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Abstract

We introduce DyNFL, a novel neural field-based ap-
proach for high-fidelity re-simulation of LiDAR scans in dy-
namic driving scenes. DyNFL processes LiDAR measure-
ments from dynamic environments, accompanied by bound-
ing boxes of moving objects, to construct an editable neu-
ral field. This field, comprising separately reconstructed
static backgrounds and dynamic objects, allows users to
modify viewpoints, adjust object positions, and seamlessly
add or remove objects in the re-simulated scene. A key in-
novation of our method is the neural field composition tech-
nique, which effectively integrates reconstructed neural as-
sets from various scenes through a ray drop test, account-
ing for occlusions and transparent surfaces. Our evaluation
with both synthetic and real-world environments demon-
strates that DyNFL substantial improves dynamic scene
simulation based on LiDAR scans, offering a combination
of physical fidelity and flexible editing capabilities.

1. Introduction

We introduce a neural representation for the purpose of re-
constructing and manipulating LiDAR scans of dynamic
driving scenes. Counterfactual re-simulation is an emerg-
ing application in the realm of autonomous driving, offer-
ing a unique approach to examining ”what if” scenarios.
This method involves creating a reconstruction of a real-
world event, termed as digital twin and then applying vari-
ous modifications to it. These could include altering the en-
vironmental conditions, changing the action of some agent,
or introducing additional scene elements. Analyzing the
outcomes of these edited scenarios provides insights into
the functioning of the perception system, moreover they can
be used to obtain training data for rare situations.

The essence of counterfactual re-simulation is the ca-
pability to authentically recreate variations of the original,
factual observation. We address this challenge in the con-
text of LiDAR on autonomous vehicles (AV). Existing ap-
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proaches to LiDAR re-simulation have important limita-
tions. Conventional simulators such as CARLA [9] and
NVIDIA DRIVE Sim are capable of modeling LiDAR sen-
sors. However, their reliance on manually designed 3D sim-
ulation assets requires significant human effort. LiDAR-
sim [27] aims to remedy this by reconstructing vehicles
and scenes from real measurements. While producing en-
couraging results, its two-stage LiDAR modeling lacks re-
alism, particularly in terms of physical effects like multi-
returns and reflected intensity, which were shown to matter
for downstream processing [15]. Following NeRF’s [28]
success in camera view synthesis, some works have applied
neural fields for LiDAR modeling [19, 44, 59]. In partic-
ular, Neural LiDAR Fields (NFL)[19] developed a physi-
cally inspired LiDAR volumetric rendering scheme that ac-
counts for two-way transmittance and beam width, allow-
ing faithful recovery of secondary returns, intensity, and ray
drops. These models are, however, limited to static scenes
that do not change while multiple input views are scanned,
and are thus of limited use for re-simulation in the presence
of moving traffic. Recently, UniSim [55] followed Neural
Scene Graph [32] in modeling road scenes as sets of mov-
able NeRF instances on top of a static background. UniSim
introduced a unified synthesis approach for camera and Li-
DAR sensors, but ignored physical sensor properties like
two-way transmittance and beam width [19].

We present DyNFL, a novel approach for re-simulating
LiDAR views of driving scenarios. Our method builds
upon a neural SDF that enables an accurate representa-
tion of scene geometry, while at the same time enforc-
ing physical accuracy by modeling two-way transmittance,
like NFL [19]. Our primary contribution is a method for
compositing neural fields that accurately integrates LiDAR
measurements from individual fields representing different
scene assets. With the help of a ray drop test, we effec-
tively manage occlusions and transparent surfaces. This not
only ensures physical accuracy, but also facilitates the in-
clusion of assets reconstructed from a variety of static and
dynamic scenes, thereby enhancing control over the sim-
ulated content. Our method bridges the gap between the
physical fidelity of the re-simulation and flexible editing of
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Figure 1. Overview of DyNFL. Our method takes LiDAR scans and tracked bounding boxes of dynamic vehicles as input. DyNFL first
decomposes the scene into a static background and N dynamic vehicles, each modelled using a dedicated neural field. These neural fields
are then composed to re-simulate LiDAR scans in dynamic scenes. Our composition technique supports various scene edits, including
altering object trajectories, removing and adding reconstructed neural assets between scenes.

dynamic scenes. We validate DyNFL with both synthetic
and real-world data, focusing on three key areas: (i) high-
quality view synthesis, (ii) perceptual fidelity, and (iii) as-
set manipulation. We find that our approach outperforms
baseline models w.r.t. both range and intensity. Its synthetic
outputs also show higher agreement with real scans in terms
of object detection and segmentation. Furthermore, DyNFL
enables not only removal, duplication and repositioning of
assets within the same scene, but also the inclusion of as-
sets reconstructed in other scenes, paving the way for new
applications.

