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Abstract

Writing in language tests is regarded as an important indicator for assessing language skills
of test takers. As Chinese language tests become popular, scoring a large number of essays
becomes a heavy and expensive task for the organizers of these tests. In the past several
years, some efforts have been made to develop automated simplified Chinese essay scoring
systems, reducing both costs and evaluation time. In this paper, we introduce a system
called SCESS (automated Simplified Chinese Essay Scoring System) based on Weighted
Finite State Automata (WFSA) and using Incremental Latent Semantic Analysis (ILSA)
to deal with a large number of essays. First, SCESS uses an n-gram language model to
construct a WFSA to perform text pre-processing. At this stage, the system integrates
a Confusing-Character Table, a Part-Of-Speech Table, beam search and heuristic search
to perform automated word segmentation and correction of essays. Experimental results
show that this pre-processing procedure is effective, with a Recall Rate of 88.50%, a
Detection Precision of 92.31% and a Correction Precision of 88.46%. After text pre-
processing, SCESS uses ILSA to perform automated essay scoring. We have carried out
experiments to compare the ILSA method with the traditional LSA method on the corpora
of essays from the MHK test (the Chinese proficiency test for minorities). Experimental
results indicate that ILSA has a significant advantage over LSA, in terms of both running
time and memory usage. Furthermore, experimental results also show that SCESS is quite
effective with a scoring performance of 89.50%.

† Corresponding author.
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1 Introduction

1.1 Motivation

Writing, which is an important indicator for assessing a test taker’s language skill,

is an essential part of language tests. In Chinese language tests, test takers are

usually required to write an essay according to a given topic, and then human

raters will score these essays on the basis of some given educational benchmarks.

It often happens that the scores of an identical essay scored by different human

raters vary considerably because scoring by human raters is subjective (Peng 2005;

Peng, Ke and Xu 2012; Li, Peng and Zhao 2011; Peng and Yu 2013). In addition,

as the number of the MHK test takers increases rapidly year by year, it becomes

a huge and expensive task for the organizers to score the essays. Therefore, an

accurate automated simplified Chinese essay scoring system reducing both costs

and evaluation time is urgently needed.

1.2 Research Background

Many automated English essay scoring systems have been developed over the past

several decades. Project Essay Grader (PEG) is the earliest automated English

scoring system developed by Ellis Batten Page in the 1960s. Page updated PEG and

ran some successful trials in the early 1990s (Page 1994; Shermis and Burstein 2003).

PEG grades essays predominantly on the basis of writing quality. An educational

company called Measurement Incorporated acquired the rights to PEG in 2002

and has continued to develop it. Thomas Landauer has developed a system based

on LSA using a scoring engine called Intelligent Essay Assessor (IEA). IEA is

an implementation of the Knowledge Analysis Technologies (KAT) engine from

Pearson Educational Technologies, which was first used to score essays in 1997

(Landauer, Foltz and Laham 1998; Foltz, Laham and Landauer 1999). IntelliMetric

is Vantage Learning’s product and was first used commercially to score essays

in 1998 (Elliot 2003). Educational Testing Service offers e-rater, an automated

essay scoring program which was first used commercially in 1999 and now is

used to score the Test of English as a Foreign Language (TOEFL) and Graduate

Record Examination (GRE) (Burstein 2003). E-rater is a sophisticated hybrid

feature technology that uses syntactic variety, discourse structure (like PEG) and

content analysis (like LSA) (Burstein and Chodorow 2010; Attali and Burstein

2006; Ramineni, Trapani, Williamson, Davey and Bridgeman 2012). Bayesian Essay

Test Scoring sYstem (BETSY) is based on Bayes’ theorem and developed by

Lawrence Rudner (Rudner and Liang 2002). Pacific Metrics offers a constructed

response automated scoring engine, called CRASE. Currently utilized by several

state departments of education and in a U.S. Department of Education-funded

Enhanced Assessment Grant, CRASE has been used in large-scale formative and

summative assessment since 2007. Numerous researchers have reported that their

automated essay scoring systems can, in fact, do better than a human rater. Page

made this claim for PEG in 1994 (Page 1994) and Scott Elliot said in 2003 that
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Segmentation 1:  /  / 
 (Ping-pong balls have been sold out in an auction. )

Segmentation 2:  / 
(Ping-pong bats have been sold out.)

Fig. 1. Different meanings caused by different segmentations.

IntelliMetric typically outperformed human scorers in speed and consistency (Elliot

2003).

1.3 Related Work

Although many researchers have attached importance to automated English essay

scoring and some systems have been applied widely, there has been relatively little

research on automated Chinese essay scoring.

For Chinese text processing, segmentation (Teahan, Wen, McNab and Witten

2000; Wang and Liu 2011) is an important first step. Unlike English and other

western languages, Chinese does not provide inter-word delimiters, so a sentence

may have different meanings with different segmentations. Such an example is

shown in Figure 1. Therefore, segmenting reasonably is challenging in automated

Chinese essay scoring. In many fields such as search engines and detection and

correction for erroneous characters in Chinese texts, several algorithms have been

introduced (Pan and Yan 2009; Chang, Chen, Tseng and Zheng 2013). For example,

Yan Wu uses regulation-based and count-based methods (Wu, Li, Liu and Wang

2001); Jinshan Ma has proposed a method based on tri-gram and dependency

parsing (Ma, Zhang, Liu and Li 2004); Zhipeng Chen uses an n-gram model to

correct Chinese spelling in search engines (Chen, Lv, Liu and Tu 2009). These

methods are viable to some extent, but they are not very effective when considering

all the possible segmentations. This problem becomes more obvious when faced with

large-scale tests, such as the MHK test.

As for automated Chinese essay scoring, inspired by the studies of English essay

scoring, research work has been done for several years (Li 2006; Chang, Lee, Tsai

and Tam 2009; Chang, Lee and Tam 2007). These methods give automated scores

from various perspectives. For instance, Latent Semantic Analysis (LSA) focuses on

word usage and the content it reflects (Cao and Chen 2007; Zhao 2011). The word

level method concentrates on word usage purely, based on a word list trained by

human-scored essays (Ke, Peng, Zhao, Chen and Wang 2011). Regularized Latent

Semantic Indexing (RLSI) from the field of topic modeling focuses on topic(s) in a

dataset (Hao, Xu, Peng, Su and Ke 2014; Wang, Xu, Li and Craswell 2013). Among

them, LSA, designed for indexing documents for information retrieval, is the most

common technique that has been successfully applied to a wide range of fields (Tonta

and Darvish 2010; McInerney, Rogers and Jennings 2012; Wang and Yu 2009; Jin,

Gao, Shi, Shang, Wang and Yang 2011), such as bioinformatics (Ismail, Othman

and Kasim 2011), language processing (Wang and Wan 2011; Liu, Wang and Liu
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Fig. 2. A complete procedure of automated essay scoring.

