Digital Signal Processing Properties of the Discrete-Time Fourier Transform

D. Richard Brown III

Symmetry/Antisymmetry Definitions

Definition

A sequence x[n] is conjugate symmetric if $x^*[-n] = x[n]$.

Definition

A sequence x[n] is conjugate antisymmetric if $x^*[-n] = -x[n]$.

If x[n] is real and conjugate symmetric, it is an **even** sequence. If x[n] is real and conjugate antisymmetric, it is an **odd** sequence.

Definition

A function f(a) is **conjugate symmetric** if $f^*(-a) = f(a)$.

Definition

A function f(a) is conjugate antisymmetric if $f^*(-a) = -f(a)$.

If f(a) is real and conjugate symmetric, it is an **even** function. If f(a) is real and conjugate antisymmetric, it is an **odd** function.

Decompositions

Any sequence x[n] (real or complex) can be expressed as the sum of a conjugate symmetric and conjugate antisymmetric sequence, i.e.,

with

$$x_e[n] = \frac{1}{2} \left(x[n] + x^*[-n] \right) \text{ and } x_o[n] = \frac{1}{2} \left(x[n] - x^*[-n] \right)$$

By linearity, the DTFT can be written as

$$X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{j\omega})$$

with

$$X_e(e^{j\omega}) = \frac{1}{2} \left(X(e^{j\omega}) + X^*(e^{-j\omega}) \right) \text{ and } X_o(e^{j\omega}) = \frac{1}{2} \left(X(e^{j\omega}) - X^*(e^{-j\omega}) \right)$$

It is easy to confirm that $X_e(e^{j\omega})$ is a conjugate symmetric function of ω and $X_o(e^{j\omega})$ is a conjugate antisymmetric function of ω (just plug in $-\omega$ for ω).

Sequence $x[n]$	Fourier Transform $X(e^{j\omega})$
1. $x^*[n]$	$X^*(e^{-j\omega})$
2. $x^*[-n]$	$X^*(e^{j\omega})$
3. $\mathcal{R}e\{x[n]\}$	$X_e(e^{j\omega})$ (conjugate-symmetric part of $X(e^{j\omega})$)
4. $j\mathcal{I}m\{x[n]\}$	$X_o(e^{j\omega})$ (conjugate-antisymmetric part of $X(e^{j\omega})$)
5. $x_e[n]$ (conjugate-symmetric part of $x[n]$)	$X_R(e^{j\omega}) = \mathcal{R}e\{X(e^{j\omega})\}$
6. $x_0[n]$ (conjugate-antisymmetric part of $x[n]$)	$jX_I(e^{j\omega}) = j\mathcal{I}m\{X(e^{j\omega})\}$
The following p	properties apply only when x[n] is real:
7. Any real $x[n]$	$X(e^{j\omega}) = X^*(e^{-j\omega})$ (Fourier transform is conjugate symmetric)
8. Any real $x[n]$	$X_R(e^{j\omega}) = X_R(e^{-j\omega})$ (real part is even)
9. Any real $x[n]$	$X_I(e^{j\omega}) = -X_I(e^{-j\omega})$ (imaginary part is odd)
10. Any real $x[n]$	$ X(e^{j\omega}) = X(e^{-j\omega}) $ (magnitude is even)
11. Any real $x[n]$	$\angle X (e^{j\omega}) = -\angle X (e^{-j\omega})$ (phase is odd)
12. $x_e[n]$ (even part of $x[n]$)	$X_R(e^{j\omega})$
13. $x_o[n]$ (odd part of $x[n]$)	$jX_I(e^{j\omega})$

TABLE 2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

Sequence	Fourier Transform
x[n]	$X(e^{j\omega})$
<i>y</i> [<i>n</i>]	$Y(e^{j\omega})$
1. $ax[n] + by[n]$	$aX(e^{j\omega})+bY(e^{j\omega})$
2. $x[n - n_d]$ (n_d an integer)	$e^{-j\omega n_d} X\left(e^{j\omega}\right)$
3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$
4. $x[-n]$	$X(e^{-j\omega})$
	$X^*(e^{j\omega})$ if $x[n]$ real.
5. <i>nx</i> [<i>n</i>]	$j \frac{dX \left(e^{j\omega}\right)}{d\omega}$
6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$
7. $x[n]y[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Parseval's theorem:

8.
$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

9.
$$\sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$$

Sequence	Fourier Transform
1. δ[n]	1
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n]$ (a < 1)	$\frac{1}{1 - ae^{-j\omega}}$
5. u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
6. $(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p (n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8. $\frac{\sin \omega_c n}{\pi n}$	$X\left(e^{j\omega}\right) = \begin{cases} 1, & \omega < \omega_{c}, \\ 0, & \omega_{c} < \omega \le \pi \end{cases}$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
1. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)]$

TABLE 2.3	FOURIER TRANSFORM PAIRS