOAMS	big down triangle, open
25BE		B dtrif	ISOPUB	down triangle, filled
25BF		B dtri	ISOPUB	down triangle, open
25C0		B vltrif		(large) left triangle, filled
25C1		B vltri		(large) left triangle, open; Z NOTATION DOMAIN RESTRICTION
\%25C2		B ltrif	ISOPUB	left triangle, filled
\%25C3		B ltri	ISOPUB	left triangle, open
25C4		B		Black left-pointing pointer
25C5		B		White left-pointing pointer
25C6		N diamondf	ISOPUB	black diamond
$25 \mathrm{C7}$		N		white diamond
25C8		N		White diamond containing black small diamond
25C9		N		Fisheye
+25CA		B loz	ISOPUB	lozenge or total mark
25 CB		B xcirc	ISOAMS	large circle
25 CE		N		Bullseye
25 CF		N circlef	ISOPUB	circle, filled
25D6		N		Left half black circle
25D7		N		Right half black circle
25E2		N lrtrif		lower right triangle, filled
25E3		N lltrif		lower left triangle, filled
25E4		N ultrif		upper left triangle, filled
25E5		N urtrif		upper right triangle, filled
\%25E6		B		white bullet
25 EB		B midb		vertical bar in box
25 EC		B tridot	ISOAMS	triangle with centered dot
25 EF		N		Large circle
\&25F8		B ultri	ISOAMS	UPPER LEFT TRIANGLE
\& 25 F 9		B urtri	ISOAMS	UPPER RIGHT TRIANGLE
\&25FA		B lltri	ISOAMS	LOWER LEFT TRIANGLE
\& 25FB		B xsqu		WHITE MEDIUM SQUARE
\&25FC		B xsquf		BLACK MEDIUM SQUARE
\&25FD		B vssqu		WHITE MEDIUM SMALL SQUARE
\&25FE		B vssquf		BLACK MEDIUM SMALL SQUARE
\& 25 FF		B lrtri	ISOAMS	LOWER RIGHT TRIANGLE
2605 2606		B starf B star	ISOPUB ISOPUB	star, filled star, open

2609	N		sun
\%260C	N		conjunction
\%2612	N cross	ISOPUB	ballot cross
263D	N		First quarter moon
263E	N		Last quarter moon
\%263F	N		Mercury
2640	N female	ISOPUB	Venus, female
\%2641	N		Earth
2642	N male	ISOPUB	Mars, male
\%2643	N		Jupiter
\%2644	N		Saturn
\%2646	N		Neptune
\%2647	N		Pluto
\%2648	N		Aries
\%2649	N		Taurus
2660	N spades	ISOPUB	spades suit symbol
2661	N hearts	ISOPUB	heart suit symbol
2662	N diams	ISOPUB	diamond suit symbol
2663	N clubs	ISOPUB	club suit symbol
2664	N spadeso		spade, white (card suit)
2665	N heartsf		filled heart (card suit)
2666	N diamsf		filled diamond (card suit)
2667	N clubso		club, white (card suit)
2669	N sung	ISONUM	music note (sung text sign)
266D	N flat	ISOPUB	musical flat
266 E	N natur	ISOPUB	music natural
266 F	N sharp	ISOPUB	musical sharp
\&2680	N		DIE FACE-1
\&2681	N		DIE FACE-2
\&2682	N		DIE FACE-3
\&2683	N		DIE FACE-4
\&2684	N		DIE FACE-5
\&2685	N		DIE FACE-6
\&2686	N		WHITE CIRCLE WITH DOT RIGHT
\&2687	N		WHITE CIRCLE WITH TWO DOTS
\&2688	N		BLACK CIRCLE WITH WhITE DOT RIGHT
\&2689	N		BLACK CIRCLE WITH TWO WhITE DOTS
2713	N check	ISOPUB	tick, check mark
2720	N malt	ISOPUB	maltese cross
\%0272A	N		circled white star
2736	N		Six pointed black star
\&2772	\bigcirc		LIGHT LEFT TORTOISE SHELL BRACKET ORNAMENT
\&2773	C		LIGHT RIGHT TORTOISE SHELL BRACKET ORNAMENT
\&27D0	N diamdot		WHITE DIAMOND WITH CENTRED DOT
\&27D1	B		AND WITH DOT
\&27D2	R		ELEMENT OF OPENING UPWARDS
\&27D3	R		LOWER RIGHT CORNER WITH DOT
\&27D4	R		UPPER LEFT CORNER WITH DOT
\&27D5	L		LEFT OUTER JOIN
\&27D6	L		RIGHT OUTER JOIN
\&27D7	L		FULL OUTER JOIN
\&27D8	L		LARGE UP TACK
\&27D9	L		LARGE DOWN TACK
\&27DA	R		Left And RIght Double turnstile
\&27DB	R		LEFT AND RIGHT TACK
\&27DC	R		LEFT MULTIMAP
\&27DD	R		LONG LEFT TACK
\&27DE	R		LONG RIGHT TACK
\&27DF	R		UP TACK WITH CIRCLE ABOVE
\&27E0	B		LOZENGE DIVIDED BY HORIZONTAL RULE
\&27E1	B		WHITE CONCAVE-SIDED DIAMOND
\&27E2	B		WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK
\&27E3	B		WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK
\&27E4	B		White SQuARe with leftwards tick
\&27E5	B		WHITE SQUARE DIAMOND WITH RIGHTWARDS TICK
\&27F0	R		UPWARDS QUADRUPLE ARROW
\&27F1	R		DOWNWARDS QUADRUPLE ARROW
\&27F2	R		ANTICLOCKWISE GAPPED CIRCLE ARROW
\&27F3	R		CLOCKWISE GAPPED CIRCLE ARROW
\&27F4	R		RIGHT ARROW WITH CIRCLE PLUS
\&27F5	R xlarr	ISOAMS	LONG LEFTWARDS ARROW
\&27F6	R xrarr	ISOAMS	LONG RIGHTWARDS ARROW
\&27F7	R xharr	ISOAMS	LONG LEFT RIGHT ARROW
\&27F8	R xlArr	ISOAMS	LONG LEFTWARDS DOUBLE ARROW
\&27F9	R xrArr	ISOAMS	LONG RIGHTWARDS DOUBLE ARROW
\&27FA	R xhArr	ISOAMS	LONG LEFT RIGHT DOUBLE ARROW
\&27FB	R xmapfrom		LONG LEFTWARDS ARROW FROM BAR
\&27FC	R xmap	ISOAMS	LONG RIGHTWARDS ARROW FROM BAR
\&27FD	R xMapfrom		LONG LEFTWARDS DOUBLE ARROW FROM BAR
\&27FE	R xMapto		LONG RIGHTWARDS DOUBLE ARROW FROM BAR
\&27FF	R xzigrarr	ISOAMS	LONG RIGHTWARDS ZIG-ZAG ARROW
\&2900	R		RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL StROKE
\&2901	R		RIGHTWARDS TWO-HEADED ARROW WITH DOUBLE VERTICAL STROKE
\&2902	R nvlArr	ISOAMS	Leftwards double Arrow with vertical stroke
\&2903	R nvrArr	ISOAMS	RIGHTWARDS DOUBLE ARROW WITH VERTICAL STROKE
\&2904	R nvhArr	ISOAMS	Left RIGHT DOUBLE ARROW WITH VERTICAL Stroke
\&2905	R Map	ISOAMS	RIGHTWARDS TWO-HEADED ARROW FROM BAR
\&2906	R Mapfrom		LEFTWARDS DOUBLE ARROW FROM BAR
\&2907	R Mapto		RIGHTWARDS DOUBLE ARROW FROM BAR
\&2908	R darrln		DOWNWARDS ARROW WITH HORIZONTAL STROKE
\&2909	R uarrln		UPWARDS ARROW WITH HORIZONTAL STROKE
\&290A	R uAarr		UPWARDS TRIPLE ARROW
\&290B	R dAarr		DOWNWARDS TRIPLE ARROW
\&290C	R lbarr	ISOAMS	LEFTWARDS DOUBLE DASH ARROW
\&290D	R rbarr	ISOAMS	RIGHTWARDS DOUBLE DASH ARROW
\&290E	R lBarr	ISOAMS	LEFTWARDS TRIPLE DASH ARROW

