NAVODAYA VIDYALAYA SAMITI, NOIDA

E-CONTENT PREPARATION

 FOR CLASS $9^{\text {TH }}$ SCIENCE CHAPTER-8: MOTION AND ITS DESCRIPTION (PART-1)BY
Dr. Dinesh N. Kurup, PGT PHYSICS JNV, KOTTAYAM

Motio

Motion- A body is sald to be in motion when its position changes continuously with respect to a stationary object taken as reference poi

Ex.- When the position of a car changes continuously with respect to a stationary obiects like houses and trees, ect. we sav

Distance Travelled And Displacement-

D Distance- The distance travelled by a body is the actual length of the path covered by a moving body irrespective of the direction in which the body travels.

- Displacement- When a body moves from one point to another, the distance travelled refers to the actual length of the indirect path whereas displacement refers to the straight line path bétween the initial and the fing positions

Displacement:

0 m

Scalars and

Vectors

Scalar Quantities

length, area, volume
speed
mass, density
pressure
temperature energy, entropy
work, power

Vector Quantities

displacement

velocity

$$
\begin{aligned}
& \text { displacement } \\
& \text { velocity } \\
& \text { acceleration } \\
& \text { momentum } \\
& \text { force } \\
& \text { lift , drag, thrust } \\
& \text { weight }
\end{aligned}
$$

 A vector quantity has both magnitude and direction.

1- Distance is a scalar quantity (because it has magnitude only, it has no specified direction).

- 2- Displacement is a vector quantity (because it has magnitude as well as a direction).
- 3- Distance travelled by a moving body cannot be zero but the final displacement of a moving body can be zero
- The displacement of a moving body will be zero if, after travelling a certain distance, the moving body

Uniform motion-A body has a uniform motion if it travels equal distances in equal intervals of time, no matter how small these time intervals may be.
The distance-time graph for uniform motion is a straight line. Ex.- the motion of a car in a straight-line with constant speed

Non-Uniform

- A body has a non-uniform motion if it travels unequal distance in equal intervals of time.

The distance-time graph for a having non-uniform motion is a curved line.

Speed, Velocity and

Speed

Acceleration

Speed of a body gives us an idea of how slow and fast that body is moving. Speed of a body is $=$ distance travelled / time taken.

$$
v=s / t
$$

Where $v=$ speed, $s=$ distance travelled, $\mathrm{t}=$ time taken unit of speed is m / s

Uniform Speed

 in equal intervals of time, no matter how small these time intervals may be.
Average Speed
The average speed of a body is the total distance
travelled divided by the total time taken to cover this
 distance

Velocity

Velocity of a body is the distance travelled by it per unit time in a given direction.

Velocity $=$ displacement $/$ time taken

$$
\mathrm{V}=\mathrm{s} / \mathrm{t}
$$

Where $\mathrm{V}=$ velocity of the body, $\mathrm{s}=$ displacement of the body and $t=$ time taken The SI unit of velocity is the same as that, (m / s or $\mathrm{ms}^{-} 1$). We can use the bigger unit of kilometers per hour.

Uniform Velocity

A body has a uniform velocity if it travels in a specified direction in a straight line and moves over equal distances in equal intervals of time, no matter how small these time intervals may be.

The velocity of a body can be changed in two ways -
1- by changing the speed of the body, and
2- bv keening the sneed constant but by chanoing How to calculate

Speed And Velocity Are Not Always Equal In Magnitude

The magnitude of speed and velocity of a moving body is equal only if the body moves in a single straight line.

If, however, a body doesn't move in a single straight line, then the speed and velocity of the body are not equal.

The average speed of a moving body can never be zero, but the average velocity of a body can be zero.

Acceleration

Acceleration of a body is defined as the rate of change of its velocity with time.
Acceleration $=$ change in velocity $/$ time taken for change
Acceleration = final velocity - initial velocity /
time taken

$$
a=(v-u) / t
$$

Where, $a=$ acceleration of the body $v=$ final velocity of the body $u=$ initial velocity of the bod ${ }^{9}$

And $\mathbf{t}=$ time taken for the change in
velocity
The SI unit of acceleration is meters per second square.

Uniform Acceleration velocity increases by equal amounts in equal intervals of time.
The velocity -time graph of a body having uniformly accelerated motion is a straight line.

See the change in velocity

Non- Uniform Acceleration velocity increase by une equal intervals

- The velocity -time gra
having non-uniform acceld ration curved line.

Retardation (Deceleration or Negative Acceleration)
If the velocity of a body increases, the acceleration is positive, and if the velocity of the body decreases, the acceleration is negative.
Retardation is measured in the same way as acceleration. Retardation is actually acceleration with the negative sign.