2. Related work
2.1. Neural radiance fields and volume rendering

Neural Radiance Fields (NeRF) [28] have demonstrated re-
markable success in novel-view image synthesis through
neural volume rendering. These fields are characterized by
the weights of Multilayer Perceptrons (MLPs), which en-
able the retrieval of volume density and RGB colors at any
specified point within the field for image compositing via
volume rendering. Several studies [2, 3, 7, 12, 46] have
subsequently advanced NeRF’s rendering quality by ad-
dressing challenges such as reducing aliasing artifacts [2],
scaling to unbound large-scale scenarios [3], and captur-
ing specular reflections on glossy surfaces [46]. Certain
works [7, 12, 20, 29] have explored more effective repre-
sentations of radiance fields. TensorsRF [7] employs mul-
tiple compact low-rank tensor components, such as vectors
and matrices, to represent the radiance field. Plenoxels [12]
accelerates NeRF training by replacing MLPs with explicit
plenoptic elements stored in sparse voxels and factorizing
appearance through spherical-harmonic functions. Müller
et al. [29] achieved a substantial acceleration in rendering
speed by employing a representation that combines train-
able multi-resolution hash encodings (MHE) with shared

shallow MLP networks. Kerbel et al. [20] introduce a novel
volume rendering method utilizing 3D Gaussians to rep-
resent the radiance field and rendering images based on
visibility-aware splatting of 3D Gaussians.

2.2. Dynamic neural radiance fields

Neural fields [53] can be extended to represent dynamic
scenes. On top of the canonical scene representation, some
methods [33–35, 58] additionally model the 4D deforma-
tion fields. Meanwhile, some other works learn a space-
time correlated [1, 24, 26, 38], or decomposed [45, 52, 54]
neural field to encode the 4D scenes, achieving fine-grained
reconstruction of the geometry and the appearance. Some
other methods decompose the scene into static and dynamic
parts, and model each dynamic actor with dedicated neu-
ral fields. Neural Scene Graph [32] and Panoptic Neural
Fields [21] treat every dynamic object in the scene as a
node, and synthesize photo-realistic RGB images by jointly
rendering from both dynamic nodes and static background.
UniSim[55] employs neural SDF representation to model
dynamic scenes in driving scenarios, and render in a similar
way to Neural Scene Graph [32].

2.3. Neural surface representation

A fundamental challenge for NeRF and its variants in-
volves accurately recovering the underlying 3D surface
from the implicit radiance field. Surfaces obtained by
thresholding on the volume density of NeRF often exhibit
noise [47, 56]. To address this, implicit surface representa-
tions like Occupancy [30, 31] and signed distance functions
(SDF) [25, 41, 47–49, 56, 57, 60] in grid maps are com-
monly integrated into neural volume rendering techniques.

NeuS [47] introduces a neural SDF representation for
surface reconstruction, proposing an unbiased weight func-
tion for the appearance composition process in volume ren-
dering. Similarly, VolSDF [56] models scenes with a neu-
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ral SDF and incorporates the SDF into the volume render-
ing process, advocating a sampling strategy of the view-
ing ray to bound opacity approximation error. Neuralan-
gelo [25] improves surface reconstruction using the multi-
resolution hash encoding (MHE) [29] and SDF-based vol-
ume rendering [47]. While these methods might deliver sat-
isfying dense surface reconstructions, their training is time-
consuming, taking hours for a single scene. Voxurf [51]
offers a faster surface reconstruction method through a two-
stage training procedure, recovering the coarse shape first
and refining details later. Wang et al. [49] expedites NeuS
training to several minutes by predicting SDFs through a
pipeline composed of MHE and shallow MLPs.

Many works also incorporate distances measured by Li-
DAR as auxiliary information to constrain the radiance
field. For instance, works [6, 50] render depth by accumu-
lating volume density and minimizing depth discrepancies
between LiDAR and render depth during training. Rematas
et al. [37] enforces empty space between the actual surface
and the ray origin.