\&290F	R rBarr	ISOAMS	RIGHTWARDS TRIPLE DASH ARROW
\&2910	R RBarr	ISOAMS	RIGHTWARDS TWO-HEADED TRIPLE DASH ARROW
\&2911	R DDotrahd	ISOAMS	RIGHTWARDS ARROW WITH DOTTED STEM
\&2912	R uarrb		UPWARDS ARROW TO BAR
\&2913	R darrb		DOWNWARDS ARROW TO BAR
\&2914	R		RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE
\&2915	R		RIGHTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE
\&2916	R Rarrtl	ISOAMS	RIGHTWARDS TWO-HEADED ARROW WITH TAIL
\&2917	R		RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH VERTICAL STROKE
\&2918	R		RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE
\&2919	R latail	ISOAMS	LEFTWARDS ARROW-TAIL
\&291A	R ratail	ISOAMS	RIGHTWARDS ARROW-TAIL
\&291B	R lAtail	ISOAMS	LEFTWARDS DOUBLE ARROW-TAIL
\&291C	R rAtail	ISOAMS	RIGHTWARDS DOUBLE ARROW-TAIL
\&291D	R larrfs	ISOAMS	LEFTWARDS ARROW TO BLACK DIAMOND
\&291E	R rarrfs	ISOAMS	RIGHTWARDS ARROW TO BLACK DIAMOND
\& 291 F	R larrbfs	ISOAMS	LEFTWARDS ARROW FROM BAR TO BLACK DIAMOND
\&2920	R rarrbfs	ISOAMS	RIGHTWARDS ARROW FROM BAR TO BLACK DIAMOND
\&2921	R nwsesarr		NORTH WEST AND SOUTH EAST ARROW
\&2922	R neswsarr		NORTH EAST AND SOUTH WEST ARROW
\&2923	R nwarhk	ISOAMS	NORTH WEST ARROW WITH HOOK
\&2924	R nearhk	ISOAMS	NORTH EAST ARROW WITH HOOK
\&2925	R searhk	ISOAMS	SOUTH EAST ARROW WITH HOOK
\&2926	R swarhk	ISOAMS	SOUTH WEST ARROW WITH HOOK
\&2927	R nwnear	ISOAMS	NORTH WEST ARROW AND NORTH EAST ARROW
\&2928	R nesear	ISOAMS	NORTH EAST ARROW AND SOUTH EAST ARROW
\&2929	R seswar	ISOAMS	SOUTH EAST ARROW AND SOUTH WEST ARROW
\&292A	R swnwar	ISOAMS	SOUTH WEST ARROW AND NORTH WEST ARROW
\&292B	R rdiofdi		RISING DIAGONAL CROSSING FALLING DIAGONAL
\&292C	R fdiordi		FALLING DIAGONAL CROSSING RISING DIAGONAL
\&292D	R seonearr		SOUTH EAST ARROW CROSSING NORTH EAST ARROW
\&292E	R neosearr		NORTH EAST ARROW CROSSING SOUTH EAST ARROW
\& 292 F	R fdonearr		FALLING DIAGONAL CROSSING NORTH EAST ARROW
\&2930	R rdosearr		RISING DIAGONAL CROSSING SOUTH EAST ARROW
\&2931	R neonwarr		NORTH EAST ARROW CROSSING NORTH WEST ARROW
\&2932	R nwonearr		NORTH WEST ARROW CROSSING NORTH EAST ARROW
\&2933	R rarrc	ISOAMS	WAVE ARROW POINTING DIRECTLY RIGHT
\&2934	R		ARROW POINTING RIGHTWARDS THEN CURVING UPWARDS
\&2935	R		ARROW POINTING RIGHTWARDS THEN CURVING DOWNWARDS
\&2936	R ldca	ISOAMS	ARROW POINTING DOWNWARDS THEN CURVING LEFTWARDS
\&2937	R rdca	ISOAMS	ARROW POINTING DOWNWARDS THEN CURVING RIGHTWARDS
\&2938	R cudarrl	ISOAMS	RIGHT-SIDE ARC CLOCKWISE ARROW
\&2939	R cudarrr	ISOAMS	LEFT-SIDE ARC ANTICLOCKWISE ARROW
\&293A	R		TOP ARC ANTICLOCKWISE ARROW
\&293B	R		BOTTOM ARC ANTICLOCKWISE ARROW
\&293C	R curarrm	ISOAMS	TOP ARC CLOCKWISE ARROW WITH MINUS
\&293D	R cularrp	ISOAMS	TOP ARC ANTICLOCKWISE ARROW WITH PLUS
\&293E	R		LOWER RIGHT SEMICIRCULAR CLOCKWISE ARROW
\& 293F	R		LOWER LEFT SEMICIRCULAR ANTICLOCKWISE ARROW
\&2940	R olarr	ISOAMS	ANTICLOCKWISE CLOSED CIRCLE ARROW
\&2941	R orarr	ISOAMS	CLOCKWISE CLOSED CIRCLE ARROW