2007; Yeh, Ke and Yang 2002; Gorrell 2006; Chang, Sung and Lee 2013) and signal

processing (Mesaros, Heittola and Klapuri 2011). The underlying idea is to identify

which one of several calibration documents is most similar to the new document

based on the most specific (i.e., least frequent) index terms. For essays, the average

grade on the most similar calibration documents is assigned as the computer

generated score (Landauer, Foltz and Laham 1998). LSA reduces the interference

of variety and complex characteristics of natural languages (i.e., ambiguities and

synonyms), and represents the relations between terms and documents in a lower-

dimension and noise-reduced space. Singular Value Decomposition (SVD) is the

fundamental mathematical technique of LSA. By this decomposition, terms from

the original matrix can be used to construct an approximate matrix or space under

which any document can be represented.

When using LSA to perform essay scoring, SVD requires the entire dataset

of essays being loaded into memory for computation, which is impossible if the

matrix is huge, not to mention the temporarily stored data during the computation.

As more and more people take the MHK test year by year, the number of the

essays increases rapidly, so time and memory consumption becomes a big problem.

Therefore, an automated simplified Chinese essay scoring system dealing with big

datasets is highly desirable.

1.4 Main Contributions

MHK, known as the Chinese proficiency test for minorities, is the most popular

test of simplified Chinese as a foreign language. We construct SCESS, a WFSA-

based automated simplified Chinese essay scoring system with Incremental Latent

Semantic Analysis (ILSA), to score MHK test essays. In general, an automated

essay scoring system for MHK tests follows two steps, as shown in Figure 2. The

exception diagnosis includes plagiarism detection, empty essay detection and so

forth. Those with such problems are identified as abnormal essays and scored by

human raters. The remaining essays are normal, and will be sent to SCESS.

When scoring normal essays, the flowchart of SCESS is shown in Figure 3. Text

pre-processing is the first step, but current Chinese text processing techniques are

not suitable for MHK tests as stated above. In order to provide a more effective

method that can be used in this step and a more accurate result for subsequent
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Fig. 3. The flowchart of SCESS.

steps, we propose a WFSA-based algorithm to perform dynamic segmenting,

detection and correction for erroneous Chinese characters simultaneously by using

beam search (Steinbiss, Tran and Ney 1994) and heuristic search (Xu, Yue and Su

2009). In this algorithm, we use an n-gram language model to construct a WFSA.

By replacing possible erroneous characters with the help of a Confusing-Character

Table and a Part-Of-Speech Table, we can find the best path which represents

the most reasonable segmentation and a correct sentence. When applied in SCESS,

WFSA can also be used to obtain an initial assessment from the surface information

like character and word usage. In this paper, the performance of error detection and

correction is demonstrated, but WFSA is only used to segment sentences for the

current version of SCESS.

The second step is to analyse essays using LSA. As to the deficiencies of LSA

discussed above, in this paper, we use ILSA in SCESS to solve the problem caused

by big datasets. ILSA is introduced by Mattthew Brand (Brand 2002) and has been

implemented to the fields of image processing (Chin, Schindler and Suter 2006) and

information retrieval such as recommender systems (Sarwar, Karypis, Konstan and

Riedl 2002; Brand 2003) and natural language processing (Gorrell 2006). However,

there is no related work using ILSA and Incremental Singular Values Decomposition

(ISVD) in automated essay scoring. In this paper, we use ISVD as a part of ILSA,

to process huge datasets of test essays. Experimental results show that ILSA is very

effective. It not only reduces time and memory consumption, but also has a good

scoring performance of 89.50%.

The final step is to use several machine learning or pattern recognition strategies

to complete automated scoring and a Support Vector Machine (SVM) is used to

assist this processing.
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Fig. 4. The flowchart of word segmentation and correction.

1.5 Structure of the Paper

The remainder of this paper is organized as follows. We introduce the automated

word segmentation and correction based on WFSA as part of text pre-processing

of SCESS in the next section. In Section 3, we present the term-document matrix,

weighting, ILSA and scoring performance measurement used in SCESS. Section 4

reports the experimental results and gives discussion about detection and correction

for erroneous characters and automated essay scoring using ILSA. Finally, in Section

5, we conclude the paper by summarizing our work and giving some remarks on

future directions.

2 Automated Word Segmentation and Correction Based on WFSA

The first step of automated essay scoring is text pre-processing, including word

segmentation. WFSA is a powerful tool to detect and correct erroneous Chinese

characters, and segment Chinese sentences into words. The flowchart of word

segmentation and correction based on WFSA is shown in Figure 4.

2.1 N-gram Language Model

An n-gram language model is an n-tuple of words appearing in a corpus with a

conditional probability of the last word, given the previous n-1 words (Rosenfeld

1994). For convenience, in this paper, an n-gram language model is called an n-

gram model. In order to achieve a good balance between practical performance

and computational complexity, we choose the tri-gram language model, including

uni-grams, bi-grams and tri-grams. This model is constructed from a list including

47, 450 words, which turn out to be the uni-gram terms. Then we construct bi-grams

and tri-grams and calculate their probabilities from the corpus, trained by SRILM

toolkit1 (Stolcke 2002). Because of the different levels of trimming, the number of

uni-grams may be slightly different according to different corpora.

Figure 5 shows some examples of n-grams. For every term, the first value is log(P )

1 available at: http://www.speech.sri.com/projects/srilm/
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Probability Term Backoff coefficient
-2.486861 </s>

-99 <s> -2.419207

-3.154925 -0.9356831

-3.270324 -0.719514

-4.653283 -0.3645265

-1.71277 <s> -1.321846

-4.072419 <s> -0.6793106

-3.964405 -0.07850385

-1.110578 </s>

-4.84404 <s>

-0.6381439 </s>

Uni-gram

Bi-gram

Tri-gram

Fig. 5. Examples of n-grams (The sentence in Chinese in this figure means ‘Hello.’). Note

that the term ⟨s⟩ stands for the start of a sentence. Because it is impossible to start a

sentence before ⟨s⟩, its probability is set to -99.

where P is the probability of a word, and the last value is the backoff coefficient

(calculated by modified KN-discount; 0 as default). The middle characters are words

(terms). ⟨s⟩ and ⟨/s⟩ stand for the start and the end of a sentence respectively, which

are added to the sentence before decoding.