2.4. LiDAR simulation

While simulators like CARLA [9] and AirSim [39] can sim-
ulate LiDAR data, they suffer from expensive human an-
notation requirements and a notable sim-to-real gap due to
limited rendering quality. Generative model-based meth-
ods for LiDAR synthesis [5, 61] offer an alternative but
often lack control and produce distorted geometries [23].
Learning-based approaches [11, 23, 27] try to enhance real-
ism by transferring real scan properties to simulations. For
example, [15] uses a RINet trained on RGB and real Li-
DAR data to augment simulated scan qualities. LiDAR-
sim [27] employs ray-surfel casting with explicit disk sur-
fels for more accurate simulations. Huang et al. [19] pro-
posed Neural LiDAR Fields (NFL), combining neural fields
with a physical LiDAR model for high-quality synthesis, al-
though it’s limited to static scenes and can produce noisy
outputs due to its unconstrained volume density represen-
tation. UniSim [55] constructs neural scene representa-
tions from realistic LiDAR and camera data, using SDF-
based volume rendering for sensor measurement generation
at novel viewpoints.

3. Dynamic neural scene representation

Problem statement. Consider a set of LiDAR scans X =
{Xt}Tt=1 that have been compensated for ego-motion, along
with tracked bounding boxes* for dynamic vehicles B =
{Bv

t }Nv=1, where T represents the total number of LiDAR
scans, and N is the count of dynamic vehicles. Each scan
Xt is composed of nt rays, each ray r is described by the

*We assume that the ground truth object detection and tracking annota-
tions are available.

tuple (o,d, ζ, e, pd), where o and d denote the ray’s origin
and direction, ζ and e represent range and intensity values,
and pd ∈ {0, 1} indicates whether the ray is dropped or not
due to insufficient returned radiant power.

The goal is to reconstruct the scene with a static-dynamic
decomposed neural representation, that can enable the ren-
dering of LiDAR scan Xtgt from novel viewpoint Ttgt. This
setup also facilitates various object manipulations, includ-
ing altering object trajectories, and inserting or removing
objects from the scene. The overview of our method is given
in Fig. 1.

3.1. Neural scene decomposition

We leverage the inductive bias that driving scenes can be
decomposed into a static component and N rigidly-moving
dynamic components [13, 18]. Consequently, we establish
N +1 neural fields. The neural field Fstatic is designated for
the static component of the scene, capturing the unchanging
background elements. Concurrently, the set of neural fields
{Fv}Nv=1 is used to model the N dynamic entities, specifi-
cally the vehicles in motion.

Neural field for static background. The static back-
ground is encoded into a neural field Fstatic : (x,d) 7→
(s, e, pd) that estimates the signed distance s, intensity e,
and ray drop probability pd ∈ [0, 1] given the point coor-
dinates x and the ray direction d. In practice, we first use
a multi-resolution hash encoding (MRH) [29] to map each
point to its positional feature fpos ∈ R32, and project the
view direction onto the first 16 coefficients of the spherical
harmonics basis, resulting in fdir. Subsequently, we utilize
three Multilayer Perceptrons (MLPs) to estimate the scene
properties as follows:

(s, fgeo) = fs(fpos), e = fe(fray), pd = fdrop(fray).
(1)

Here, fs, fe, and fdrop are three MLPs, fray ∈ R31 repre-
sents the ray feature and is constructed by concatenating
the per-point geometric feature and the directional feature.
The geometric feature is denoted as fgeo ∈ R16. For more
implementation details, please refer to the supplementary
materials.

Neural fields for dynamic vehicles. LiDAR scans col-
lected over time are often mis-aligned due to the motion
of both the sensor and other objects in the scene. Despite
applying ego-motion for aligning static background points,
dynamic object points remain blurred along their trajecto-
ries. Our approach to constructing a dynamic neural scene
representation is grounded in the assumption that each dy-
namic object only undergoes rigid motion. Therefore, we
can first align them over time and reconstruct them in their
canonical coordinate frame, and then render them over time
by reversing the alignment of the neural field.
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Specifically, consider a dynamic vehicle v occurring in
LiDAR scans {Xv

t }Tt=1 along with the associated bound-
ing boxes {Bv

t ∈ R3×8}Tt=1 in the world coordinate frame-
work. Here each bounding box is defined by its eight cor-
ners, and the first bounding box Bv

1 is considered as the
canonical box. We estimate the relative transformations
{Tt ∈ SE(3)}Tt=2 between the remaining T − 1 bounding
boxes and the canonical box, expressed as Bv

1 = TtB
v
t

*.
Subsequently, all LiDAR measurements on the object are
transformed and accumulated in its canonical coordinate
frame. The vehicle v is then reconstructed in its canoni-
cal space, akin to the static background, using a neural field
Fv . To render the dynamic vehicle at timestamp t, the cor-
responding rigid transformation is applied to the queried
rays. The dynamic neural field can thus be expressed as:
Fv

t : (Ttx,Ttd) 7→ (s, e, pd). The rendering process for
Fv is the same as rendering for static neural field Fstatic.