\&2942	R arrlrsl		RIGHTWARDS ARROW ABOVE SHORT LEFTWARDS ARROW
\&2943	R arrllsr		LEFTWARDS ARROW ABOVE SHORT RIGHTWARDS ARROW
\&2944	R arrsrll		SHORT RIGHTWARDS ARROW ABOVE LEFTWARDS ARROW
\&2945	R rarrpl	ISOAMS	RIGHTWARDS ARROW WITH PLUS BELOW
\&2946	R larrpl	ISOAMS	Leftwards Arrow with plus below
\&2947	R rarrx		RIGHTWARDS ARROW THROUGH X
\&2948	R harrcir	ISOAMS	Left Right ARROW through small circle
\&2949	R Uarrocir	ISOAMS	UPWARDS TWO-HEADED ARROW FROM SMALL CIRCLE
\&294A	R lurdshar	ISOAMS	Left barb up Right barb down harpoon
\&294B	R ldrushar	ISOAMS	LEFT BARB DOWN RIGHT BARB UP HARPOON
\&294C	R urdlshar		UP BARB RIGHT DOWN BARB LEFT HARPOON
\&294D	R uldrshar		UP BARB LEFT DOWN BARB RIGHT HARPOON
\&294E	R lurushar		LEFT BARB UP RIGHT BARB UP HARPOON
\& 294 F	R urdrshar		UP BARB RIGHT DOWN BARB RIGHT HARPOON
\&2950	R ldrdshar		LEFT BARB DOWN RIGHT BARB DOWN HARPOON
\&2951	R uldlshar		UP BARB LEFT DOWN BARB LEFT HARPOON
\&2952	R luharb		LEFTWARDS HARPOON WITH BARB UP TO BAR
\&2953	R ruharb		RIGHTWARDS HARPOON WITH BARB UP TO BAR
\&2954	R urharb		UPWARDS HARPOON WITH BARB RIGHT TO BAR
\&2955	R drharb		DOWNWARDS HARPOON WITH BARB RIGHT TO BAR
\&2956	R ldharb		LEFTWARDS HARPOON WITH BARB DOWN TO BAR
\&2957	R rdharb		RIGHTWARDS HARPOON WITH BARB DOWN TO BAR
\&2958	R ulharb		UPWARDS HARPOON WITH BARB LEFT TO BAR
\&2959	R dlharb		DOWNWARDS HARPOON WITH BARB LEFT TO BAR
\&295A	R bluhar		LEFTWARDS HARPOON WITH BARB UP FROM BAR
\&295B	R bruhar		RIGHTWARDS HARPOON WITH BARB UP FROM BAR
\&295C	R burhar		UPWARDS HARPOON WITH BARB RIGHT FROM BAR
\&295D	R bdrhar		DOWNWARDS HARPOON WITH BARB RIGHT FROM BAR
\&295E	R bldhar		Leftwards harpoon with barb down from bar
\& 295F	R brdhar		RIGHTWARDS HARPOON WITH BARB DOWN FROM BAR
\&2960	R bulhar		UPWARDS HARPOON WITH BARB LEFT FROM BAR
\&2961	R bdihar		DOWNWARDS HARPOON WITH BARB LEFT FROM BAR
\&2962	R lHar	ISOAMS	LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB DOWN
\&2963	R uHar	ISOAMS	UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT
\&2964	R rHar	ISOAMS	RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB DOWN
\&2965	R dHar	ISOAMS	DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT
\&2966	R luruhar	ISOAMS	LEFTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB UP
\&2967	R ldrdhar	ISOAMS	LEFTWARDS HARPOON WITH BARB DOWN ABOVE RIGHTWARDS HARPOON WITH BARB DOWN
\&2968	R ruluhar	ISOAMS	RIGHTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB UP
\&2969	R rdldhar	ISOAMS	RIGHTWARDS HARPOON WITH BARB DOWN ABOVE LEFTWARDS HARPOON WITH BARB DOWN
\&296A	R lharul	ISOAMS	LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH
\&296B	R llhard	ISOAMS	Leftwards harpoon with barb down Below long dash
\&296C	R rharul	ISOAMS	RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH
$\& 296 D$ $\& 296 E$	R lrhard R udhar	ISOAMS ISOAMS	RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT

\&296F	R duhar	ISOAMS	DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGH
\&2970	R rimply		RIGHT DOUBLE ARROW WITH ROUNDED HEAD
\&2971	R erarr	ISOAMS	EQUALS SIGN ABOVE RIGHTWARDS ARROW
\&2972	R simrarr	ISOAMS	TILDE OPERATOR ABOVE RIGHTWARDS ARROW
\&2973	R larrsim	ISOAMS	LEFTWARDS ARROW ABOVE TILDE OPERATOR
\&2974	R rarrsim	ISOAMS	RIGHTWARDS ARROW ABOVE TILDE OPERATOR
\&2975	R rarrap	ISOAMS	RIGHTWARDS ARROW ABOVE ALMOST EQUAL TO
\&2976	R ltlarr	ISOAMS	LESS-THAN ABOVE LEFTWARDS ARROW
\&2977	R		LEFTWARDS ARROW THROUGH LESS-THAN
\&2978	R gtrarr	ISOAMS	GREATER-THAN ABOVE RIGHTWARDS ARROW
\&2979	R subrarr	ISOAMS	SUBSET ABOVE RIGHTWARDS ARROW
\&297A	R		LEFTWARDS ARROW THROUGH SUBSET
\&297B	R suplarr	ISOAMS	SUPERSET ABOVE LEFTWARDS ARROW
\&297C	R lfisht	ISOAMS	LEFT FISH TAIL
\&297D	R rfisht	ISOAMS	RIGHT FISH TAIL
\&297E	R ufisht	ISOAMS	UP FISH TAIL
\& 297F	R dfisht	ISOAMS	DOWN FISH TAIL
\&2980	F tverbar		TRIPLE VERTICAL BAR DELIMITER
\&2981	N scirclef		Z NOTATION SPOT
\&2982	F		Z NOTATION TYPE COLON
\&2983	O locub		LEFT WHITE CURLY BRACKET
\&2984	C rocub		RIGHT WHITE CURLY BRACKET
\&2985	O lopar	ISOTEC	LEFT WHITE PARENTHESIS
\&2986	C ropar	ISOTEC	RIGHT WHITE PARENTHESIS
\&2987	\bigcirc		Z NOTATION LEFT IMAGE BRACKET
\&2988	C		Z NOTATION RIGHT IMAGE BRACKET
\&2989	\bigcirc		Z NOTATION LEFT BINDING BRACKET
\&298A	C		Z NOTATION RIGHT BINDING BRACKET
\&298B	O lbrke	ISOAMS	LEFT SQUARE BRACKET WITH UNDERBAR
\&298C	C rbrke	ISOAMS	RIGHT SQUARE BRACKET WITH UNDERBAR
\&298D	O lbrkslu	ISOAMS	LEFT SQUARE BRACKET WITH TICK IN TOP CORNER
\&298E	C rbrksld	ISOAMS	RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
\&298F	O lbrksld	ISOAMS	LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
\&2990	C rbrkslu	ISOAMS	RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER
\&2991	O langd	ISOAMS	LEFT ANGLE BRACKET WITH DOT
\&2992	C rangd	ISOAMS	RIGHT ANGLE BRACKET WITH DOT
\&2993	O lparlt	ISOAMS	LEFT ARC LESS-THAN BRACKET
\&2994	C rpargt	ISOAMS	RIGHT ARC GREATER-THAN BRACKET
\&2995	gtlPar	ISOAMS	DOUBLE LEFT ARC GREATER-THAN BRACKET
\&2996	ltrPar	ISOAMS	DOUBLE RIGHT ARC LESS-THAN BRACKET
\&2997	\bigcirc		LEFT BLACK TORTOISE SHELL BRACKET
\&2998	C		RIGHT BLACK TORTOISE SHELL BRACKET
\&2999	F vellip4		DOTTED FENCE
\&299A	F vzigzag	ISOAMS	VERTICAL ZIGZAG LINE
\&299B	N		MEASURED ANGLE OPENING LEFT
\&299C	N vangrt	ISOTEC	RIGHT ANGLE VARIANT WITH SQUARE
\&299D	N angrtvbd	ISOAMS	MEASURED RIGHT ANGLE WITH DOT
\&299E	N angles		ANGLE WITH S INSIDE
\& 299 F	N angdnr		ACUTE ANGLE
\&29A0	N gtlpar		SPHERICAL ANGLE OPENING LEFT
\&29A1	N		SPHERICAL ANGLE OPENING UP
\&29A2	N angdnl		TURNED ANGLE
\&29A3	N angupl		REVERSED ANGLE
\&29A4	N ange	ISOAMS	ANGLE WITH UNDERBAR
\&29A5	N range	ISOAMS	Reversed Angle with underbar
\&29A6	N dwangle	ISOTEC	OBLIQUE ANGLE OPENING UP
\&29A7	N uwangle	ISOTEC	OBLIQUE ANGLE OPENING DOWN
\&29A8	N angmsdaa	ISOAMS	MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND RIGHT
\&29A9	N angmsdab	ISOAMS	MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND LEFT
\&29AA	N angmsdac	ISOAMS	MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND RIGHT
\&29AB	N angmsdad	ISOAMS	MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND LEFT
\&29AC	N angmsdae	ISOAMS	MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND UP
\&29AD	N angmsdaf	ISOAMS	MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND UP
\&29AE	N angmsdag	ISOAMS	MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND DOWN
\& 29AF	N angmsdah	ISOAMS	MEASURED ANGLE WIth Open arm ending in Arrow pointing left and down
\&29B0	N bemptyv	ISOAMS	REVERSED EMPTY SET
\&29B1	N demptyv	ISOAMS	EMPTY SET WITH OVERBAR
\&29B2	N cemptyv	ISOAMS	EMPTY SET WITH SMALL CIRCLE ABOVE
\&29B3	N raemptyv	ISOAMS	EMPTY SET WITH RIGHT ARROW ABOVE
\&29B4	N laemptyv	ISOAMS	EMPTY SET WITH Left ARROW ABOVE
\&29B5	N ohbar	ISOAMS	CIRCLE WITH HORIZONTAL BAR
\&29B6	B omid	ISOAMS	CIRCLED VERTICAL BAR
\&29B7	B opar	ISOAMS	CIRCLED PARALLEL
\&29B8	B obsol		CIRCLED REVERSE SOLIDUS
\&29B9	B operp	ISOAMS	CIRCLED PERPENDICULAR
\&29BA	N		CIRCLE DIVIDED BY HORIZONTAL BAR AND TOP HALF DIVIDED BY VERTICAL BAR
\&29BB	N olcross	ISOTEC	CIRCLE WITH SUPERIMPOSED X
\&29BC	N odsold	ISOAMS	CIRCLED ANTICLOCKWISE-ROTATED DIVISION SIGN
\&29BD	N oxuarr		UP ARROW THROUGH CIRCLE
\&29BE	N olcir	ISOAMS	CIRCLED White bullet
\&29BF	N ofcir	ISOAMS	CIRCLED BULLET
\&29C0	B olt	ISOAMS	CIRCLED LESS-THAN
\&29C1	B ogt	ISOAMS	CIRCLED GREATER-THAN
\&29C2	N cirscir	ISOAMS	CIRCLE WITH SMALL CIRCLE TO THE RIGHT
\&29C3	N cire	ISOAMS	CIRCLE WITH TWO HORIZONTAL STROKES TO THE RIGHT
\&29C4	B solb	ISOAMS	SQUARED RISING DIAGONAL SLASH
\&29C5	B bsolb	ISOAMS	SQUARED FALLING DIAGONAL SLASH
\&29C6	B astb		SQUARED ASTERISK
\&29C7	B cirb		SQUARED SMALL CIRCLE
\&29C8	B squb		SQUARED SQUARE
\&29C9	N boxbox	ISOAMS	TWO JOINED SQUARES
\&29CA	N tridoto		TRIANGLE WITH DOT ABOVE
\&29CB	N tribar		TRIANGLE WITH UNDERBAR
\&29CC	N tris		S IN TRIANGLE
$\& 29 \mathrm{CD}$ $\& 29 \mathrm{CE}$	N trisb R rtrilt	ISOAMS ISOAMS	TRIANGLE WITH SERIFS AT BOTTOM RIGHT TRIANGLE ABOVE LEFT TRIANGLE