2.2 Converting N-gram Model to WFSA

A WFSA can be regarded as a directed graph G = (S,Aforward, Abackoff ),

where S,Aforward and Abackoff denote States, Forward Arcs and Backoff Arcs

respectively.

States : We use ϵ (the epsilon state) as the very start of the proposed WFSA.

Each state Si is defined as follows:

Si = {arc0, arc1, arc2 . . . arcn}

where these arcs are out-edges of Si (except arc0). In practice, because every

state represents an n-gram with its lower order (n-1)-gram, we use arc0 as

the backoff arc whose probability is the backoff coefficient from the high

order n-gram to its lower order (uni-gram to ϵ). Additionally, each state can

be regarded as a breakpoint for a segmentation and a start point for the

remaining segmentation when decoding in a WFSA.

Forward Arcs : Each forward arc Ai represents a word connecting two n-grams

with a conditional probability of the word. That is:

Ai = {Sin, Sout, word, probability}

where Sin records the previous state and Sout indicates the next state.
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Fig. 6. The WFSA converted from Figure 5.

The word corresponds to the word of a term in an n-gram model and the

probability is the probability from the n-gram model.

Backoff Arcs : Each state has one backoff arc, namely arc0. By passing through

this arc, the system moves from a higher order n-gram state to a lower order

(n-1)-gram state. The structure of the backoff arc is similar to the forward arc,

except that the word is empty and the probability is the backoff coefficient.

Figure 6 illustrates the WFSA converted from Figure 5. The solid lines are

forward arcs and the dashed ones are backoff arcs. The characters on the arcs

are words and the probabilities are not shown for the sake of clarity.

2.3 Confusing-Character Table and Part-Of-Speech Table

2.3.1 The Confusing-Character Table

It is well-known that Chinese characters are ideographic, so there are two kinds of

mistakes caused by confusing characters. The first one stems from the confusion

of characters with similar or same pronunciation, and the second one is caused by

similar appearance.

Our method is to construct a Confusing-Character Table, linking the most often

confused characters together. Figure 7 shows a fragment of this table. It is hard

to translate these Chinese characters in Figure 7 to English. All we need to know

is that characters in each line look alike or have similar pronunciations, and are

considered as equally likely to be confused with one another. Looking up this

table and replacing corresponding confusing characters will complete the automated

correction.

We manually did the statistics and constructed the Confusing-Character Table

based on Modern Chinese Dictionary and previous MHK test essays, which covers

6, 674 confusing characters.
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Fig. 7. A fragment of the

Confusing-Character Table.

n.

adj., adv.

adv.

v.

n., adj.

Fig. 8. A fragment of

the Part-Of-Speech Table.

2.3.2 The Part-Of-Speech Table

Many words have different representations caused by different parts of speech.

We construct a Part-Of-Speech (POS) Table to deal with these words. During

decoding, we check the POS Table as well. If the first several characters have

different representations caused by different parts of speech, the arcs whose words

are these representations are also passable. Figure 8 illustrates a fragment of the

POS Table. The first column shows the words and the second column describes their

parts of speech. The materials we used in the POS Table are from Eight Hundred

Words in Modern Chinese (Lv 1999).

2.4 Decoding Using Beam Search and Heuristic Search

Decoding using a WFSA is performed simultaneously with computing of a

sentence’s probability, dynamic word segmenting and correction. Passing through

different arcs will result in different forms of segmentation and different probabilities

of a sentence. The higher the probability is, the more possible it is a correct sentence,

and this is the principle for word segmentation and correction.

2.4.1 The Word Segmentation and Correction Algorithm

When decoding a sentence, we need to record the current state, the arc just

passed, the scored-string, the unscored-string and the probability of the scored-

string. Note that the term probability refers to the log probability (the sum of

the log probabilities of the arcs). Thus, we associate each sentence with a member

denoted as:

member = {state, arc, scored-string, unscored-string, probability}.

Moreover, two sets are used during the decoding: the pre-candidate set and the

candidate set. The pre-candidate set is a list preserving members that need to be

examined in each step, whereas the candidate set preserves the segmentation results.

A Beam Container is used to perform beam search, selecting the best n members to

add to the pre-candidate set. Therefore, the pre-candidate set is a list that preserves
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Input: A sentence from test essays

Output: A correct sentence with spaces as delimiters

1 M1.scored-string = M2.scored-string = empty ;

2 M1.unscored-string = M2.unscored-string = input ;

3 M1.state = ⟨s⟩.Sout;

4 M1.arc = ⟨s⟩;
5 M1.probability = 0;

6 M2.state = ϵ;

7 M2.arc = ⟨s⟩.Sout.Abackoff ;

8 M2.probability = ⟨s⟩.Sout.Abackoff .probability ;

9 Add M1 and M2 to the candidate set ;

10 while at least one member.unscored-string ̸= empty (in the candidate set) do

11 pre-candidate set := ∅;
12 for each member ∈ the candidate set do

13 if member.unscored-string ̸= empty then

14 for each arc adjacent to member.state do

15 if satisfies one of three conditions then

16 member.arc := arc;

17 member.state := arc.Sout;

18 member.probability += arc.probability ;

19 member.scored-string += arc.word ;

20 remove arc.word from member.unscored-string ;

21 send the member to the Beam Container ;

22 end

23 end

24 end

25 else

26 send the member to the Beam Container;

27 end

28 end

29 candidate set := pre-candidate set ;

30 end
Algorithm 1: The word segmentation and correction algorithm.

the most promising n members for the next step instead of preserving all the new

members to avoid producing numerous useless branches (or members).

The word segmentation and correction algorithm is shown in Algorithm 1. At the

beginning of the decoding, we initialize two members M1 and M2 and add them to

the candidate set (lines 1-9). If there is an arc starting from the state of the current

member (line 15), a new path with a new member will be generated (lines 16-20).

The arc and the state of this new member record the arc just passed and the state

arrived at respectively, in preparation for subsequent expansions (lines 16-17). The

probability on the arc is added to the probability of the member which records

the sum of the probabilities of all its past arcs (line 18). Along with scoring, the



Natural Language Engineering 11

member
scored-

member

unscored-

member

M0

M1

M2

M3

arc0
ar
c1
:

arc2:
arc3:

scs1

s2

s3

s4

Fig. 9. An example showing three conditions.