4. Neural rendering of the dynamic scene
In this section, we present the methodology for rendering
LiDAR scans from the neural scene representation. We be-
gin by revisiting the density-based volume rendering for-
mulation for active sensors [19] in Sec. 4.1. Subsequently,
we explore the extension of this formulation to SDF-based
neural scene representation in Sec. 4.2. Finally, we provide
a detailed discussion on rendering LiDAR measurements
from individual neural fields in Sec. 4.3 and the process of
composing results from different neural fields in Sec. 4.4.

4.1. Volume rendering for active sensor

LiDAR utilizes laser beam pulses to determine the distance
to the nearest reflective surface by analyzing full waveform
profile of the returned radiant power. The radiant power
P (ζ) from range ζ is the result of a convolution between the
pulse power Pe(t) and the impulse response H(ζ), defined
as [16, 17, 19]:

P (ζ) =

∫ 2ζ/c

0

Pe(t)H(ζ − ct

2
) dt . (2)

The impulse response H(ζ) is a product of the target and
sensor impulse responses: H(ζ) = HT (ζ) ·HS(ζ), and the
individual components are expressed as:

HT (ζ) =
ρ

π
cos(θ)δ(ζ − ζ̄) , Hs(ζ) = T 2(ζ)

Ae

ζ2
, (3)

where ρ represents the surface reflectance, θ denotes inci-
dence angle, ζ̄ is the ground truth distance to the nearest
reflective surface, T (ζ) and Ae describe the transmittance
at range ζ and sensor’s effective area, respectively. Due to

*TB = RB + t, where R and t are the rotation and translation
components of T.

the non-differentiability introduced by the indicator func-
tion δ(ζ − ζ̄), Eq. (2) is non-differentiable and is thus not
suitable for solving the inverse problem. NFL [19] solves it
by extending it into a probabilistic formulation given by:

P (ζ) = C · T
2(ζ) · σζρζ

ζ2
cos(θ) . (4)

Here, C accounts for the constant values, and σζ represents
the density at range ζ. The radiant can be reconstructed
using the volume rendering formulation:

P =

N∑
j=1

∫ ζj+1

ζj

C
T 2(ζ) · σζρζ

ζ2
cos(θj) dζ =

N∑
j=1

wjρ
′
ζj ,

(5)
where the weights wj = 2αζj ·

∏j−1
i=1 (1− 2αζi). Here αζj

is the discrete opacity at range ζj . Please refer to [19] for
more details.

4.2. SDF-based volume rendering for active sensor

A neural scene representation based on probabilistic density
often results in surfaces with noticeable noise due to insuffi-
cient surface regularization [47]. To address this, we opt for
a signed distance-based scene representation and establish
the volume rendering formulation within the framework of
an active sensor. Building upon SDF-based volume render-
ing for passive sensors [47], we compute the opaque density
σ̃ζi as follows:

σ̃ζi = max

(
−dΦs

dζi
(f(ζi))

Φs(f(ζi))
, 0

)
, (6)

where Φs(·) represents the Sigmoid function, f(ζ) evalu-
ates the signed distance to the surface at range ζ along the
ray r.

Next, we substitute the density σ in Eq. (5) with opaque
density from Eq. (6) and re-evaluate the radiant power and
weights as:

P =

N∑
j=1

T 2
ζj α̃ζjρ

′
ζj , w̃j = 2α̃ζj ·

j−1∏
i=1

(1− 2α̃ζi) . (7)

In this context, α̃ζj is computed as:

α̃ζj = max

(
Φs(f(ζj))

2 − Φs(f(ζj+1))
2

2Φs(f(ζj))
2 , 0

)
. (8)

Please refer to the supplementary for more details.