\&29CF	R ltrivb		LEFT TRIANGLE BESIDE VERTICAL BAR
\&29D0	R vbrtri		VERTICAL BAR BESIDE RIGHT TRIANGLE
\&29D1	R lfbowtie		LEFT BLACK BOWTIE
\&29D2	R rfbowtie		RIGHT BLACK BOWTIE
\&29D3	R fbowtie		BLACK BOWTIE
\&29D4	R lftimes		LEFT BLACK TIMES
\&29D5	R rftimes		RIGHT BLACK TIMES
\&29D6	B hrglass		WHITE HOURGLASS
\&29D7	B fhrglass		BLACK HOURGLASS
\&29D8	\bigcirc		LEFT WIGGLY FENCE
\&29D9	C		RIGHT WIGGLY FENCE
\&29DA	\bigcirc		LEFT DOUBLE WIGGLY FENCE
\&29DB	C		RIGHT DOUBLE WIGGLY FENCE
\&29DC	N iinfin	ISOTEC	INCOMPLETE INFINITY
\&29DD	N infintie	ISOTEC	TIE OVER INFINITY
\&29DE	N nvinfin	ISOTEC	INFINITY NEGATED WITH VERTICAL BAR
\&29DF	R dumap		DOUBLE-ENDED MULTIMAP
\&29E0	N dalembrt		SQUARE WITH CONTOURED OUTLINE
\&29E1	R lrtrieq		INCREASES AS
\&29E2	B shuffle		SHUFFLE PRODUCT
\&29E3	R eparsl	ISOTEC	EQUALS SIGN AND SLANTED PARALLEL
\&29E4	R smeparsl	ISOTEC	EQUALS SIGN AND SLANTED PARALLEL WITH TILDE ABOVE
\&29E5	R eqvparsl	ISOTEC	IDENTICAL TO AND SLANTED PARALLEL
\&29E6	R		GLEICH STARK
\&29E7	N thermod		THERMODYNAMIC
\&29E8	N dtrilf		DOWN-POINTING TRIANGLE WITH Left half Black
\&29E9	N dtrirf		DOWN-POINTING TRIANGLE WITH RIGHT HALF BLACK
\&29EA	N diamdarr		BLACK DIAMOND WITH DOWN ARROW
\&29EB	B lozf	ISOPUB	BLACK LOZENGE
\&29EC	N cirdarr		WHITE CIRCLE WITH DOWN ARROW
\&29ED	N cirfdarr		BLACK CIRCLE WITH DOWN ARROW
\&29EE	N squerr		ERROR-BARRED WHITE SQUARE
\&29EF	N squferr		ERROR-BARRED BLACK SQUARE
\&29F0	N diamerr		ERROR-BARRED WHITE DIAMOND
\&29F1	N diamerrf		ERROR-BARRED BLACK DIAMOND
\&29F2	N cirerr		ERROR-BARRED WHITE CIRCLE
\&29F3	N cirferr		ERROR-BARRED BLACK CIRCLE
\&29F4	R		RULE-DELAYED
\&29F5	B		REVERSE SOLIDUS OPERATOR
\&29F6	B dsol	ISOTEC	SOLIDUS WITH OVERBAR
\&29F7	B rsolbar		REVERSE SOLIDUS WITH HORIZONTAL STROKE
\&29F8	L xsol		BIG SOLIDUS
\&29F9	L xbsol		BIG Reverse Solidus
29FA	B		DOUBLE PLUS
29FB	B		TRIPLE PLUS
\&29FC	0		LEFT POINTING CURVED ANGLE BRACKET
\&29FD	C		RIGHT POINTING CURVED ANGLE BRACKET
\&29FE	B		TINY
\&29FF	B		MINY
\&2A00	L xodot	ISOAMS	N-ARY CIRCLED DOT OPERATOR
\&2A01	L xoplus	ISOAMS	N-ARY CIRCLED PLUS OPERATOR
\&2A02	L xotime	ISOAMS	N-ARY CIRCLED TIMES OPERATOR
\&2A03	L xcupdot		N-ARY UNION OPERATOR WITH DOT
\&2A04	L xuplus	ISOAMS	N-ARY UNION OPERATOR WITH PLUS
\&2A05	L xsqcap		N-ARY SQUARE INTERSECTION OPERATOR
\&2A06	L xsqcup	ISOAMS	N-ARY SQUARE UNION OPERATOR
\&2A07	L xandand		TWO LOGICAL AND OPERATOR
\&2A08	L xoror		TWO LOGICAL OR OPERATOR
\&2A09	L xtimes		N-ARY TIMES OPERATOR
\&2A0A	B		MODULO TWO SUM
\&2A0B	L sumint		SUMMATION WITH INTEGRAL
\&2A0C	L qint	ISOTEC	QUADRUPLE INTEGRAL OPERATOR
\&2A0D	L fpartint	ISOTEC	FINITE PART INTEGRAL
\&2AOE	L Barint		INTEGRAL WITH DOUBLE STROKE
\&2A0F	L slint		INTEGRAL AVERAGE WITH SLASH
\&2A10	L cirfnint	ISOTEC	CIRCULATION FUNCTION
\&2A11	L awint	ISOTEC	ANTICLOCKWISE INTEGRATION
\&2A12	L rppolint	ISOTEC	LINE INTEGRATION WITH RECTANGULAR PATH AROUND POLE
\&2A13	L scpolint	ISOTEC	LINE INTEGRATION WITH SEMICIRCULAR PATH AROUND POLE
\&2A14	L npolint	ISOTEC	LINE INTEGRATION NOT INCLUDING THE POLE
\&2A15	L pointint	ISOTEC	INTEGRAL AROUND A POINT OPERATOR
\&2A16	L quatint	ISOTEC	QUATERNION INTEGRAL OPERATOR
\&2A17	L intlarhk	ISOTEC	INTEGRAL WITH LEFTWARDS ARROW WITH HOOK
\&2A18	L timeint		INTEGRAL WITH TIMES SIGN
\&2A19	L capint		INTEGRAL WITH INTERSECTION
\&2A1A	L cupint		INTEGRAL WITH UNION
\&2A1B	L upint		INTEGRAL WITH OVERBAR
\&2A1C	L lowint		INTEGRAL WITH UNDERBAR
\&2A1D	L Join		JOIN
\&2A1E	L xltri		LARGE LEFT TRIANGLE OPERATOR
\&2A1F	L		Z NOTATION SCHEMA COMPOSITION
\&2A20	L		Z NOTATION SCHEMA PIPING
\&2A21	L		Z NOTATION SCHEMA PROJECTION
\&2A22	B pluscir	ISOAMS	PLUS SIGN WITH SMALL CIRCLE ABOVE
\&2A23	B plusacir	ISOAM	PLUS SIGN WITH CIRCUMFLEX ACCENT ABOVE
\&2A24	B simplus	ISOAMS	PLUS SIGN WITH TILDE ABOVE
\&2A25	B plusdu	ISOAM	PLUS SIGN WITH DOT BELOW
\&2A26	B plussim	ISOAM	PLUS SIGN WITH TILDE BELOW
\&2A27	B plustwo	ISOAM	PLUS SIGN WITH SUBSCRIPT TWO
\&2A28	B plustrif		PLUS SIGN WITH BLACK TRIANGLE
\&2A29	B mcomma	ISOAMS	MINUS SIGN WITH COMMA ABOVE
\&2A2A	B minusdu	ISOAMS	MINUS SIGN WITH DOT BELOW
\&2A2B	B		MINUS SIGN WITH FALLING DOTS
\&2A2C	B		MINUS SIGN WITH RISING DOTS
\&2A2D	B loplus	ISOAMS	PLUS SIGN IN LEFT HALF CIRCLE
\&2A2E	roplus	ISOAMS	PLUS SIGN IN RIGHT HALF CIRCLE