Average Velocity

Average velocity $=($ Initial velocity

+ Final velocity) / 2

$$
\mathbf{v}=(\mathbf{u}+\mathbf{v}) / 2
$$

When a bar on the v denotes the average velocity, u is the initial velocity and v is the final

The green line shows a fast, steady speed, moving from 0 to 100 m in 5 seconds. The blue line shows a journey with a stop and a return to the starting position.
The red line shows a journey starting 2 seconds later than the other two, with an initial acceleration, then a deceleration and then a stop.

Questions

1. State the type of motion represented by the given
graph.

Ans: Uniform motion
2. A stone describes a circular path with a constant speed. State the type of motion the stone.

Ans: Accelerated since the direction changes
3. Under what conditions is the magnitude
of average velocity of an object equal to its average speed ?

Ans: when object moves in a straight line
2. A farmer moves along the boundary of a square field of side 10 m in 40 s . What will be the magnitude of displacement of the farmer at the end of 2 minutes 20 seconds from his initial position?

Side of the given square field $=10 m$ so, perimeter $=10 m \times 4$ $=40 \mathrm{~m}$

Farmer takes 40 s to move along the boundary.
Displacement after 2 minutes $20 s=2 \times 60 s+20 s=140 s$
Therefore, in 1s the distance covered by farmer $=40 / 40 \mathrm{~m}=$ $1 m$

Therefore, in 140 s distance covered by farmer $=$ Therefore. Displacement $\mathrm{AC}=\sqrt{(10 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}}$ 140 m . Now, number of rotation to cover $140 \mathrm{al}=\sqrt{100 \mathrm{~m}^{2}+100 \mathrm{~m}^{2}}$
boundary $=$ Total Distance $/$ Perimeter $=140 \mathrm{~m} /=\sqrt{200 \mathrm{~m}^{2}}$ Thus, after 2 min 20 seconds the rodisplacement of farmer will be equal to $14.14=10 \sqrt{2} \mathrm{~m}$

Remember-stime' is always taken along the x-axis whereas 'distance' or 'speed' (or velocity) is taken along the y-axis.

1- Distance - Time Graphs

- The slope of a distance - time graph indicates speed.

I- if the distance - time graph of a body is a straight line, then its speed is uniform.

II - if the distance - time graph of a body is a curved line, then its speed is nonuniform.

2- Speed - Time Graphs (Or Velocity - Time

Graphs)

Three types

i) When the speed of the body remains constant (and there is no acceleration).
ii) When the speed of the body changes at a uniform rate (there is uniform acceleration).
iii) When the speed of the body changes in a non- uniform way
(thespeis npin-uniforms afrelerationspeed

Remains Constant

If the speed-time graph of a body is a speed straight line parallel to the time axis, then the speed of the body is constant.
In a speed-time graph, the area enclosed by the speed-time curve and the time axis gives us the distance travelled by the body

The distance travelled by the body in a given time for such a speed-time graph is, Distance travelled $=$ speed \times time .

II) Speed-Time Graph when Speed Changes at a The speed-time graph for a uniformly changing speed (or uniform acceleration) will be a straight line .The slope of a speed-time graph of a moving body gives its acceleration.
a straight line sloping upwards shows uniform acceleration

We can find out the value of acceleration from the speed-time graph of a moving body. To calculate the acceleration at a time corresponding to point Q .
Draw a perpendicular QP from point Q which touches the straight line graph at point P.

Acceleration $=$ changes on speed $/$ time taken
The change in speed is represented by PQ whereas time taken is equal to OQ .
Acceleration = PQ / OQ .

The distance travelled by the body in the time corresponding to point Q will be equal to the area of the triangle OPQ, which is equal to half the area of the rectanale ORPO Calculating distance

Speed-time graph showing uniform acceleration


```
iii)Speed-time Graph when the Initial Speed ơf- the body is not zero
In a speed-time graph of a body, a straight line sloping downwards indicates uniform retardation.
```


Speed-time graph of a body when its initial speed is not zero
The distance travelled by the body in this case is equal to the area of trapezium. Now, Area of trapezium = sum of two parallel sides \times height / 2

Here, sum of parallel sides is $O B+A C$ and height is OA.

So, distance travelled $=(O B+A C) \times O A / 2$

Time

Now try these graphs

Questions

1. A bus decreases its speed from $80 \mathrm{~km} \mathrm{~h}^{-1}$ to $60 \mathrm{~km} \mathrm{~h}^{-1}$ in 5 s . Find the acceleration of the bus.