4.3. Volume rendering for LiDAR measurements

Consider rendering the LiDAR measurements from a single
neural field, we employ the hierarchical sampling[47] tech-
nique to sample a total of Ns = Nu +Ni points along each
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ray, where Nu points are uniformly sampled, and Ni points
are probabilistically sampled based on the weights along the
ray, facilitating denser sampling in proximity to the surface.
Subsequently, we compute the weights for the Ns points
following Eq. (8). The rendering of range, intensity, and
ray drop for each ray can be expressed through volume ren-
dering as follows: yest =

∑Ns

j=1 wjyj , where y ∈ {ζ, e, pd}.

4.4. Neural rendering for multiple fields

Our full neural scene representation comprises N + 1 neu-
ral fields as discussed in Sec. 3.1. Rendering from all these
fields for each ray during inference is computationally in-
tensive. To address this, we implement a two-stage method.
In the first stage, we identify the k + 1 neural fields, where
k ≥ 0 represents the number of dynamic fields, that are
likely to intersect with a given ray. The second stage in-
volves rendering LiDAR measurements from these selected
fields individually and then integrating them into a unified
set of measurements.

Ray intersection test. As outlined in Sec. 3.1, each dy-
namic neural field is reconstructed in its unique canonical
space, defined by a corresponding canonical box. To de-
termine neural fields intersecting with a ray at inference
time, we begin by estimating the transformations {Tv

t }Nv=1,
which convert coordinates from the world framework to
each vehicle’s canonical space at timestamp t. These
transformations are determined by interpolating the train-
ing set transformations using spherical linear interpolation
(SLERP) [40]. Following this, we apply transformations to
the queried ray and run intersection tests with the canonical
boxes of the scenes.

Neural rendering from multiple neural fields. After
identifying the k + 1 neural fields that potentially intersect
with a ray, we perform volume rendering on each field sepa-
rately, yielding k+1 distinct sets of LiDAR measurements.
Next, we evaluate the ray drop probabilities across these
fields. A ray is deemed dropped if all neural fields indi-
cate a drop probability pd > 0.5. For rays not classified
as dropped, we sort the estimated ranges in ascending order
and select the nearest one as our final range prediction. Cor-
respondingly, the intensity value is extracted from the same
neural field associated with this closest range.

5. Neural scene optimisation
Given the set of LiDAR scans and the associated tracked
bounding boxes of the dynamic vehicles, we optimise our
neural scene representation by minimising the loss:

L = wζLζ + wsLs + weikLeik + weLe + wdropLdrop, (9)

where w∗ denotes respective weights, and each individual
loss term L∗ is explained below.

Range reconstruction loss. For range estimation, we em-
ploy L1 loss, defined as: Lζ = 1

|R|
∑

r∈R |ζest−ζgt|, where
R denotes the set of LiDAR rays, ζest and ζgt correspond
to the estimated and actual ranges, respectively.

Surface points’ SDF regularisation. Acknowledging
that LiDAR points mostly come from actual surface, we
introduce an additional SDF regularisation term Ls that pe-
nalizes surface points’ SDF values: Ls =

1
|P|
∑

p∈P |s(p)|.
Here P denotes the set of surface points and s(p) represents
the SDF value of the point p.

Eikonal constraint. Following [14], we utilize the
Eikonal loss, Leik, to regularize the SDF level set. This en-
sures the gradient norm of the SDF is approximately one
at any queried point. The loss is computed as: Leik =
1

|Z|
∑

p∈Z(∥∇s(p)∥2 − 1)2, where Z is the set of all the
sampled points. To stablise the training procedure, we adopt
a numerical approach [25] to compute ∇s(p) as:

∇s(p) =
s (p+ ϵ)− s (p− ϵ)

2ϵ
, (10)

where the numerical step size ϵ is set to be 10−3 meters.

Intensity Loss. For intensity reconstruction, we apply L2
loss, defined as: Le =

1
|R|
∑

r∈R(eest − egt)
2.

Ray drop loss. We follow [19] to supervise the ray drop
estimation with a combination of a binary cross entropy loss
Lbce and a Lovasz loss Lls [4] as:

Ldrop =
1

|R|
∑
r∈R

(Lbce(pd,est, pd,gt) + Lls(pd,est, pd,gt)) .

(11)
It’s worth noting that in the context of dynamic neural fields,
during training, we incorporate all LiDAR rays that inter-
sect with the objects’ bounding boxes of the scenes. A ray
is classified as dropped either if it is labeled as such in the
dataset or if it does not intersect with the actual surfaces of
the dynamic vehicles (e.g. rays that are close but in parallel
to the surfaces). This approach enhances the accuracy and
realism of the reconstructed dynamic neural fields, improv-
ing the rendering fidelity at inference time.

