Problem 17

Consider an electric circuit containing a capacitor, resistor, and battery; see Figure 1.2.3. The charge $Q(t)$ on the capacitor satisfies the equation ${ }^{5}$

$$
R \frac{d Q}{d t}+\frac{Q}{C}=V,
$$

where R is the resistance, C is the capacitance, and V is the constant voltage supplied by the battery.
(a) If $Q(0)=0$, find $Q(t)$ at any time t, and sketch the graph of Q versus t.
(b) Find the limiting value Q_{L} that $Q(t)$ approaches after a long time.
(c) Suppose that $Q\left(t_{1}\right)=Q_{L}$ and that at time $t=t_{1}$ the battery is removed and the circuit is closed again. Find $Q(t)$ for $t>t_{1}$ and sketch its graph.

FIGURE 1.2.3 The electric circuit of Problem 17.

Solution

Part (a)

$$
R Q^{\prime}+\frac{Q}{C}=V
$$

Bring Q / C to the right side.

$$
R Q^{\prime}=-\frac{Q}{C}+V
$$

Divide both sides by R.

$$
\begin{aligned}
Q^{\prime} & =-\frac{Q}{R C}+\frac{V}{R} \\
& =-\frac{1}{R C}(Q-C V)
\end{aligned}
$$

Divide both sides by $Q-C V$.

$$
\frac{Q^{\prime}}{Q-C V}=-\frac{1}{R C}
$$

The left side can be written as $d / d t(\ln |Q-C V|)$ by the chain rule. The absolute value sign is included because the argument of the logarithm cannot be negative.

$$
\frac{d}{d t} \ln |Q-C V|=-\frac{1}{R C}
$$

[^0]Integrate both sides with respect to t.

$$
\ln |Q-C V|=-\frac{1}{R C} t+C_{1}
$$

Exponentiate both sides.

$$
\begin{aligned}
|Q-C V| & =\exp \left(-\frac{1}{R C} t+C_{1}\right) \\
& =e^{C_{1}} \exp \left(-\frac{1}{R C} t\right)
\end{aligned}
$$

Introduce \pm on the right side to remove the absolute value sign.

$$
Q(t)-C V= \pm e^{C_{1}} \exp \left(-\frac{1}{R C} t\right)
$$

Let $A= \pm e^{C_{1}}$ and add $C V$ to both sides to solve for $Q(t)$.

$$
Q(t)=C V+A \exp \left(-\frac{1}{R C} t\right)
$$

Apply the initial condition here to determine A.

$$
Q(0)=C V+A=0 \quad \rightarrow \quad A=-C V
$$

Therefore,

$$
\begin{aligned}
Q(t) & =C V-C V \exp \left(-\frac{1}{R C} t\right) \\
& =C V\left[1-\exp \left(-\frac{1}{R C} t\right)\right] .
\end{aligned}
$$

Figure 1: This figure shows the charge on the (charging) capacitor $Q(t)$ versus time t.

Part (b)

$$
Q_{L}=\lim _{t \rightarrow \infty} Q(t)=\lim _{t \rightarrow \infty} C V[1-\underbrace{\exp \left(-\frac{1}{R C} t\right)}_{=0}]=C V
$$

Alternatively, we could argue that once the limiting value of charge on the capacitor is reached, equilibrium is reached and $d Q / d t=0$. The original ODE becomes

$$
0+\frac{Q_{L}}{C}=V
$$

where we conclude that $Q_{L}=C V$ as $t \rightarrow \infty$.

Part (c)

The initial value problem here is the same as before but now $V=0$ because the battery has been removed.

$$
R \frac{d Q}{d t}+\frac{Q}{C}=0, \quad Q(0)=Q_{L}=C V
$$

Bring Q / C to the right side.

$$
R Q^{\prime}=-\frac{Q}{C}
$$

Divide both sides by $R Q$.

$$
\frac{Q^{\prime}}{Q}=-\frac{1}{R C}
$$

The left side can be written as $d / d t(\ln Q)$ by the chain rule.

$$
\frac{d}{d t} \ln Q=-\frac{1}{R C}
$$

Integrate both sides with respect to t.

$$
\ln Q=-\frac{1}{R C} t+C_{2}
$$

Exponentiate both sides.

$$
\begin{aligned}
Q(t) & =\exp \left(-\frac{1}{R C} t+C_{2}\right) \\
& =e^{C_{2}} \exp \left(-\frac{1}{R C} t\right)
\end{aligned}
$$

Let $B=e^{C_{2}}$.

$$
Q(t)=B \exp \left(-\frac{1}{R C} t\right)
$$

Apply the initial condition to determine B.

$$
Q(0)=B=C V
$$

Therefore,

$$
Q(t)=C V \exp \left(-\frac{1}{R C} t\right), \quad t>t_{1} .
$$

Figure 2: This figure shows the charge on the (discharging) capacitor $Q(t)$ versus time t.

[^0]: ${ }^{5}$ This equation results from Kirchhoff's laws, which are discussed in Section 3.7.