 (slow) adj., adv.

The
 Part-Of-
Speech
 Table

arc1:

 (slow, adj.)

 (slowly, adv.)

arc2:

Sentence: 

unscored-string: 

s1

s2

s3

Fig. 10. An example showing how to check the POS Table.

word in the unscored-string corresponding to the word on the arc will be moved

to the scored-string (line 19), and the remaining unscored-string is prepared for

subsequent segmenting (line 20). The empty unscored-string means the end of the

decoding (line 10), and the probability of a member is that of the whole sentence

under the corresponding segmenting.

We adopt the following three conditions to judge whether an arc is passable (line

15):

1. The backoff arc;

2. The unscored-string starts exactly with the word on the arc;

3. After replacing several characters according to the Confusing-Character Table

or after checking the POS Table, the second condition is satisfied.

The third condition provides automated correction. Moreover, we subtract a proper

value (called the punishment value) per modified character from the score to avoid

that a correct character is mistakenly modified to a wrong one. Figure 9 and Figure

10 show examples of these techniques.

In Figure 9, from the current state Sc, arc0, arc1, arc2 and arc3 are passable,

corresponding to condition 1 (arc0), condition 2 (arc1, arc2) and condition 3 (arc3)

respectively. Note that when passing through the backoff arc, the backoff coefficient

is added to the probability of the member, though no segmenting happens. Because

all the four arcs are passable, four new members will be generated.

In Figure 10, we show how the POS Table works. First, we check the first several

characters of the unscored-string (underlined characters in the figure) in the table.
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Since it has two parts of speech, the sentence can pass both arc1 and arc2 whose

words match two different representations of the unscored-string. Without the POS

Table, only arc1 is passable.

Whenever a new member is generated, it will be sent to the Beam Container

(lines 21, 26). The Beam Container decides which one in the pre-candidate set

will be preserved or removed immediately to avoid huge expansion of states. The

principles for pruning branches are the probability and the heuristic value of the

unscored-string. If the pre-candidate set is larger than the beam width after adding

the new member, the one whose sum of the probability and the heuristic value is

minimum will be removed. After all the members in the candidate set are examined,

a new pre-candidate set is generated and this new set will be the candidate set for

the next step (line 29). At the end of the decoding, we will get n paths (according

to the beam width), and the path with the highest probability is the best one.

2.4.2 Heuristic Search

Heuristic search, which can find applicable paths from a given initial node to a

goal node, is widely used in planning and replanning (Xu and Yue 2009; Yue, Xu

and Su 2006). In the Beam Container, the pre-candidate set is pruned in order to

avoid useless expansion. The criterion is to use the members’ probabilities of their

scored-strings. To improve the efficiency, we use a heuristic function at the same

time. Briefly, a heuristic function is to predict the possible number of erroneous

characters in the remaining unsegmented sentence (unscored-string), based on the

currently segmented and corrected sentence (scored-string). Therefore, the Beam

Container will consider the probability of the scored-string and the heuristic value

of the unscored-string of every member, to estimate the probability of the whole

sentence and preserve the most promising members for the subsequent expansion.

We propose three heuristic functions for our algorithm. In these functions, the

number of the characters in the scored-string is denoted as Nr, and that in the

unscored-string is denoted as Nu.

1. Predict by scored characters and backoff paths: H1 = probability
Nr

×Nu, where

probability means the scored-string ’s probability.

2. Predict only by scored-string: H2 = probability′

Nr
×Nu, where probability′ is the

sum of probabilities without backoff coefficients.

3. Predict by word segmentation: H3 = Nu

Tr
×Sa, where Tr is the average number

of characters in a word segmentation and Sa is the average probability of a

segmentation according to the scored-string and its probability.

We have conducted an experimental study of these three functions and found that

H1 is the best one for SCESS.

2.4.3 WFSA-based Segmentation in SCESS

In Algorithm 1, we notice that if condition 3 is removed, WFSA can be used as an

algorithm for word segmentation. In SCESS, we use WFSA to segment the essays
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into words without correction. It is inappropriate to use detection and correction

in LSA and ILSA, because there exists the risk that it will erroneously correct

essays and thus deviate from the original contents. However, since the detection

and correction of errors by WFSA has been proved effective, in the near future, we

will combine this function with other perspectives, like the word level method (Ke,

Peng, Zhao, Chen and Wang 2011), to give a more comprehensive scoring system.

3 Automated Essay Scoring Using Incremental Latent Semantic

Analysis

Traditionally, LSA can be performed through four sub-steps, which are matrix

construction, weighting, calculating SVD and re-projection (Wild, Stahl, Stermsek,

Neumann and Penya 2005). Calculating SVD, however, becomes a hard or even

impossible task when faced with a huge dataset. Therefore, we use ILSA to resolve

this problem efficiently. At first, all essays are segmented into words using the

method described in Section 2, and then constructed into essay vectors which form

the original dataset matrix. Next, a frequency weighting function is used to calculate

the dataset matrix. Finally, applying the incremental algorithm on that matrix will

establish a semantic space where all essay vectors can be re-projected.

3.1 Producing the t-d Matrix

After segmentation, SCESS will produce a t-d (term-document) matrix based on the

number of words (terms) appearing in the essays (documents). Typically, SCESS

needs a training set and a testing set, and the t-d matrix of the former is denoted

as D and that of the latter as Q. In these matrices, each column is an essay vector

di or qi.

At first, according to the segmentation results, we generate the matrix D =

[d1,d2, . . . ,dn] ∈ Rm×n where m is the number of distinct words appearing in

the training set, and n is the size of the training set. For each essay vector di =

[d1, d2, . . . , dm]⊤ ∈ Rm (i = 0, 1, . . . , n), if the j-th word (j = 0, 1, . . . ,m) appears

in other essays but not in this essay, its weight will be 0. Next, we eliminate stop

words, such as prepositions and verbal auxiliaries, because they do not have real

meanings but appear with high frequencies, and get a set of words V.
Then, we use V and the segmentation results to generate the matrix Q. For the

words appearing in an essay from the testing set, if they are included in V, their
weights in essay vectors are their numbers of occurrences. For those out of V, we
do not add these words into V and just eliminate them.