\&2A2F
\&2A31
\&2A32
\&2A33
\&2A34
\&2A35
\&2A36
\& A A
\&2A3B
\&2A3C
\&2A3D
\&2A3E
\&2A3F
\&2A4
\&2A4
\&2A42
\&2A4
\&2A45
\&2A46
\&2A47
\& 2 A 48
\& 2A49
\& 2 A 4 B
\& 2A4C
\& 2A4
\&2A4
\& 2 A 4
\&2A5
\&2A52
\&2A53
\& A 5
\&2A5
\&2A5
\&2A57
\&2A58
\& 2A5
\& 2A5
\&2A5B
\&2A5
\&2A5
\&2A5F
\&2A60
\&2A61
\&2A62
\&2A6
\&2A6
\&2A65
\&2A66
\&2A67
\&2A6
\&2A6
\&2A6A
\&2A6B
\&2A6C
\& 2 A 6
\&2A6F
\&2A70
\& 2A7
\& 7
\&2A7
\& 2A7
\&2A75
\& 2A7

B odiv
B triplus
R gap
R lne

htimes

 timesbarbtimes smashp lotimes rotimes otimesas
triplus triminus tritime iprod iprodr
amalg capdot
ncup
ncap capand cupor cupcap cupbrcap capbrcup cupcup capcap ccups
\square ccupssm anddot
ordot And andand oror orslope andslope
andv
orv
andd ord Barwed wedbar
veebar
veeBar
sdote
,
simdot
congdot
easter
R apacir
R apE
B eplus
B pluse
R Esim
R Colone
R eqeq
R eDDot
R equivDD
R ltcir
R gtcir
R ltquest
R gtquest
R les
R ges
R lesdot
R gesdot
R lesdoto
R gesdoto
R lesdotor
R gesdotol
R lap

R gne
R lnap
R gnap
R lEg
R gEl
R lsime
R gsime

ISOAMS MULTIPLICATION SIGN WITH DOT ABOVE
ISOAMS MULTIPLICATION SIGN WITH UNDERBAR
SEMIDIRECT PRODUCT WITH BOTTOM CLOSED
ISOAMS SMASH PRODUCT
ISOAMS MULTIPLICATION SIGN IN LEFT HALF CIRCLE
ISOAMS MULTIPLICATION SIGN IN RIGHT HALF CIRCLE
ISOAMS CIRCLED MULTIPLICATION SIGN WITH CIRCUMFLEX ACCENT
ISOAMS MULTIPLICATION SIGN IN DOUBLE CIRCLE
ISOAMS CIRCLED DIVISION SIGN
ISOAMS PLUS SIGN IN TRIANGLE
ISOAMS MINUS SIGN IN TRIANGLE
ISOAMS MULTIPLICATION SIGN IN TRIANGLE
ISOAMS INTERIOR PRODUCT
ISOAMS RIGHTHAND INTERIOR PRODUCT
Z NOTATION RELATIONAL COMPOSITION
ISOAMS AMALGAMATION OR COPRODUCT
ISOAMS INTERSECTION WITH DOT
UNION WITH MINUS SIGN
ISOAMS UNION WITH OVERBAR
ISOAMS INTERSECTION WITH OVERBAR
ISOAMS INTERSECTION WITH LOGICAL AND
ISOAMS UNION WITH LOGICAL OR
ISOAMS UNION ABOVE INTERSECTION
ISOAMS INTERSECTION ABOVE UNION
ISOAMS UNION ABOVE BAR ABOVE INTERSECTION
ISOAMS INTERSECTION ABOVE BAR ABOVE UNION
ISOAMS UNION BESIDE AND JOINED WITH UNION
ISOAMS INTERSECTION BESIDE AND JOINED WITH INTERSECTION
ISOAMS CLOSED UNION WITH SERIFS
ISOAMS CLOSED INTERSECTION WITH SERIFS
DOUBLE SQUARE INTERSECTION
DOUBLE SQUARE UNION
ISOAMS CLOSED UNION WITH SERIFS AND SMASH PRODUCT
LOGICAL AND WITH DOT ABOVE
LOGICAL OR WITH DOT ABOVE
ISOTEC DOUBLE LOGICAL AND
ISOTEC DOUBLE LOGICAL OR
ISOTEC TWO INTERSECTING LOGICAL AND
ISOTEC TWO INTERSECTING LOGICAL OR
ISOTEC SLOPING LARGE OR
ISOTEC SLOPING LARGE AND
LOGICAL OR OVERLAPPING LOGICAL AND
ISOTEC LOGICAL AND WITH MIDDLE STEM
ISOTEC LOGICAL OR WITH MIDDLE STEM
ISOTEC LOGICAL AND WITH HORIZONTAL DASH
ISOTEC LOGICAL OR WITH HORIZONTAL DASH
LOGICAL AND WITH DOUBLE OVERBAR
ISOAMS LOGICAL AND WITH UNDERBAR
LOGICAL AND WITH DOUBLE UNDERBAR
ISOAMS SMALL VEE WITH UNDERBAR
LOGICAL OR WITH DOUBLE OVERBAR
LOGICAL OR WITH DOUBLE UNDERBAR
Z NOTATION DOMAIN ANTIRESTRICTION
Z NOTATION RANGE ANTIRESTRICTION
ISOAMS EQUALS SIGN WITH DOT BELOW
IDENTICAL WITH DOT ABOVE
TRIPLE HORIZONTAL BAR WITH DOUBLE VERTICAL STROKE
TRIPLE HORIZONTAL BAR WITH TRIPLE VERTICAL STROKE
ISOTEC TILDE OPERATOR WITH DOT ABOVE
TILDE OPERATOR WITH RISING DOTS
SIMILAR MINUS SIMILAR
ISOAMS CONGRUENT WITH DOT ABOVE
ISOAMS EQUALS WITH ASTERISK
ISOTEC ALMOST EQUAL TO WITH CIRCUMFLEX ACCENT
ISOAMS APPROXIMATELY EQUAL OR EQUAL TO
ISOAMS EQUALS SIGN ABOVE PLUS SIGN
ISOAMS PLUS SIGN ABOVE EQUALS SIGN
ISOAMS EQUALS SIGN ABOVE TILDE OPERATOR
ISOAMS DOUBLE COLON EQUAL
TWO CONSECUTIVE EQUALS SIGNS
THREE CONSECUTIVE EQUALS SIGNS
ISOAMS EQUALS SIGN WITH TWO DOTS ABOVE AND TWO DOTS BELOW
ISOAMS EQUIVALENT WITH FOUR DOTS ABOVE
ISOAMS LESS-THAN WITH CIRCLE INSIDE
ISOAMS GREATER-THAN WITH CIRCLE INSIDE
ISOAMS LESS-THAN WITH QUESTION MARK ABOVE
ISOAMS GREATER-THAN WITH QUESTION MARK ABOVE
ISOAMS LESS-THAN OR SLANTED EQUAL TO
ISOAMS GREATER-THAN OR SLANTED EQUAL TO
ISOAMS LESS-THAN OR SLANTED EQUAL TO WITH DOT INSIDE
ISOAMS GREATER-THAN OR SLANTED EQUAL TO WITH DOT INSIDE
ISOAMS LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE
ISOAMS GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE
ISOAMS LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE RIGHT
ISOAMS GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE LEFT
ISOAMS LESS-THAN OR APPROXIMATE
ISOAMS GREATER-THAN OR APPROXIMATE
ISOAMS LESS-THAN AND SINGLE-LINE NOT EQUAL TO
ISOAMS GREATER-THAN AND SINGLE-LINE NOT EQUAL TO
ISOAMS LESS-THAN AND NOT APPROXIMATE
ISOAMS GREATER-THAN AND NOT APPROXIMATE
ISOAMS LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN
ISOAMS GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN
ISOAMS LESS-THAN ABOVE SIMILAR OR EQUAL
ISOAMS GREATER-THAN ABOVE SIMILAR OR EQUAL