Initial speed of the bus, $u=80 \mathrm{~km} / \mathrm{h}=80 \times \frac{5}{18}=22.22 \mathrm{~m} / \mathrm{s}$

$$
=60 \times \frac{5}{18}=16.66 \mathrm{~m} / \mathrm{s}
$$

Time take to decrease the speed, $t=5 \mathrm{~s}$ Acceleration, $\mathrm{a}=\frac{v-u}{t} \quad=\frac{16.66-22.22}{5}=-1.112 \mathrm{~m} / \mathrm{s}^{2}$ Initial speed of the train, $u=90 \mathrm{~km} / \mathrm{h}=25 \mathrm{~m} / \mathrm{s}$ (Final speed of the train, $v=0$ (finally the train comes to rest and its velocity becomes 0) Acceleration $=-0.5 \mathrm{~m} \mathrm{~s}^{-2}$

According to third equation of motion:
$v^{2}=u^{2}+2$ as

$$
s=\frac{25^{2}}{2(0.5)}=625 \mathrm{~m}
$$

To Derive Method)

 $\mathbf{v}=\mathbf{u}+\mathrm{at}$

 $\mathbf{v}=\mathbf{u}+\mathrm{at}$}Initial velocity of the body, $u=O A$ Final velocity of the body, $v=\mathrm{DC}$ But from the graph $D C=D B+B C$ Therefore, $v=D B+B C$

$$
\begin{array}{lll}
\text { Again } B C=O A & \text { So, } & v=D B+O A \\
\text { But, } O A=u & \text { So, } & v=D B+u \tag{1}
\end{array}
$$

We should find out the value of $D B$ now. We know that the slope of a velocity-time graph is equal to Acceleration, a slope of line $A D$

Or

$$
\begin{equation*}
a=D B / A B \tag{2}
\end{equation*}
$$

But $A B=O C=t$, so, putting t in place of $A B$ in the above relation,
$\mathbf{a}=\mathrm{DB} / \mathrm{t} \quad$ Or $\quad \mathrm{DB}=\mathrm{at}$
Now, putting this value of DB in equation ($\sqrt{ }$) wivgetat

$$
\mathbf{v}=\mathrm{at}+\mathbf{u T i m e}(\mathrm{s})
$$

$s=u t+1 / 2 a t^{2}$

Distance travelled $=$ Area of fig. OADC

$$
\begin{aligned}
= & \text { Area of rectangle OABC } \\
& + \text { Area of triangle ADB }
\end{aligned}
$$

We will now find out area of the rectangle OABC and the area of triangle $A D B$.
I- Area of rectangle $O A B C=O A \times O C$

$$
=\mathbf{u} \times \mathbf{t}=\mathbf{u t}
$$

II- Area of triangle ADB $\quad=1 / 2 \times A B \times D B$

$$
=1 / 2 \times t \times \text { at }
$$

$$
=1 / 2 a t^{2}
$$

So, distance travelled

$$
s=u t+1 / 2 a t^{2}
$$

$\underline{v}^{2}=u^{2}+2 a s$

The distance travelled s by a body in time t is given by the area of the fig. OADC which is a trapezium .
Distance travelled,
The
$s=A r e a ~ o f ~ t r a p e z i u m ~ O A D C ~$

Height / 2
Or

$$
s=(O A+C D) \times O C / 2
$$

Now,

$$
\begin{aligned}
O A+C D & =u+v \\
O C & =t
\end{aligned}
$$

And
Putting these values in the above relation, we get:

$$
\begin{aligned}
& S=(u+v) \times t / 2 \\
& t=(v-u) / a
\end{aligned}
$$

We know that s = (Sum of parallel sides) \times

Putting this value of t in equation, we get :

$$
s=(u+v) \times(v-u) / 2 a
$$

Or

$$
\text { 2as }=v^{2}-u^{2}
$$

$$
v^{2}=u^{2}+2 a s
$$

summary

Motion- A body is said to be in motion when its position changes continuously with respect to a stationary object

Distance: path length (scalar), Displacement: shortest path (Vector)
Uniform motion-A body has a uniform motion if it travels equal distances in equal intervals of time

Non-Uniform motion:A body has a non-uniform motion if it travels unequal distance in equal intervals of time.

Speed =Distance / time , unit m/s
Uniform speed $=$ equal distances in equal intervals of time
Average speed= total distance / total time
Velocity: Velocity of a body is the distance travelled by it per unit time in a given direction.
Velocity $=$ displacement $/$ time taken, $V=s / t$, unit is m / s
Uniform Velocity: A body has a uniform velocity if it travels in a
 specified direction in a straight line and moves over equal distances in equal intervals of time, no matter how small these time intervals may be

Summary

- Speed And Velocity Are Not Always Equal In Magnitude
- Acceleration of a body is defined as the rate of change of its velocity with time $\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$, The SI unit of acceleration is meters per second square
- Uniform Acceleration: velocity increases by equal amounts in equal intervals of time.
- Non- Uniform Acceleration : velocity increase by unequal amounts in ed intervals of time.
- If the velocity of a body increases, the acceleration is positive, and if the velocity of the body decreases, the acceleration is negative
Area under the speed-time graph gives the distance travelled by the body The three equations of motion are

$$
\begin{aligned}
& \mathrm{v}=\mathrm{u}+\mathrm{at} \\
& \mathrm{~s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \\
& \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}
\end{aligned}
$$

My sincere thanks to NVS for providing me this opportunity dineshmavila@gmail.com