Finally we will get two t-d matrices D and Q, sharing the same set of words V.

3.2 Calculating the TF-IDF Matrix

The TF-IDF matrix, where TF stands for the term frequency and IDF for the

inverse document frequency, is a common method for weighting (Nakov, Popova
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and Mateev 2001). Every element in the t-d matrix can be weighted as

di,j = TFi,j × IDFi,j (1)

The term frequency, TFi,j is defined as

TFi,j =
numi,j∑m

k=1 numk,j
(2)

where numi,j is the number of the occurrences of the i-th word in the j-th essay, and

m is the number of the words in the training set. As for IDF, it can be calculated

as

IDFi,j = log
n

1 +DFi
(3)

where n is the size of the training set (or the number of essay vectors), and DFi is

the number of essays which contain the i-th word.

3.3 Incremental Latent Semantic Analysis

ILSA is composed of two parts: incremental decomposition of a dictionary-based

space and re-projection of any essay vector under the reconstructed semantic space.

The first part can be accomplished by ISVD, avoiding the synonyms and ambiguities

of words and enabling essay vectors to be projected onto a low-dimension semantic

space. The second part is re-projection, in which any dictionary-based essay vector

can be re-projected to the semantic space.

3.3.1 Conventional SVD

SVD is the underlying algorithm of LSA, which constructs a semantic space of a

given dataset. Given the r-rank matrix D ∈ Rm×n where m is the size of the set of

words V and n is the size of the training set, we apply SVD as follows:

Dm×n = Um×mΣm×nV
⊤
n×n (4)

where U and V are orthogonal matrices, and Σ is a r-rank diagonal matrix where

the elements are in descending order. In general, Σ is not a square matrix (m ̸= n),

so it contains extra columns or rows filled with zeros for matrix multiplication.

Specifically, in natural language processing, maintaining only k≪r will produce

a lower dimensionality and better approximation to the original matrix D. By

removing (r - k) columns in U, (r - k) rows in V and (r - k) elements in Σ that

are small enough to be considered as trivial, we can multiply the matrices and get

an approximation to the original matrix D
′

m×n:

Dm×n ≈ D
′

m×n = Um×kΣk×kV
⊤
k×n. (5)

3.3.2 Incremental SVD

As the dataset grows larger, conventional SVD becomes impractical due to huge

memory usage and intolerably long running time. Hence, in SCESS, we use ISVD
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instead of conventional SVD. ISVD performs as follows. First, given the matrix

D ∈ Rm×n, we partition it into a small matrixM ∈ Rm×n′
and matricesCi ∈ Rm×q

(i = 1, 2, . . . , p):

D =
[
M C1 C2 . . . Cp

]
(6)

where p = ⌈n−n′

q ⌉ and n′ is called the initial value and q is called the batch size.

Next, conventional SVD is used on M. Because M is small, the computation is

fast. Then we update the decomposition result by using M and Ci:

[M Ci] = [U J]

[
Σ L

0 K

] [
V⊤ 0

0 I

]⊤
= tU · tΣ · tV (7)

where L = U⊤Ci and I is an identity matrix. Define H = Ci −UL. Applying QR

decomposition to H, we get H
QR−→ JK. Then we decompose tΣ in Equation (7)

and it is fast as well:

[M Ci] = [U J]U′ ·Σ′ ·
[

V⊤ 0

0 I

]⊤
V′⊤ = U′′ ·Σ′ ·V′′⊤. (8)

Then, we multiply U′′ ·Σ′ ·V′′⊤ as an updated M and finish an iteration procedure.

Iterating this procedure until Cp has been updated, we get the final result of ISVD.

During the process, an important issue is to maintain necessary semantics

(dimensions) to construct the semantic space. Producing too much noise will not

only lower the precision of the semantic space, but also has an impact on the

computational performance, i.e., larger memory usage and longer computational

time. Therefore, we maintain k dimensions, called the threshold value, to guarantee

the effectiveness of the updating procedure and remove the extra dimensions

immediately.

Input: The matrix D ∈ Rm×n

Output: Matrices U,Σ,V⊤

1 n′ ← the initial value;

2 q ← the batch size;

3 p← ⌈n−n′

q ⌉;
4 k ← the threshold value;

5 M← the first n′ essay vectors of D;

6 [U Σ V]← svds(M, k);

7 for each Ci (i = 1, 2, . . . , p) do

8 [tU, tΣ, tV]← svds([M Ci], k);

9 [tU′, tΣ′, tV′]← svds(tΣ, k);

10 M← tU · tU′ · tΣ′ · tU′⊤ · tU⊤;

11 end

12 U← tU · tU′;

13 Σ← tΣ′;

14 V⊤ ← tV′⊤ · tU⊤;
Algorithm 2: Incremental Singular Value Decomposition.
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The algorithm of ISVD is presented in Algorithm 2. In this algorithm, the function

svds(M, k) is used as conventional SVD where M is the matrix to be decomposed

and k is the threshold value. First, it constructs the matrix M by the first n′

essay vectors according to the initial value, to apply conventional SVD. Then, an

intermediate result of decomposition (line 6) is produced.

The next step is to update the intermediate result by adding matrices Ci from

the rest of D. According to the mathematical derivation we introduced previously,

it is easier and faster to update the intermediate result, and this updating result has

been proved to be approximate to conventional SVD (Brand 2002). This process

repeats until all the partitions Ci in the TF-IDF matrix have been updated to

the intermediate result (lines 7-11). Finally, we get the final result of ISVD (lines

12-14).

3.3.3 Re-projection

By applying Equation (5), where k is the threshold value for the dimension retained,

we construct a semantic space of the dataset. Any term-based essay vector, dj , can

be re-projected to the space to obtain a uniform and semantic-based representation.

Suppose that U · Σ ·V⊤ is the final result of ISVD performed on the TF-IDF

matrix of the training set, and dj is an essay vector based on the same set of words

V. Then, we will re-project dj to the semantic space as :

d̂j = Σ−1 ·U⊤ · dj (9)

3.4 Scoring Performance Measurement

In this final part, we use a Support Vector Machine to automatically score essays

(Peng and Wang 2009; Yannakoudakis, Briscoe, and Medlock 2011). Usually, SVM

can be described as an optimization problem:

min
w,b,ξ

1
2w

⊤w+ C
∑l

i=1 ξi

subject to yi(w
⊤ϕ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l,

where C is a positive regularization parameter. The input data are pairs of (xi,yi),

where xi is the feature vector, and yi is the classification label. In SCESS, xi

and yi can be regarded as a re-projected essay vector and the human score of

this essay respectively. The kernel function ϕ(xi) maps the input data xi to a

higher-dimension space where xi (i = 1, . . . , l) are separable according to yi, so

that when new data arrive, they can be classified correctly.