\&1D50E		A Kfr
\&1D50F		A Lfr
\&1D510		A Mfr
\&1D511		A Nfr
\&1D512		A Ofr
\&1D513		A Pfr
\&1D514		A Qfr
\%1D515	211C	A Rfr
\&1D516		A Sfr
\&1D517		A Tfr
\&1D518		A Ufr
\&1D519		A Vfr
\&1D51A		A Wfr
\&1D51B		A Xfr
\&1D51C		A Yfr
\%1D51D	2128	A Zfr
\&1D51E		A afr
\&1D51F		A bfr
\&1D520		A cfr
\&1D521		A dfr
\&1D522		A efr
\&1D523		A ffr
\&1D524		A gfr
\&1D525		A hfr
\&1D526		A ifr
\&1D527		A jfr
\&1D528		A kfr
\&1D529		A lfr
\&1D52A		A mfr
\&1D52B		A nfr
\&1D52C		A ofr
\&1D52D		A pfr
\&1D52E		A qfr
\&1D52F		A rfr
\&1D530		A sfr
\&1D531		A tfr
\&1D532		A ufr
\&1D533		A vfr
\&1D534		A wfr
\&1D535		A xfr
\&1D536		A yfr
\&1D537		A zfr
\&1D538		A Aopf
\&1D539		A Bopf
\%1D53A	2102	A Copf
\&1D53B		A Dopf
\&1D53C		A Eopf
\&1D53D		A Fopf
\&1D53E		A Gopf
\%1D53F	210D	A Hopf
\&1D540		A Iopf
\&1D541		A Jopf
\&1D542		A Kopf
\&1D543		A Lopf
\&1D544		A Mopf
\%1D545	2115	A Nopf
\&1D546		A Oopf
\%1D547	2119	A Popf
\%1D548	211A	A Qopf
\%1D549	211D	A Ropf
\&1D54A		A Sopf
\&1D54B		A Topf
\&1D54C		A Uopf
\&1D54D		A Vopf
\&1D54E		A Wopf
\&1D54F		A Xopf
\&1D550		A Yopf
\%1D551	2124	A Zopf
\&1D552		A aopf
\&1D553		A bopf
\&1D554		A copf
\&1D555		A dopf
\&1D556		A eopf
\&1D557		A fopf
\&1D558		A gopf
\&1D559		A hopf
\&1D55A		A iopf
\&1D55B		A jopf
\&1D55C		A kopf
\&1D55D		A lopf
\&1D55E		A mopf
\&1D55F		A nopf
\&1D560		A oopf
\&1D561		A popf
\&1D562		A qopf
\&1D563		A ropf
\&1D564		A sopf
\&1D565		A topf
\&1D566		A uopf
\&1D567		A vopf
\&1D568		A wopf
\&1D569		A xopf
\&1D56A		A yopf
\&1D56B		A zopf
$\begin{aligned} & \text { \&1D56C. } \\ & \text { \&1D6A8. } \end{aligned}$	$\begin{aligned} & \ldots 1 D 6 A 3 \\ & \ldots 1 D 7 C 9 \end{aligned}$	