6. Experiments
6.1. Datasets and evaluation protocol

Real-world Dynamic scenes. We construct Waymo Dy-
namic dataset by selecting four representative scenes from
Waymo Open dataset [42], with multiple moving vehicles
inside. These scenes are comprised of sequences of 50 con-
secutive frames. For evaluation purposes, every fifth frame
is designated for testing, while the other 40 frames are allo-
cated for training.
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GT OursLiDARsim UniSim

Figure ablation joint not in paperFigure 2. Qualitative comparison of range estimation on Waymo Dynamic dataset. Dynamic vehicles are zoomed in, and points are color-
coded by range errors (-100 100 cm).

Real-world static scenes. We also evaluate our method
on four static scenes as introduced in [19]. There are two
settings, Waymo Interp applies the same evaluation proto-
col as Waymo Dynamic, while Waymo NVS employs a dedi-
cated closed-loop evaluation to validate the real novel view
synthesis performance. Please refer to NFL [19] for more
details about this setting.

Synthetic static scenes. TownClean and TownReal are
synthetic static scenes introduced in NFL [19]. They consist
of 50 LiDAR scans simulated in urban street environment,
using non-diverging and diverging beams, respectively.

Evaluation metrics. To evaluate the LiDAR range accu-
racy, we employ a suite of four metrics: mean absolute er-
rors (MAE [cm]), median absolute errors (MedAE [cm]),
Chamfer distance (CD[cm]) and MedAE for dynamic vehi-
cles (MedAE Dyn[cm]). For intensity evaluation, We report
root mean square error (RMSE). In addition to our primary
evaluations, we assess the re-simulated LiDAR scans’ re-
alism through two auxiliary tasks: object detection and se-
mantic segmentation. For object detection, we calculate the
detection agreement [27], both for all vehicles (Agg. [%])
and specifically for dynamic vehicles (Dyn. Agg. [%]). Re-
garding semantic segmentation, we measure and report re-
call, precision, and the intersection over union (IoU[%]).
It’s important to note that the predictions on the original
LiDAR scans serve as our ground truth, against which we
compare the results obtained from the re-simulated scans.

Baseline methods. Regarding LiDAR simulation on
static scenes, NFL [19] and LiDARsim[27] are two clos-
est baselines to compare to. Additionally, we include i-
NGP [29], DS-NeRF [8], and URF [37] for comparison. As
for simulation on dynamic scenes, we compare to LiDAR-
sim [27] and UniSim [55]*. Please refer to the supplemen-

*We re-implement LiDARsim [22] and UniSim [55] as they are not
open-sourced.

Method MAE ↓ MedAE ↓ CD ↓ MedAE Dyn ↓ Intensity RMSE ↓

LiDARsim [27] 170.1 11.5 31.1 16.0 0.10
Unisim [55] 35.6 6.1 14.3 14.3 0.05
Ours 30.8 3.0 10.9 8.5 0.05

Table 1. Evaluation of LiDAR NVS on Waymo Dynamic dataset.

TownClean TownReal Waymo interp. Waymo NVS
Method MAE ↓ MedAE ↓ CD ↓ MAE ↓ MedAE ↓ CD ↓ MAE ↓ MedAE ↓ CD ↓ MAE ↓ MedAE ↓ CD ↓

i-NGP [29] 42.2 4.1 17.4 49.8 4.8 19.9 26.4 5.5 11.6 30.4 7.3 15.3
DS-NeRF [8] 41.7 3.9 16.6 48.9 4.4 18.8 28.2 6.3 14.5 30.4 7.2 16.8
URF [37] 43.3 4.2 16.8 52.1 5.1 20.7 28.2 5.4 12.9 43.1 10.0 21.2
LiDARsim [27] 159.6 0.8 23.5 162.8 3.8 27.4 116.3 15.2 27.6 160.2 16.2 34.7
NFL[19] 32.0 2.3 9.0 39.2 3.0 11.5 30.8 5.1 12.1 32.6 5.5 13.2
Ours 26.7 0.7 6.7 33.9 2.1 10.4 28.3 4.7 12.5 28.6 4.9 13.0

Table 2. Evaluation of LiDAR NVS on static scenes.
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Figure 3. ECDF plots showcasing range errors across all the points
(left) and specifically for points associated with dynamic vehicles
(right). Our neural fields composition demonstrates superior per-
formance over LiDARsim [27] and UniSim [55], especially in the
context of dynamic vehicles.

tary for implementation details.