The choice of the kernel function is a nontrivial part of SVM, and it is also an

open problem to design an appropriate kernel. In SCESS, the Radial Basis Function

(RBF) is used for the kernel, for it allows non-linear relations between the features

and the labels:

K(xi,xj) = ϕ(xi)
⊤ϕ(xj) = exp

(
−γ||xi − xj ||2

)
, γ > 0. (10)

Essay vectors from the training set and human scores are used to generate
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support vectors and establish decision planes. Based on these planes, the essay

vectors from the testing set are classified according to support vectors. By this

kind of classification, their class labels of essay vectors from the testing set are the

automated scores predicted by SVM. Comparing the predicted scores with human

scores, we can estimate the performance of automated essay scoring with ILSA.

4 Experimental Results and Discussion

In this section, we show experimental results of detection and correction for

erroneous characters, and the experiments on automated essay scoring using ILSA.

SCESS is implemented in C++ and all experiments were run on a machine with a

2GHz CPU and 96GB RAM under Linux.

4.1 Introduction to MHK

In MHK tests, test takers are required to write an essay of no more than 350 words

based on a given topic, and these essays are restricted to a genre rather than free

texts.

According to the scoring criteria of MHK tests, there are four levels for human

raters to evaluate an essay (Peng and Wang 2009): Character, Word, Sentence

and Paragraph. Character and Word are basic requirements including using correct

characters, spelling and meaningful words in simplified Chinese; Sentence is a higher

requirement and test takers should use correct grammar in a sentence and think

about the relations between the topic and sentences; Paragraph is a consideration

about the logical relations among paragraphs and even the whole passage.

A complete system scores essays from those four perspectives, and allocates

different weights to them to get comprehensive assessments as overall scores. In

consideration of expression and reading comprehension, Character and Word are

basic criteria to assess an essay. Moreover, they are relatively easier to be studied

compared with Sentence and Paragraph. Therefore, in this paper, we implement

SCESS based on Character and Word levels, and we will develop SCESS further

by combining all perspectives.

The procedure of human scoring is as follows. First, two human raters give each

essay an initial score respectively, from point 1 to point 6 at intervals of 1. If the

discrepancy between two scores for a certain essay surpasses 2 points, this essay

will be rated by a senior researcher, and the final score will be the average of these

three scores; otherwise, the final score will be the average of those two scores. The

final score of the essay in MHK tests, ranging from 1 to 6 at intervals of 0.5, will

be sent back to the test taker. In our experiments, we use the final score as the

annotated score of each essay.

In order to give a first impression about the dataset we use, we give an assignment

in the MHK test. All the essays in our dataset are written under the requirement

shown in Figure 11. We randomly show two essays in Figure 12, whose scores are

5 and 1 respectively.

The given assignment varies from year to year, leading to the changes of contents
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350

Fig. 11. The assignment of the essays in our dataset. In this assignment, test takers

are required to read a fable talking about the perfect leaf three monks are searching for,

and write an essay, rephrasing this fable and expressing their thoughts according to their

experiences. An effective response must contain a minimum of 350 words.

Human score: 5 Human score: 1

Fig. 12. Two representative essays of the MHK test (without translation).

of the essays, and thus, the changes of the set of words V. Because LSA and ILSA

are both content-oriented methods, for each MHK test, we need to train a different

model. In 2009, 190, 000 students in Xinjiang Province in China took the test, and

this number has been continuously increasing. Large scale model training requires

a system like SCESS which can process big datasets.

4.2 Experiments on Detection and Correction for Erroneous

Characters

4.2.1 Introduction to Datasets

We use two datasets in this part. The first one is a large corpus for training the n-

gram model, whereas the second one is to test the word segmentation and correction

algorithm based on WFSA.
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Table 1. The proportions of four kinds of errors. We have selected 411 sentences

from 200 essays. There are 607 character-wise errors in total. These errors are easy

for native speakers to correct, so we manually annotated the erroneous characters

and corrected them.

Substitution Deletion Insertion Transposition

Proportion 76% 13% 7% 4%

The selection of the corpus of the training set is important to experimental results

because it influences the probability of every term in the N -gram model. We have

tested three kinds of corpora: The People’s Daily, diverse sources (Hodgepodge)

and the Literature Corpus in Chinese.

The People’s Daily is the most formal and influential newspaper in China,

reporting official news and national affairs. By training on this corpus, we get

an n-gram model, consisting of 47, 493 uni-grams, 3, 716, 267 bi-grams and 954, 446

tri-grams in total.

The diverse source is a hodgepodge, containing various writings such as micro-

blog posts, blog posts, publications, news articles, lyrics, subtitles and so forth. This

corpus produces 47, 494 uni-grams, 3, 246, 941 bi-grams and 908, 188 tri-grams.

The Literature Corpus includes writings in Chinese literature, such as the Mao

Dun Literature Awards, which is the highest award for Chinese writers. By training

on this corpus, we get 47, 489 uni-grams, 6, 557, 265 bi-grams and 7, 173, 881 tri-

grams.

The testing set used for WFSA comes from the MHK test. We manually collected

sentences from 200 test essays, and counted four kinds of character-wise writing

errors. They are substitution, deletion, insertion and transposition errors and their

proportions are shown in Table 1. From Table 1, we see that the substitution error

is the most common and serious one. Therefore, in SCESS, we focus on detection

and correction of substitution.

4.2.2 Performance Criteria

There are three performance criteria for estimating the results of detection and

correction for erroneous characters, which are Recall Rate, Detection Precision and

Correction Precision (Leacock, Chodorow, Gamon and Tetrault 2010):

Recall Rate =
N(W → R) +N(W → S)

N(W )
(11)

Detection Precision =
N(W → R) +N(W → S)

N(W → R) +N(W → S) +N(R→W )
(12)

Correction Precision =
N(W → R)

N(W → R) +N(W → S) +N(R→W )
(13)



20

Table 2. Comparison of three corpora. The testing set comes from

the MHK test (200 essays). We set all the parameters empirically

(the beam width = 10, the punishment value = 0.5, the heuristic function = H1).