ISOMFR MATHEMATICAL FRAKTUR CAPITAL K ISOMFR MATHEMATICAL FRAKTUR CAPITAL L ISOMFR MATHEMATICAL FRAKTUR CAPITAL M ISOMFR MATHEMATICAL FRAKTUR CAPITAL N ISOMFR MATHEMATICAL FRAKTUR CAPITAL O ISOMFR MATHEMATICAL FRAKTUR CAPITAL P ISOMFR MATHEMATICAL FRAKTUR CAPITAL Q ISOMFR MATHEMATICAL FRAKTUR CAPITAL R <reserved> ISOMFR MATHEMATICAL FRAKTUR CAPITAL S ISOMFR MATHEMATICAL FRAKTUR CAPITAL T ISOMFR MATHEMATICAL FRAKTUR CAPITAL U ISOMFR MATHEMATICAL FRAKTUR CAPITAL V ISOMFR MATHEMATICAL FRAKTUR CAPITAL W ISOMFR MATHEMATICAL FRAKTUR CAPITAL X ISOMFR MATHEMATICAL FRAKTUR CAPITAL Y ISOMFR MATHEMATICAL FRAKTUR CAPITAL Z <reserved> ISOMFR MATHEMATICAL FRAKTUR SMALL A ISOMFR MATHEMATICAL FRAKTUR SMALL B ISOMFR MATHEMATICAL FRAKTUR SMALL C ISOMFR MATHEMATICAL FRAKTUR SMALL D ISOMFR MATHEMATICAL FRAKTUR SMALL E ISOMFR MATHEMATICAL FRAKTUR SMALL F ISOMFR MATHEMATICAL FRAKTUR SMALL G ISOMFR MATHEMATICAL FRAKTUR SMALL H ISOMFR MATHEMATICAL FRAKTUR SMALL I ISOMFR MATHEMATICAL FRAKTUR SMALL J ISOMFR MATHEMATICAL FRAKTUR SMALL K ISOMFR MATHEMATICAL FRAKTUR SMALL L ISOMFR MATHEMATICAL FRAKTUR SMALL M ISOMFR MATHEMATICAL FRAKTUR SMALL N ISOMFR MATHEMATICAL FRAKTUR SMALL O ISOMFR MATHEMATICAL FRAKTUR SMALL P ISOMFR MATHEMATICAL FRAKTUR SMALL Q ISOMFR MATHEMATICAL FRAKTUR SMALL R ISOMFR MATHEMATICAL FRAKTUR SMALL S ISOMFR MATHEMATICAL FRAKTUR SMALL T ISOMFR MATHEMATICAL FRAKTUR SMALL U ISOMFR MATHEMATICAL FRAKTUR SMALL V ISOMFR MATHEMATICAL FRAKTUR SMALL W ISOMFR MATHEMATICAL FRAKTUR SMALL X ISOMFR MATHEMATICAL FRAKTUR SMALL Y ISOMFR MATHEMATICAL FRAKTUR SMALL Z ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL A ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL B ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL C <reserved> ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL D ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL E ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL F ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL G ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL H <reserved> ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL I ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL J ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL K ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL L ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL M ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL N <reserved> ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL O ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL P <reserved> ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL Q <reserved> ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL R <reserved> ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL S ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL T ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL U ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL V ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL W ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL X ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL Y ISOMOP MATHEMATICAL DOUBLE-STRUCK CAPITAL Z <reserved> MATHEMATICAL DOUBLE-STRUCK SMALL A MATHEMATICAL DOUBLE-STRUCK SMALL B MATHEMATICAL DOUBLE-STRUCK SMALL C MATHEMATICAL DOUBLE-STRUCK SMALL D MATHEMATICAL DOUBLE-STRUCK SMALL E MATHEMATICAL DOUBLE-STRUCK SMALL F MATHEMATICAL DOUBLE-STRUCK SMALL G MATHEMATICAL DOUBLE-STRUCK SMALL H MATHEMATICAL DOUBLE-STRUCK SMALL I MATHEMATICAL DOUBLE-STRUCK SMALL J MATHEMATICAL DOUBLE-STRUCK SMALL K MATHEMATICAL DOUBLE-STRUCK SMALL L MATHEMATICAL DOUBLE-STRUCK SMALL M MATHEMATICAL DOUBLE-STRUCK SMALL N MATHEMATICAL DOUBLE-STRUCK SMALL O MATHEMATICAL DOUBLE-STRUCK SMALL P MATHEMATICAL DOUBLE-STRUCK SMALL Q MATHEMATICAL DOUBLE-STRUCK SMALL R MATHEMATICAL DOUBLE-STRUCK SMALL S MATHEMATICAL DOUBLE-STRUCK SMALL T MATHEMATICAL DOUBLE-STRUCK SMALL U MATHEMATICAL DOUBLE-STRUCK SMALL V MATHEMATICAL DOUBLE-STRUCK SMALL W MATHEMATICAL DOUBLE-STRUCK SMALL X MATHEMATICAL DOUBLE-STRUCK SMALL Y MATHEMATICAL DOUBLE-STRUCK SMALL Z

MATHEMATICAL BOLD FRAKTUR CAPITAL A..MONOSPACE SMALL Z MATHEMATICAL BOLD CAPITAL ALPHA..SANS-SERIF BOLD ITALIC PI SYMBOL

6 References

Additional References

The following four books are entirely about the composition of mathematics
[Chaundy]T.W. Chaundy, P.R. Barrett and Charles Batey, The Printing of Mathematics, (London: Oxford University Press 1954, third impression, 1965) [out of print]
[Wick] Karel Wick, Rules for Type-setting Mathematics, (Prague: Publishing House of the Czechoslovak Academy of Sciences 1965) [out of print]
[Swanson]Ellen Swanson, Mathematics into Type, (Providence, RI: American Mathematical Society, 1971, revised 1979, updated 1999 by Arlene O'Sean and Antoinette Schleyer)
The original edition is based on "traditional" composition (Monotype and "cold type", that is Varityper and Selectric Composer); the 1979 edition adds material for computer composition, and the 1999 edition mostly assumes TEX or a comparably advanced system.
[Byrd] Mathematics in Type, (Richmond, VA: The William Byrd Press 1954) [out of print]
The following books contain material on mathematical composition, but it is not the principal topic covered
[Maple] The Maple Press Company Style Book, (York, PA: 1931) (reprinted 1942)
Contains sections on fractions; mathematical signs; simple equations; alignment of equations; braces, brackets
and parentheses; integrals, sigmas and infinities; hyphens, dashes and minus signs; superiors and inferiors; ... [out of print]
[Manual] A Manual of Style, Twelfth Edition, Revised (Chicago: The University of Chicago Press 1969)
A chapter "Mathematics in Type" was produced using the Penta (computer) system.

7 Modifications

Changes from Tracking Number 4

Added section 2.16. Added section 3.3. Added Appendix A. Added a few typographical samples. (AF)

Changes from Tracking Number 3

Fixed some CSS issues.

Changes from Tracking Number 2

Changed many special symbols to NCRs. Fixed an HTML glitch affecting table formatting and fixed contents of Table 2.4. A number of additional typographical mistakes and inconsistencies in the original proposed draft have been corrected. Merged duplicated text in section 2.7 and made additional revisions to further align the text with Unicode 3.2. Minor wording changes for clarity or consistency throughout. (bnb/AF).

Changes from Tracking Number 1

A large number of minor, but annoying typographical and HTML mistakes in the original proposed draft have been corrected. This includes the occasional mistaken character name or code point. Additional entries were made to the references section and new bookmarks and internal links have been added to refer to them from the text. Other minor improvements to the text and formatting have been carried out. Added section 2.10 and revised the first paragraph of section 2 to bring the text inline with Unicode 3.2 (bnb/AF)

Copyright © 2001-2002 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in connection with or arising out of the use of the information or programs contained or accompanying this technical report.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