6.2. LiDAR novel view synthesis evaluation

LiDAR NVS in dynamic scenes. Quantitative compar-
isons with baseline methods are detailed in Tab. 1. DyNFL
notably outperforms LiDARsim [27] and UniSim [55] in
range reconstruction. This improvement is largely due to
our SDF-based neural scene representation, which incorpo-
rates the physical aspects of LiDAR sensing. Additionally,
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Figure 4. Qualitative results of range estimation. Regions with
gross errors (-100 100 cm) are highlighted.

Datasets MAE ↓ MedAE ↓ CD ↓

TownClean 26.7(-1.5) 0.7(-0.2) 6.7(-0.5)
Waymo Interp 28.3 (0.1) 4.7 (-0.2) 12.5 (-0.1)
Waymo Dynamic 30.8 (-0.3) 3.0 (-0.2) 10.9 (-0.3)

Table 3. Ablation study of volume rendering for active sensing.

Datasets MAE ↓ MedAE ↓ CD ↓

TownReal 33.9(-3.3) 2.1(-0.0) 10.4(-1.2)
Waymo Interp 28.3 (-0.3) 4.7 (-0.1) 12.5 (-0.3)

Table 4. Ablation study of the surface points’ SDF regularisation.

Figure2

GT w. ray dropw/o ray drop

Figure 5. Qualitative results on Waymo Dynamic dataset. Our
model equipped with a ray drop module effectively composites
multiple neural fields, re-simulating LiDAR scans of high quality.

our method employs a ray drop test when rendering multi-
ple neural fields, leading to a more accurate reconstruction
of dynamic vehicles, as evidenced in Fig. 2 and further sup-
ported by the data in Fig. 3.

LiDAR NVS in static scenes. In addition to dynamic
scenes, we evaluate DyNFL against baseline methods in
static scenarios, with the results detailed in Tab. 2 and Fig. 4.
DyNFL excels in reconstructing geometry in most cases. A
key observation is its superior performance in reconstruct-
ing planar regions (e.g. the ground shown in Fig. 4), espe-
cially when compared to NFL [19], which also uses a neural
field for surface representation. This improvement is largely
due to the enhanced surface regularizations provided by our
advanced SDF-based surface modeling approach.

6.3. Ablation study

SDF-based volume rendering for active sensing. We
begin by assessing the efficacy of our SDF-based volume

Ours LiDARsim

Figure6

Figure 6. Object detection results on Waymo Dynamic dataset. The
ground truth and predicted bounding boxes are marked in red and
blue, respectively.

GT Ours LiDARSim[27]

Threshold AP↑ AP↑ Agg.↑ Dyn. Agg.↑ AP↑ Agg.↑ Dyn. Agg.↑
IoU>0.7 0.85 0.86 0.77 0.71 0.90 0.76 0.68
IoU>0.5 0.98 0.96 0.87 0.76 0.95 0.86 0.76

Table 5. Object detection results on Waymo Dyanmic datasets.

Vehicle Background
Method Recall ↑ Precision ↑ IoU ↑ Recall ↑ Precision ↑ IoU ↑

i-NGP [29] 91.8 83.6 78.1 97.9 99.2 97.1
DS-NeRF [8] 89.3 84.8 77.3 98.1 98.8 97.0
URF [36] 86.9 79.8 72.0 97.7 98.5 96.2
Lidarsim [27] 89.6 68.9 64.0 94.5 98.9 93.5
NFL [19] 94.5 84.8 80.9 97.8 99.4 97.3
Ours 90.5 88.4 81.1 98.5 98.7 97.3

Table 6. Semantic segmentation results on Waymo NVS dataset.

rendering for active sensor, the results are shown in Tab. 3.
When compared to our baseline that uses the SDF-based
volume rendering for passive sensing, DyNFL demonstrates
enhanced performance in both synthetic (TownClean) and
real-world (Waymo Interp and Waymo Dynamic) datasets,
indicating the importance of incorporating the physical
sensing process of LiDAR in addressing the inverse prob-
lem.

Neural fields composition. To validate the efficacy of our
two-stage neural field composition approach, we compare it
with an alternative approach utilized in UniSim [55]. The
results are shown in Tab. 1. UniSim [55] blends different
neural fields by sampling points from all intersected neural
fields, followed by a single evaluation of volume rendering
to produce the final LiDAR scan. In contrast, our method in-
dependently renders from each intersecting neural field first,
and then combines these measurements into a final mea-
surement using a ray drop test (cf . Fig. 5). This approach
leads to a notable improvement in geometry reconstruction
over UniSim [55], exemplified by our method halving the
Median Absolute Error (MedAE) across all points. This en-
hancement is even more evident when focusing solely on
points related to dynamic vehicles (cf . Fig. 3).