Corpus Recall Rate Detection Precision Correction Precision

People’s Daily 86.55% 70.25% 65.14%

Hodgepodge 86.33% 74.67% 70.17%

Literature 93.93% 78.58% 74.05%

where N(W ) is the number of wrong characters in the original text; N(W →
R) is the number of characters modified correctly; N(W → S) is the number

of characters detected correctly but mistakenly modified and N(R → W ) is the

number of characters that are originally right but are mistakenly modified to wrong

characters.

Additionally, we introduce F−measure as an indicator, which is a common index

in natural language processing. Adapted to WFSA, we get the equation:

F −measure =
2 ·Detection Precision ·Recall Rate

Detection Precision+Recall Rate
. (14)

Equation (14) is used to compare WFSA with other methods.

4.2.3 Experimental Settings

The first step is to choose an appropriate corpus. Table 2 shows the comparison of

three kinds of corpora, namely, People’s Daily, Hodgepodge and Literature. People’s

Daily does not perform well, because its official form of usage is distant from daily

use and test essays. Hodgepodge uses informal Chinese, so it is not satisfactory,

either. Literature is proved to be the best one because it uses not only standard

but also daily Chinese which is closest to the style of test essays, so we choose it

for subsequent experiments.

After the corpus has been determined, we need to tune the key parameters to

achieve best results. There are three parameters in our approach: the heuristic value,

the punishment value and the beam width. As described in Section 2.4.2 (Heuristic

Search), we have tested three heuristic functions and found H1 (= probability
Nr

×Nu)

is the best one. We have also set different punishment values from 0.1 to 3.5 per

modified character at intervals of 0.1 and found that 1.3 is the best choice. The beam

width is used to limit the size of the pre-candidate set in the Beam Container. We

have tested different beam widths from 5 to 30 at intervals of 5 and decided to

choose 25 to balance the performance and the efficiency.
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Table 3. Comparisons of WFSA, Google and Baidu. The testing set comes from

the MHK test (200 essays).

Recall Rate Detection Precision Correction Precision F -measure

WFSA 88.50% 92.31% 88.46% 0.9036

Google 45.34% 93.30% 87.50% 0.6102

Baidu 17.79% 94.25% 89.66% 0.2993

4.2.4 Experimental Results and Analysis

Our experimental results are shown in Table 3. The Recall Rate of 88.50%, the

Detection Precision of 92.31% and the Correction Precision of 88.46% indicate that

our method is quite effective.

In order to further demonstrate that WFSA is effective in detecting and correcting

erroneous characters, we compare WFSA with current Chinese text correction

systems. They are used by www.google.com and www.baidu.com, both of which

are popular search engines in China and provide detection and correction prompts

for erroneous characters.

From Table 3, we see that the Recall Rate of WFSA performs much better than

Google and Baidu, though the Detection Precision and the Correction Precision

are slightly lower. F-measure demonstrates that WFSA is much more effective.

4.3 Experiments on ILSA

In the experiments on automated essay scoring using ILSA, MATLAB is used to

multiply matrices and do re-projection. For the training set, their corresponding

human scores (from 0 to 6 at intervals of 0.5) will be paired with the essay vectors

in order to train the scoring model based on SVM. LIBSVM 2(Chang and Lin 2011)

is used to help to complete the training and scoring.

4.3.1 Introduction to Datasets

In order to test ILSA, we use 157, 760 essays and 1, 000 essays with the same

assignment from the MHK test as the training set and the testing set respectively.

The human scoring distribution is shown in Figure 13.
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Fig. 13. Human scoring distribution of the training set (left) and the testing set (right).

Table 4. Results of ILSA with different batch sizes. In order to smooth out biases

that may occur in the processing, we run these experiments 10 times on the same

dataset and compute average values.

Batch size Time(s) Batch size Time(s) Batch size Time(s)

10 463.7294 20 255.4205 30 180.6784

40 148.7053 50 124.1791 60 108.4457

70 103.2142 80 92.754 90 86.0899

100 82.7572 200 69.81877 300 66.0840

400 68.7404 500 69.9703 600 79.8691

700 87.6521 800 94.3936 1, 000 105.9955

4.3.2 Optimal Batch Size

The batch size of essays is very important to ILSA, so we have conducted a series

of experiments to find the optimal batch size. The results of ILSA as the batch size

increases are shown in Table 4. In these experiments, we set both the threshold

value and the initial value to 100. Then we set the batch size from 10 to 1,000, at

intervals of 10 and 100. When the batch size is 0, there is no difference between

conventional LSA and ILSA, because it means that we decompose the matrix in only

one iteration procedure. That is to say, if batch size is 0, when we are performing

conventional SVD on the initial matrix M in line 6 in Algorithm 2, we are in fact

decomposing the original matrix D, and the Algorithm 2 finishes here. Apparently,

in this case, no incremental decomposition happens. As the batch size increases,

2 available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 5. Optimal batch size.

Batch size Time(s) Batch size Time(s) Batch size Time(s)

260 68.84589 270 68.03251 280 67.89831

290 66.77077 300 666.08409 310 65.95101

320 65.23065 330 66.52441 340 66.03742

350 66.58706 360 66.34916 370 67.18953

380 67.26448 390 68.7329 400 68.7404

Table 6. Optimal batch sizes for different sizes of datasets. In order to smooth out

biases that may occur in the processing, we run these experiments 10 times on the

same dataset and compute average values.

Size of dataset Optimal batch size Size of dataset Optimal batch size

10, 000 296 20, 000 308

30, 000 320 40, 000 348

50, 000 360 60, 000 432

70, 000 476 80, 000 490

from Table 4, we can see that the time of ILSA decreases sharply at first, and

continues increasing gradually.

When we concentrate on the results from 260 to 400 as shown in Table 5, we

can see the optimal batch size is 320. Therefore, in the subsequent experiments, the

batch size is set to 320.

4.3.3 Relative Update Time

The relative update time is used to observe the performance of ILSA based on the

size of the dataset and the optimal batch size:

relative update time =
(n− n′)

optimal batch zize
× base

n
(15)
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Fig. 14. Relative update time.

where n is the number of essay vectors (the size of the original dataset matrix), and

n′ is the initial value. Base means the size of the dataset as a unit. For example,

in our experiment, base is 100, 000 because the size of the training set is 157, 760.

Thus, the relative update time reflects the ability of ILSA when faced with different

sizes of datasets.

To make it clear, we have conducted a series of experiments. In these experiments,

we increase n from 10, 000 to 80, 000 at intervals of 10, 000 with n′ = 100. Fixing

n and n′, by using various batch sizes on the decomposition and observing the

running time, we choose optimal batch sizes for different sizes of datasets in Table

6. From Table 6, we can see that as the size of the dataset grows, the optimal batch

size grows as well.

For showing that the performance of ILSA does not become worse, we compute

the relative update time and plot it in Figure 14. From Figure 14, we can see that

as n grows, the relative update time decrease, meaning that ILSA performs more

efficiently as the dataset grows larger. For instance, when n = 20, 000, ILSA updates

decomposition in 32 iteration procedures; when n = 80, 000, ILSA finishes updating

in only about 20 iteration procedures.

4.3.4 Comparison of ILSA and Conventional LSA

The comparison of ILSA and conventional LSA for running time is illustrated in

Figure 15. In the experiments, we increase the size of the training set from 31, 552 to

157, 760. Figure 15 shows that when the size grows larger, ILSA performs far more

efficiently than conventional LSA. Specifically, when the size grows to 110, 432, the

time of conventional LSA is more than two hours (7, 200s), as is shown in Figure

15, so it is obvious that ILSA is much better.

In addition to running time, memory usage is another huge advantage of ILSA.

Figure 16 shows the comparison of ILSA and conventional LSA for memory

usage as the size of the training set grows. From Figure 16, we can see that

the maximum memory usage of ILSA is only 492MB, and moreover, it performs

relatively stably. In sharp contrast, conventional LSA uses much more memory and
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Fig. 15. Comparison of ILSA and conventional LSA for running time.
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Fig. 16. Comparison of ILSA and conventional LSA for memory usage.

increases distinctly. In practical application, language tests usually produce a big

dataset, so, even given huge memory, it is impossible for conventional LSA to finish

the decomposition task, but it is viable for ILSA to perform it.

4.3.5 Scoring Performance

From the experimental results, we see that ILSA has great advantages both in

time and memory usage. More encouragingly, ILSA does not weaken the scoring

performance, compared with conventional LSA. To evaluate ILSA, we use several

criteria: Scoring Accuracy, Quadratic Weighted Kappa and Spearman’s Coefficient.

Scoring Accuracy : The Scoring Accuracy is calculated as follows:

Scoring Accuracy =

∑n
i=1 t(hsi, psi)

n
(16)

where n is the size of the testing set, and hsi and psi are the human score
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Table 7. Scoring performance of ILSA, conventional LSA, Baseline and Human.

The size of the testing set is 1, 000.

ILSA LSA Baseline Human

Acceptable Scorings 895 889 752 860

Unacceptable Scorings 105 111 248 140

Scoring Accuracy 89.50% 88.90% 75.20% 86.00%

Quadratic Weighted Kappa 0.56 0.58 0.00 0.54

Spearman’s Correlation 0.61 0.61 0.00 0.53

and predicted score of the i-th essay respectively. The function t(hsi, psi) is

binary, defined as:

t(hsi, psi) =

{
1 |hsi − psi| ≤ 1

0 otherwise
(17)

If the difference between a human score and a predicted score is no more than

1 point, it is acceptable.

Quadratic Weighted Kappa : For Quadratic Weighted Kappa, we construct

two confusion matrices. The first one shows the human scores and the

predicted scores given by conventional LSA, and the second one shows the

human scores and the predicted scores given by ILSA. Quadratic Weighted

Kappa takes chance agreement into account.

Spearman’s Correlation : We calculate the Spearman’s Correlation ρ:

ρX,Y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2(yi − ȳ)2

(18)

where X and Y stand for the ranks of human scores and the predicted scores

respectively, and x̄ and ȳ for their average values respectively, and n is the

size of the dataset.

In order to give an overall impression of SCESS, we show the results in Table 7.

In this table, not only are the performances of LSA and ILSA compared, a further

comparison of a baseline classifier (Baseline) and two human raters’ performance

(Human) is also shown.

The baseline classifier counts the most frequent score in the training set, and

thus, gives the predicted scores of the essays in the testing set. In our training set,

since the most frequent score is 4, this baseline classifier will give point 4 to all the

essays in the testing set. The extreme low values of the Quadratic Weighted Kappa

and Spearman’s Correlation verify this unreasonable method.
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Table 8. Scoring deviations of ILSA and conventional LSA

Deviation ILSA LSA

(1, 1.5] 71 80

(1.5, 2] 27 24

(2, 2.5] 7 6

(2.5, 3] 0 1

From Table 7, we see that ILSA has the best Scoring Accuracy. The Spearman’s

Correlations of ILSA and LSA are the same and it is better than that of Human.

Although the Quadratic Weighted Kappa of ILSA is slightly lower than LSA, ILSA

is still effective, because the difference is very small.

Focusing on ILSA and LSA, we use Table 8 to show the scoring deviations. Each

cell is the number of the unacceptable scores whose differences with human scores

lie in the corresponding deviation interval.

5 Conclusions and Future Work

In this paper, we describe the development of an automated simplified Chinese

essay scoring system based on WFSA and ILSA, called SCESS. Combined with the

Confusing-Character Table, the Part-Of-Speech Table, beam search and heuristic

search, WFSA can effectively segment Chinese sentences into words. In addition,

it can detect and correct erroneous simplified Chinese characters. A Recall Rate

of 88.50%, a Detection Precision of 92.31% and a Correction Precision of 88.46%

show that WFSA is very effective. After segmentation, SCESS uses ILSA to process

segmented essays and extract semantic features. Finally, we use SVM to score essays

automatically. From the experimental results, we see that ILSA is quite efficient,

because it significantly reduces both running time and memory usage. Additionally,

it can successfully score essays with the Scoring Accuracy of 89.50%. Overall, SCESS

proves to be promising.

In the future, we will test SCESS on more assignments so that the generalizability

can be verified. For further improvement of SCESS, we will continue to develop it

on Character and Word levels. For example, we will consider essay contexts to

identify the gender of a person and utilize names of entities. For a complete and

mature SCESS, WFSA-based detection and correction for erroneous characters will

be integrated. Moreover, we will study more methods to assess essays automatically

on Sentence and Paragraph levels. Many novel methods will be tested, including

Contextualized Latent Semantic Indexing (CLSI), probabilistic LSA (pLSA),

Latent Dirichlet Allocation (LDA), hierarchical LDA (hLDA) and so forth.
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