Surface points’ SDF constraint. We examine the impor-
tance of the surface points’ SDF constraint discussed in
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GT frame( )̂θ, ̂x, ̂y, ̂z x = ̂x + 1,y = ̂y + 1 z = ̂z + 1 θ = ̂θ − 5∘  beams64 → 127
Figure 7. LiDAR novel view synthesis by changing sensor elevation angle (θ), poses (x, y, z) and number of beams on Waymo Dynamic
dataset. The points are color-coded by the intensity values (0 0.25).

Original scan Ours UniSim

Figure 8. Qualitative results of object removal and insertion.
DyNFL seamlessly inserts the neural asset (truck) into a new scene
attributed to our superior compositional rendering scheme. In con-
trast, UniSim [55] struggles to accurately model geometry.

Original scan Trajectory manipulation

Figure8

Detection results

Figure 9. Qualitative results of object trajectory manipulation. The
truck can be successfully detected after manipulation, indicating
high-realism LiDAR re-simulation achieved by DyNFL.

Sec. 5 on Town Real and Waymo Interp datasets. The results
shown in Tab. 4 suggest that our method yields improved
geometry reconstruction quality by additionally enforcing
LiDAR points to have zero SDF values.

6.4. Auxiliary task evaluations

To assess the fidelity of our neural re-simulation and gauge
the domain gap between re-simulated and real scans, we
evaluate their applicability in two downstream tasks: object
detection and semantic segmentation.

Object detection. We utilize the pre-trained FSDv2 [10]
model for object detection and conduct evaluations on
the re-simulated LiDAR scans within the Waymo Dynamic
dataset. Our results are compared against those from Li-
DARsim [27], with the findings detailed in Tab. 5 and Fig. 6.
Notably, DyNFL exhibits a more substantial detection
agreement with the predictions on real LiDAR scans. This
indicates a higher fidelity in our re-simulations and a re-
duced domain gap relative to actual scans.

Semantic segmentation. For semantic segmentation, we
use the pre-trained SPVNAS model [43], with the results
presented in Tab. 6. DyNFL improves over baseline meth-
ods according to most evaluation metrics, underscoring the
realism of our re-simulated LiDAR scans.

6.5. Scene editing

Beyond LiDAR novel view synthesis by adjusting the sen-
sor configurations (cf . Fig. 7), we additionally demonstrate
the practicality of our compositional neural fields approach
through two scene editing applications.

Insert object from one scene into another. Our explicit
neural scene de-composition and flexible composition tech-
nique enable seamless insertion and removal of neural as-
sets across scenes. As demonstrated in Fig. 8, we are able
to replace a car from one scene with a truck from another
scene, achieving accurate reconstruction of both geometry
and intensity. In contrast, UniSim [55] struggles to preserve
high quality geometry. This highlights the significant po-
tential of our approach in generating diverse and realistic
LiDAR scans for autonomous driving scenarios.

Manipulate the trajectory of dynamic objects. DyNFL
also facilitates the manipulation of moving objects’ trajecto-
ries by simply adjusting their relative poses to the canonical
bounding box. Representative results are shown in Fig. 9.
The high realism of our re-simulation is also indicated by
the successful detection of inserted virtual objects.

7. Limitations and future work
We present DyNFL, a compositional neural fields approach
for LiDAR re-simulation. Our method excels previous art
in both static and dynamic scenes, offering powerful scene
editing capabilities that open up opportunities for generat-
ing diverse and high-quality scenes, to evaluate an auton-
omy system trained only on real data in closed-loop.

Despite achieving the state-of-the-art performance, there
are still limitations we aim to address in future work. Firstly,
DyNFL faces challenges in view synthesis of dynamic ve-
hicles from unseen angles. This difficulty arises from the
complexity of creating an a-priori model that can accurately
complete unseen regions and simulate point cloud noise, ray
drops patterns etc. Secondly, our method currently relies
on object detection and tracking annotations, and its perfor-
mance may be compromised when given inaccurate labels.
Overcoming this dependency, exploring 4D representations
while retaining scene editing flexibility, stands out as a cru-
cial challenge for future research.
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